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Exploring the nonlinear stochastic dynamics of
an orchard sprayer tower moving through an
irregular terrain

Americo Cunha Jr, Jorge Luis Palacios Felix and José Manoel Balthazar

Abstract In agricultural industry, the process of orchards spraying is of extreme im-
portance to avoid losses and reduction of quality in the products. In orchards spray-
ing process an equipment called sprayer tower is used. It consists of a reservoir and
fans mounted over an articulated tower, which is supported by a vehicle suspension.
Due to soil irregularities this equipment is subject to random loads, which may ham-
per the proper dispersion of the spraying fluid. This work presents the construction
of a consistent stochastic model of uncertainties to describe the non-linear dynamics
of an orchard sprayer tower. In this model, the mechanical system is described by as
a multi-body with three degrees of freedom, and random loadings as a harmonic ran-
dom process. Uncertainties are taken into account through a parametric probabilistic
approach, where maximum entropy principle is used to specify random parameters
distributions. The propagation of uncertainties through the model is computed via
Monte Carlo method.
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1 Introduction

The spraying process of orchards has extreme importance in fruit growing, not only
to prevent the economic damages associated with the loss of a production, but also
to ensure the quality of the fruit that will arrive the final consumer. This process uses
an equipment, called sprayer tower, which is illustrated in Figure 1. This equipment
is composed by a vehicle suspension and a support tower, equipped with several
fans, and in a typical operating condition it vibrates nonlinearly [8, 3].
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a)      b) 

Figura 2.1. a) vista lateral e b) vista posterior do pulverizador de pomares (cortesia de 

Máquinas Agrícolas Jacto S/A) 

  

A figura 2.2 ilustra a seqüência de simplificações para gerar o modelo de estudo. 

As figuras 2.2.a e 2.2.b ilustram uma representação em elevação traseira do pulverizador 

destacando os principais elementos como carreta, pneus, eixo, articulação “P”, e a torre 

com seus oito ventiladores, com suas massas mv1, mv2,... mv8 concentradas em seus 

centros de gravidade. As estruturas suportes dos ventiladores são consideradas rígidas e 

sem massa. Entende-se que este modelo (figura 2.2.b) poderia representar mais 

precisamente o movimento individual de cada um dos ventiladores, contudo neste 

momento, o interesse está em reconhecer o movimento global da torre, cujo excessivo 

movimento lateral influencia na qualidade da aplicação da pulverização.  

Assim é proposta uma segunda simplificação do modelo, como apresentada na 

figura 2.2c. Nesta simplificação as massas dos ventiladores inferiores (mv1, mv2, mv3 e 

mv4) são concentradas na massa mc1. As massas dos ventiladores superiores (mv5, mv6, 

Fig. 1 Sketch of the orchard sprayer tower (courtesy of Máquinas Agrı́colas Jacto S/A).

Understanding the dynamics of this equipment is essential to its design and also
to discover operating conditions that may be harmful to the spraying process. In this
sense, this work aims to model the nonlinear dynamics of the sprayer tower, taking
into account the deterministic and stochastic aspects. In particular, it is of great
interest to predict the maximum amplitude of the lateral vibration of the structure,
and verify if the uncertainties in the soil-induced loadings are capable of generating
undesirable levels of oscillations.

The rest of this chapter is organized as follows. In section 2 it is presented the
deterministic model and analysis for the mechanical system. A stochastic model
to take into account the uncertainties associated to the model parameters, and the
corresponding stochastic simulations are shown in section 3. Finally, in section 4,
final remarks are highlighted.

2 Deterministic analysis

In the modeling process developed here, the mechanical system is considered as the
multibody system illustrated in Figure 2. The masses of the chassis and the tank are
assumed to be concentrated at the bottom of the double pendulum, as a point mass
denoted by m1. On the other hand, the point mass m2, at the top of the double pen-
dulum, takes into account the masses of the fans. The point of articulation between
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the moving suspension and the tower is denoted by P and its distance to the suspen-
sion center of gravity is L1. The junction P has torsional stiffness kT , and damping
torsional coefficient cT . The tower has length L2, and is considered to be massless.
The left wheel of the vehicle suspension is represented by a pair spring/damper with
constant respectively given by k1 and c1 located at a distance B1 from suspension
center line, and it is subject to a vertical displacement ye1. Similarly, the right wheel
is represented by a pair spring/damper characterized by k2 and c2, it is B2 away from
suspension center line, and displaces vertically ye2. The moments of inertia of the
suspension and of the tower, with respect to their centers of gravity, are respectively
denoted by I1 and I2. The acceleration of gravity is denoted by g. Finally, introduc-
ing the inertial frame of reference XY , the vertical displacement of the suspension is
measured by y1, while its rotation is computed by φ1, and the rotation of the tower
is denoted by φ2. Therefore, this model, which was developed by [7, 8], has three
degrees of freedom: y1, φ1 and φ2.

Fig. 2 Schematic representation of the mechanical-mathematical model: an inverted double pen-
dulum, mounted on a moving suspension.

It can be deduced from the geometry of Figure 2 that tower horizontal (lateral)
displacement is given by

x2 =−L1 sinφ1−L2 sinφ2. (1)
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Typically, the sprayer tower moves on an irregular terrain during its operation,
which induces oscillatory displacements (loads) in the tires. In order to reproduce a
typical load (induced by soil) the left and right tires displacements are respectively
assumed to be periodic functions in time, out of phase, with the same amplitude,
and a single frequencial component,

ye1(t) = A sin(ω t) , and ye2(t) = A sin(ω t +ρ) , (2)

where A and ω respectively denotes the amplitude and frequency of the tires dis-
placements, and ρ is the phase shift between the two tires.

Employing a Lagrangian formalism to obtain the nonlinear dynamical system
associated to the mechanical system, the following set of ordinary differential equa-
tions is obtained

[M]

 ÿ1
φ̈1
φ̈2

+[N]

 ẏ2
1

φ̇ 2
1

φ̇ 2
2

+[C]

 ẏ1
φ̇1
φ̇2

+[K]

 y1
φ1
φ2

= g−h, (3)

where [M], [N], [C] and [N] are 3× 3 (configuration dependent) real matrices, re-
spectively, defined by

[M] =

 m1 +m2 −m2 L1 sinφ1 −m2 L2 sinφ1
−m2 L1 sinφ1 I1 +m2 L2

1 m2 L1 L2 cos(φ2−φ1)
−m2 L2 sinφ1 m2 L1 L2 cos(φ2−φ1) I2 +m2 L2

2

 , (4)

[N] =

0 −m2 L1 cosφ1 −m2 L2 cosφ2
0 0 −m2 L1 L2 sin(φ2−φ1)
0 −m2 L1 L2 sin(φ2−φ1) 0

 , (5)

[C] =

 c1 + c2 (c2 B2− c1 B1)cosφ1 0
(c2 B2− c1 B1)cosφ1 cT +(c1 B2

1 + c2 B2
2)cos2 φ1 −cT

0 −cT cT

 , (6)

[K] =

 k1 + k2 0 0
(k2 B2− k1 B1)cosφ1 kT −kT

0 −kT kT

 , (7)

and let g, and h be (configuration dependent) vectors in R3, respectively, defined by
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g =

 (k2 B2− k1 B1)sinφ1 +(m1 +m2)g
(k1 B2

1 + k2 B2
2)sinφ1 cosφ1−m2 gL1 sinφ1
−m2 gL2 sinφ2

 , (8)

and

h =

 k1 ye1 + k2 ye2 + c1 ẏe1 + c2 ẏe2
−B1 cosφ1 (k1 ye1 + c1 ẏe1)+B2 cosφ1 (k2 ye2 + c2 ẏe2)

0

 . (9)

Considering the static equilibrium configuration as initial condition, the result-
ing nonlinear initial value problem is integrated using a Runge-Kutta method [1].
The evolution of this nonlinear dynamic system is investigated in the interval
[t0, t f ] = [0,30]s, adopting for the physical and geometrical parameters the nomi-
nal (deterministic) values shown in Table 1.

Table 1 Nominal parameters used in the simulations of the mechanical system.

parameter value unit

m1 6500 kg
m2 800 kg
L1 0.2 m
L2 2.4 m
I1 6850 kgm2

I2 6250 kgm2

k1 465×103 N/m
k2 465×103 N/m
c1 5.6×103 N/m/s
c2 5.6×103 N/m/s
B1 0.85 m
B2 0.85 m
kT 45×103 N/rad
cT 50×103 Nm/rad/s
A 0.15 m
w 2π rad/s
ρ π/4 rad

The time series corresponding to the tower horizontal (lateral) dynamics x2 can
be seen in Figure 3, while the corresponding phase space trajectories projections (in
R3 and R2) are presented in Figure 4.

From a qualitative point of view, the simulation results shown in Figures 3 and
4 allow one to see that, after a transient regime of approximately 5s, the sprayer
tower dynamics accumulate into a limit cycle. Hence, for any practical purpose,
the permanent behavior is periodic. In addition, from the quantitative point of view,
these same results show that the tower can oscillate with amplitude bigger then
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Fig. 3 Time series of tower horizontal dynamics: x2.
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Fig. 4 Projections of horizontal dynamics phase space trajectory. (a) x2 atractor in R3; (b) x2
atractor in R2.

0.2m, which is the value of B1 and B2. This shows that the sprayer tower can reach
a critical level of horizontal (lateral) vibration, which can be harmful to the spraying
process.

This analysis used a deterministic model for dynamics, where amplitude and
frequency of external loading are assumed to be known. However, in practice, am-
plitude and frequency of external excitation are not known with precision, which
induces uncertainties to the dynamic response of the structure. Taking into account
the effect of these uncertainties on the model response is essential for a robust de-
sign, being the purpose of the next section.

3 Stochastic analysis

Consider a probability space (Θ ,�,P), where Θ is a sample space, � is a σ -field
over Θ , and P : �→ [0,1] is a probability measure. In this probabilistic space, the
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amplitude A and the frequency ω are respectively modeled by the independent ran-
dom variables A : �→ R and � : �→ R.

To specify the distribution of these random parameters, based only on theoretical
information known about them, the maximum entropy principle is employed [5,
10]. For A, which is a positive parameter, it is assumed that: (i) the support of the
probability density function (PDF) is the positive real line, i.e., Supp pA = (0,+∞);
(ii) the mean value is known, i.e. E{A} = µA ∈ (0,+∞); and (iii) A−1 is a second
order random variable, so that E{lnA} = q, |q| < +∞. Besides that, for �, that is
also a positive parameter, the only known information is assumed to be the support
Supp p� = [ω1,ω2]⊂ (0,+∞).

Consequently, the distributions which maximize the entropy have the following
PDFs

pA(a) = 1(0,+∞)(a)
1

µA

(
1

δ 2
A

)( 1
δ2
A

)
1

Γ (1/δ 2
A)

(
a

µA

)( 1
δ2
A
−1

)
exp
(
− a

δ 2
AµA

)
, (10)

and

p�(ω) = 1[ω1,ω2](ω)
1

ω2−ω1
, (11)

which correspond, respectively, to the gamma and uniform distributions. In the
above equations 1X (x) denotes the indicator function of the set X , and 0 ≤ δA =
σA/µA < 1/

√
2 is a dispersion parameter, being σA the standard deviation of A.

The stochastic simulations reported here adopted, for the random variables A and
�, the following parameters µA = 0.15m, σA = 0.2× µA, and [ω1,ω2] = [0,2]×
2π rad/s.

Due to the randomness of A and �, the tire displacements are now described by
the following random processes

ye1(t) = A sin(� t) , and ye2(t) = A sin(� t +ρ) . (12)

Therefore, the dynamics of the mechanical system evolves (almost sure) accord-
ing to the following system of stochastic differential equations

[M]

 ÿ1
�̈1
�̈2

+[N]

 ẏ2
1
�̇2

1
�̇2

2

+[C]

 ẏ1
�̇1
�̇2

+[K]

 y1
�1
�2

= g−h, a.s. (13)

where the real-valued random matrices/vectors [M], [N], [C], [K], g and h are stochas-
tic versions of the matrices/vectors [M], [N], [C], [K], g and h.

Monte Carlo (MC) method [6, 4] is employed to compute the propagation of
uncertainties of the random parameters through the nonlinear dynamics. In this
method, realizations of the random parameters are generated. Each one defines a
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new deterministic nonlinear dynamical system, which is integrated using the pro-
cedure described in section 2. Then, statistics of the generated data is calculated to
access the stochastic nonlinear dynamics.

The map ns ∈ N 7→ conv(ns) ∈ R, used to evaluate the convergence of MC sim-
ulation, is defined by

conv(ns) =

(
1
ns

ns

∑
n=1

∫ t f

t=t0

(
y1(t,θn)

2 +�1(t,θn)
2 +�2(t,θn)

2
)

dt

)1/2

, (14)

where ns is the number of MC realizations. See [9] for further details.
As can be seen in Figure 5, which shows the evolution of conv(ns) as a function

of ns, for ns = 1024 the metric value is stationary. So, all MC simulations reported
in this work use ns = 1024 to address the stochastic dynamics.
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Fig. 5 Illustration of MC convergence metric as function of the number of realizations.

Realizations of tower horizontal (lateral) dynamics x2 time series can be seen in
Figure 3, as well as the corresponding 95% of probability confidence band. A wide
variability in x2 can be observed. This fact may also be noted in Figure 7, which
shows the evolution of the sample mean and standard deviation of x2. Note that,
in all the interval of analysis, the standard deviation is bigger than the mean value,
which indicates a significant spreading of the realizations with respect to the mean.

In Figure 8 are presented estimations of the (normalized1) probability density
function (PDF) of the tower horizontal vibration, for different instants of time. In
all cases it is possible to observe asymmetries with respect to mean and multimodal
behavior. In Figure 9 the reader finds the time average of the tower horizontal dy-
namics PDF, which reflects the multimodal characteristic observed in the instants of
time analyzed in Figure 8.

1 In this context, the meaning of normalized is zero mean and unity standard deviation.
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Fig. 6 Confidence envelope and some realizations for tower horizontal displacement.
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Fig. 7 Sample mean/standard deviation for tower horizontal displacement.

By way of reference, a lateral vibration with an amplitude level greater than 10%
of the B1 value will be considered high, i.e.,

large vibration =
{
x2(t)> 10% of B1

}
. (15)

For any instant t, it is of interest to determine the value of

P
{
x2(t)> 10% of B1

}
= 1−P

{
x2(t)≤ 10% of B1

}
, (16)

where

P
{
x2(t)≤ 10% of B1

}
=
∫ B1/10

−∞

dFx2(t)(x2). (17)

In Figure 10 the reader can see the value of P
{
x2(t)> 10% of B1

}
as function

of time. Note that, for almost all the instants, the probability of an unwanted level
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(b) t = 15.0s
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Fig. 8 Probability density function of tower horizontal dynamics (at different instants).
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Fig. 9 Time average of tower horizontal dynamics probability density function.

of vibration may be significative values, being this value almost always greater than
40%.
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Fig. 10 Evolution of the probability of large horizontal vibrations.

4 Final remarks

This work presented the study of the nonlinear dynamics of an orchard tower sprayer
subjected to random excitations due to soil irregularities. Random loadings were
taken into account through a parametric probabilistic approach, where the external
loading was modeled as a harmonic random process, with random parameters dis-
tributions specified by maximum entropy principle. Monte Carlo simulations of the
stochastic dynamics reveal a wide range of possible responses for the mechanical
system, and show the possibility of large lateral vibrations being developed during
the sprayer operation.

Preliminary results of this work were presented in [2], and deeper analysis of this
problem, including a more complex stochastic loading, can be found in [3].
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