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Kalman Filtering for a Quadratic Form State

Equality Constraint

Dayi Wang1, Maodeng Li2, Xiangyu Huang3, and Ji Li4

Beijing Institute of Control Engineering, Beijing, 100190, China

I. Introduction

The well-known Kalman filter is an optimal unbiased estimator for linear dynamic systems

with Gaussian noise and non-Gaussian noise [1, pp. 480]. In a number of practical situations,

the state of the system is subject to some constraints. Examples of such systems include camera

tracking [2], target tracking [3, 4], vision-based systems [5], attitude determination [6–8], and orbit

determination [9, 10]. If the state constraints are either ignored or dealt with heuristically, the

use of the Kalman filter may result in a nonoptimal estimation [11]. Therefore, it is necessary to

incorporate the state constraints into the Kalman filter.

Many researchers have studied Kalman filters for linear and nonlinear state constraints, and for

equality and inequality constraints [12]. Methods of dealing with linear constraints include model

reduction, perfect measurements, estimate projection, gain projection, probability density function

truncation, and system projection. If the state constraint is nonlinear, a typical approach is to

linearize the constraint around the current state estimate [9]. However, the linearized method may

degrade the performance of the filter or may even cause the filter to diverge.

In [13], a Kalman filter with a single nonlinear equality constraint was proposed that allows for

the exact use of second-order nonlinear state constraints. Using the Lagrangian multiplier technique,

a first-order necessary condition for a constrained least-square optimization problem is derived to

form the estimation and Lagrangian multiplier polynomial equations. The Lagrangian multiplier is
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solved iteratively and then provides the constrained estimate. To implement the filter in [13], the

second-order coefficient matrix of the constraint should be positive-definite. The method proposed

in [13] is extended to multiple nonlinear-linear mixing state equality constraints in [14, 15], and the

condition of the positive definite second-order coefficient matrix is relaxed to include any symmetric

matrices. In addition, a H∞ filter is introduced to deal with the situation of noise with unknown

statistics in [15]. However, in [13–15], the use of a Newton’s iteration method to solve the Lagrangian

multiplier is limited by the initial guess. Moreover, because the polynomial equation has multiple

roots, the root found may not correspond to a minimal index. In [7], a norm-constrained Kalman

filter (NCKF) is developed for the norm state equality constraint. For this situation, the Lagrangian

multiplier forms solutions of a quadratic polynomial equation and the two solutions are given in a

closed form. The second-order sufficient condition for a constrained optimization problem is then

derived to choose the solution that minimizes the performance index. However, the approach in [7]

is specific to the attitude estimation problem.

In this note, the NCKF is generalized to the case of a quadratic form that has more general

applications in aerospace engineering. The coefficient matrix for these quadratic form constraints

can either be positive-semidefinite or positive-indefinite. For a positive-semidefinite matrix, the

NCKF can be applied by transforming the constraint to a norm constraint. Methods to incorporate

constraints with a positive-indefinite matrix into filters may require specific derivations for different

applications. A typical constraint with a positive-indefinite matrix is that the position vector of a

spacecraft is orthogonal to the velocity at the perigee/apogee. In Ref. [10], the linearized method is

used by projecting the unconstrained estimate into the constrained space. However, the application

of the constraint at the perigee and apogee positions causes a discontinuity in the covariance because

this type of constraints is isolated. Two scalar weights can be introduced to smoothen the state and

covariance estimation. Another typical quadratic form constraint with a positive-indefinite matrix is

in Markley variables [16]. The elements of Markley variables are the angular momentum components

in an inertial frame, in a body frame and a rotation angle. Markley variables are used for spinning

spacecraft attitude estimation, because they have fewer rapidly-varying elements compared with

quaternion-based representation. The constraint that the magnitude of the angular momentum
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vector is the same in the inertial and body frames allows the filters to employ a six-component error

state instead of an error vector with the full seven-component state. Such a procedure is similar

to that commonly used to estimate the constrained four component-quaternion representation [17].

The filter employing Markley variables is referred to as SpinKF and several different varieties of

SpinKF can be derived depending on the choice of error state: SpinKF-1 [18], SpinKF-I, or SpinKF-

B [6].

The main of focus of this note is to extend the NCKF to a situation for a general quadratic form

state constraint using the standard Lagrangian multiplier technique and to obtain a mathematically

robust method for finding solutions of Lagrangian multiplier, using an eigenvalue decomposition of

a companion matrix of a polynomial function in place of a less robust Newton-Raphson iteration.

An analytical criterion derived from the second-order optimal sufficient condition is used to select

the Lagrangian multiplier corresponding to the minimum point of the performance index. The

proposed filter is mathematically equivalent to the norm-constrained filter when the quadratic-form

matrix is positive-semidefinite.

II. Problem Statement

Let x̂− be a priori state estimation of state x (x ∈ Rn) before employing the measurement y

(y ∈ Rm) and let P− be the corresponding error covariance matrix. Then

P− = E
{

(x̂− − x)(x̂− − x)T
}

(1)

It is assumed that the measurement is a linear combination of state with the form

y = Hx+ η (2)

where η is measurement noise with the covariance R = E
{
ηηT

}
. Let x̂+ be a posteriori estimation

of x given by

x̂+ = Ky +Nx̂− + n (3)

where K ∈ Rn×m,N ∈ Rn×n, and n ∈ Rn are matrices to be determined. Note that a perfect

priori state estimation (x̂− = x) and a perfect measurement (η = 0) would result in a perfect
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posteriori estimation (x̂+ = x), which means that

x = (KH +N)x+ n (4)

Therefore, K,N and n must satisfy the constraints

KH +N = I (5a)

n = 0 (5b)

, and Eq. (3) can be rewritten as,

x̂+ = x̂− +Kε (6)

where, ε = y −Hx̂−.

For an unconstrained linear optimal estimation problem, the optimal K can be determined by

minimizing the loss function

J =
1

2
TrP+ =

1

2
Tr
[
E
{

(x̂+ − x)(x̂+ − x)T
}]

(7)

where, P+ is the posteriori error covariance.

In this note, a quadratic form state constraint is considered, and any quadratic form state

constraint can be written in the form of

xTAx = l (8)

with A = AT ∈ Rn×n. The performance index Eq. (7) can be redefined as

J =
1

2
Tr
[
E
{

(x̂+ − x)(x̂+ − x)T
}]

+
1

2
λ((x̂+)TAx̂+ − l) (9)

where, λ is a Lagrangian multiplier associated with the constraint in Eq. (8).

Assuming that the measurement noise η is not correlated with x̂− and substituting Eq. (6) and

Eq. (2) into Eq. (9) yields

J =
1

2
Tr
[
KRKT + (I −KH)P−(I −KH)T

]
+

1

2
λ[(x̂− +Kε)TA(x̂− +Kε)− l] (10)

The goal is to determine K and λ while minimizing the loss function Eq. (10).
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III. Analytical Solution of K

According to Appendix A, the necessary conditions for minimizing J in Eq. (10) are

∇KJ = KR− (I −KH)P−HT + λA(x̂− +Kε)εT = 0 (11a)

∇λJ = (x̂+)TAx̂+ − l = 0 (11b)

where, the identities of ∂
∂x (xTCx) = (C +CT )x and ∂

∂A (Tr[ABAT ]) = (AB +ABT ) [19, pp.

679] are used. Eq. (11) can be rearranged as,

K + λAKεεTW−1 = (P−HT − λAx̂−εT )W−1 (12a)

εTKTAKε + 2εTKTAx̂− + (x̂−)TAx̂− − l = 0 (12b)

where W = HP−HT +R.

Eq. (12) has two unknown parameters to be solved: K and λ. A possible way is to solve K in

terms of λ and other variables from Eq. (12a) and then solve λ from Eq. (12b) by substituting the

solution ofK into Eq. (12b). K clearly depends on the prior estimate of the state and measurement

of residuals, which indicates that K and λ fluctuate with the noise.

Eq. (12a) is known as the discrete-time Sylvester equation for K. If A = I, K can be

solved directly from Eq. (12a), as presented in [7]. However, for a general A, the solution of

K cannot be obtained intuitively. For a m dimensional space, there exist m − 1 vectors βi(i =

1, · · · ,m − 1) such that βi⊥βj(i 6= j) and ε⊥βi. Therefore, the m eigenvalues of λεεTW−1 are

0, · · · , 0, λε with ε = εTW−1ε, and the eigenvectors corresponding to these m eigenvalues are given

by Wβ1,Wβ2, · · · ,Wβm−1, ε. Suppose there exist m αi ∈ R (i = 1, 2, · · · ,m) such that

α1ε+ α2Wβ1 + · · ·+ αmWβm−1 = 0 (13)

Because W > 0, a left-multiplication of Eq. (13) by εTW−1 gives α1 = 0 and then a left-

multiplication of Eq. (13) by βTj W−1(j = 1, · · · ,m−1) gives αi = 0(i = 2, · · · ,m), which indicates

that the m eigenvectors of λεεTW−1 are linearly independent. In other words, λεεTW−1 can be

diagonalized as

λεεTW−1 = V ΓV −1 (14)
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where, Γ := diag([γ1, · · · , γm]) = diag([0, · · · , 0, λε]) and V = [Wβ1,Wβ2, · · · ,Wβm−1, ε]. Not-

ing that a symmetrical matrix can be diagonalized by an orthogonal matrix, A can be written

as,

A = UΞUT (15)

where U is an orthogonal matrix, and Ξ = diag([ξ1, · · · , ξn]). Substituting Eq. (15) into Eq. (12a)

and multiplying it on the left by UT and on the right by V , we obtain

K̃ + ΞK̃Γ = C̃ (16)

where, K̃ = UTKV , C̃ = UTCV and C = (P−HT − λAx̂−εT )W−1

Denoting the (i, j)th elements of K̃ and C̃ as k̃ij and c̃ij , Eq. (16) reads as

k̃ij + ξik̃ijγj = c̃ij (17)

which means that

k̃ij =
c̃ij

1 + ξiγj
(18)

Once K̃ is calculated, K is given by UK̃V −1. Following the extended Kalman filter (EKF)

derivation assumption, the posteriori error covariance is given by

P+ = (I −KH)P−(I −KH)T +KRKT (19)

IV. Analytical solution of λ

Noting that c̃ij and γj depend on λ, λ should be calculated before computingK. In this section,

an analytical solution of λ will be derived.

A right-multiplication of Eq. (12a) by ε gives

Kε+ λεAKε = d− λεAx̂− (20)

where d = P−HTW−1ε. Then

Kε = [I + λεA]−1[d− λεAx̂−] (21)
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Substituting Eq. (21) into Eq. (12b) yields,

[d− λεAx̂−]T [I + λεA]−1A[I + λεA]−1[d− λεAx̂−] (22a)

+2[d− λεAx̂−]T [I + λεA]−1Ax̂− (22b)

= l − (x̂−)TAx̂− (22c)

A further simplification of Eq. (22), obtained by substituting Eq. (15) into Eq. (22), gives,

hT (I + λεΞ)−2Ξh = l (23)

where, h = d̃+ x̃, d̃ = UTd, and x̃− = UT x̂−. Eq. (23) can be written in a scalar form as

s1(λ̃) =

n∑
j=1

h2jξj

(1 + λ̃ξj)2
− l = 0 (24)

where λ̃ = λε.

Eq. (24) is similar to the constraint equation expressed in terms of a Lagrangian multiplier in [13]

for a constrained least-square problem and a Newton’s iteration method is proposed for solving λ

by starting with λ0 = 0 in [13]. However, this method can only find one root of the constraint

equation and this root may not be the one corresponding to the minimum value of the loss function

because the number of the roots of Eq. (24) is 2p, where p = q for l 6= 0 or p = q − 1 for l = 0, and

q is the number of distinct nonzero eigenvalues of A. Therefore, a more effective method should be

developed to find 2p roots of Eq. (24) and determine the root that minimizes the loss function.

Let ξ̃1, ξ̃1, · · · , ξ̃q be q distinct nonzero eigenvalues of A and define a monic polynomial function

as

s2(λ̃) =


1∏q

j=1 ξ̃
2
j

∏q
j=1(1 + λ̃ξ̃j)

2(1− 1
l

∑n
i=1

h2
i ξi

(1+λ̃ξi)2
) if l 6= 0

1∏q
j=1 ξ̃

2
j

∏q
j=1(1 + λ̃ξ̃j)

2
∑n
i=1

h2
i ξi

(1+λ̃ξi)2
if l = 0

(25)

Eq. (25) can be rewritten as,

s2(λ̃) = β0 + β1λ̃+ β2λ̃
2 + · · ·+ λ̃2p (26)

where, βi = 1
i!
di

dλ̃i
s2(0) can be calculated by expanding Eq. (25) or by using difference methods. It

is noticed that the roots of function (26) are the same as the solutions of Eq. (24) and the Frobenius

7



companion matrix corresponding to Eq. (26) is defined by

G =



0 0 · · · 0 −β0

1 0 · · · 0 −β1

0 1 · · · 0 −β2
...

...
. . .

...
...

0 0 · · · 1 −β2p−1


(27)

Because the eigenvalues of the matrix (27) are the roots of function (25), the 2p roots of (25)

can be calculated by performing an eigenvalue decomposition of G. Compared with the Newton

method, the proposed method does not require an iteration process and can find all roots of (25).

Because G has 2p eigenvalues, one has to determine the value that minimizes the performance

index. The following lemma, derived from the second-order sufficient condition for a constrained

optimization problem, can be used to select the Lagrangian multiplier corresponding to the local

minimum point.

Lemma .1 If λ̃∗ is an eigenvalue of (27), and
∏r
j=1(1 + λ̃∗ξj) > 0 j 6= i for ∀i ∈ [1, r] with

r = 2, · · ·n, then λ̃∗ corresponds to a minimal performance index.

Proof .2 See Appendix C.

Remark .3 If A = I, the constraint reduces to a norm constraint. Because ξ̃ = 1 and q = 1,

Eq. (25) can be simplified as

s2(λ) =
1

ε2
[ (1 + λε)2 − h

Th

l
] = 0 (28)

and its solution is given by

λ = −1

ε
± |h|
ε
√
l

(29)

It is easy to verify from Lemma .1 that the plus sign in Eq. (29) corresponds a minimum performance.

The Kalman filter gain can be directly computed from Eq. (12a), which is the same as the gain derived

in [7]. Moreover, the proposed constrained Kalman filter (CKF) is mathematically equivalent to

the NCKF for a positive- semidefinite A.
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Remark .4 A transformation z = Υx̃ with the (i, j) element of Υ given by

Υ(i, j) =



1, if ξi = 0 and i = j

√
|ξi|, if ξi 6= 0 and i = j

0 if i 6= j

(30)

can be introduced to simplify Eq. (8) as

zT Ξ̃z = l (31)

where Ξ̃ is a diagonal matrix whose elements include only 0, 1,−1.

For variable z, there are at most 2 distinct nonzero eigenvalues for its quadratic-form matrix,

which indicates that there exists at most four roots for the Lagrangian multiplier.

V. Simulation Results

In this section, two numerical examples are presented to demonstrate the CKF developed in

the preceding sections. One is the tracking of a moving target along a hyperbolic road segment

and the other is the constrained estimation for the attitude of a spinning spacecraft using Markley

variables.

A. Tracking a target along a hyperbolic road segment

In this subsection, a simple example of tracking a moving target is considered to evaluate the

effectiveness of the proposed CKF and to compare its performance with the traditional EKF and

the linearized constrained Kalman filter (LCKF) [9]. For the LCKF, the constrained estimation is

constructed by projecting the unconstrained estimation obtained from the EKF onto the linearized

constraint surface. The primary purpose of this example is to illustrate the implementation of the

CKF. A 2D situation is considered and the hyperbolic road constraint can be written as,

x2

a2
− y2

b2
= 1 (32)

where a = b = 1, and the center of the hyperbolic road is chosen as the origin of the x−y coordinates.

Eq. (32) is in the form of Eq. (8) with

A = diag([
1

a2
,− 1

b2
, 0, 0]) (33)
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l = 1, and x = [x, y, ẋ, ẏ]T . The kinematic model of the target can be written as

ẋ = aω sec θ tan θ (34a)

ẏ = bω sec2 θ (34b)

ẍ = aω2(sec θ tan2 θ + sec3 θ) (34c)

ÿ = 2bω2 sec3 θ sin θ (34d)

where θ = ωt, and ω = 0.015 rad/s is the angular velocity. The initial conditions of the target are

chosen as x0 = [1,−0.0075,−0.0001, 0.015]T . The target is equipped to measure its range relative

to two reference points, ra and rb, where ra = [−1;−1]T and rb = [5; 9]T . Then, the measurement

equation is given by

y =


√

(r − ra)T (r − ra)√
(r − rb)T (r − rb)

+w (35)

where r = [x, y]T , and the standard deviation of the measurement noise w is assumed to be 0.1.

The measurement sensitivity matrix corresponding to Eq. (35) is given by

H =

 (r − ra)T /
√

(r − ra)T (r − ra) 01×2

(r − rb)T /
√

(r − rb)T (r − rb) 01×2

 (36)

The initial estimation position and velocity error are chosen as 0.05 and 2× 10−3 for each axis,

respectively, and the initial estimation error covariance is selected to be P0 = diag[2.5× 10−3, 2.5×

10−3, 4× 10−6, 4× 10−6].

A simulation flowchart of the CKF is shown in Fig. 1. For the CKF, the essential difference

between a hyperbolic constraint and the circular constraint presented in [13] or the norm constraint

presented in [7] lies in the fact that, for a hyperbolic constraint, A is a positive-indefinite matrix,

and p = q = 2, which indicates that Eq. (25) is a polynomial equation with degree four and that

analytical solutions of the polynomial equation can not be obtained intuitively. Because A is a

diagonal matrix, Ξ = A and U = I2. After some algebraic manipulations, the coefficients of
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Eq. (25) are obtained as

β0 = a4b4 − (a2b4h21 − b2a4h22) (37a)

β1 = −2a4b2 + 2a2b4 + 2a2b2(h21 + h22) (37b)

β2 = a4 − 4a2b2 + b4 − (a2h21 − b2h22) (37c)

β3 = −2b2 + 2a2 (37d)

Four solutions of λ̃ are given by the eigenvalues of G in Eq. (27), and to determine the solution

that minimizes the loss function, the second-order sufficient condition is used. According to Lemma

1, the λ̃ satisfying −a2 < λ̃ < b2 corresponds an minimal index. In practice, an alternative simple

approach to determine the optimal λ̃ is to evaluate the loss function (52) directly, noting that only

two real eigenvalues exist for the companion matrix.

The Forbenius norms of the Kalman gains for the three filters and Lagrangian multiplier for the

CKF are shown in Fig. 2 and Fig. 3, respectively. The norms of the gains for the LCKF and the EKF

are convergent. However, the norms of the gain and Lagrangian multiplier for the CKF fluctuate

with the noise, which coincides with the analysis in Sec. III. The effects of this phenomenon on the

stability and convergence of the filter are unknown, and require further study in the future. As a

direct consequence, the P+ in Eq. (19) is only a covariance-like matrix and is not strictly the error

covariance, similar to the case of the unit-norm constraint [7]. Hence, the roots of the trace of P+

as shown in Fig. 4 may not accurately represent the performance of the CKF.

The root-mean-square-error (rmse) [10] values of the EKF, the LCKF, and the CKF are com-

puted to compare the performance of these three filters. The values are shown in Fig 5. The average

rmses of the EKF, the LCKF, and the CKF are 0.0186, 0.0068, and 0.0058, respectively. The three

filters are convergent. Fig. 5 shows that the LCKF outperforms the EKF. The error of the con-

strained estimation of the LCKF is smaller than the unconstrained estimation error as proved in [9].

The overall performance of the CKF is better than that of the LCKF because the LCKF is subject

to approximation errors depending on nonlinear terms and the point around which linearization

occurs, whereas the proposed CKF can enforce a nonlinear constraint.
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B. Constrained Attitude Estimation for Spinning Spacecraft Using Markley Variables

Attitude estimation is often more difficult for a spinning spacecraft than for a three-axis sta-

bilized spacecraft because of the need to follow rapidly-varying state vector elements and the lack

of three-axis rate measurements form gyros. Hence, Markley variables [6, 16, 18] may be employed

instead of a quaternion-based representation for a spinning spacecraft.

The state for the Markley variables is defined as xT = [LTB ,L
T
I , α], where LI and LB are

the angular momentum components in an inertial frame (FI) and spacecraft’s body frame (FB),

respectively, and α will be defined later. Then the equations of motion of LI and LB can be written

as [20, Chaps. 12 and 16],

L̇I = RT
BINB (38)

L̇B = NB − ωB ×LB (39)

where NB is the external torque expressed in FB , RBI is the attitude matrix from FI to FB , and

ωB = J−1(LB − Lint). Here, J is the spacecraft moment of inertia tensor and Lint is the angular

momentum relative to the body frame of any internal moving components.

Denoting lB and lI as unit vectors of LB and LI , respectively, consider a transformation from

FI to an intermediate frame (FE) that rotates about lB×lI by an angle φ (φ = cos (lB · lL)). Then,

define another transformation from FE to FB that rotates about LB by an angle α. Therefore,

RBI = RBEREI (40)

where REI and RBE are the attitude matrices from FI to FE and from FE to FB , respectively,

which can be written as [6, 21],

REI = (lB · lI)I3 − lIlTB + lBl
T
I + (1 + lB · lI)−1(lB × lI)(lB × lI)T (41)

RBE = cosαI3 +
1− cosα

L2
LBL

T
B −

sinα

L
[LB×] (42)

Here, I3 is the 3× 3 identity matrix, [v×]

[v×] =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 (43)
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denotes the cross-product matrix for any vector v, and

L ≡ ‖LB‖ = ‖LI‖ (44)

The equations of motion of α can be written as [6]

α̇ = (1 + lB · lI)−1[(lB + lI) · ωBI + L−1(lB × lI)(NB +RT
BINB)] (45)

The constraint in Eq. (44) is in the form of Eq. (8) with

A =


I3 03×3 03×1

03×3 −I3 03×1

01×3 01×3 0

 (46)

and l = 0. Therefore, the CKF developed in this note can be implemented directly. It should be

noted that the analytical solution of λ̃ for this example can be explicitly derived from Eq. (24),

which can be written as,

λ̃1 =
g1 − g2
g1 + g2

, λ̃2 =
g1 + g2
g1 − g2

(47)

where, g1 = (h21 + h22 + h23)0.5, g2 = (h24 + h25 + h26)0.5 and hi (i = 1, 2, · · · , 6) is the ith element of

h. According to Lemma 1, the λ̃ satisfying |λ̃| < 1 corresponds to a minimum index.

The initial orbital elements are the following: semimajor axis = 43052.445 km, eccentrici-

ty = 0.7778, inclination of the orbit = 0.1658 rad, right ascension of the ascending node = 6.2817 rad,

and argument of perigee = 0.00276 rad and true latitude = 0. The initial quaternion and angular

velocity are qT0 = [−0.7435, 0.6042, 0.1943, 0.2107] and ωT0 = [0.3747, 0, 2.0944] rad/s, respective-

ly. The inertia tensor is given by J = diag[200, 200, 384] kg-m2 and Lint is assumed to be zero.

Then, the initial values of the attitude matrix RBI and α can be computed from q0 [19, pp.612]

and Eq. (40), respectively. The initial values of LB and LI are given by Jω0 and RT
BI(t0)LB ,

respectively.

The spacecraft is assumed to carry three-axis magnetometers (TAM) to measure the direction

of the Earth’s magnetic fields and a sun sensor to measure the direction vector to the Sun in FB .

The 1− σ of the measurement noise for both sensors is 10−2 in each axis.
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Similar with the scenarios in [6], three scenarios are considered here. The nominal scenario

consists of torque-free motion, a 2-deg nutation angle, no sensor misalignments, and uses 30 ob-

servations per spin period. The second scenario is the same with the nominal scenario, but with

misalignments of 0.5 deg on the sensors. The third scenario is also similar with the nominal scenario,

but with a torque applied in the body frame to precess the angular momentum vector by 45-deg

during the 1400 s time span, and the torque values are not passed to the filter. For these three

scenarios, the initial attitude error and rate error is 10 deg and 5 deg/s in each axis, respectively.

The performance of the CKF is compared with two of other Markley variables based filters,

known as SpinKF: SpinKF-I, and SpinKF-B [6]. The error states of SpinKF-I and SpinKF-B are

the vector of infinitesimal attitude error angles and the angular momentum vector expressed in the

inertial frame and the vector of infinitesimal attitude error angles and the angular momentum vector

expressed in the spacecraft body frame, respectively. State update preserves the constraint in the

CKF, but may violate it in the SpinKF filters. Therefore, both SpinKF-I and SpinKF-B require

restoration of the constraint after the update by trusting the magnitude of the angular momentum

in the inertial frame more than that in the spacecraft body frame or vice versa.

Monte Carlo simulation is used to generate the mean errors in the estimate of the angular

momentum direction of these three scenarios after the filters have converged. The results are based

on a total of 100 runs and summarized in Table 1. Analysis revealed that the three filters filters are

performing well and that the mean error in angular momentum direction using the CKF is smaller

than that those using other filters for the nominal scenario and the scenario with misaligned sensors.

However, SpinKF-B performs better than the other filters with the attitude slew. This may due

to the fact that an estimate of L is required to propagate LI and α. The CKF can preserve the

constraint, but cannot ensure that the estimate of L is more accurate than that in the SpinKF

filters. It should be noted that the performance of the CKF is also affected by other factors as

well, such as number of observations per spin period, propagation step size, and error in the inertia

tensor model. In future work, these factors will be considered to evaluate the CKF’s robustness.
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Table 1 Mean error in angular momentum direction (deg)

Scenario SpinKF-B SpinKF-I CKF

Nominal 0.157 0.145 0.141

Misaligned sensors 0.314 0.291 0.287

Attitude slew (no torque data to filters) 1.307 1.343 1.374

VI. Conclusions

A constrained Kalman filter (CKF) with a quadratic state equality constraint that generalizes

a norm equality constraint was developed by Lagrangian multiplier technique. Robust solutions

for the Lagrangian multiplier were determined through eigenvalue decomposition of a companion

matrix of a polynomial function instead of Newton-Raphson iteration, and second-order optimality

conditions determine the minimizing value of the Lagrangian multipliers.

The performance of the CKF was evaluated by tracking a target on a hyperbolic road segment

and attitude estimation for a spinning spacecraft using a seven-parameter angular-momentum-based

representation, referred to as Markley variables. The main advantage of the CKF is that it can help

correct unrealistic estimates and can enforce the constraint exactly, thereby avoiding approximation

errors caused by linearization of the linearized Constrained Kalman filter (LCKF). However, the

Kalman gain and Lagrangian multiplier for the CKF fluctuate with noise, leading to a suboptimal

estimation in the sense that only a covariance-like matrix, an approximation of error covariance, is

utilized for covariance update.

For spinning spacecraft attitude estimation, the CKF was tested against two versions of other

filters using the same representation but accounting for the constraint by employing a reduced

six-component error state, known as the SpinKF filters. Numerical results showed that the CKF

outperforms the SpinKF filters except in the situation where a torque is applied to precess the spin

axis and the torque values are not passed to the filters. The difference in performance is attributed

to the fact that an estimate of the magnitude of the angular momentum is required to perform

state propagation in the filters. The CKF can enforce the constraint on the state vector, but cannot

ensure that the estimate of the magnitude of the angular momentum is more accurate than that in
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the SpinKF filters.

In the future, we plan to establish a more accurate approximation of error covariance for con-

strained estimation and to evaluate the stability and convergence of the CKF. We also plan to test

the robustness of the CKF with application in attitude estimation using Markley variables.
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Appendix

A. Necessary and sufficient conditions of a constrained optimization problem

Consider the problem

min f(x) subject to g(x) = 0 (48)

Define the Lagrangian as

J(x, λ) = f(x) + λg(x) (49)

Then, x∗ is a local minimum if and only if there exist a unique λ∗ s.t.

1. ∇Jx(x∗, λ∗) = 0 and ∇Jλ(x∗, λ∗) = 0 (necessary condition)

2. zT∇2
xxJ(x∗, λ∗)z ≥ 0 ∀z s.t. ∇xg(x∗)Tz = 0 (sufficient condition)

B. Condition for a quadratic form to be positive (negative) subject to linear constraints

Let A be a symmetric n × n matrix and B an m × n matrix with full row rank m. Let Arr

denote the r× r matrix in the top left corner of A and Br the m× r matrix whose columns are the

first r columns of B. Assume that |Bm| 6= 0. Define the (m+ r)× (m+ r) matrices

∆r =

 0 Br

BT
r Arr

 (r = 1, 2, · · · , n) (50)
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and let Ω = (x ∈ Rn : x 6= 0,Bx = 0) Then, xTAx > 0 for all x ∈ Ω if and only if [22, pp.61-62]

(−1)m|∆r| > 0 (51)

C. Derivation of Lemma 1

The loss function (10) is rewritten in terms of K as

J = f(K) + λg(K) (52)

where,

f(K) =
1

2
Tr
[
KRKT + (I −KH)P−(I −KH)T

]
(53)

g(K) =
1

2

[
εTKTAKε+ 2εTKTAx̂− + (x̂−)TAx̂− − l

]
(54)

Denote L(K∗, λ∗) = ∇2
KKJ(K∗, λ∗) = W ⊗ In + λεεT ⊗ A, where ⊗ is the Kronecker product.

Suppose K∗ is a solution of Eq. (21) and λ∗ is given by Eq. (24). Then, according to Appendix A,

K∗ is a local minimum point of f(K) subject to the constraint g(K) = 0 if

Q(z) = vec(z)TL(K∗, λ∗)vec(z) > 0 (55)

for all z satisfying z · ∇Kg(K∗) = (Im ⊗∇gT )vec(z) = 0, where

∇Kg(K∗) = A(I + λεA)−1(d+ x̂−)εT (56)

According to Appendix B, to determine the definiteness of Q(z) in Eq. (55) in the tangent space

of ∇g(K∗), the following matrices are constructed:

Sr =

 0 (Im ⊗∇gT )r

(Im ⊗∇g)r Lrr(K
∗, λ∗)

 (57)

where Lrr(K∗, λ∗) is the r× r matrix in the top left corner of L(K∗, λ∗), and (Im ⊗∇gT )r is the

matrix whose columns are the first r columns of Im ⊗∇gT . It can be seen that Sr is in the form

of Eq. (50), and Q > 0 for all z · ∇g(K∗) = 0 if and only if

(−1)m|Sr| > 0 (r = m(m+ 1), · · · ,mn) (58)
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Only a scalar measurement situation (m = 1) is considered in this note for analyzing |Sr|, as

there is no essential difference between a scalar measurement and vector measurements. Eq. (57)

can be written as

Sr =

 0 hTr ε(I + λεAr)
−1Ar

Ar(Ir + λεAr)
−1hrε W (Ir + λεAr)

 (59a)

Sr is a symmetrical partitioned matrix and its determinant is given by

|Sr| = −ε|W ||Ir + λεAr|hTr (I + λεAr)
−1Ar(Ir + λεAr)

−1Ar(Ir + λεAr)
−1hr (60a)

= −εW |Ir + λεΞr|hTr Ur(Ir + λεΞr)
−3Ξ2

rU
T
r hr (60b)

Generally, the sign of |Sr| should be verified using Eq. (60), but it can be seen that a sufficient

condition of |Sr| < 0 is |(I + λεΞr)|(Ir + λεΞr)
−1 > 0. Because the ith eigenvalue of (Ir +

λεΞr)|(Ir + λεΞr)
−1 is given by

∏r
j=1(1 + ελξj) j 6= i. Therefore, Lemma 1 is derived.
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Fig. 4 Root of trace of the error covariance
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