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I. Introduction

Knowledge of the air-data state is critical for flight control, guidance, and post-flight analysis of most atmospheric flight vehicles. An option to obtain air-data parameters is to mount a flush air-data sensing (FADS) system where several pressure ports are flush with the probe surface to sense the pressure distribution. FADS systems have been widely utilized in many missions, such as space shuttles, the Hyper-X research vehicle (X-43A) [START_REF] Cobleigh | Flush airdata sensing (FADS) system calibration procedures and results for blunt forebodies[END_REF][START_REF] Baumann | X-43A flush airdata sensing system flight-test results[END_REF], and the Mars science laboratory [START_REF] Karlgaard | Mars entry atmospheric data system modeling and algorithm development[END_REF][START_REF] Dutta | Atmospheric data system sensor placement optimization for Mars entry, descent, and landing[END_REF][START_REF] Karlgaard | Mars Science Laboratory Entry Atmospheric Data System Trajectory and Atmosphere Reconstruction[END_REF].

FADS systems rely on a nonlinear mathematical model that relates measured surface pressures to the state of the air-data, such as angles of attack and sideslip, impact pressure, and free-stream static pressure. Several approaches [START_REF] Karlgaard | Mars entry atmospheric data system modeling and algorithm development[END_REF][START_REF] Whitmore | Preliminary Results From a Subsonic High Angle-of-Attack Flush Airdata Sensing (HI-FADS) System: Design, Calibration, and Flight Test Evaluation[END_REF][START_REF] Whitmore | In-flight demonstration of a real-time flush airdata sensing system[END_REF][START_REF] Whitmore | Design and calibration of the X-33 flush airdata sensing (FADS) system[END_REF][START_REF] Whitmore | Stable algorithm for estimating airdata from flush surface pressure measurements[END_REF][START_REF] Weiss | Comparing three algorithms for modeling flush air data systems[END_REF][START_REF] Ellsworth | Simulation of Flush Air-Data System for Transatmospheric Vehicles[END_REF][START_REF] Samy | Neural-network-based flush air data sensing system demonstrated on a mini air vehicle[END_REF][START_REF] Srivastava | Learning air-data parameters for flush air data sensing systems[END_REF][START_REF] Anderson | Air data prediction from surface pressure measurements on guided munitions[END_REF] have been proposed to solve air-data states from pressure measurements; two of the popular methods are nonlinear regression [START_REF] Karlgaard | Mars entry atmospheric data system modeling and algorithm development[END_REF][START_REF] Whitmore | Preliminary Results From a Subsonic High Angle-of-Attack Flush Airdata Sensing (HI-FADS) System: Design, Calibration, and Flight Test Evaluation[END_REF][START_REF] Whitmore | In-flight demonstration of a real-time flush airdata sensing system[END_REF] and the triples algorithm [START_REF] Whitmore | Design and calibration of the X-33 flush airdata sensing (FADS) system[END_REF][START_REF] Whitmore | Stable algorithm for estimating airdata from flush surface pressure measurements[END_REF][START_REF] Ellsworth | Simulation of Flush Air-Data System for Transatmospheric Vehicles[END_REF]. In the nonlinear regression method, the measurement equations are recursively linearized and inverted through iterative least squares [START_REF] Whitmore | In-flight demonstration of a real-time flush airdata sensing system[END_REF], whereas the triples algorithm selects three pressure ports to decouple the angles of attack and sideslip from other air-data parameters.

By carefully selecting three ports that lie on the vertical meridian, the angle of attack's solution is decoupled from the sideslip solution to obtain a solvable quadratic equation. When the angle of attack's solution has been obtained, the angle of sideslip's solution can be derived from another triple that is not aligned along the central meridian. Each selected triple provides one solution for the angle of attack and angle of sideslip. Final estimation of the angles of attack and sideslip are method can be applied to compute linear combinations of the rows of A. Leading terms are cancelled in sequence until the equation is in a reduced row echelon form. Solutions can be obtained by substituting values for the free variables in the reduced row echelon form system. The procedure of Gaussian elimination can be extended to the case of nonlinear polynomial equations. This extension is known as Buchberger's algorithm, and the set of equations obtained after elimination is called a Groebner basis [START_REF] Buchberger | Gröbner bases and systems theory[END_REF][START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF].

First, some definitions are introduced. A polynomial f (x 1 , • • • , x n ) can be written compactly as f = a α x α with a α ∈ R, where α = (α 1 , • • • , α n ) ∈ Z n ≥0 , Z n ≥0 and R are sets of nonnegative integers and real numbers, respectively, and x α is a compact notation for x α1 1 x α2 2 • • • x αn n . Each term of the sum in f is called a monomial. It can be seen that f is a linear combination of monomials.

The basic idea of Buchberger's algorithm is to define a specific monomial order and then compute the S-polynomial being defined later in Eq. ( 1) to eliminate leading terms in the sequence.

Monomial ordering has several types, e.g., lexicographic, graded lexicographic, and graded reverse lexicographic ordering [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]. Lexicographic ordering is considered in this work.

Lexigraphical (lex) order is defined as: given a monomial ordering, let α

= (α 1 , • • • , α n ) and β = (β 1 , • • • , β n );
we say that x α > x β if the leftmost nonzero entry of the vector difference α -β is positive. According to a monomial ordering, the multidegree of a polynomial

f = a α x α is multideg(f ) = max(α ∈ Z n ≥0 : a α = 0). The leading coefficient of f is LC(f ) = a multideg(f ) . The leading monomial of f is LM(f ) = x multideg(f ) . The leading term of f is LT(f ) = LC(f )•LM(f ).
To cancel the leading terms of two polynomials, an S-polynomial can be applied. Let

f (x 1 , • • • , x n ) and g(x 1 , • • • , x n ) be two nonzero polynomials. If multideg(f ) = α and multideg(g) = β, then let γ = γ 1 , • • • , γ n , where γ i = max(α i , β i ) for each i. x γ is called the Least Common Multiple (LCM) of LM (f ) and LM (g) expressed as x γ = LCM {LM (f ), LM (G)}. The S-polynomial of f
and g is defined as [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF],

S(f, g) = x γ LT (f ) f - x γ LT (g) g (1) 
Once a monomial ordering and the S-polynomial are defined, the Buchberger algorithm presented in Appendix A can be applied to compute a Groebner basis for the polynomial system.

g 1 : x 2 + a 1,22 y 2 + a 1,33 z 2 = 0 (2a) g 2 : x 2 + y 2 + z 2 -1 = 0 (2b)
g 3 : x 2 + a 3,12 xy + a 3,13 xz + a 3,22 y 2 + a 3,23 yz + a 3,33 z 2 = 0 (2c)
with the lexicographic ordering defined as x > y > z. Noting that LT (g i ) = LM (g i ) = x 2 for i = 1, 2, 3 and LCM (g i , g j ) = x 2 for i = j, the S-polynomials S(g 1 , g 2 ) and S(g 1 , g 3 ) are computed as

S(g 1 , g 2 ) = g 1 -g 2 = (a 1,22 -1)y 2 + (a 1,33 -1)z 2 + 1 (3a) S(g 1 , g 3 ) = g 1 -g 3 = -a 3,12 xy -a 3,13 xz + (a 1,22 -a 3,22 )y 2 -a 3,23 yz + (a 1,33 -a 3,33 )z 2 (3b)
According to Buchberger's algorithm in Appendix A, g 4 and g 5 can be defined as

g 4 : = S(g 1 , g 2 ) g1,g2,g3
= a 4,22 y 2 + a 4,33 z 2 + 1 (4a) 

g 5 : = S(g 1 , g 3 ) g1,
The steps for constructing a Groebner basis may differ depending on the values of a 3,12 , a 1,22 and a 3,13 . With lexicographic ordering, one of the elements of the resulting Groebner basis is a univariate polynomial [START_REF] Awange | Algebraic geodesy and geoinformatics[END_REF]. As presented in Appendix B, the derivation of the univariate element can be classified into two cases: case A (a 1,22 = 1) and case B(a 1,22 = 1). In case A where a 1,22 = 1, as shown in Appendix B, one of the Greobner basis for the system in Eq. ( 2) is given by

c 4 κ 4 + c 3 κ 3 + c 2 κ 2 + c 1 κ + c 0 (6) 
where κ = z 2 . Note that for a polynomial equation with a degree of less than five, analytical solutions can be obtained [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical table[END_REF]. Zeros of Eq. ( 6) can be derived in a closed form. Once solutions of κ are derived, z is given by z = ± √ κ. Noting that a 4,22 = a 

Multiplying Eq. (8a) by a 5,13 , multiplying Eq. (8b) by a 5,23 and then subtracting yields

F 11 x + F 12 y = ϑ 1 (9) 
where, F 11 = a 5,13 (a 5,22 y 2 + a 5,33 z 2 ) -a 5,12 a 5,23 y 2 , F 12 = a 5,12 a 5,13 x 2 -a 5,23 (a 5,22 y 2 + a 5,33 z 2 ), and ϑ 1 = -a 2 5,13 x 2 z + a 2 5,23 y 2 z. Multiplying Eq. (8b) by a 5,12 , multiplying Eq. (8c) by a 5,13 and then subtracting yields

F 21 x + F 22 y = ϑ 2 (10) 
where, F 21 = a 5,12 (a 5,22 y 2 +a 5,33 z 2 )-a 5,13 a 5,23 z 2 , F 22 = a 2 5,12 x 2 -a 2 5,23 z 2 , and ϑ 2 = -a 5,13 a 5,12 x 2 z+ a 5,23 (a 5,22 y 2 + a 5,33 z 2 )z.

Equation ( 9) and [START_REF] Weiss | Comparing three algorithms for modeling flush air data systems[END_REF] are written in matrix form as

    F 11 F 12 F 21 F 22         x y     =     ϑ 1 ϑ 2     (11) 
Then, x and y can be solved as,

    x y     =     F 11 F 12 F 21 F 22     -1     ϑ 1 ϑ 2     (12) 
Now consider case B with a 1,22 = 1. Solving z from Eq. (4a) gives z 1,2 = ±1/ 1 -a 1,33 .

Substituting z i into Eq. ( 2) gives two polynomial equations with two unknowns (x, y) Note that x cannot be solved from Eq. (13b) if a 3,12 y + a 3,13 z = 0. In this case, x is given by Eq. (13a) as

x 2 + y 2 = 1 -z 2 i (13a) -a 3,
x = ± 1 -z 2 i -y 2 .

III. Review of the Triples Algorithm

The triples algorithm is reviewed briefly in this section. With three airflow assumptions, namely, irrotational (potential) flow, incompressible flow, and airflow over a blunt body (e.g., sphere), the surface pressures can be defined as [START_REF] Whitmore | Preliminary Results From a Subsonic High Angle-of-Attack Flush Airdata Sensing (HI-FADS) System: Design, Calibration, and Flight Test Evaluation[END_REF][START_REF] Whitmore | Design and calibration of the X-33 flush airdata sensing (FADS) system[END_REF],

p i = q c2 (cos 2 θ i + ε sin 2 θ i ) + P ∞ ( 15 
)
where p i is the local surface pressure for port i, q c2 is impact pressure, p ∞ is freestream static pressure, ε is a calibration parameter that is prescribed as a function of the Mach number and angle of attack, and θ i is the flow incidence angle for the ith port. As shown in Fig. 1, θ i given by

cos θ i = r T i v (16) 
where r i and v are the direction vectors of the ith port and the air velocity, respectively. They can be expressed in a body frame as follows,

r i = [cos λ i , sin φ i sin λ i , cos φ i sin λ i ] T (17a) v = [cos α cos β, sin β, sin α cos β] T (17b)
where λ i is the cone angle for port i, defined as the total angle the normal to the surface makes with respect to the longitudinal axis of the nosecap, φ i is the clock angle for port i, defined as the clockwise angle looking aft around the axis of symmetry starting at the bottom of the fuselage, and α and β are local angles of attack and sideslip, respectively.

x y z 1 Coordinate definitions of the ith pressure port and air velocity [START_REF] Whitmore | Preliminary Results From a Subsonic High Angle-of-Attack Flush Airdata Sensing (HI-FADS) System: Design, Calibration, and Flight Test Evaluation[END_REF] The unknown parameters in Eq. ( 15) are α, β, q c2 and p ∞ . Once these four parameters are determined, most other air-data quantities of interest can be directly calculated. Eq. ( 15) is a nonlinear function of α, β, q c2 and p ∞ . By re-writing Eq. ( 15) as

th port i i  i  central vertical meridian i r v i  x y z v   Fig.
p i = (1 -ε) cos 2 θ i + P ∞ + εq c2 ,
the triples algorithm takes the strategic differences of three surface-sensor readings to eliminate q c2 , p ∞ and ε; the resulting equation is given by

c pijk := Γ ij Γ jk = cos 2 θ i -cos 2 θ j cos 2 θ j -cos 2 θ k (18) 
where Γ ij = p i -p j , and i, j, k correspond to three different ports.

The angle of attack can be decoupled from the angle of sideslip by using only pressure triples aligned along the central vertical meridian (sin φ = 0). For example, if ports 1, 2, and 3 lie on the vertical meridian, then the solution of the angle of attack for this triple can be written as [START_REF] Ellsworth | Simulation of Flush Air-Data System for Transatmospheric Vehicles[END_REF],

tan α =        -B± √ B 2 -4AC 2A if p 2 = p 3 ± r2,x-r3,x r3,z-r2,z if p 2 = p 3 (19) 
where, r i = [r i,x , r i,y , r i,z ] T , and

A = c p123 (r 2 3,z -r 2 1,z ) + c p132 (r 2 2,z -r 2 1,z ) (20a) B = 2c p123 (r 3,x r 3,z -r 1,x r 1,z ) + 2c p132 (r 2,x r 2,z -r 1,x r 1,z ) (20b) 
C = c p123 (r 2 3,x -r 2 1,x ) + c p132 (r 2 2,x -r 2 1,x ) (20c) 
Equation [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical table[END_REF] has two distinct roots. The correct root may be selected according to the actual flight conditions. For example, the maximum planned angle of attack for the X-34 is less than 30 deg, and the correct root can be selected because two roots spaced 90 deg apart [START_REF] Ellsworth | Simulation of Flush Air-Data System for Transatmospheric Vehicles[END_REF].

Once the angle of attack has been determined, the angle of sideslip is evaluated by using any combination of the available ports other than the obvious set in which all three ports lie on the vertical meridian. For example, if ports 1, 2, and 4 are selected to solve for β, the solution of β is given by

tan β =        cos α -B± √ B 2 -4AC 2A if p 2 = p 4 ± cos α (r4,x+r4,z tan α)∓(r2,x+r2,z tan α) r4,y∓r2,y if p 2 = p 4 (21) 
where,

A = 1 2 r 2 1,y + c p142 r 2 2,y + c p124 r 2 4,y (22a) 
B = r 1,y [r 1,x + r 1,z tan α] + c p142 r 2,y [r 2,x + r 2,z tan α] + c p124 r 4,y [r 4,x + r 4,z tan α] (22b) C = 1 2 [r 1,x + r 1,z tan α] 2 + c p142 [r 2,x + r 2,z tan α] 2 + c p124 [r 4,x + r 4,z tan α] 2 (22c) 
Eq. ( 21) also has two roots. Practice has shown that there is a wide separation between the two roots. For the low angles of sideslip application to this vehicle, the root with magnitude closest to zero is the correct root [START_REF] Ellsworth | Simulation of Flush Air-Data System for Transatmospheric Vehicles[END_REF]. For more details about root selection, readers are refer to [START_REF] Whitmore | Design and calibration of the X-33 flush airdata sensing (FADS) system[END_REF].

Final estimation of the angles of attack and sideslip can be conducted through averaging. After obtaining the values of α and β, the remaining air-data parameters can be extracted using the weighted least squares method. For more details regarding the triples algorithm and the estimator of other air-data parameters, readers may refer to [START_REF] Whitmore | Design and calibration of the X-33 flush airdata sensing (FADS) system[END_REF][START_REF] Ellsworth | Simulation of Flush Air-Data System for Transatmospheric Vehicles[END_REF].

IV. Analytical Solution of Generalized Triples Algorithm

A generalized triples algorithm with analytical solutions of the angles of attack and sideslip is presented in this section. The algorithm transforms Eq. ( 18) into a set of quadratic homogeneous polynomial equations for the three-axis non-dimensional velocity v. Each triple corresponds to a homogeneous polynomial equation, and v satisfies a norm-constrained equation. By using the polynomial equation of two triples and the norm constraint, one expression of the Groebner basis for the polynomial system is obtained through Buchberger's algorithm, which is in the form of a univariate polynomial equation and can be solved in a closed form.

Substituting Eq. ( 16) into Eq. ( 18) gives v T A ijk v = 0, where

A ijk = (r i -r j )(r i + r j ) T -c pijk (r j -r k )(r j + r k ) T (23) 
Define a symmetric matrix as B ijk = (A ijk + A T ijk )/2, and thus

v T B ijk v = 0 (24) 
The number of B ijk depends on the number of pressure ports of the FADS system. Generally, only two B ijk (e.g., B 1 , B 2 ) are required to solve v. The following equation can be derived,

v T B 1 v = 0 (25a) v T B 2 v = 0 (25b) v T v = 1 (25c)
Noting that a symmetrical matrix can be diagonalized by an orthogonal matrix, B 1 can be written as

B 1 = U C 1 U T (26)
where, U is an orthogonal matrix, C 1 is a diagonal matrix, and its elements are eigenvalues of B 1

Substituting Eq. (26) into Eq. (25) gives 

u T C 1 u = 0 (27a) u T C 2 u = 0 (27b) u T u = 1 ( 
u T C1 u = 0 (28a) u T C2 u = 0 (28b) u T u = 1 (28c) 
Now Eq. ( 28) is in the form of Eq. ( 2) with

x = u(1), y = u(2), z = u(3) (29a) a 1,22 = C1 (2, 2), a 1,33 = C1 (3, 3), a 3,22 = C2 (2, 2), a 3,33 = C2 (3, 3) (29b) 
a 3,12 = 2 C2 (1, 2), a 3,13 = 2 C2 (1, 3) a 3,23 = 2 C2 (2, 3) (29c) 
According to Section II, closed form solutions for u can be derived, and then v is derived using

v = Bu.
The proposed algorithm does not require that the triples used to solve α be aligned along the central vertical meridian. Instead, analytical solutions for α and β are obtained simultaneously by using two different triples. Note that g 1 ≡ g 3 in Eq. ( 2) in the case where all of the ports of the selected triples are aligned along the central vertical meridian. In this case, Eq. ( 2) is an under-determined system and α and β cannot be solved simultaneously.

V. Examples

In this section, the configuration of the FADS system for the X-34 is used to illustrate the implementation of the proposed algorithm. Figure 2 shows the X-34 nosecap and the port locations on the surface. The configuration allows for eight sensing ports: five ports in the angle-of-attack plane and three along the angle-of-sideslip plane. The eighth port on the underside of the nosecap is not used for the FADS estimator and is held in reserve for use by redundancy-management processes [START_REF] Ellsworth | Simulation of Flush Air-Data System for Transatmospheric Vehicles[END_REF].

The clock and cone angles for all the ports are φ Firstly, consider the traditional triples algorithm. The triple for ports 1, 2, and 3 is used to solve for α and then the triple for ports 1, 2, and 7 is used to solve for β. Substituting r i and v into Eq. ( 16) and then substituting Eq. ( 16) into Eq. ( 18) gives, c p123 = 0.5786, c p132 = -1.5786, c p127 = 0.9352, c p172 = -1.9352

= [φ 1 , • • • , φ 8 ] T = [0, 0, 0,
For the traditional triple approach, solutions for α and β can be derived by substituting c p123 and c p132 into Eq. ( 19) and then substituting α, c p127 , and c p172 into Eq. ( 21). For the generalized triples algorithm, substituting r i and Eq. (30) into Eq. (23) yields A ijk , while B ijk = (A ijk + A T ijk )/2;

then, C1 and C2 in Eq. ( 28) can be derived from Eq. (26) as,

C 1 =         1 0 0 0 0 0 0 0 -1         , C 2 =        
1.0000 0.2626 0.1804 0.2626 -0.4578 -0.3750 0.1804 -0.3750 -0.5422

        (31) 
which implies that a 1,22 = 0, a 1,33 = -1 (32a) a 3,22 = -0.4578, a 3,33 = -0.5422 (32b) a 3,12 = 0.5252, a 3,13 = 0.3608, a 3,23 = -0.7500 (32c)

Given that a 3,12 = 0 and a 1,22 = 1, one element of the Groebner basis for the system in Eq. ( 2) is in the form of Eq. ( 6) with 

As presented in Sec. III, the correct root v 1 may be selected according to actual flight conditions.

Next, combinations where the two triples involving only two ports are aligned along the central vertical meridian, e.g., the triples of ports {1, 6, 7} and {2, 6, 7} are considered. Substituting r i and v into Eq. ( 16) and then substituting Eq. ( 16) into Eq. ( 18) gives, The solutions of x, y are provided by Eq. ( 12) as Based on knowledge of flight conditions, the correct root may be chosen by comparing the eight calculated roots with nominal values and taking whichever is the closest.

c p167 = -5.3672, c p267 = -3.2567 (39) 

VI. Conclusions

A generalized triples algorithm for flush air-data sensing systems (FADS) was developed.

The innovation of the algorithm lies in the use of two different triples port measurements to obtain analytical solutions to the angles of attack and sideslip simultaneously. The original triple formulation was rewritten in the form of quadratic homogenous systems, and a univariate polynomial equation was derived by applying the Groebner basis theory; the equation was solved in a closed form. A simple example was presented to illustrate the implementation of the proposed algorithm.

Analytical expressions of angles of attack and sideslip make it possible for real-time application as well as post-flight reconstruction. However, because more triples can be used to obtain the final averaged estimate for the generalized triples algorithm, the required calculations would increase, which may limit its real-time application. A possible approach to decrease the amount of calculations is to select an optimal set to obtain an averaged solution.

a 3,13 = 0 and a 1,22 = 1), and sub-case A.3 (a 3,12 = 0, a 3,13 = 0 and a 1,22 = 1). Case B is classified into two sub-cases: sub-case B.1(a 1,22 = 1 and a 3,12 = 0) and sub-case B.2 (a 1,22 = 1 and a 3,12 = 0).

1. Case A.1 : a3,12 = 0 and a1,22 = 1

If a 3,12 = 0 and a 1,22 = 1, g 6 and g 7 can be computed as:

g 6 : = S(g 1 , g 5 ) g2,g5
= a 6,133 xz 2 + a 6,222 y 3 + a 6,223 y 2 z + a 6,233 yz 2 + a 6,333 z 3 -a 5,13 z (48a) 

g 7 := S(
and 

σ 1 = a
Depending on the values of a 7,2333 and a 7,23 , the implementation of Buchberger's algorithm is different,

• a 7,2333 = 0 if a 7,2333 = 0, g 8 is computed as, 

g 8 := S(
Then, g 9 , g 10 and g 11 are computed as, g 9 := S(g 7 , g 8 ) = a 9,23 yz + a 9,333333 z 6 + a 9,3333 z 4 + a 9,33 z 2 + a 9 (53a) g 10 := S(g 8 , g 9 ) = a 10,2 y + a 10,3333333 z 7 + a 10,333333 z 5 + a 10,333 z 3 + a 10,3 z (53b) 

g 11 := S(
• a 7,2333 = 0 and a 7,23 = 0 If a 7,2333 = 0 and a 7,23 = 0, g 7 is reduced to a fourth degree polynomial 

g 7 := a 7,
Now, according to Eq. (53c), Eq. ( 55), and Eq. (56b), the univariate polynomial in a Groebner basis for the system in Eq. ( 2) is given by, If a 3,12 = 0, a 3,13 = 0 and a 1,22 = 1, g 6 and g 7 can be computed from Eq. ( 4) as 

g 6 := S(
It can be seen that Eq. ( 64) is in the same form of Eq. (51) and g 9 , g 10 , g 11 can be derived with the same form of Eq. (53).

• a 7,2333 = 0 and a 

In summary, the univariate polynomial for sub-case A.2 is given by If a 3,12 = 0, a 3,13 = 0 and a 1,22 = 1, g 6 is computed as, g 6 := S(g 4 , g 5 ) = a 6,23 yz + a where a 6,# and a 8,# are given by Eq. ( 73) and Eq. (75), respectively. where, z is solved by subtracting g 2 from g 1 , which gives z = ±1/ 1 -a 1,33 .

h = b 8 z 8 + b 6 z 6 + b 4 z 4 + b 2 z 2 + b 0 ( 
In this sub-case, g 1 to g 6 are the same as in sub-case A.1. As seen from g 1 and g 2 in Eq. ( 2), a 1,33 = 1 if a 1,22 = 1. Noting that a 4,33 = a 1,33 -1 = 0 from Eq. ( 5), g 7 can be computed as, 

g 7 := S(

  g2,g3,g4 = a 5,12 xy + a 5,13 xz + a 5,22 y 2 + a 5,23 yz + a 5,33 z 2 (4b) where a 4,22 = a 1,22 -1, a 4,33 = a 1,33 -1 a 5,12 = -a 3,12 , a 5,13 = -a 3,13 (5a) a 5,22 = a 1,22 -a 3,22 , a 5,23 = -a 3,23 , a 5,33 = a 1,33 -a 3,33

  27c) where u = U T v and C 2 = U T B 2 U . Without loss of generality, assume C 1 (1, 1) = 0 and C 2 (1, 1) = 0. For the cases of C 1 (1, 1) = 0 or C 2 (1, 1) = 0, re-ordering the elements in u can make C 1 (1, 1) = 0 and C 2 (1, 1) = 0. Defining C1 = C 1 /C 1 (1, 1) and C2 = C 2 /C 2 (1, 1) and substituting them into

  180, 180, 90, -90, 0] T deg and λ = [λ 1 , • • • , λ 8 ] T = [16.1, 38.6, 61.1, 6.4, 28.9, 45, 45, 90] T deg, respectively. r i for these ports is given by r 1 = [0.9608, 0, 0.2773] T , r 2 = [0.7815, 0, 0.6239] T , r 3 = 0.4833, 0, 0.8755] T , r 4 = [0.9938, 0, -0.1115, r 5 = [0.8755, 0, -0.4833] T , r 6 = [0.7071, 0.7071, 0] T , r 7 = [0.7071, -0.7071, 0] and r 8 = [0, 0, 1] T .

Fig. 2

 2 Fig.2Pressure-port locations and coordinate definitions of X-34[START_REF] Ellsworth | Reentry air data system for a sub-orbital spacecraft based on X-34 design[END_REF] 

c 4 = 1 , 2 = 1 , 2 =

 41212 0.6206, c 3 = -0.6976, c 2 = 0.2675, c 1 = -0.0410, c 0 = 0.0021, κ = z 2 (33) and u = U T v = [x, y, z] T . Then, the solutions for κ are given by κ 1 = 0.4986, κ 2 = 0.3086, κ 3 = 0.2185, κ 4 = 0.0983 (34) which implies that z 1,2 = ±0.7061, z 3,4 = ±0.5555, z 5,6 = ±0.4675, z 7,8 = ±0.3135 (35) Then, solutions of x, y are provided by Eq. (12) as, x ∓0.7061, z 3,4 = ±0.5555, z 5,6 = ±0.4675, z 7,8 = ∓0.3135 (36) y ±0.0523, y 3,4 = ±0.6188, y 5,6 = ∓0.7503, z 7,8 = ∓0.8964 (37) Applying v = U u gives v 1,2 = ±[0.9835, -0.0523, 0.1734] T (38a) v 3,4 = ±[0.1364, -0.6188, -0.7736] T (38b) v 5,6 = ±[0.1148, 0.7503, -0.6510] T (38c) v 7,8 = ±[0.4366, 0.8964, 0.0770] T

a 1 ,

 1 22 = -0.0152, a 1,33 = -0.9848 (40a) a 3,22 = -0.1289, a 3,33 = -0.8720 (40b) a 3,12 = -0.1378, a 3,13 = 0.0290, a 3,23 = 0.1816(40c)Given that a 3,12 = 0 and a 1,22 = 1, Eq. (6) is obtained withc 4 = -0.2797, c 3 = 0.3309, c 2 = -0.1348, c 1 = 0.0216, c 1 = -0.0010, κ = z 2(41)and u = U T v = [x, y, z] T . Then, the solutions for κ are given byκ 1 = 0.4891, κ 2 = 0.3462, κ 3 = 0.2647, κ 4 = 0.0832 (42) which implies that z 1,2 = ±0.6994, z 3,4 = ±0.5884, z 5,6 = ±0.5884, z 7,8 = ±0.2884 (43)

x 1 , 2 =

 12 ∓0.6943, x 3,4 = ±0.5879, x 5,6 = ±0.5175, x 7,8 = ∓0.3073 (44) y 1,2 = ∓0.1697, y 3,4 = ∓0.5551, y 5,6 = ±0.6837, z 7,8 = ±0.9069 (45) Applying v = U u gives v 1,2 = ±[0.9835, -0.0523, 0.1734] T (46a) v 3,4 = ±[0.0360, 0.7995, 0.5995] T (46b) v 5,6 = ±[0.0366, 0.7650, -0.6430] T (46c) v 7,8 = ±[0.4259, 0.0159, -0.9046] T (46d) Substituting the solution of v into Eq. (17b) gives α 1 = 10 deg β 1 = -3 deg (47a) α 2 = -170 deg β 2 = 3 deg (47b) α 3 = 86.5635 deg β 3 = 53.0824 deg (47c) α 4 = -93.4365 deg β 4 = -53.0824 deg (47d) α 5 = -86.7422 deg β 5 = 49.9070 deg (47e) α 6 = 93.2578 deg β 6 = -49.9070 deg (47f) α 7 = -64.7882 deg β 7 = 0.9110 deg (47g) α 8 = 115.2118 deg β 8 = -0.9110 deg (47h)

h = b 8 z 8 +

 8 b 6 z 6 + b 4 z 4 + b 2 z 2 + b 0 (58) If a 7,2333 = 0, b 8 = a 11,33333333 , b 6 = a 11,333333 , b 4 = a 11,3333 , b 2 = a 11,33 and b 0 = a 11 , where a 11,# is obtained by substituting Eq. (49) into Eq. (52) and then substituting Eq. (52) into Eq. (54). If a 7,2333 = 0 and a 7,23 = 0, b 8 = 0, b 6 = 0, b 4 = a 7,3333 , b 2 = a 7,33 , and b 0 = a 7 ; If a 7,2333 = 0 and a 7,23 = 0, b 8 = a 9,33333333 , b 6 = a 9,333333 , b 4 = a 9,3333 , b 2 = a 9,33 , and b 0 = a 9 , where a 9,# is obtained by substituting Eq. (49) into Eq. (57) and a 7,# is given by Eq. (49

  70) If a 7,2333 = 0, b 8 = a 11,33333333 , b 6 = a 11,333333 , b 4 = a 11,3333 , b 2 = a 11,33 , and b 0 = a 11 , where a 11,# is obtained by substituting Eq. (62) into Eq. (64) and then substituting Eq. (64) into Eq. (54). If a 7,2333 = 0 and a 7,23 = 0, b 8 = 0, b 6 = 0, b 4 = a 7,3333 , b 2 = a 7,33 , and b 0 = a 7 . If a 7,2333 = 0 and a 7,23 = 0, b 8 = a 9,33333333 , b 6 = a 9,333333 , b 4 = a 9,3333 , b 2 = a 9,33 , and b 0 = a 9 , where a 9,# is obtained by substituting Eq. (62) into Eq. (67) and then substituting Eq. (67) into Eq. (69), and a 7,# is given by Eq. (62). For algorithm implementation, by substituting Eq. (5) into Eq. (62), a 7,23 and a 7,2333 can be rewritten as, a 7,23 = -2a 3,22 (a 1,22 -a 3,23 ) (a 1,22 -1) , a 7,2333 = 2a 3,23 (a 1,33 -1) (a 3,22 -1) (a 1,22 -1) -2 a 3,23 (a 3,33 -1)(71) 3. sub-case A.3 : a3,12 = 0, a3,13 = 0 and a1,22 = 1

  1,22 -1 = 0 for case A, substituting the solution of z into Eq. (4a) gives y 2 = -(a 4,33 z 2 + 1)/a 4,22 . Then substituting y 2 into Eq. (2a) gives x 2 = 1 -(y 2 + z 2 ). + a 5,13 xyz + a 5,23 y 2 z = -(a 5,22 y 2 + a 5,33 z 2 )y (8b) a 5,12 xyz + a 5,13 xz 2 + a 5,23 yz 2 = -(a 5,22 y 2 + a 5,33 z 2 )z

	Re-writing Eq. (4b) as,	
	a 5,12 xy + a 5,13 xz + a 5,23 yz = -(a 5,22 y 2 + a 5,33 z 2 )	(7)
	and then multiplying it by x, y and z, respectively, gives,	
	a 5,12 x 2 y + a 5,13 x 2 z + a 5,23 xyz = -(a 5,22 y 2 + a 5,33 z 2 )x	(8a)
	a 5,12 xy 2	

  [START_REF] Samy | Neural-network-based flush air data sensing system demonstrated on a mini air vehicle[END_REF] xy -a 3,13 xz i + (1 -a 3,22 )y 2 -a 3,23 yz i = -(a 1,33 -a 3,33 )z 2

	i	(13b)
	As shown in Eq. (77b) and Eq. (79) of Appendix B, one element in the Groebner basis for case B
	is a univariate polynomial equation in y, whose analytical solution can be obtained. Substituting
	solutions of y into Eq. (13b) gives,	
	x = ((1 -a 3,22 )y 2 -a 3,23 yz i + (a 1,33 -a 3,33 )z 2 i )/(a 3,12 y + a 3,13 z) if a 3,12 y + a 3,13 z = 0 (14)

  g 5 , g 6 ) a 7,2333 yz 3 + a 7,23 yz + a 7,3333 z 4 + a 7,33 z 2 + a 7 ,2333 = a 5,23 a 6,133 -a 5,13 a 6,233 -a 5,12 a 6,333 + a 433 a 4,22 σ 2 (49c) a 7,23 = a 5,12 a 5,13 + σ 2 a 4,22 , a 7,3333 = a 5,33 a 6,133 -a 5,13 a 6,333 -σ 3

		g6,g4							(48b)
	where								
	a 6,133 = -a 5,33 + σ 1	a 5,13 a 5,12	, a 6,222 = a 1,22 a 5,12 +	a 2 5,22 a 5,12	(49a)
	a 6,223 = a 5,13 + σ 1	a 5,22 a 5,12	+	a 5,22 a 5,23 a 5,12	, a 6,233 = a 1,33 a 5,12 + σ 1	a 5,23 a 5,12	+	a 5,22 a 5,33 a 5,12	(49b)
	a 6,333 = a 5,13 + σ 1	a 5,33 a 5,12	, a 7a 433 a 4,22	(49d)
	a 7,33 = -	σ 3 a 4,22	+ a 2 5,13 -		a 433 a 5,12 a 6,222 a 2 4,22	a 7 = -	a 5,12 a 6,222 a 2 4,22

=

  5,23 -a 5,13 a 5,22 a 5,12 , σ 2 = a 5,12 a 6,223 + a 5,13 a 6,222 (50a) σ 3 = a 5,22 a 6,133 -a 5,13 a 6,223 -a 5,12 a 6,233 + a 433 a 5,12 a 6,222 a 4,22

  g 4 , g 7 ) a 8,233 yz 2 + a 8,2 y + a 8,33333 z 5 + a 8,333 z 3 + a 8,3 z

		g7,g4		(51a)
	where,			
	a 8,233 = -a 4,22 a 7,33 +	a 4,22 a 7,23 a 7,3333 a 7,2333	, a 8,2 = -a 7 a 4,22 ,	(52a)
	a 8,33333 = a 433 a 7,2333 +	a 4,22 a 2 7,3333 a 7,2333	, a 8,333 = a 7,2333 + a 433 a 7,23 +	a 4,22 a 7,33 a 7,3333 a 7,2333 (52b)
	a 8,3 = a 7,23 +	a 7 a 4,22 a 7,3333 a 7,2333	

=

  g 9 , g 10 ) = a 11,33333333 z 8 + a 11,333333 z 6 + a 11,3333 z 4 + a 11,33 z 2 + a 11 (53c) where, a 9,23 = a 7,23 a 8,233 -a 8,2 a 7,2333 , a 9,333333 = -a 7,2333 a 8,33333 (54a) a 9,3333 = -a 8,333 a 7,2333 + a 8,233 a 7,3333 , a 9,33 = a 7,33 a 8,233 -a 8,3 a 7,2333 (54b) a 9 = a 7 a 8,233 , a 10,2 = a 8,2 a 9,23 (54c) a 10,3333333 = -a 8,233 a 9,333333 , a 10,33333 = -a 8,233 a 9,3333 + a 9,23 a 8,33333 (54d) a 10,333 = -a 9,33 a 8,233 + a 9,23 a 8,333 , a 10,3 = a 8,3 a 9,23 -a 9 a 8,233 (54e) a 11,33333333 = -a 9,23 a 10,3333333 , a 11,333333 = -a 9,23 a 10,33333 + a 10,2 a 9,333333 (54f) a 11,3333 = -a 9,23 a 10,333 + a 10,2 a 9,3333 , a 11,33 = -a 10,3 a 9,23 + a 10,2 a 9,33 (54g) a 11 = a 9 a 10,2

  3333 z 4 + a 7,33 z 2 + a 7 If a 7,2333 = 0 and a 7,23 = 0, g 8 and g 9 are computed as,g 8 := S(g 4 , g 7 ) g7 = a 8,2 y + a 8,3333333 z 7 + a 8,33333 z 5 + a 8,333 z 3 + a 8,3 z (56a) g 9 := S(g 7 , g 8 ) = a 9,33333333 z 8 + a 9,333333 z 6 + a 9,3333 z 4 + a 9,33 z 2 + a 9 -a 7,23 a 8,33333 , a 9,3333 = a 8,2 a 7,3333 -a 7,23 a 8,333 (57d) a 9,33 = a 8,2 a 7,33 -a 8,3 a 7,23 , a 9 = a 7 a 8,2

	where,						
	a 8,2 = -a 7 a 4,22 , a 8,3333333 =	a 4,22 a 7,3333 a 7,23	2	(57a)
	a 8,33333 =	2 a 4,22 a 7,33 a 7,3333 a 7,23	, a 8,333 = a 433 a 7,23 +	a 4,22 a 7,33 a 7,23	2	+	a 7 a 4,22 a 7,3333 a 7,23 (57b)
	a 8,3 = a 7,23 +	a 7 a 4,22 a 7,33 a 7,23	, a 9,33333333 = -a 7,23 a 8,3333333	(57c)
	a 9,333333 =						
								(55)
	• a 7,2333 = 0 and a 7,23 = 0					
								(56b)

  g 1 , g 5 ) + a 6,222 y 3 + a 6,223 y 2 z + a 6,233 yz 2 + a 6,333 z 3 + a 6,3 z If a 7,2333 = 0, g 8 can be computed as, g 8 := S(g 4 , g 7 ) a 8,233 yz 2 + a 8,2 y + a 8,33333 z 5 + a 8,333 z 3 + a 8,3 z

	where,								
	a 6,1 =	a 5,22 a 4,22	, a 6,222 =	a 5,22 a 5,23 a 5,13	(62a)
	a 6,223 =	a 2 5,23 a 5,13	+ 2	a 5,22 a 5,13	, a 6,233 = 2	a 5,23 a 5,13	+	a 5,23 a 5,33 a 5,13	(62b)
	a 6,333 = a 1,33 a 5,13 + 2	a 5,33 a 5,13	-	a 1,22 a 4,33 a 5,13 a 4,22	, a 6,3 = -	a 1,22 a 5,13 a 4,22	(62c)
	a 7,2333 = -a 5,13 a 6,233 +	a 4,33 a 5,13 a 6,222 a 4,22	, a 7,23 = a 6,1 a 5,23 +	a 5,13 a 6,222 a 4,22	(62d)
	a 7,3333 = -a 5,13 a 6,333 +	a 4,33 a 5,13 a 6,223 a 4,22	, a 7 = -	a 6,1 a 5,22 a 4,22	(62e)
	a 7,33 = -a 6,3 a 5,13 + a 6,1 a 5,33 +	a 5,13 a 6,223 a 4,22	-	a 6,1 a 4,33 a 5,22 a 4,22	(62f)
	and 2 = a 5,33 -a 4,33	a5,22 a4,22 .							
	• a 7,2333 = 0								
					g4,g7					(63a)
	where,								
	a 8,233 = -a 4,22 a 7,33 +	a 4,22 a 7,23 a 7,3333 a 7,2333	, a 8,2 = -a 7 a 4,22	(64a)
	a 8,33333 = a 4,33 a 7,2333 +	a 4,22 a 7,3333 a 7,2333	2	, a 8,3 = a 7,23 +	a 7 a 4,22 a 7,3333 a 7,2333	(64b)
	a 8,333 = a 7,2333 + a 4,33 a 7,23 +	a 4,22 a 7,33 a 7,3333 a 7,2333
		g4,g5	= a 6,1 x (61a)
	g 7 := S(g 5 , g 6 ) g4	= a 7,2333 yz 3 + a 7,23 yz + a 7,3333 z 4 + a 7,33 z 2 + a 7	(61b)

=

  7,23 = 0 If a 7,2333 = 0 and a 7,23 = 0, g 7 is reduced to a fourth degree polynomial g 7 := a 7,3333 z 4 + a 7,33 z 2 + a 7 S(g 7 , g 8 ) = a 9,33333333 z 8 + a 9,333333 z 6 + a 9,3333 z 4 + a 9,33 z 2 + a 9 -a 7,23 a 8,3333333 , a 9,333333 = -a 7,23 a 8,33333 (69a) a 9,3333 = a 8,2 a 7,3333 -a 7,23 a 8,333 , a 9,33 = a 8,2 a 7,33 -a 8,3 a 7,23 , a 9 = a 7 a 8,2

	where,							
	a 8,2 = -a 7 a 4,22 , a 8,3333333 =	a 4,22 a 7,3333 a 7,23	2	, a 8,33333 =	2 a 4,22 a 7,33 a 7,3333 a 7,23	(67a)
	a 8,333 = a 4,33 a 7,23 +	a 4,22 a 7,33 a 7,23	2	+	a 7 a 4,22 a 7,3333 a 7,23	, a 8,3 = a 7,23 +	a 7 a 4,22 a 7,33 a 7,23	(67b)
	Then, g 9 is computed as,							
	g 9 := (68a)
	where,							
	a 9,33333333 =							
									(65a)
	• a 7,2333 = 0 and a 7,23 = 0							
	If a 7,2333 = 0, g 7 is computed as,						
	g (66a)

8 := S(g 4 , g 7 ) g7 = a 8,2 y + a 8,3333333 z 7 + a 8,33333 z 5 + a 8,333 z 3 + a 8,3 z

  6,33 z 2 + a 6 (72) where, a 6,23 = -a 4,22 a 5,23 , a 6,33 = a 4,33 a 5,22 -a 4,22 a 5,33 , a 6 = a 5,22 (73a) computed as, g 7 := S(g 5 , g 6 ) g6 = a 7,2 y + a 7,333 z 3 + a 7,3 z (74a) g 8 := S(g 6 , g 7 ) = a 8,3333 z 4 + a 8,33 z 2 + a 8 (74b) where, a 7,2 = -a 6 a 5,22 , a 7,333 = a 5,33 a 6,23 -a 6,33 (a 5,23 a 6,23 -a 5,22 a 6,33 ) a 6,23 (75a) a 7,3 = -a 6 (a 5,23 a 6,23 -a 5,22 a 6,33 ) a 6,23 , a 8,3333 = -a 6,23 a 7,333 (75b) a 8,33 = a 7,2 a 6,33 -a 73 a 6,23 , a 8 = a 6 a 7,2(75c)In summary, the univariate polynomial for sub-case A.3 is given by a 6,33 z 2 + a 6 if a 6,23 = 0 a 8,3333 z 4 + a 8,33 z 2 + a 8 if a 6,23 = 0

			
	h =	  	(76)
		  	

  4. sub-case B.1: a1,22 = 1 and a3,12=0If a 3,12=0 and a 1,22 = 1, g 6 and g 7 are computed as, g 6 := S(g 1 , g 5 ) = a 6,12 x y 2 + a 6,123 x y z + a 6,133 x z 2 + a 6,223 y 2 z + a 6,333 (77a)g 7 := S(g 5 , g 6 ) 7,2222 y 4 + a 7,222 y 3 + a 7,22 y 2 + a 7,2 y + a 7 (77b) where, a 6,12 = -a 5,22 , a 6,123 = -a 5,23 , a 6,133 = -a 5,33 , a 6,223 = a 5,13 (78a) a 6,333 = a 1,33 a 5,13 , a 7,2222 = -a 2 5,22 a 7,222 = (a 5,23 a 6,12 + a 5,22 a 6,123 )z (78b) a 7,22 = (a 5,33 a 6,12 + a 5,23 a 6,123 + a 5,22 a 6,133 -a 5,13 a 6,223 ) z 2 (78c) a 7,2 = (a 5,23 a 6,133 + a 5,33 a 6,123 ) z 3 , a 7 = (a 5,33 a 6,133 -a 5,13 a 6,333 ) z 4 (78d)

g5

= a

  g 5 , g 6 ) g6,g4 = a 7,2222 y 4 + a 7,222 y 3 + a 7,22 y 2 + a 7,2 y + a 7 (79) where, a 7,2222 = -a 5,12 a 6,222 (80a) a 7,222 = (-a 5,12 a 6,223 -a 5,13 a 6,222 )z (80b) a 7,22 = (a 5,13 a 6,223 -a 5,22 a 6,133 + a 5,12 a 6,233 ) a 4,33 (80c) a 7,2 = a 5,12 a 5,13 + (a 5,13 a 6,233 -a 5,23 a 6,133 + a 5,12 a 6,333 ) a 4,33 z (80d) a 7 = -a 5,13 2 a 4,33 -(a 5,33 a 6,133 -a 5,13 a 6,333 ) is solved by subtracting g 2 from g 1 , which gives z = ±1/ 1 -a 1,33 . Substituting Eq. (49a) into Eq. (80a) gives a 7,2222 = -(a 1,22 a 2 5,12 + a 2 5,22 ) = -(a 2 3,12 + a 2 5,22 ) > 0. Therefore, g 7 in Eq. (79) is a quartic polynomial.

	4,33 a 2	(80e)
	and z	
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Appendix

A. Buchberger's Algorithm Buchberger's algorithm, used to compute a Groebner basis for a set of polynomial equations:

is as follows [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]:

With lexicographic ordering chosen, one of the elements of the resulting Groebner basis is a univariate polynomial [START_REF] Awange | Algebraic geodesy and geoinformatics[END_REF].

B. Derivation of the univariate polynomial in a Groebner basis for Eq. (2)

As mentioned in Appendix A, the Buchberger algorithm computes S-polynomials of two polynomials to eliminate leading terms. To compute the univariate polynomial in a Groebner basis for Eq. ( 2), two cases are considered: case A (a 1,22 = 1) and case B (a 1,22 = 1). Case A can be classified into three sub-cases: sub-case A.1 (a 3,12 = 0 and a 1,22 = 1), sub-case A.2 (a 3,12 = 0,