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c UTC-Roberval, UMR 6253, 60200 Compi�egne, France
d EPSILON Ingénierie, Imm. Technoparc 10, 10 rue Jean Bart, BP 97431, 31674 Lab�ege cedex, France

Keywords:There are many ways to solve space–time linear parabolic partial differential equations by using the
eral, st

tive of

combin

ce–time
boundary element method (BEM). In gen

In this paper we propose a novel alterna

of models. The proposed technique

decomposition (PGD) that allows a spa

a non-incremental integration scheme.
Proper generalized decomposition

BEM

Heat equation

andard techniques make use of an incremental strategy.

efficient non-incremental solution strategy for that kind

es the use of the BEM with a proper generalized

separated representation of the unknown field within
1. Introduction

The boundary element method (BEM) allows efficient solution
of partial differential equations whose kernel functions are
known. The heat equation is one of these candidates when the
thermal parameters are assumed constant (linear model). When
the model involves large physical domains and time simulation
intervals the amount of information that must be stored increases
significantly. This drawback can be circumvented by using
advanced strategies, as for example the multipoles technique
[1]. Another possibility is to employ the LTBEM approach. The
basic idea behind this method is to adopt the Laplace transform
first to convert a time-dependent parabolic differential system
into a time-independent elliptical boundary problem in the
Laplace domain. However, once the differential system is solved
in transformed space, the reconstruction of the solution in the
time domain requires the application of the inverse Laplace
transform. The solution accuracy depends on the choice of the
inverse Laplace transform. Sutradhar [2] and Amado [3] provide
recent results related to this method.

We propose in this paper an alternative radically different
approach that leads to a separated solution of the space and time
problems within a non-incremental integration strategy. The
technique is based on the use of a space–time separated
representation of the unknown field that, introduced in the
residual weighting formulation, allows to define a separated
1

solution of the resulting weak form. The spatial step can be then
treated by invoking the standard BEM for solving the resulting
steady state problem defined in the physical space. Then, the time
problem that results in an ordinary first order differential
equation is solved using any standard appropriate integration
technique (e.g. backward finite differences).

In the case of the linear and transient heat equation here
considered for the sake of simplicity, the PGD (proper generalized
decomposition) leads to the solution of a series of steady state
diffusion–reaction problems (accurately solved by using the BEM
method) and a series of problems that consist of a simple time
dependent ODE.

Separated representations were already applied for solving
transient models in the context of finite element discretizations
[4–10], but they never have been used in the BEM framework, and
certainly in this context the main advantage is the possibility of
defining non-incremental strategies as well as the possibility of
avoiding the use of space–time kernels. In principle, this
technique seems specially adapted for solving transient problems
involving extremely small time steps.

We start summarizing the main ideas of the Proper General-
ized Decomposition for the solution of linear parabolic problems.
In the next section we will focus on the application of such
technique in the context of the BEM. Finally, some numerical
examples will be presented and discussed.

1.1. Motivating the use of separated space–time representations

Let u(x, t) be the solution of a certain transient model (in what
follows xAO�Rd, d¼1,2,3, and tAI �Rþ ). We also assume that
this field is known in a discrete manner, that is, at some points xi



(the nodes of a mesh or a grid) and at certain times tp, where
iA ½1, . . . ,Nn� and pA ½1, . . . ,P�.

Now, we introduce the notation up
i � uðxi,t

pÞ and construct the
matrix Q that contains the snapshots:

Q ¼

u1
1 u2

1 � � � uP
1

u1
2 u2

2 � � � uP
2

^ ^ & ^

u1
Nn

u2
Nn
� � � uP

Nn

0
BBBB@

1
CCCCA: ð1Þ

The proper orthogonal decomposition (POD) of this discrete
field consists in solving the eigenvalue problem:

ðQQ T
Þ/¼ l/ ð2Þ

that results in Nn coupled eigenvalue-eigenvector ðli,/iÞ,
i¼1,y,Nn.

When the field evolves smoothly, the magnitude of the
eigenvalues decreases very fast, fact that reveals that the
evolution of the field can be approximated from a reduced
number of modes (eigenvectors). Thus, if we define a cutoff value
e (e¼ 10�8

� l1 in practice, l1 being the highest eigenvalue) only
a reduced number of modes are retained. Let R ðR5NnÞ be the
number of modes retained, i.e. liZ10�8

� l1, i¼ 1, . . . ,R and
lio10�8

� l1,8i4R (the eigenvalues are assumed ordered). Thus,
one could write:

uðx,tÞ �
Xi ¼ R

i ¼ 1

fiðxÞ � TiðtÞ �
Xi ¼ R

i ¼ 1

XiðxÞ � TiðtÞ, ð3Þ

where for the sake of clarity the space modes fiðxÞ will, from now
on, be denoted as Xi(x). Eq. (3) represents a natural separated
representation (also known as finite sums decomposition).

These modes could now be used to solve other ‘‘similar’’
problems, that is, models involving slight changes in the boundary
conditions, model parameters y [11–13]. In [13] the use of
reduced basis was successfully combined with a BEM discretiza-
tion. Other possibility is computing the reduced basis from the
standard transient solution within a short time interval (with
respect to the whole time interval in which the model is defined)
and then solve the remaining part of the time interval by
employing the reduced basis. Obviously, both strategies induce
the introduction of an error whose evaluation, control and
reduction is a challenging issue.

One possibility to construct an adaptive reduced approxima-
tion basis, that should be the best reduced approximation basis
for the treated problem, consists in alternating a reduction step
(based on the application of the proper orthogonal decomposi-
tion) and an enrichment stage to improve the quality of the
reduced approximation basis in order to capture all the solution
features. We proposed recently an enrichment technique based
on the use of some Krylov’s subspaces generated by the equation
residual. This technique known as ‘‘a priori’’ model reduction was
originally proposed in [14], widely described in [15] and
successfully applied for solving complex fluid flows within the
kinetic theory framework [16,7] and for speeding up boundary
element discretization [13] and thermomechanical simulations
[17]. However, some difficulties were noticed in the application of
this strategy: (i) the enrichment based on the use of Krylov’s
subspaces is far to be optimal in a variety of models (e.g. the wave
equation) and (ii) the incremental nature of the algorithm; y .

From the previous analysis we can conclude: (i) the transient
solution of numerous models can be expressed using a very
reduced number of products each one involving a function of time
and a function of space and (ii) the functions involved in these
functional products can be determined simultaneously by apply-
ing an appropriate algorithm.
2

In what follows we describe a possible strategy able to
compute these separated functional couples. From our numerical
experiments we noticed that this technique converged in the
different models until now analyzed, and that the final decom-
position is not so far to the one that results from the application of
the proper orthogonal decomposition on the model solution, that
is, the number of functional couples was quite similar, being the
optimal decomposition of the one performed by applying the
POD. However, at present we cannot prove this empirical
observation for general models.
2. On the proper generalized decomposition: a survey

Some models encountered in science and engineering are
sometimes defined in multidimensional spaces (as the ones
involved in quantum mechanics or kinetic theory descriptions of
materials, including complex fluids) that exhibit the terrific curse
of dimensionality when usual mesh-based discretization techni-
ques are applied. Other times, models involve transient fields, that
even when they are defined in three-dimensional physical spaces,
they must be solved in large time intervals using very small time
steps.

In the first kind of models the difficulty is quite natural and the
solution of such models needs new strategies. One possibility lies
in the use of sparse grids [18]. However, as argued in [19], the use
of sparse grid is restricted to models with moderate multi-
dimensionality (up to 20). Another technique able to circumvent,
or at least alleviate, the curse of dimensionality consists of using a
separated representation of the unknown field (see [20,21] for
some mathematical results on this topic). Basically, the separated
representation of a generic function u(x1,y,xD) (also known as
finite sums decomposition) writes:

uðx1, . . . ,xDÞ �
Xi ¼ N

i ¼ 1

Fi
1ðx1Þ � � � � � Fi

DðxDÞ: ð4Þ

This kind of representation is not new, it was widely employed
in the last decades in the framework of quantum chemistry. In
particular the Hartree–Fock (that involves a single product of
functions) and post-Hartree–Fock approaches (as the MCSCF that
involves a finite number of sums) made use of a separated
representation of the wavefunction [22].

We proposed recently a technique able to construct, in a way
completely transparent for the user, the separated representation
of the unknown field involved in a partial differential equation.
This technique, originally described and applied to multi-bead-
spring FENE models of polymeric systems in [4], was extended to
transient models of such complex fluids in [5]. Other more
complex models (involving different couplings and non-linear-
ities) based on the reptation theory of polymeric liquids were
analyzed in [6] and in [7] separated representations were applied
in the stochastic framework. An introductive overview on the
application of separated representations in the multi-scale
modeling of materials can be found in [8].

The present work will focus on the second kind of models
described at the beginning of this section. For the sake of
simplicity in what follows we consider models defined in
moderate dimensions (d D, d¼1, 2, 3, physical or conformation
spaces) but whose solutions evolve in large time intervals. In this
context, if one uses standard incremental time-discretizations, in
the general case (models involving time-dependent parameters,
non-linear models, y), one must solve at least a linear system at
each time step. When the time step becomes too small as a
consequence of the stability requirements, and the simulation
time interval is large enough, the simulation becomes
inefficient. To illustrate this scenario, one could imagine the



Table 1

Error en ¼ 102
� en as a function of the functional couples considered to define the

approximation of the unknown function uðx,tÞ and the discretization employed

(nt ¼ 256).

nG 4 8 16 32 64

e1 9.9640 8.9397 8.7820 8.7442 8.7519

e2 5.7327 3.4744 3.5755 3.5846 3.5515

e3 4.9489 1.7439 2.0731 2.1270 2.1819

e4 5.9839 2.2748 2.2101 2.1536 2.1793

e5 5.9498 1.1472 1.2022 1.2752 1.3111

e6 5.9477 1.7641 1.4213 1.3425 1.3634

e7 5.9476 1.3769 0.5473 0.4681 0.4195

e8 5.9476 1.5295 0.5433 0.4505 0.3590

e9 5.9474 1.4631 0.4443 0.2992 0.2761
simple reaction–diffusion model that describes the degradation of
plastic materials, where the characteristic time of the chemical
reaction involved in the material degradation is of some
microseconds and the one related to the diffusion of chemical
substances (that also represents the material degradation char-
acteristic time itself) is of the order of years. In this case standard
incremental techniques must be replaced by other more efficient
techniques.

Pierre Ladeveze proposed several years ago a powerful
technique for addressing this kind of challenging models that he
called the LATIN method [23]. The LATIN method integrates many
ingredients leading to a robust, powerful, efficient and accurate
discretization technique especially well adapted for treating
transient multi-scale non-linear models. The two most out-
standing ingredients are (i) the decoupling between a linear-
global problem and a non-linear-local one, both defined in the
whole space–time domain and (ii) a space–time separated
representation of the model variables in order to accelerate the
solution of the linear-global problem. The former separated
representation was called by Ladeveze in the 1980s ‘‘radial
approximation’’, and in our knowledge it was the first time that
separated representations were applied in computational me-
chanics. The interested reader can refer to [24] and the references
therein for a recent overview and the state of the art of the LATIN
approach in multi-scale modeling.

2.1. Illustrating the discretization based on separated

representations

In this section, we illustrate the discretization of partial
differential equations using a separated representation of the
unknown field.

Let us consider the generic partial differential equation

Lðuðx,tÞÞ ¼ f ðx,tÞ in O� I ¼O� ð0,Tmax�,

with homogeneous initial and boundary conditions, where
O�Rd,dZ1, Tmax40. The aim of the separated representation
method is to compute N couples of functions {(Xi, Ti)}i¼1,y,N such
that {Xi}i¼1,y,N and {Ti}i¼1,y,N are defined, respectively, in O and
ð0,Tmax� and the solution u of this problem can be written in the
separate form

uðx,tÞ �
XN

i ¼ 1

TiðtÞ � XiðxÞ: ð5Þ

We are illustrating the strategy for constructing these func-
tional products in the case of an academic transient problem, the
Fig. 1. Colocation nodes ð	Þ, MLS nodes (’) and integration points (+).
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transient linear heat equation:

@u

@t
�aDu¼ f ðx,tÞ in O� ð0,Tmax�, ð6Þ

with homogeneous initial and boundary conditions, where a is the
diffusion coefficient. The weak formulation yields:

Find u(x,t) such that

Z Tmax

0

Z
O

u%
@u

@t
�aDu�f ðx,tÞ

� �
dx dt¼ 0 ð7Þ

for all the functions u% in an appropriate functional space.
We compute now the functions involved in the sum (5). We

suppose that the set of functional couples {(Xi, Ti)}i¼1,y,n with
0rnoN are already known (they have been previously com-
puted) and that at the present iteration we search the enrichment
couple (R(t), S(x)) by applying an alternating direction fixed point
algorithm that after convergence will constitute the next func-
tional couple (Xn + 1, Tn +1). Hence, at the present iteration, n, we
Fig. 2. Evolution of the error en versus the space discretization for different levels

of approximation n.



assume the separated representation

uðx,tÞ �
Xn

i ¼ 1

TiðtÞ � XiðxÞþRðtÞ � SðxÞ: ð8Þ

The weighting function u% is then assumed as

u% ¼ S � R%þR � S%: ð9Þ
Fig. 3. Functional couples fXiðxÞ,T

4

Introducing (8) and (9) into (7) it results

Z Tmax

0

Z
O
ðS � R%þR � S%Þ � S �

@R

@t
�aDS � R

� �
dx dt

¼

Z Tmax

0

Z
O
ðS � R%þR � S%Þ � f ðx,tÞ�

Xn

i ¼ 1

Xi �
@Ti

@t
þa

Xn

i ¼ 1

DXi � Ti

!
dx dt:

ð10Þ
iðtÞg for nG ¼ 8 and nt ¼ 256.



We apply an alternating direction fixed point algorithm to
compute the couple of functions (R, S):
	
 Computing the function S(x):
First, we suppose that R is known, implying that R

%

vanishes
in (9). Thus, Eq. (10) writes

Z
O

S% � ðatS�abtDSÞdx¼

Z
O

S
%

˙
gtðxÞ�

Xn

i ¼ 1

ai
tXiþa

Xn

i ¼ 1

bi
tDXi

!
dx,

ð11Þ

where

at ¼
R Tmax

0 RðtÞ �
@R

@t
ðtÞdt,

ai
t ¼

R Tmax

0 RðtÞ �
@Ti

@t
ðtÞdt,

bt ¼
R Tmax

0 R2ðtÞdt,

bi
t ¼

R Tmax

0 RðtÞ � TiðtÞdt,

gtðxÞ ¼
R Tmax

0 RðtÞ � f ðx,tÞdt; 8xAO:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð12Þ

The weak formulation (11) is satisfied for all S
%

, there-
fore, we could come back to the associated strong
Fig. 4. uðx,tÞ and uref(x,t) (dashed line) for t¼ f0:071s
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formulation

atS�abtDS¼ gt�
Xn

i ¼ 1

ai
tXiþa

Xn

i ¼ 1

bi
tDXi ð13Þ

that one could solve by using any appropriate discretization
technique for computing the space function S(x).

	
 Computing the function R(t):

From the function S(x) just computed, we search R(t). In this
case S% vanishes in (9) and Eq. (10) reduces to

Z Tmax

0

Z
O
ðS � R%Þ � S �

@R

@t
�aDS � R

� �
dx dt

¼

Z Tmax

0

Z
O
ðS � R%Þ � f ðx,tÞ�

Xn

i ¼ 1

Xi �
@Ti

@t
þa

Xn

i ¼ 1

DXi � Ti

!
dx dt,

ð14Þ

where all the spatial functions can be integrated in O. Thus, by
using the following notations

ax ¼
R
OSðxÞ �DSðxÞ dx,

ai
x ¼

R
OSðxÞ �DXiðxÞdx,

bx ¼
R
OS2ðxÞdx,

bi
x ¼

R
OSðxÞ � XiðxÞdx,

gxðtÞ ¼
R
OSðxÞ � f ðx,tÞdx; 8t:

8>>>>>>><
>>>>>>>:

ð15Þ
,0:15s,0:23s,0:3sg, nG ¼ 8 and nt ¼ 256.



Eq. (14) readsZ Tmax

0
R% � bx

@R

@t
�aaxR�gxðtÞþ

Xn

i ¼ 1

bi
x

@Ti

@t
�
Xn

i ¼ 1

aai
x � Ti

!
dt¼ 0:

ð16Þ

As Eq. (16) holds for all S%, we could come back to the strong
formulation

bx

@R

@t
¼ a � ax � RþgxðtÞ�

Xn

i ¼ 1

bi
x �
@Ti

@t
þ
Xn

i ¼ 1

a � ai
x � Ti, ð17Þ

which is a first order ordinary differential equation that can
be solved easily (even for extremely small times steps) from
its initial condition.
These two steps must be repeated until convergence, that is, until
verifying that both functions reach a fixed point. If we denote by
R(q)(t) and R(q�1)(t) the computed functions R(t) at the present and
previous iteration, respectively, and the same for the space functions:
S(q)(x) and S(q�1)(x), the stopping criterion used in this work writes:

e¼ JRðqÞðtÞ � SðqÞðxÞ�Rðq�1ÞðtÞ � Sðq�1ÞðxÞJ2o10�8, ð18Þ

where 10�8 represents the square root of the machine precision.
We denote by Qn+ 1 the number of iterations for solving this

non-linear problem to determine the enrichment couple of
functions Xn +1(x) and Tn +1(t). After reaching convergence we
Fig. 5. ðuðx,tÞ�uref ðx,tÞÞ=Juref J1 for t¼ f0:071
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write Xn + 1(x)¼S(x) and Tn +1(t)¼R(t). The enrichment
procedure must continue until reaching the convergence of the
enrichment global procedure at iteration N, when the separated
representation of the unknown field writes:

uðx,tÞ �
XN

i ¼ 1

XiðxÞ � TiðtÞ: ð19Þ

In our numerical solutions the global stopping criterion was:
	

s,0:1
For models whose exact solution uref was known:

E¼
Ju�uref J2

Juref J2
oe: ð20Þ
	
 For models whose exact solution was not known:

E¼

@u

@t
�aDu�f ðx,tÞ

����
����

2

Jf ðx,tÞJ2
oe, ð21Þ
with e¼ 10�6 in all the simulations reported in this work.
Discussion: The just proposed strategy needs for the solution of

about N�Q space and time problems (with Q ¼ ðQ1þ � � � þQN=N

and N the number of functional couples needed to approximate, up
to the desired precision, the searched solution). Thus, one must
compute N�Q dD problems, d¼1, 2, 3, whose complexity depends
5s,0:23s,0:3sg, nG ¼ 8 and nt ¼ 256.



on the spatial mesh considered, and also N�Q 1D problems (defined
in the time interval I) that only need the solution of an ordinary
differential equation from its initial condition. Obviously, even for
extremely small time steps, the solution of these transient 1D
problems does not introduce any difficulty.

If instead of applying the proper generalized decomposition
just discussed, one performs a standard incremental solution,
P dD models, d¼1, 2, 3, must be solved (P being the number of
time steps, i.e. P¼ Tmax=Dt). The time step in incremental
strategies has a direct impact on the convergence and stability
of the numerical scheme.

In all the analyzed cases N and Q are of the order of tens that
implies the solution of about hundred dD problems defined in O,
instead the thousands (or even millions) needed for solving those
models using standard incremental solvers.

A first comparison between both kind of approaches (the one
based on the separated representation and the one based on
standard incremental strategies) was presented in [25].
3. PGD based boundary element discretizations

The BEM is applied for solving Eq. (13). For this purpose that
equation is rewritten as

�abtDS¼�atSþgt�
Xn

i ¼ 1

ai
tXiþa

Xn

i ¼ 1

bi
tDXi ð22Þ
Fig. 6. Functional couples fX̂ iðxÞ,T̂

7

that defines a steady state elliptic problem with constant
coefficients. It is important to note that bt , atS, ai

t and bi
t will be

evaluated at each iteration of the fixed point algorithm from the
solution computed at the previous iteration.

The computation of integrals involved in (15) requires
the knowledge of the field S in the domain. This field is
reconstructed by the BEM and approximated by using moving
least squares [26].

As depicted in Fig. 1, the nodes inside O are used for defining
the moving least square approximation of function Xi(x)
everywhere in O. They are distributed uniformly on a regular
internal mesh consisting of ðnGþ1Þ � ðnGþ1Þ nodes. The Gauss
points used for evaluating the domain integrals are located in the
center of the internal cells defined by the moving least squares
nodes in O. In the results that follow we use a single integration
point by cell that are aligned with the collocation points.

The PGD algorithm involves N�Q times the solution of
Eqs. (22) and (17), the computation of their associated integrals
(12) and (15) and the reconstruction of S in O. It is important to
note that matrix involved in the discretization are computed only
once. Thus, the N�Q solutions only involve matrix vector
products.

Thus, the solution complexity by using the PGD is close to the
one related to the standard BEM solution of steady state models.
However, the storage cost is slightly higher. Moreover, the cost
associated with the computation of function R from Eq. (17) is
simply negligible because it consists in the solution of a simple
iðtÞg for nG ¼ 8 and nt ¼ 256.



Fig. 7. Functional couples fXiðxÞ,TiðtÞg for nG ¼ 8 and nt ¼ 256.

Fig. 8. Evolution of the error en versus the space discretization for different levels

of approximation n.
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ordinary differential equation. Even when the number of time
steps ðntÞ is extremely large, its impact on the computing time is
negligible because it only affects the solution of the ODE related to
the solution of function R. The number of time steps must be large
enough for ensuring an accurate evaluation of integrals (12).
4. Numerical results

4.1. Heat equation with source term

We considered heat equation in a simple rectangular domain
O¼ ð0,1Þ � ð0,1Þ with homogeneous boundary conditions and a
time interval able to reach its steady state I ¼ ð0,0:3�. The term
source is set to a unit value f(x,t)¼1 and both the initial and
boundary conditions vanish.

The exact solution writes [27]

uref ðx,tÞ ¼

Z
I

Z 1

0

Z 1

0
Gðx,y,x,y,t�tÞdx dy dt ,

with

Gðx,y,x,y,tÞ ¼ 4
X1
n ¼ 1

X1
m ¼ 1

sinðnpxÞsinðmpyÞ

�sinðnpxÞsinðmpyÞexpð�p2ðn2þm2ÞtÞ: ð23Þ



The domain boundary G consists of nG � nG segments Gi. The
time interval I is discretized by using nt nodes, uniformly
distributed.

The moving least square (MLS) approximation is built using a
kernel function whose support radius is 3:5� 1=nG. We

have verified that the use of cubic spline or exponential
functions have not any incidence on the computed results.
A quadratic consistency of the approximation is enforced
by using a fully quadratic basis for defining the MLS
approximation. The MLS approximation of the time functions is
defined by using a support radius of 2:5� 1=nI and linear
consistency.

The enforcement of the homogeneous boundary conditions
is quite simple because it suffices for each functional couple
that S vanishes on the domain boundary and R at t¼0,
conditions that are applied during the solution of Eqs. (22)
and (17).

First we are analyzing the convergence rates as a function of
the space discretization (i.e. nG). For all the space meshes the time
discretization (i.e. nt) is adapted in order to reach the maximum
precision.

Table 1 and Fig. 2 show the evolution of the L2 error in time
and space as a function of the level of approximation, that is, as a
function of the number of functional couples XiðxÞ � TiðtÞ involved
in the approximation of uðx,tÞ for different meshes. This error is
Fig. 9. uðx,tÞ and uref(x,t) (dashed line) for t¼ f0
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defined by:

en ¼

Pn
i ¼ 1

XiðxÞ � TiðtÞ�uref ðx,tÞ

�����
�����

L2
O�I

Juref ðx,tÞJL2
O�I

:

We can notice that for a given number of functional couples
the error en decreases when nG increases, reaching an asymptotic
value. For reducing the value of the error we must increase nG as
well as the number of functional couples XiðxÞ � TiðtÞ involved in
the functional approximation. In the case of the example here
addressed we must consider 9 functional couples for reaching a
quadratic convergence rate for 4rnGr64.

Fig. 3 depicts functions fX1ðxÞ,T1ðtÞg, fX2ðxÞ,T2ðtÞg, fX3ðxÞ,T3ðtÞg

for nG ¼ 8 and nt ¼ 256.
Finally, Fig. 4 depicts the unknown field uðx,tÞ and Fig. 5 its

associated error ðuðx,tÞ�uref ðx,tÞÞ=Juref J1 for t¼ f0:071s,0:15s,
0:23s,0:3sg.

4.2. Heat equation with non-homogeneous initial and boundary

conditions

In what follows we consider the problem:

Lðuðx,tÞÞ ¼ f ðx,tÞ, ðx,tÞAO� I , ð24Þ
:071s,0:15s,0:23s,0:3sg, nG ¼ 8 and nt ¼ 256.



uðx,tÞ ¼ ûðx,tÞ, xAGû , ð25Þ

@uðx,tÞ

@n
¼ q̂ðx,tÞ, xAGq̂ , ð26Þ
Fig. 10. ðuðx,tÞ�uref ðx,tÞÞ=Juref J1 for t ¼ f0:07

Fig. 11. Functional couples fX̂ iðxÞ,T̂
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uðx,t¼ 0Þ ¼ u0ðxÞ, xAO: ð27Þ

The enforcement of the non-homogeneous initial and bound-
ary conditions in the context of the PGD deserves some additional
comments.
1s,0:15s,0:23s,0:3sg, nG ¼ 8 and nt ¼ 256.

iðtÞg for nG ¼ 16 and nt ¼ 256.



Fig. 12. Functional couples fXiðxÞ,TiðtÞg for nG ¼ 16 and nt ¼ 256.
We define û verifying the boundary conditions (25) and (26) as
well as the initial condition (26). Introducing the change of
variable v¼ u�û, the solution of (24)–(27) is equivalent of finding
v solution of

Lðvðx,tÞÞ ¼ f ðx,tÞ�Lðûðx,tÞÞ, ðx,tÞAO� I , ð28Þ

with homogeneous initial and boundary conditions.
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For solving efficiently Eq. (28) by using the PGD method we
should give a separated representation of function û:

û ¼
X

i

X̂ iðxÞT̂ iðtÞ: ð29Þ

A procedure for generating such decomposition was
given by [28] in the case of the Laplace equation. Here, we
propose an alternative well adapted to the transient heat



Fig. 13. Evolution of the error en versus the space discretization for different levels

of approximation n.

Fig. 14. uðx,tÞ and uref(x,t) (dashed line) for t¼ f0
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equation. Inspired from the POD we define the matrix Cû

containing the snapshots of function û, whose each column
contains the nodal values of û at time ti. The first column of Cû

being u0.
We introduce the notation û

i
¼ ûðx,tiÞ. Functions û

i
, verifying

the boundary conditions expressed by (25) and (26), can be
computed inside the domain and on Gq̂ by solving:

Dû
i
ðxÞ ¼ 0, xAO, ð30Þ

û
i
ðxÞ ¼ ûðx,t¼ tiÞ, xAGû , ð31Þ

@
û

i
ðxÞ

@n
¼ q̂ðx,t¼ tiÞ, xAGq̂ : ð32Þ

Now, a singular value decomposition (SVD) of Cû allows comput-
ing the separated representation of û involving X̂ i and T̂ i.

The number of columns, that is the snapshots ti, to be considered
in the construction of Cû must be large enough for
describing accurately û but much lower than the time steps
considered in the time discretization of the partial differential
equation. The cost associated with the computation of functions û

i

is quite reduced because the BEM discretization of Eq. (30)
must be performed when one proceed using the PGD for computing
function S.
:071s,0:15s,0:23s,0:3sg, nG ¼ 16 and nt ¼ 256.



For illustrating the proposed approach we are considering the
domain O¼ ð0,1Þ � ð0,1Þ and the time interval I ¼ ð0,0:3�.
The source term writes 1

4ðx
2þy2Þ�ðt�0:1Þ. We enforce on the

domain boundary the exact solution of the problem, i.e uref ðx,tÞ ¼
1
4ðx

2þy2Þðt�0:1Þ.
Fig. 6 depicts the two most significant functional couples coming

from the SVD decomposition of Cû that allow approximating û.
The field v obtained by applying the PGD method is

represented and accurately approximated by a single functional
couple (as expected because the expression of the exact solution).
Fig. 7 depicts the two functional couples.

Fig. 8 shows the evolution of the error en versus the space
discretization for different levels of approximation n. A quadratic
convergence is noticed.

Finally, Fig. 9 depicts the unknown field uðx,tÞ and Fig. 10 its
associated error ðuðx,tÞ�uref ðx,tÞÞ=Juref J1 for t¼ f0:071s,0:15s,
0:23s,0:3sg.
4.3. Heat equation with incompatible boundary and initial

condition

We consider the heat equation in a simple rectangular
domain O¼ ð0,1Þ � ð0,1Þ and a time interval I ¼ ð0,0:3� with a null
source term f ðx,tÞ ¼ 0. The model is solved by assuming a
homogeneous boundary condition and an initial condition taking
Fig. 15. ðuðx,tÞ�uref ðx,tÞÞ=Juref J1 for t¼ f0:071
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a unit value everywhere except on the domain boundary on
which it vanishes.

The exact solution writes [27]

uref ðx,tÞ ¼

Z 1

0

Z 1

0
Gðx,y,x,y,tÞdx dy,

with

Gðx,y,x,y,tÞ ¼ 1þ2
X1
n ¼ 1

cosðnpxÞcosðnpxÞexpð�p2n2tÞ

!

� 1þ2
X1

m ¼ 1

cosðmpyÞcosðmpyÞexpð�p2m2tÞ

!
:

ð33Þ

Fig. 11 depicts the functional couple arising from the SVD
decomposition of Cû , allowing defining û.

Fig. 12 depicts functions fX1ðxÞ,T1ðtÞg, fX2ðxÞ,T2ðtÞg, fX3ðxÞ,T3ðtÞg

for nG ¼ 16 and nt ¼ 256.
Fig. 13 shows the evolution of the error en versus the space

discretization for different levels of approximation n. Again, a
quadratic convergence is noticed.

The number of functional couples to be considered in the
separated representation of the problem solution is now higher
because the discontinuity involved in the initial condition.
s,0:15s,0:23s,0:3sg, nG ¼ 16 and nt ¼ 256.



Fig. 16. uðx,tÞ and uref(x,t) (dashed line) for t ¼ f0:24s,0:5s,0:76s,1sg, nG ¼ 4 and nt ¼ 256.
Finally, Fig. 14 depicts the unknown field uðx,tÞ and Fig. 15 its
associated error ðuðx,tÞ�uref ðx,tÞÞ=Juref J1 for t¼ f0:071s,0:15s,
0:23s,0:3sg.
4.4. Heat equation with non-linear source term

We considered the heat equation with a non-linear source
term in a simple rectangular domain O¼ ð0,1Þ � ð0,1Þ and a time
interval I ¼ ð0,1�. The source term is set to f ðuÞ ¼ u2ð1�uÞ, and the
initial and boundary conditions are chosen in order to agree with
the known exact solution given by

uref ðx,tÞ ¼
eZðx,tÞ

2þeZðx,tÞ
,

with Zðx,tÞ ¼ 1=
ffiffiffi
2
p
ðxþt=

ffiffiffi
2
p
Þ.

The strategy adopted for accounting for the non-linearity of f

lies in expressing f in a separated form by suing as previously the
POD. Because function f depends on u we should perform such
decomposition at each iteration of PGD enrichment stage or even
at the level of the fixed point algorithm. In the last case we should
perform the decomposition of the source term N�Q times,
instead the N decompositions involved by the former alternative.
In any case, here we are only interested for evaluating the
possibility of solving non-linear transient models, being the
aspects related to the computational efficiency a work in progress.
14
Fig. 16 depicts the unknown field uðx,tÞ and Fig. 17 its
associated error ðuðx,tÞ�uref ðx,tÞÞ=Juref J1 for t¼ f0:24s,0:5s,0:76s,
1sg. From these results we can conclude ability of the PGD for
solving complex transient models.
5. Conclusion

The strategy proposed in this paper allows to define a non-
incremental boundary element method strategy for solving linear
parabolic partial differential equations. Thus, instead of applying
the standard incremental BEM using the mandatory space–time
kernel, we only need to know the steady kernel associated to the
steady-state diffusion–reaction problem that defines the space
functions. The time functions defined in the whole time domain
are computed by solving a ODE.

Obviously, by using an appropriate linearization the proper
generalized decomposition based BEM could be extended for
solving non-linear models.

In principle, even if the computed code is not optimized from a
computing time point of view, the use of the proposed technique
should alleviate the storage needs, in comparison with standard
incremental strategies. Moreover, significant CPU time savings are
expected, as were noticed and reported in some of our former
works, in the finite element framework [25].



Fig. 17. ðuðx,tÞ�uref ðx,tÞÞ=Juref J1 for t¼ f0:24s,0:5s,0:76s,1sg, nG ¼ 4 and nt ¼ 256.
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