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On the use of interaction tensors to describe and predict rod
interactions in rod suspensions

Julien Férec ·Emmanuelle Abisset-Chavanne ·
Gilles Ausias · Francisco Chinesta

Abstract Recently, Férec et al. (2009a) proposed a model
for nondilute rod-like suspensions, where particle inter-
actions are taking into account via a micromechanical
approach. The derived governing equation used the well-
known second- and fourth-order orientation tensors (a2 and
a4) and novel second- and fourth-order interaction tensors
(b2 and b4). To completely close the model, it is necessary
to express a4, b2, and b4 in terms of a2. This paper gives
the general framework to elaborate these new relations.
Firstly, approximations for b2 are developed based on linear
combinations of a2 and a4. Moreover, a new closure approx-
imation is also derived for b4, based on the orthotropic fitted
closure approach. Unknown parameters are determined by
a least-square fitting technique with assumed exact solu-
tions constructed from the probability distribution function
(PDF). As numerical solutions for the PDF are difficult
to obtain given the nonlinearity of the problem, a combi-
nation of steady state solutions is used to generate PDF
designed to cover uniformly the entire domain of pos-
sible orientations. All these proposed approximations are
tested against the particle-based simulations in a variety of
flow fields. Improvements of the different approximations
are observed, and the couple iORW-CO4P3 gives efficient
results.
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Introduction

Nanofibers, carbon nanotubes (CNTs), and nanocrystalline
celluloses (NCCs) are now widely investigated in order to
modulate polymer functionalities at the nanoscale. As for
short fibers at the microscale, these nanoparticles present
a rod-like shape and form nanosuspension systems, which
exhibit different nanostructures depending on their concen-
trations. Rod suspensions can be characterized according to
their volumetric fraction φ of solid particles in the fluid and
their aspect ratio r = L / D, where L and D are, respectively,
their length and diameter. Typically, three distinct regimes
are proposed in the literature (Doi and Edwards 1978):
dilute, in which φ < 1 / r2; semi-dilute, 1 / r2 < φ < 1 / r;
and concentrated, φ > 1 / r. These three regimes of suspen-
sion are represented in Figure 1. By increasing the number
of rods, each rod undergoes more and more contacts with its
neighbors. Doi and Edwards (1978) and then Ranganathan
and Advani (1991) approximated the average number of
rods whose centerlines intersect a test tube circumscribing
a test rod. Later, Toll (1993) obtained an exact solution for
an arbitrary test volume and arbitrary rod length distribu-
tion, given the orientation distribution and concentration of
the rods. In the particular case of 3-D random orientation
and for rods with large aspect ratio, the average number of
contact points is given by NC = φ(2r + 6) (Toll 1993).
Figure 1 also shows that rod interactions are not negligi-
ble and play an important role even in the dilute domain.
The limit between semi-dilute and concentrated regimes is
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Fig. 1 Rod concentration regimes and average number of contacts per
rod, NC , defined by their volume fraction φ and aspect ratio r. The
black line represents the upper limit of the maximum packing Mueller
et al. (2011)

nearly defined by a value of 2 for NC. The average number
of contact per rod is typically larger than 2 in concentrated
regime. Solid particles cannot be added to the fluid up to
φ = 1. For nonspherical particles, Mueller et al. (2011)
proposed to model the maximum packing φm according
to φm = φsm exp

[
− (

log10 r
)2
/2.3328

]
, where the maxi-

mum packing fraction for spheres, φsm, equals 0.656 and is
obtained by fitting their data. This upper limit is reported in
Fig. 1 with the maximum packing curve.

At the microscale, direct numerical simulations (DNSs)
are techniques that can be used to track a rod popu-
lation, which moves with the suspending fluid and ori-
ent depending on the velocity gradient according to the
Jeffery equation (Jeffery 1922). Rod interactions have been
investigated by DNS (Yamamoto and Matsuoka 1996;
Ausias et al. 2006; Yamanoi and Maia 2010a, b). Although
of considerable interest to understand the well-defined
physics at the microscale level, DNS cannot be easily intro-
duced into commercial software packages owing to their
large computational time.

Kinetic theories could also be used to describe such sys-
tems at the mesoscopic scale (Doi and Edwards 1986; Bird
et al. 1987; Larson 1988). Their main advantage is their
capability to address macroscopic systems, while keeping
the fine physics through a number of conformational coor-
dinates introduced for describing the microstructure and its
time evolution (Keunings 2004; Férec et al. 2008; Férec
et al. 2009b; Ma et al. 2008; Ma et al. 2009; Lozinski
et al. 2011). At this mesoscopic scale, the microstruc-
ture is defined from a probability distribution function
(PDF) that depends on the physical space, the time, and
a number of conformational coordinates. Their drawback

is the large computational time required to solve the PDF
equation, although new numerical strategies such as
proper generalized decomposition (PGD) are developed
(Ammar et al. 2006, 2007). Moments of the PDF are
statistical tools that compactly and efficiently describe
the microstructure properties. These coarser descriptions
are widely used in macroscopic modeling. In order to
deal with the orientation description of a rod population,
Advani and Tucker (1987) introduced the second- and
fourth-order orientation tensors a2 and a4. However, the
equations governing the time evolution of these confor-
mational moments involve closure approximations, whose
impact on the final properties is not yet controlled (Sepehr
et al. 2004).

Micromechanical model with rod interactions

The orientation of a particular rod can be described in spher-
ical coordinates by a unit vector pα oriented along its axis
of revolution. Jeffery (1922) developed an expression for
the time evolution of pα for a single spheroid suspended
in a Newtonian fluid in the absence of external torque. Jef-
fery equation predicts that the particle aligns in the flow
direction and rotates periodically according to the shape
factor λpα = (

r2 − 1
)
/
(
r2 + 1

)
. Later, Folgar and Tucker

(1984) improved the Jeffery equation by introducing a dif-
fusion term in order to take into account fiber interactions.
This phenomenological term is proportional to the effective
deformation rate |γ̇ | and to a constant diffusion coeffi-
cient CI. This useful model fails to produce slow orientation
kinetics for rod suspensions as encountered in nondilute
systems due to the interactions (Sepehr et al. 2004). There-
fore, Wang et al. (2008) developed the reduced strain clo-
sure (RSC) model to capture the slow orientation kinetics.
An additional empirical flux is added to the Jeffery motion
to modify the growth rates of the eigenvalues of the
orientation tensor but to leave the rotation rate expres-
sions for the eigenvectors unchanged. Based on a physical
approach at the microscale, Férec et al. (2009a) derived
an interaction flux created by the rod-rod interactions,
which is added to the Jeffery equation. This interaction
flux is obtained from a global torque produced by neigh-
boring rods, which act on the test fiber kinetics. At
higher concentration, microstructures involve clusters or
aggregates, which can interact to create larger clusters or
break due to the hydrodynamic forces (Abisset-Chavanne
et al. 2013; Chinesta 2013). To summarize, recent models
have been developed to improve the kinematic description
of the rod suspensions. In parallel, a lot of works is also
devoted to derive anisotropic diffusions. This part will not
be reported further in this paper [see Koch (1995), Fan et al.
(1998), Jack (2006), and Phelps and Tucker (2009) for more
details].
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Table 1 Expressions of the
pseudo-shape factor λpα and
the orientation diffusion
coefficient Dr for different
models taken in the literature

Authors λpα Dr

Jeffery (1922) r2−1
r2+1 0

Folgar and Tucker (1984) 1 CI |γ̇ |
Advani and Tucker (1987) r2−1

r2+1 CI |γ̇ |
Férec et al. (2009a) 1− φNI

∫
pβ

∣∣pα × pβ
∣∣ψpβ dpβ φNIq |γ̇ |

∫
pβ

∣∣pα × pβ
∣∣ψpβ dpβ

General orientation dynamic

A fairly general form of the time evolution for rods can be
written as:

ṗα = −1
2
ω·pα+1

2
λpα

(
γ̇ · pα − γ̇ : pαpαpα)−Dr

∂ lnψpα

∂pα
(1)

where ω and γ̇ are the vorticity and deformation rate ten-
sors, respectively. Dr is a rotary diffusivity that introduces
an isotropic diffusion. ψpα represents the probability to find
a rod with an orientation of pα , and λpα is a pseudo-shape
factor. Table 1 gives the expressions of Dr and λpα for some
previous described models.

In what follows, the focus is carried out on the model pro-
posed by Férec et al. (2009a), as we would like to highlight
the effects induced by the rod interactions on the convective
part; therefore, Dr is fixed to zero. In this model, λpα is a
pseudo-shape factor that is a function of pα and is given by:

λpα = 1− φNI

∫

pβ

∣∣pα × pβ
∣∣ψpβ dpβ, (2)

where NI is a dimensionless scalar that relates the intensity
of the friction between particles. The test rod is denoted by
the superscript α, whereas the superscript β refers to the
neighboring rod. The Onsager potential

∣∣pα × pβ
∣∣ is max-

imum and equals one when two rods interact orthogonally
and is minimum and null when two rods are both paral-
lel Onsager (1949). The average over the orientation space
for the neighboring rod enables the model to integrate the
effect of interaction into the convective part. Intuitively, it
results that the pseudo-shape factor tends to reach the limit
value of one when the rods become perfectly aligned. This
special case occurs when a test rod is surrounded by neigh-
boring rods that are all aligned parallel to the streamlines.
Moreover, it is possible that

∣∣λpα
∣∣ ≥ 1 depending on the

value assigned to φNI. The behavior of an axisymmetric
body for which |λ| ≥ 1, ultimately adopts a stable steady
state orientation independent of its initial orientation [see
Ericksen (1960), Bretherton (1962), and Brenner (1974) for
more details]. For nondilute suspensions, it seems possible
that interactions between neighboring rods might sometimes
act similarly Ericksen (1960). When the low volume frac-
tion is low or the rods are fully aligned, Eq. (1) associated

with Eq. (2) leads to the equation of motion for slender
particle (Dinh and Armstrong 1984).

Macroscopic time evolution of the microstructure

Using the continuity equation for the probability distribu-
tion function and Eqs. (1) and (2), the convective part of the
dynamic change for the second-order orientation tensor a2
is obtained easily without any approximation (diffusion is
neglected) and yields to:

Da2
Dt

= −1
2
(ω · a2 − a2 · ω)+ 1

2
(γ̇ · a2 + a2 · γ̇ − 2γ̇ : a4)

−1
2
φNI (γ̇ · b2 + b2 · γ̇ − 2γ̇ : b4) . (3)

a2 and a4 are the second- and fourth-order orientation
tensors defined as (Advani and Tucker 1987):

a2 =
∫

pα

pαpαψpαdpα, (4)

a4 =
∫

pα

pαpαpαpαψpαdpα. (5)

The second- and fourth-order interaction tensors b2 and b4
are given by (Férec et al. 2009a):

b2 =
∫

pα

∫

pβ

pαpα
∣∣pα × pβ

∣∣ψpαψpβ dpβdpα, (6)

b4 =
∫

pα

∫

pβ

pαpαpαpα
∣∣pα × pβ

∣∣ψpαψpβ dpβdpα. (7)

Interaction tensors are completely symmetric and are
defined by forming the dyadic products of the vector pα ,
weighted by the Onsager potential

∣∣pα × pβ
∣∣, and then

twice integrating the product with respect to the distribu-
tion function over all possible directions. The trace of the
second-order interaction b2 is directly proportional to the
average number of contacts per rodsNC (Férec et al. 2009a).
It is known that orientation tensors give a statistical average
for the orientation of a rod population (Advani and Tucker
1987). It means that the a2 components are indistinguishable
between a planar random and biaxial orientation state, while
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Fig. 2 Examples of different orientation states: a Planar random in
the 1–2 plane. b Biaxial orientation

interaction tensors, b2, differentiate these two orientation
states (Fig. 2). Table 2 gives some component values of a2
and b2 for simple orientation states (i.e., random isotropic
orientation, triaxial orientation. . .).

In summary, Eq. (3) gives the time evolution for a2.
Open questions are as follows: Is it necessary to derive the
time evolution for a4, b2, and b4? Or better, is it possible
to express a4, b2, and b4 as a function of a2? There-
fore, in this paper, we aimed at developing an orthotropic
fitted closure approximation for the fourth-order interac-
tion tensor and a simple way to express the second-order
interaction tensor as functions of the orientation tensors.
First, particle-based simulations are used to investigate the

effect of rod-rod interaction on the convective part in the
time evolution of the second-order orientation tensor. The
obtained results are also used to test the accuracy of the
proposed approximations. Next, we presented the theory
behind the orthotropic closure approximation extended for
interaction tensors. We also justify how to determine the
second-order interaction tensor with a quadratic form in
terms of a2 and a linear combination in terms of a2 and
a4. As the associated Fokker-Planck equation is numeri-
cally difficult to solve, a new strategy is used based on
the steady state solutions for the PDF, where different
combinations of flow fields are employed and interactions
are neglected. Then, unknown parameters for the different
approximations are determined using a least-square fitting
technique. Finally, we test the new approximations by com-
paring them to solutions based on particle-based simulations
in a basic simple shear flow. Then, numerical calculations
are performed to examine their predictability for bench-
mark problems: tests included a homogeneous simple shear
flow and a shear/stretch combined flow and an unsteady
combined flow (an isothermal Newtonian radial diverging
flow). The proposed approximations represent a substantial
improvement over the previous forms in terms of predicting
flow-induced rod orientation.

Particle-based simulations

Particle-based simulations are used to investigate the behav-
ior prediction from Eqs. (1) and (2) with Dr = 0, as we
would like to highlight the effects of interactions on the
convection (Chinesta et al. 2003; Chiba et al. 2005; Chiba
and Chinesta 2005). It results to solve Eq. (3) if the parti-
cle number is sufficiently large. Thus, rods with different
initial orientations are introduced into a material point, and
the orientation evolution of each rod is computed. Second-
order tensors such as a2 and b2 are then evaluated with the
following discrete summations:

aij = 1
Nrod

∑
α

pα
i p

α
j , (8)

bij = 1
N2
rod

∑
α

∑
β

∣∣pα × pβ
∣∣pα

i p
α
j . (9)

Table 2 Examples of a2 and b2 components for particular rod orientation states

Orientation state a11 a22 a33 b11 b22 b33

Unidirectional (aligned in 1-direction) 1 0 0 0 0 0
2-D random in the 1–2 plane 1/2 1/2 0 1/π 1/π 0
2-D biaxial orientation (1- and 2-directions) 1/2 1/2 0 1/4 1/4 0
3-D random 1/3 1/3 1/3 π /12 π /12 π /12
3-D triaxial orientation 1/3 1/3 1/3 2/9 2/9 2/9
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Using Nrod = 1000 particles is not enough to guarantee
accurate solutions, whereas Nrod = 50000 particles give sig-
nificant results with high computational time. Therefore,
10000 particles are found to be a relative good compro-
mise between accuracy and computational time. An explicit
scheme is used to integrate Eqs. (1) and (2) with a time
step of 
t = 0.05 s and an applied shear rate of 1 s−1.
No numerical diffusion was observed in the sense that in
the reverse simple shear flow (i.e., a negative constant shear
rate is applied), the initial solutions are recovered. This
also suggests that Eq. (1) associated with Eq. (2) is purely
convective, and interaction terms do not introduce any dif-
fusion. Figure 3a presents the time evolutions of a11 and a12
in simple shear flow as functions of time and for different
values of the φNI number, with an initial isotropic rod ori-
entation. The applied shear rate is γ̇ = 1 s−1. For φNI = 0,
the Jeffery solution is obtained with an infinite aspect ratio,

Fig. 3 Variations of the a2 components as function of time for differ-
ent values of φNI. a a11 and a12 tensor components for simple shear
flow at a shear rate of 1 s−1. b a11 and a12 tensor components of a2
for uniaxial elongational flow at a Hencky rate of 1 s−1

therefore inducing that λpα = 1. By increasing φNI, the
time evolutions of a11 and a12 evolved differently: interac-
tions perturb the convection. A transient regime is observed
until 60 s, and then, the rod population rotates periodically
with the same amplitude. In the case where the shape param-
eter is constant and less than 1 (i.e., λpα = 0.9), a11 and a12
oscillate at a well-known period of T = 2π

(
r + r−1

)
/γ̇

(Petrie 1999) with a constant amplitude, and no transients
are observed. It results that the interaction model induces
a strong modification in the rod kinematics. Figure 3b
shows the time evolutions of a11 and a22 in uniaxial
elongational flow as functions of time and for different
values of the φNI number, with an initial isotropic rod ori-
entation. The Hencky strain rate is 1 s−1. Slow orientation
kinetics in rod suspensions are observed by increasing φNI,
indicating that the steady state regime is delayed by the
interaction model.

Approximation developments

Equation (3) gives the time evolution of the microstruc-
ture at the macroscopic scale. In order to achieve to a
complete set of rheological equations, some relations are
needed to specify the fourth-order orientation tensor a4 and
both interaction tensors b2 and b4. The first approxima-
tion is a closure that relates a4 to a2. Many works have
been proposed in the literature but will not be reported fur-
ther in this paper [see Chung and Kwon (2001), Sepehr
et al. (2004), Kröger et al. (2008), Pruliere et al. (2009),
and Jack et al. (2010) for more details]. The ORW3 closure
approximation (orthotropic fitted closure approximation for
wide CI values with third-order polynomial expansions)
developed by Chung and Kwon (2001) is chosen to evalu-
ate the fourth-order orientation tensor. Similarly, a second
closure approximation is required to determine b4 as a func-
tion of b2. The following section deals with this problem.
Finally, it remains to find a way to express the second-order
interaction tensor b2.

Approximations for the second-order interaction tensor

Up to now, two strategies are available to evaluate the
second-order interaction tensor b2. The first one consists
in deriving the time evolution equation for b2. Besides the
difficulties to obtain this equation, some closure approx-
imations will be necessary, and this procedure will not
be developed in what follows. The second possibility is
to express b2 directly from the orientation tensors. This
approach is physically justified: from their definitions,
orientation, and interaction tensors [Eqs. (4)–(7)] are func-
tions of the probability distribution function. Furthermore,
Advani and Tucker (1987) showed that the probability
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distribution function can be recovered in terms of orienta-
tion tensors, that is ψpα = ψpα (δ, a2, a4, a6, . . .) where δ is
the identity tensor. Therefore, the second-order interaction
tensor can be written as a function of orientation ten-
sors such as b2 = b2 (δ, a2, a4, a6, . . .). Generally, closure
approximations for the orientation tensors mention that the
(2n + 2)th-order orientation tensor is constructed from the
(2p)th-order orientation tensors with p ≤ n. Furthermore,
the Cayley-Hamilton theorem states that a2 satisfies its own
characteristic equation. In 3-D, it means that any powers of
a2 higher than 3 can be calculated using δ, a2, and a22. There-
fore, we proposed the two following approximations for b2:

b2 = β1δ + β2a2 + β3a22, (10)
and
b2 = β1δ + β2a2 + β3a4: δ + β4a4: a2. (11)

The first expression [Eq. (10)] is a quadratic form in terms
of a2, and Eq. (11) is a linear combination in terms of a2
and a4. We note that the initial relation given by Férec et al.
(2009a) is:

b2 = 3π
8

(a2 − a4: a2) . (12)

Equation (12) is recovered from Eq. (11) if β1 = β3 = 0 and
β2 = −β4 = 3π/8. Both relations (10) and (11) assume
that the β1, ..., β3 and β1, ..., β6 coefficients are functions
of the second and third invariant of a2, I2 = trace a2·a2
and I3 = trace a2·a2·a2. There is no specific principle for
choosing the functional expressions, so in the present work,
the β1, ..., β3 and β1, ..., β6 coefficients are taken to be
polynomial functions of I2 and I3 such as:

βm = a1m + a2mI2 + a3mI3 + a4mI
2
2 + a5mI

2
3 + a6mI2I3, (13)

and

βm = a1m + a2mI2 + a3mI3 + a4mI
2
2 + a5mI

2
3 + a6mI2I3

+a7mI
3
2 + a8mI

3
3 + a9mI

2
2 I3 + a10m I2I

2
3 , (14)

where the parameters akm are obtained by a fitting procedure
described in the PDF generation section.

Closure approximation for the fourth-order interaction
tensor

Férec et al. (2009a) proposed two simple closures: one for-
mulated with a linear combination iLIN and the second one
based on the quadratic formulation iQUA. They mentioned
that the iQUA closure is more relevant than the iLIN closure
and its definition is:

b4 = b2b2/trace b2. (15)

No other closure approximations are available in the litera-
ture. Hence, we propose to improve the interaction closure
based on an orthotropic fitted closure. This approach uses
the eigenvalues of b2 in the eigenspace system defined

by the eigenvectors of b2 to derive functional expres-
sions that best fit some flow data. In the framework of
orthotropic closure approximations, the principal directions
of the fourth-order orthotropic interaction tensor are the
same as the eigenvectors of b2 in order to be objective in
tensor representation. As b2 is a fully symmetric tensor, it
has three orthogonal eigenvectors and three corresponding
eigenvalues λi1, λ

i
2, and λi3, and its diagonal components

must always belong to [0; π /12]. As compared to a2, the
three eigenvalues of b2 are required, as its trace is not
constant. In addition, these eigenvalues are sorted such as
λi1 ≥ λi2 ≥ λi3. Orthotropic properties (i.e., full symmetry
and normalization conditions) imply that only three princi-
pal values of b4 are independent (denoted by B11, B22, and
B33) in its principal axis system. To obtain a suitable closure
approximation, we introduce specific functional as:

B
closure
mm = C1

m + C2
mλ

i
1 + C3

mλ
i
2 + C4

mλ
i
3 + C5

m

[
λi1

]2

+C6
m

[
λi2

]2 + C7
m

[
λi3

]2 + C8
mλ

i
1λ

i
2 + C9

mλ
i
1λ

i
3

+C10
m λi2λ

i
3. (16)

m = 1,. . ., 3, no sum on m. The fitting of the 30 unknown
coefficients Ck

m in Eq. (16) is a process of minimizing the
difference between the fitted and some exact components of
b4. This approximation closure is called the iORT closure
as reference for orthotropic fitted closure approximation for
interaction tensors.

PDF generation

The domain of realistic rod orientation states forms an ori-
entation triangle in the space of the two largest eigenvalues
λ1 and λ2 of the orientation tensor a2 (Cintra and Tucker
1995). The three boundary corners of the orientation eigen-
value map consist of a uniaxial orientation (U), where all
rods are aligned in a single direction, biaxial orientation
states (B) such as random in plane, and triaxial orientation
states (T) such as isotropic orientation.

Usually, some flow fields are selected to cover most of
the UBT triangle region (Cintra and Tucker 1995; Chung
and Kwon 2001; Jack et al. 2010). Then, the associated
Fokker-Planck equation is numerically solved and its corre-
sponding moments, such as orientation tensors, are evalu-
ated from the probability distribution function. A lot of care
is devoted when different ending times have to be chosen for
each flow in order to cover the transient regime and contain
the final steady state without overemphasizing the steady
state results.

In our case, numerical solutions for the probability dis-
tribution function are not yet available as the problem is
nonlinear (i.e., the convection part is function of the PDF).
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Therefore, we suggest that the probability distribution func-
tion is the steady state solution of a flow that combines
diffusion, shear, and elongational flows such as:

ψ = Knorm

(
C1ψshear + C2ψelongation + C3

1
4π

)
, (17)

where ψshear and ψelongation are the analytical solutions of
the distribution function for the Jeffery equation with an
infinite aspect ratio and are given by:

ψshear,elongation = 1
4π

[
1+ γ

[0]
shear,elongation : pp

]−3/2
. (18)

γ [0] is the finite strain tensor, and its expressions for shear
and elongational flows are (Morrison 2001)

γ
[0]
shear =

⎡
⎣

0 −γ 0
−γ γ 2 + 1 0
0 0 0

⎤
⎦ , (19)

γ
[0]
elongation =

⎡
⎣
eε(1+b) − 1 0 0
0 eε(1−b) − 1 0
0 0 e−2ε − 1

⎤
⎦ . (20)

γ and ε are the shear and elongational strains, respectively.
The b values state if the elongation is uniaxial, biaxial,
or planar (Morrison 2001). In what follows, diffusion is
neglected, so C3 is set to 0.

In order to generate a variety of orientation states that
covers uniformly the UBT triangle, its surface is discretized
into elementary triangles. Three meshes containing 135,
540, and 2160 elements are tested. An iterative loop is car-
ried out to randomize the γ , ε, b, C1, and C2 values to
span the UBT region. Convergence is reached when a single
probability distribution function is assigned at each elemen-
tary triangle. The meshing grid for the surface of the PDF
is composed of 70 × 70 cells to obtain accurate solutions
for nearly aligned rod orientation states (Férec et al. 2008).
Figure 4 shows the mesh with 135 elements and the points
where a PDF is defined. This procedure ensures that the
UBT triangle is uniformly covered and removes the difficul-
ties in the selection of the training data set at the ending time.

Once a database of probability distribution functions is
obtained, the components for the orientation and interaction
tensors are calculated. Then, the Ck

m and akm coefficients
are adjusted to minimize the difference between the compo-
nents predicted by the proposed approximations and those
calculated from the PDF. The minimization was carried out
using the trust region-reflective algorithm. A constrain is
added to the minimization process. For eigenvalues higher
than 0.98, a null tensor is imposed to b2. In this region,
the rods are nearly perfectly aligned; therefore, the PDF is
closed to a Dirac delta function, and the used mesh is unable
to calculate accurate orientation and interaction tensors. The
mesh containing 2160 elementary triangles is found to give
the best results. The Ck

m coefficients for the interaction

Fig. 4 UBT triangle for the all possible rod orientation states and the
used meshing (the grid is composed of 135 elementary triangles). Also
shown in circles are points where PDF are defined

closure approximation are given in Appendix 1. In what fol-
lows, results with approximation using a quadratic form in
terms of a2 to express b2 [Eq. (10)] are not shown, as expres-
sion (11) reveals to be more accurate. CO4P2 and CO4P3
use a second- and a third-order polynomial function of I2
and I3, respectively [Eqs. (13) and (14)]. The values of the
independent parameters akm are presented in the Appendices
2 and 3.

Validation of the approximations

Advani and Tucker (1990) revealed the significance of
checking approximations in a diversity of flow fields. Dif-
ferent steady state flows that cover a variety of orientation
states are used to generate the approximations (i.e., iORT
orthotropic fitted closure, CO4P2 and CO4P3 relations).
Therefore, some tests are performed in simple shear flows,
as these flows were not used to derive the approxima-
tions. Therefore, it is possible to check a posteriori how
well the low-dimensional approximations compare against
the particle-based simulations. The following results are
obtained with the couple iORW-CO4P3 for convenience and
consistency.

Figure 5 shows the 11 and 12 components of the orien-
tation and interaction tensors for selected approximations
as a function of time in simple shear flow. Results from
the particle-based simulations are also presented. Numerical
calculations are performed with an applied shear rate of
1 s−1. The new proposed approximations (iORW-CO4P3)
improve considerably the match for all components. For the
a11, a12, and b12 components, it is difficult to distinguish
the predictions of the both approximations up to a defor-
mation of 15. Beyond that strain, most of the rods tumble
due to the interaction forces, and the old approximations

7



Fig. 5 Selected tensor components as functions of time in simple
shear flow (shear rate = 1 s−1 and φNI = 0.1). a Orientation tensor.
b Interaction tensor

[iQUA-Eq. (12)] failed to predict this behavior as compared
to the particle-based simulations. For the b11 component, its
magnitude and its tumbling strain are better predicted by the
new proposed approximations.

Performance in the equations of evolution

The previous tests implied homogeneous flows, that is, a
steady velocity gradient is fixed at each material point.
Therefore, two unsteady flows in the Lagrangian sense (i.e.,
combined flow test and center-gated disk flow) are used to
investigate the performance for the equations of evolution
of the proposed approximations (iORW-CO4P3).

Combined flow test

The combined flow test consists in three sequences of
distinct homogeneous flows: a simple shear in the 1–2
direction, a shearing/stretching flow with shearing in the
2–3 direction, and stretching in 3-direction and the same
shearing/stretching flow with a stronger stretching in the
1-direction. At each stage except the last one, the time
required to reach the steady state is too short, so errors from
one sequence carry over the initial conditions for the next
period [see Cintra and Tucker (1995) for more details].

The key components of a2 and b2 are shown in Fig. 6a
and b, respectively. Very faithful results are observed for the
components of a2, as compared to the particle-based sim-
ulations where φNI = 0.1. This suggests that the ORW3
closure approximation is well adapted to express a4 as ever

Fig. 6 Selected tensor components in combined flow test with
particle-based simulations and, iORW and CO4P3 approximations. a
Evolution of a11, a22 and a12. b Evolution of b11, b22 and b12
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Fig. 7 Selected tensor components in isothermal Newtonian radial di-
verging flow using particle-based simulations and, iORW and CO4P3
approximations as a function of the radial location (r/b) at z/b = 0.5.
a Evolution of a11, a22 and a13. b Evolution of b11, b22 and b13

used in Férec et al. (2009a), where rod-rod interactions are
taken into account. For the b2 components, the difference
between the results from the particle-based simulation and
the predictions given by the proposed approximations is
almost negligible. This indicates the accuracy of the couple
iORW-CO4P3 for the combined flow test.

Center-gated disk flow

The second benchmark test problem is the nonhomogeneous
isothermal Newtonian radial diverging flow field. This kind
of flow appears in injection molding, near a pin gate or in a
center-gated disk bay (Bay and Tucker 1992a, 1992b).More
details dealing this flow can be found in Cintra and Tucker
(1995). Altan and Rao (1995) gave an analytical solution
for λpα = 1 and Dr = 0. This result will not be presented

here, as we want to test the evolution of λpα with orientation
[Eq. (2)].

Figure 7 reports the a11, a22, and a13 components as
well as the b11, b22, and b13 at the mid gap-wise thick-
ness position. φNI is set to 0.1. For the orientation tensor
components, once again, the results obtained with the pro-
posed approximation are fairly good as compared to the
one got from the particle-based simulation. Some discrepan-
cies are observed for the interaction tensor components and
especially for the 22 components. Nevertheless, the overall
results are found to be satisfactory.

Our first observations show that the general frame-
work from which the approximations are derived is of
great relevance. The proposed relations seem to be quite
reasonable. A natural extension of the present work can
be accomplished by adding Brownian motion and testing
the pseudo-shape factor, Eq. (2), for nematic polymers
in order to provide some phase diagrams (Forest et al.
2004a, b, c).

Concluding remarks

We have developed a general framework to develop clo-
sure relations that is independent of the studied physic. In
our case, we focused on the time evolution for rod orienta-
tion by taking into account the effect of rod-rod interactions
into the hydrodynamic contributions. The obtained fittings
are in agreement, indicating that our strategy is effective.
Improvement of the physic such as adding rotational diffu-
sion will change the closure coefficients.

The consideration of interactions enriches considerably
the micromechanical model. By investigating only the
convective part, particle-based simulations reveal that the
dynamics of concentrated rod suspensions are completely
modified as compared to solutions in the dilute case. It
is observed that rod-rod interactions slow the orientation
kinematics in systems to be more and more concentrated.

The drawback consequence of this finer description of
the physic is the introduction of new conformation tensors
such as interaction tensors when averaged. We derived a
new closure relation to approximate the fourth-order inter-
action tensor, b4, in terms of the second-order interaction
tensor, b2, to improve the simple linear or quadratic closures
initially proposed by Férec et al. (2009a). An orthotropic
fitted closure, called iORW, is developed by assuming that
the principal fourth-order interaction tensor in terms of the
complete second-order polynomial expansion of the three
eigenvalues of b2.

We also justify and explain how to express b2 as a func-
tion of the orientation tensors. Two invariant-based optimal
fitting approximations are proposed: a quadratic form is
suggested, and the CO4P2 and CO4P3 expressions are
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linear combinations of the second- and fourth-order orien-
tation tensors. The coefficients that appear in the different
expressions are represented by polynomial expansions in
terms of the second and third invariants of the second-order
orientation tensor.

For all these approximations, the unknown parame-
ters were obtained using a least-square fitting technique
with solutions calculated from the probability distribution
function (PDF). Up to now, no numerical solutions exist
for the Fokker-Planck equation associated with the enrich
micromechanical including rod interaction due to the non-
linearity of the problem. Therefore, the generation of PDF
results from a combination of the steady state solutions for
simple flows without any interactions.

Numerical investigations were conducted to compare
the performance between the approximations for several
homogeneous flows, an unsteady combined flow, and a non-
homogeneous radial diverging flow field. The new proposed

approximations exhibit more accurate results than any pre-
vious closure formula.

This work provides a way to overcome the drawback
induced by the fine physic description of rod interac-
tions. By taking into account rod-rod interaction into their
micromechanical model, Férec et al. (2009a) enrich con-
siderably the physic but introduce inevitably the use of
new approximations to correctly close the overall problem.
It means that micromechanical models with fine physical
descriptions lead to the development of expressions, whose
impacts on the final properties are not well controlled. A
plausible way to overcome these problems is to solve the
kinetic theories associated with the enriched micromechan-
ical models. Classical approaches such as finite element
and finite volume methods will probably failed as problems
become rapidly multidimensional. We are convinced that
strategies using a proper generalized decomposition will be
some efficient methods.

Appendix 1

The new coefficients of iORW are as follows:

B
closure
mm = C1

m + C2
mλ

i
1 + C3

mλ
i
2 + C4

mλ
i
3 + C5

m

[
λi1

]2 + C6
m

[
λi2

]2 + C7
m

[
λi3

]2
(21)

+C8
mλ

i
1λ

i
2 + C9

mλ
i
1λ

i
3 + C10

m λi2λ
i
3.

Ck
m m = 1 m = 2 m = 3

k = 1 −0.002660915999438 0.003489409782309 0.001067720012882
k = 2 0.828160371150516 0.215367759630567 0.048668855705049
k = 3 0.789103391328429 1.720041147873011 0.094902496780697
k = 4 0.476263752772622 0.297783383252226 0.794703264366077
k = 5 −0.195572713563874 0.110093207391172 0.156823591195991
k = 6 −0.968072656366994 −0.519365195025538 0.063867202721066
k = 7 −1.288287460754669 −1.272700626531701 0.137879920843924
k = 8 −1.227595767448560 −1.651567675520392 −0.390686023987534
v k = 9 −0.182778698782334 0.457588594903240 −0.363326051732185
k = 10 −1.817538271393050 −1.857949606062105 −0.510221530451348

Appendix 2

The three parameters for the CO4P2 are (note that the akm
coefficients are multiplied by 103):

βm = a1m + a2mI2 + a3mI3 + a4mI
2
2 + a5mI

2
3 + a6mI2I3. (22)

103 · akm m = 1 m = 2 m = 3 m = 4

k = 1 −0.003218270630812 −0.062617801293020 0.119688646136867 −0.089748474872973
k = 2 0.025608298944081 0.548145018484273 −0.917735368583849 0.667031916453076
k = 3 −0.023906752298510 −0.489915356264443 0.822449243520880 −0.591188123665222
k = 4 −0.047852286263352 −1.026974365711470 1.727560445560878 −1.305482024414743
k = 5 −0.034902416392141 −0.724776286275129 1.224999080683643 −0.911112016185228
k = 6 0.084238140388237 1.754691642707640 −2.960755852489827 2.215705673061144
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Appendix 3

The three parameters for the CO4P3 are (note that the akm
coefficients are multiplied by 104):

βm = a1m + a2mI2 + a3mI3 + a4mI
2
2 + a5mI

2
3 + a6mI2I3 (23)

+a7mI
3
2 + a8mI

3
3 + a9mI

2
2 I3 + a10m I2I

2
3 .

104 · akm m = 1 m = 2 m = 3 m = 4

k = 1 −0.000202907175609 0.003793345630827 0.004676771640489 −0.013571219282275
k = 2 0.002376331912433 −0.045390224402885 −0.048495402242353 0.151520029088529
k = 3 −0.001962719646240 0.036071205347976 0.037591157670176 −0.117618222841952
k = 4 −0.009187354658680 0.185049907603453 0.163829451119346 −0.563395469982333
k = 5 −0.006306363944156 0.116135110250840 0.098504316934258 −0.341708656333362
k = 6 0.015158202494512 −0.295581503744650 −0.250908066378273 0.875038982777287
k = 7 0.011691632139292 −0.251081509419383 −0.177122895587727 0.691458814785002
k = 8 −0.006449932454001 0.125537769780743 0.077023969296916 −0.322633408773305
k = 9 −0.028765934401621 0.603646258346171 0.398088400923080 −1.606727456320022
k = 10 0.023648785610246 −0.478169447153522 −0.303053148392687 1.247489653670536
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