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proposed a model for nondilute rod-like suspensions, where particle interactions are taking into account via a micromechanical approach. The derived governing equation used the wellknown second-and fourth-order orientation tensors (a 2 and a 4 ) and novel second-and fourth-order interaction tensors (b 2 and b 4 ). To completely close the model, it is necessary to express a 4 , b 2 , and b 4 in terms of a 2 . This paper gives the general framework to elaborate these new relations. Firstly, approximations for b 2 are developed based on linear combinations of a 2 and a 4 . Moreover, a new closure approximation is also derived for b 4 , based on the orthotropic fitted closure approach. Unknown parameters are determined by a least-square fitting technique with assumed exact solutions constructed from the probability distribution function (PDF). As numerical solutions for the PDF are difficult to obtain given the nonlinearity of the problem, a combination of steady state solutions is used to generate PDF designed to cover uniformly the entire domain of possible orientations. All these proposed approximations are tested against the particle-based simulations in a variety of flow fields. Improvements of the different approximations are observed, and the couple iORW-CO4P3 gives efficient results.

Introduction

Nanofibers, carbon nanotubes (CNTs), and nanocrystalline celluloses (NCCs) are now widely investigated in order to modulate polymer functionalities at the nanoscale. As for short fibers at the microscale, these nanoparticles present a rod-like shape and form nanosuspension systems, which exhibit different nanostructures depending on their concentrations. Rod suspensions can be characterized according to their volumetric fraction φ of solid particles in the fluid and their aspect ratio r = L / D, where L and D are, respectively, their length and diameter. Typically, three distinct regimes are proposed in the literature [START_REF] Doi | Dynamics of rod-like macromolecules in concentrated solution. Part 1[END_REF]: dilute, in which φ < 1 / r 2 ; semi-dilute, 1 / r 2 < φ < 1 / r; and concentrated, φ > 1 / r. These three regimes of suspension are represented in Figure 1. By increasing the number of rods, each rod undergoes more and more contacts with its neighbors. [START_REF] Doi | Dynamics of rod-like macromolecules in concentrated solution. Part 1[END_REF] and then [START_REF] Ranganathan | Fiber-fiber interactions in homogeneous flows of nondilute suspensions[END_REF] approximated the average number of rods whose centerlines intersect a test tube circumscribing a test rod. Later, [START_REF] Toll | Note: on the tube model for fiber suspensions[END_REF] obtained an exact solution for an arbitrary test volume and arbitrary rod length distribution, given the orientation distribution and concentration of the rods. In the particular case of 3-D random orientation and for rods with large aspect ratio, the average number of contact points is given by N C = φ(2r + 6) [START_REF] Toll | Note: on the tube model for fiber suspensions[END_REF]. Figure 1 also shows that rod interactions are not negligible and play an important role even in the dilute domain. The limit between semi-dilute and concentrated regimes is Fig. 1 Rod concentration regimes and average number of contacts per rod, N C , defined by their volume fraction φ and aspect ratio r. The black line represents the upper limit of the maximum packing [START_REF] Mueller | The effect of particle shape on suspension viscosity and implications for magmatic flows[END_REF] nearly defined by a value of 2 for N C . The average number of contact per rod is typically larger than 2 in concentrated regime. Solid particles cannot be added to the fluid up to φ = 1. For nonspherical particles, [START_REF] Mueller | The effect of particle shape on suspension viscosity and implications for magmatic flows[END_REF] proposed to model the maximum packing φ m according to φ m = φ s m explog 10 r 2 /2.3328 , where the maximum packing fraction for spheres, φ s m , equals 0.656 and is obtained by fitting their data. This upper limit is reported in Fig. 1 with the maximum packing curve.

At the microscale, direct numerical simulations (DNSs) are techniques that can be used to track a rod population, which moves with the suspending fluid and orient depending on the velocity gradient according to the Jeffery equation [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF]). Rod interactions have been investigated by DNS [START_REF] Yamamoto | Dynamic simulation of microstructure and rheology of fiber suspensions[END_REF][START_REF] Ausias | Direct simulation for concentrated fibre suspensions in transient and steady state shear flows[END_REF]Yamanoi and Maia 2010a, b). Although of considerable interest to understand the well-defined physics at the microscale level, DNS cannot be easily introduced into commercial software packages owing to their large computational time.

Kinetic theories could also be used to describe such systems at the mesoscopic scale [START_REF] Doi | The rheology of polymer dynamics[END_REF][START_REF] Bird | Dynamics of polymeric liquids[END_REF][START_REF] Larson | Constitutive equations for polymer melts and solutions[END_REF]. Their main advantage is their capability to address macroscopic systems, while keeping the fine physics through a number of conformational coordinates introduced for describing the microstructure and its time evolution [START_REF] Keunings | Micro-macro methods for the multiscale simulation of viscoelastic flow using molecular models of kinetic theory[END_REF][START_REF] Férec | Numerical solution of the Fokker-Planck equation for fiber suspensions: application to the Folgar-Tucker-Lipscomb model[END_REF]Férec et al. 2009b;[START_REF] Ma | Rheological modeling of carbon nanotube aggregate suspensions[END_REF][START_REF] Ma | The rheology and modeling of chemically treated carbon nanotubes suspensions[END_REF][START_REF] Lozinski | The Langevin and Fokker-Planck equations in polymer rheology[END_REF]. At this mesoscopic scale, the microstructure is defined from a probability distribution function (PDF) that depends on the physical space, the time, and a number of conformational coordinates. Their drawback is the large computational time required to solve the PDF equation, although new numerical strategies such as proper generalized decomposition (PGD) are developed [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF][START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: part II: transient simulation using space-time separated representations[END_REF]. Moments of the PDF are statistical tools that compactly and efficiently describe the microstructure properties. These coarser descriptions are widely used in macroscopic modeling. In order to deal with the orientation description of a rod population, [START_REF] Advani | The use of tensors to describe and predict fiber orientation in short fiber composites[END_REF] introduced the second-and fourth-order orientation tensors a 2 and a 4 . However, the equations governing the time evolution of these conformational moments involve closure approximations, whose impact on the final properties is not yet controlled [START_REF] Sepehr | Rheological properties of short fiber filled polypropylene in transient shear flow[END_REF]).

Micromechanical model with rod interactions

The orientation of a particular rod can be described in spherical coordinates by a unit vector p α oriented along its axis of revolution. [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] developed an expression for the time evolution of p α for a single spheroid suspended in a Newtonian fluid in the absence of external torque. Jeffery equation predicts that the particle aligns in the flow direction and rotates periodically according to the shape factor λ p α = r 2 -1 / r 2 + 1 . Later, [START_REF] Folgar | Orientation behavior of fibers in concentrated suspensions[END_REF] improved the Jeffery equation by introducing a diffusion term in order to take into account fiber interactions. This phenomenological term is proportional to the effective deformation rate | γ | and to a constant diffusion coefficient C I . This useful model fails to produce slow orientation kinetics for rod suspensions as encountered in nondilute systems due to the interactions [START_REF] Sepehr | Rheological properties of short fiber filled polypropylene in transient shear flow[END_REF]). Therefore, [START_REF] Wang | An objective model for slow orientation kinetics in concentrated fiber suspensions: theory and rheological evidence[END_REF] developed the reduced strain closure (RSC) model to capture the slow orientation kinetics. An additional empirical flux is added to the Jeffery motion to modify the growth rates of the eigenvalues of the orientation tensor but to leave the rotation rate expressions for the eigenvectors unchanged. Based on a physical approach at the microscale, Férec et al. (2009a) derived an interaction flux created by the rod-rod interactions, which is added to the Jeffery equation. This interaction flux is obtained from a global torque produced by neighboring rods, which act on the test fiber kinetics. At higher concentration, microstructures involve clusters or aggregates, which can interact to create larger clusters or break due to the hydrodynamic forces [START_REF] Abisset-Chavanne | Kinetic theory microstructure modeling in concentrated suspensions[END_REF][START_REF] Chinesta | From single-scale to two-scales kinetic theory descriptions of rods suspensions[END_REF]. To summarize, recent models have been developed to improve the kinematic description of the rod suspensions. In parallel, a lot of works is also devoted to derive anisotropic diffusions. This part will not be reported further in this paper [see [START_REF] Koch | A model for orientational diffusion in fiber suspensions[END_REF], [START_REF] Fan | A direct simulation of fibre suspensions[END_REF], [START_REF] Jack | Advanced analysis of short-fiber polymer composite material behavior[END_REF], and [START_REF] Phelps | An anisotropic rotary diffusion model for fiber orientation in short-and long-fiber thermoplastics[END_REF] for more details]. 
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General orientation dynamic

A fairly general form of the time evolution for rods can be written as:

ṗα = - 1 2 ω•p α + 1 2 λ p α γ • p α -γ : p α p α p α -D r ∂ ln ψ p α ∂p α (1)
where ω and γ are the vorticity and deformation rate tensors, respectively. D r is a rotary diffusivity that introduces an isotropic diffusion. ψ p α represents the probability to find a rod with an orientation of p α , and λ p α is a pseudo-shape factor. Table 1 gives the expressions of D r and λ p α for some previous described models.

In what follows, the focus is carried out on the model proposed by Férec et al. (2009a), as we would like to highlight the effects induced by the rod interactions on the convective part; therefore, D r is fixed to zero. In this model, λ p α is a pseudo-shape factor that is a function of p α and is given by:

λ p α = 1 -φN I p β p α × p β ψ p β dp β , ( 2 
)
where N I is a dimensionless scalar that relates the intensity of the friction between particles. The test rod is denoted by the superscript α, whereas the superscript β refers to the neighboring rod. The Onsager potential p α × p β is maximum and equals one when two rods interact orthogonally and is minimum and null when two rods are both parallel [START_REF] Onsager | The effects of shape on the interaction of colloidal particles[END_REF]. The average over the orientation space for the neighboring rod enables the model to integrate the effect of interaction into the convective part. Intuitively, it results that the pseudo-shape factor tends to reach the limit value of one when the rods become perfectly aligned. This special case occurs when a test rod is surrounded by neighboring rods that are all aligned parallel to the streamlines. Moreover, it is possible that λ p α ≥ 1 depending on the value assigned to φN I . The behavior of an axisymmetric body for which |λ| ≥ 1, ultimately adopts a stable steady state orientation independent of its initial orientation [see [START_REF] Ericksen | Transversely isotropic fluids[END_REF], [START_REF] Bretherton | The motion of rigid particles in a shear flow at low Reynolds number[END_REF][START_REF] Brenner | Rheology of a dilute suspension of axisymmetric Brownian particles[END_REF] for more details]. For nondilute suspensions, it seems possible that interactions between neighboring rods might sometimes act similarly [START_REF] Ericksen | Transversely isotropic fluids[END_REF]. When the low volume fraction is low or the rods are fully aligned, Eq. (1) associated with Eq. ( 2) leads to the equation of motion for slender particle [START_REF] Dinh | A rheological equation of state for semiconcentrated fiber suspensions[END_REF].

Macroscopic time evolution of the microstructure

Using the continuity equation for the probability distribution function and Eqs. ( 1) and ( 2), the convective part of the dynamic change for the second-order orientation tensor a 2 is obtained easily without any approximation (diffusion is neglected) and yields to:

Da 2 Dt = - 1 2 (ω • a 2 -a 2 • ω) + 1 2 ( γ • a 2 + a 2 • γ -2 γ : a 4 ) - 1 2 φN I ( γ • b 2 + b 2 • γ -2 γ : b 4 ) . (3) 
a 2 and a 4 are the second-and fourth-order orientation tensors defined as [START_REF] Advani | The use of tensors to describe and predict fiber orientation in short fiber composites[END_REF]:

a 2 = p α p α p α ψ p α dp α , ( 4 
)
a 4 = p α p α p α p α p α ψ p α dp α .
(5)

The second-and fourth-order interaction tensors b 2 and b 4 are given by (Férec et al. 2009a):

b 2 = p α p β p α p α p α × p β ψ p α ψ p β dp β dp α , (6) b 4 = p α p β p α p α p α p α p α × p β ψ p α ψ p β dp β dp α . ( 7 
)
Interaction tensors are completely symmetric and are defined by forming the dyadic products of the vector p α , weighted by the Onsager potential p α × p β , and then twice integrating the product with respect to the distribution function over all possible directions. The trace of the second-order interaction b 2 is directly proportional to the average number of contacts per rods N C (Férec et al. 2009a).

It is known that orientation tensors give a statistical average for the orientation of a rod population [START_REF] Advani | The use of tensors to describe and predict fiber orientation in short fiber composites[END_REF]. It means that the a 2 components are indistinguishable between a planar random and biaxial orientation state, while interaction tensors, b 2 , differentiate these two orientation states (Fig. 2). Table 2 gives some component values of a 2 and b 2 for simple orientation states (i.e., random isotropic orientation, triaxial orientation. . .). In summary, Eq. ( 3) gives the time evolution for a 2 . Open questions are as follows: Is it necessary to derive the time evolution for a 4 , b 2 , and b 4 ? Or better, is it possible to express a 4 , b 2 , and b 4 as a function of a 2 ? Therefore, in this paper, we aimed at developing an orthotropic fitted closure approximation for the fourth-order interaction tensor and a simple way to express the second-order interaction tensor as functions of the orientation tensors. First, particle-based simulations are used to investigate the effect of rod-rod interaction on the convective part in the time evolution of the second-order orientation tensor. The obtained results are also used to test the accuracy of the proposed approximations. Next, we presented the theory behind the orthotropic closure approximation extended for interaction tensors. We also justify how to determine the second-order interaction tensor with a quadratic form in terms of a 2 and a linear combination in terms of a 2 and a 4 . As the associated Fokker-Planck equation is numerically difficult to solve, a new strategy is used based on the steady state solutions for the PDF, where different combinations of flow fields are employed and interactions are neglected. Then, unknown parameters for the different approximations are determined using a least-square fitting technique. Finally, we test the new approximations by comparing them to solutions based on particle-based simulations in a basic simple shear flow. Then, numerical calculations are performed to examine their predictability for benchmark problems: tests included a homogeneous simple shear flow and a shear/stretch combined flow and an unsteady combined flow (an isothermal Newtonian radial diverging flow). The proposed approximations represent a substantial improvement over the previous forms in terms of predicting flow-induced rod orientation.

Particle-based simulations

Particle-based simulations are used to investigate the behavior prediction from Eqs. ( 1) and (2) with D r = 0, as we would like to highlight the effects of interactions on the convection [START_REF] Chinesta | On the solution of Fokker-Planck equations in steady recirculating flows involving short fiber suspensions[END_REF]Chiba et al. 2005;Chiba and Chinesta 2005). It results to solve Eq. ( 3) if the particle number is sufficiently large. Thus, rods with different initial orientations are introduced into a material point, and the orientation evolution of each rod is computed. Secondorder tensors such as a 2 and b 2 are then evaluated with the following discrete summations: Unidirectional (aligned in 1-direction)

a ij = 1 N rod α p α i p α j , ( 8 
) b ij = 1 N 2 rod α β p α × p β p α i p α j . ( 9 
)
1 0 0 0 0 0 2-D random in the 1-2 plane 1/2 1/2 0 1/π 1/π 0 2-D biaxial orientation (1-and 2-directions) 1/2 1/2 0 1/4 1/4 0 3-D random 1/3 1/3 1/3 π/12 π/12 π/12 3-D triaxial orientation 1/3 1/3 1/3 2/9 2/9 2/9
Using N rod = 1000 particles is not enough to guarantee accurate solutions, whereas N rod = 50000 particles give significant results with high computational time. Therefore, 10000 particles are found to be a relative good compromise between accuracy and computational time. An explicit scheme is used to integrate Eqs. ( 1) and ( 2) with a time step of t = 0.05 s and an applied shear rate of 1 s -1 . No numerical diffusion was observed in the sense that in the reverse simple shear flow (i.e., a negative constant shear rate is applied), the initial solutions are recovered. This also suggests that Eq. ( 1) associated with Eq. ( 2) is purely convective, and interaction terms do not introduce any diffusion. Figure 3a presents the time evolutions of a 11 and a 12 in simple shear flow as functions of time and for different values of the φN I number, with an initial isotropic rod orientation. The applied shear rate is γ = 1 s -1 . For φN I = 0, the Jeffery solution is obtained with an infinite aspect ratio, therefore inducing that λ p α = 1. By increasing φN I , the time evolutions of a 11 and a 12 evolved differently: interactions perturb the convection. A transient regime is observed until 60 s, and then, the rod population rotates periodically with the same amplitude. In the case where the shape parameter is constant and less than 1 (i.e., λ p α = 0.9), a 11 and a 12 oscillate at a well-known period of T = 2π r + r -1 / γ (Petrie 1999) with a constant amplitude, and no transients are observed. It results that the interaction model induces a strong modification in the rod kinematics. Figure 3b shows the time evolutions of a 11 and a 22 in uniaxial elongational flow as functions of time and for different values of the φN I number, with an initial isotropic rod orientation. The Hencky strain rate is 1 s -1 . Slow orientation kinetics in rod suspensions are observed by increasing φN I , indicating that the steady state regime is delayed by the interaction model.

Approximation developments

Equation (3) gives the time evolution of the microstructure at the macroscopic scale. In order to achieve to a complete set of rheological equations, some relations are needed to specify the fourth-order orientation tensor a 4 and both interaction tensors b 2 and b 4 . The first approximation is a closure that relates a 4 to a 2 . Many works have been proposed in the literature but will not be reported further in this paper [see [START_REF] Chung | Improved model of orthotropic closure approximation for flow induced fiber orientation[END_REF], [START_REF] Sepehr | Rheological properties of short fiber filled polypropylene in transient shear flow[END_REF], [START_REF] Kröger | Consistent closure schemes for statistical models of anisotropic fluids[END_REF], [START_REF] Pruliere | Recirculating flows involving short fiber suspensions: numerical difficulties and efficient advanced micro-macro solvers[END_REF], and [START_REF] Jack | Neural network-based closure for modeling short-fiber suspensions[END_REF] for more details]. The ORW3 closure approximation (orthotropic fitted closure approximation for wide C I values with third-order polynomial expansions) developed by [START_REF] Chung | Improved model of orthotropic closure approximation for flow induced fiber orientation[END_REF] is chosen to evaluate the fourth-order orientation tensor. Similarly, a second closure approximation is required to determine b 4 as a function of b 2 . The following section deals with this problem. Finally, it remains to find a way to express the second-order interaction tensor b 2 .

Approximations for the second-order interaction tensor Up to now, two strategies are available to evaluate the second-order interaction tensor b 2 . The first one consists in deriving the time evolution equation for b 2 . Besides the difficulties to obtain this equation, some closure approximations will be necessary, and this procedure will not be developed in what follows. The second possibility is to express b 2 directly from the orientation tensors. This approach is physically justified: from their definitions, orientation, and interaction tensors [Eqs. ( 4)-( 7)] are functions of the probability distribution function. Furthermore, [START_REF] Advani | The use of tensors to describe and predict fiber orientation in short fiber composites[END_REF] showed that the probability distribution function can be recovered in terms of orientation tensors, that is ψ p α = ψ p α (δ, a 2 , a 4 , a 6 , . . .) where δ is the identity tensor. Therefore, the second-order interaction tensor can be written as a function of orientation tensors such as b 2 = b 2 (δ, a 2 , a 4 , a 6 , . . .). Generally, closure approximations for the orientation tensors mention that the (2n + 2)th-order orientation tensor is constructed from the (2p)th-order orientation tensors with p ≤ n. Furthermore, the Cayley-Hamilton theorem states that a 2 satisfies its own characteristic equation. In 3-D, it means that any powers of a 2 higher than 3 can be calculated using δ, a 2 , and a 2 2 . Therefore, we proposed the two following approximations for b 2 :

b 2 = β 1 δ + β 2 a 2 + β 3 a 2 2 , ( 10 
) and b 2 = β 1 δ + β 2 a 2 + β 3 a 4 : δ + β 4 a 4 : a 2 . ( 11 
)
The first expression [Eq. ( 10)] is a quadratic form in terms of a 2 , and Eq. ( 11) is a linear combination in terms of a 2 and a 4 . We note that the initial relation given by Férec et al. (2009a) is:

b 2 = 3π 8 (a 2 -a 4 : a 2 ) . ( 12 
)
Equation ( 12) is recovered from Eq. ( 11) if β 1 = β 3 = 0 and β 2 = -β 4 = 3π/8. Both relations ( 10) and ( 11) assume that the β 1 , ..., β 3 and β 1 , ..., β 6 coefficients are functions of the second and third invariant of a 2 , I 2 = trace a 2 •a 2 and I 3 = trace a 2 •a 2 •a 2 . There is no specific principle for choosing the functional expressions, so in the present work, the β 1 , ..., β 3 and β 1 , ..., β 6 coefficients are taken to be polynomial functions of I 2 and I 3 such as:

β m = a 1 m + a 2 m I 2 + a 3 m I 3 + a 4 m I 2 2 + a 5 m I 2 3 + a 6 m I 2 I 3 , ( 13 
) and

β m = a 1 m + a 2 m I 2 + a 3 m I 3 + a 4 m I 2 2 + a 5 m I 2 3 + a 6 m I 2 I 3 +a 7 m I 3 2 + a 8 m I 3 3 + a 9 m I 2 2 I 3 + a 10 m I 2 I 2 3 , ( 14 
)
where the parameters a k m are obtained by a fitting procedure described in the PDF generation section.

Closure approximation for the fourth-order interaction tensor Férec et al. (2009a) proposed two simple closures: one formulated with a linear combination iLIN and the second one based on the quadratic formulation iQUA. They mentioned that the iQUA closure is more relevant than the iLIN closure and its definition is:

b 4 = b 2 b 2 /trace b 2 . ( 15 
)
No other closure approximations are available in the literature. Hence, we propose to improve the interaction closure based on an orthotropic fitted closure. This approach uses the eigenvalues of b 2 in the eigenspace system defined by the eigenvectors of b 2 to derive functional expressions that best fit some flow data. In the framework of orthotropic closure approximations, the principal directions of the fourth-order orthotropic interaction tensor are the same as the eigenvectors of b 2 in order to be objective in tensor representation. As b 2 is a fully symmetric tensor, it has three orthogonal eigenvectors and three corresponding eigenvalues λ i 1 , λ i 2 , and λ i 3 , and its diagonal components must always belong to [0; π/12]. As compared to a 2 , the three eigenvalues of b 2 are required, as its trace is not constant. In addition, these eigenvalues are sorted such as

λ i 1 ≥ λ i 2 ≥ λ i 3 .
Orthotropic properties (i.e., full symmetry and normalization conditions) imply that only three principal values of b 4 are independent (denoted by B 11 , B 22 , and B 33 ) in its principal axis system. To obtain a suitable closure approximation, we introduce specific functional as:

B closure mm = C 1 m + C 2 m λ i 1 + C 3 m λ i 2 + C 4 m λ i 3 + C 5 m λ i 1 2 +C 6 m λ i 2 2 + C 7 m λ i 3 2 + C 8 m λ i 1 λ i 2 + C 9 m λ i 1 λ i 3 +C 10 m λ i 2 λ i 3 . ( 16 
)
m = 1,. . ., 3, no sum on m. The fitting of the 30 unknown coefficients C k m in Eq. ( 16) is a process of minimizing the difference between the fitted and some exact components of b 4 . This approximation closure is called the iORT closure as reference for orthotropic fitted closure approximation for interaction tensors.

PDF generation

The domain of realistic rod orientation states forms an orientation triangle in the space of the two largest eigenvalues λ 1 and λ 2 of the orientation tensor a 2 [START_REF] Cintra | Orthotropic closure approximations for flow-induced fiber orientation[END_REF]. The three boundary corners of the orientation eigenvalue map consist of a uniaxial orientation (U), where all rods are aligned in a single direction, biaxial orientation states (B) such as random in plane, and triaxial orientation states (T) such as isotropic orientation.

Usually, some flow fields are selected to cover most of the UBT triangle region [START_REF] Cintra | Orthotropic closure approximations for flow-induced fiber orientation[END_REF][START_REF] Chung | Improved model of orthotropic closure approximation for flow induced fiber orientation[END_REF][START_REF] Jack | Neural network-based closure for modeling short-fiber suspensions[END_REF]. Then, the associated Fokker-Planck equation is numerically solved and its corresponding moments, such as orientation tensors, are evaluated from the probability distribution function. A lot of care is devoted when different ending times have to be chosen for each flow in order to cover the transient regime and contain the final steady state without overemphasizing the steady state results.

In our case, numerical solutions for the probability distribution function are not yet available as the problem is nonlinear (i.e., the convection part is function of the PDF).

Therefore, we suggest that the probability distribution function is the steady state solution of a flow that combines diffusion, shear, and elongational flows such as:

ψ = K norm C 1 ψ shear + C 2 ψ elongation + C 3 1 4π , ( 17 
)
where ψ shear and ψ elongation are the analytical solutions of the distribution function for the Jeffery equation with an infinite aspect ratio and are given by: ψ shear,elongation = 1 4π 1 + γ [0] shear,elongation : pp

-3/2 . (18)
γ [0] is the finite strain tensor, and its expressions for shear and elongational flows are [START_REF] Morrison | Understanding rheology[END_REF])

γ [0] shear = ⎡ ⎣ 0 -γ 0 -γ γ 2 + 1 0 0 0 0 ⎤ ⎦ , ( 19 
)
γ [0] elongation = ⎡ ⎣ e ε(1+b) -1 0 0 0 e ε(1-b) -1 0 0 0 e -2ε -1 ⎤ ⎦ . ( 20 
)
γ and ε are the shear and elongational strains, respectively. The b values state if the elongation is uniaxial, biaxial, or planar [START_REF] Morrison | Understanding rheology[END_REF]. In what follows, diffusion is neglected, so C 3 is set to 0.

In order to generate a variety of orientation states that covers uniformly the UBT triangle, its surface is discretized into elementary triangles. Three meshes containing 135, 540, and 2160 elements are tested. An iterative loop is carried out to randomize the γ , ε, b, C 1 , and C 2 values to span the UBT region. Convergence is reached when a single probability distribution function is assigned at each elementary triangle. The meshing grid for the surface of the PDF is composed of 70 × 70 cells to obtain accurate solutions for nearly aligned rod orientation states [START_REF] Férec | Numerical solution of the Fokker-Planck equation for fiber suspensions: application to the Folgar-Tucker-Lipscomb model[END_REF]. Figure 4 shows the mesh with 135 elements and the points where a PDF is defined. This procedure ensures that the UBT triangle is uniformly covered and removes the difficulties in the selection of the training data set at the ending time.

Once a database of probability distribution functions is obtained, the components for the orientation and interaction tensors are calculated. Then, the C k m and a k m coefficients are adjusted to minimize the difference between the components predicted by the proposed approximations and those calculated from the PDF. The minimization was carried out using the trust region-reflective algorithm. A constrain is added to the minimization process. For eigenvalues higher than 0.98, a null tensor is imposed to b 2 . In this region, the rods are nearly perfectly aligned; therefore, the PDF is closed to a Dirac delta function, and the used mesh is unable to calculate accurate orientation and interaction tensors. The mesh containing 2160 elementary triangles is found to give the best results. The C k m coefficients for the interaction In what follows, results with approximation using a quadratic form in terms of a 2 to express b 2 [Eq. ( 10)] are not shown, as expression (11) reveals to be more accurate. CO4P2 and CO4P3 use a second-and a third-order polynomial function of I 2 and I 3 , respectively [Eqs. ( 13) and ( 14)]. The values of the independent parameters a k m are presented in the Appendices 2 and 3. [START_REF] Advani | Closure approximations for three-dimensional structure tensors[END_REF] revealed the significance of checking approximations in a diversity of flow fields. Different steady state flows that cover a variety of orientation states are used to generate the approximations (i.e., iORT orthotropic fitted closure, CO4P2 and CO4P3 relations). Therefore, some tests are performed in simple shear flows, as these flows were not used to derive the approximations. Therefore, it is possible to check a posteriori how well the low-dimensional approximations compare against the particle-based simulations. The following results are obtained with the couple iORW-CO4P3 for convenience and consistency.

Validation of the approximations

Figure 5 shows the 11 and 12 components of the orientation and interaction tensors for selected approximations as a function of time in simple shear flow. Results from the particle-based simulations are also presented. Numerical calculations are performed with an applied shear rate of 1 s -1 . The new proposed approximations (iORW-CO4P3) improve considerably the match for all components. For the a 11 , a 12 , and b 12 components, it is difficult to distinguish the predictions of the both approximations up to a deformation of 15. Beyond that strain, most of the rods tumble due to the interaction forces, and the old approximations [iQUA-Eq. ( 12)] failed to predict this behavior as compared to the particle-based simulations. For the b 11 component, its magnitude and its tumbling strain are better predicted by the new proposed approximations.

Performance in the equations of evolution

The previous tests implied homogeneous flows, that is, a steady velocity gradient is fixed at each material point. Therefore, two unsteady flows in the Lagrangian sense (i.e., combined flow test and center-gated disk flow) are used to investigate the performance for the equations of evolution of the proposed approximations (iORW-CO4P3).

Combined flow test

The combined flow test consists in three sequences of distinct homogeneous flows: a simple shear in the 1-2 direction, a shearing/stretching flow with shearing in the 2-3 direction, and stretching in 3-direction and the same shearing/stretching flow with a stronger stretching in the 1-direction. At each stage except the last one, the time required to reach the steady state is too short, so errors from one sequence carry over the initial conditions for the next period [see [START_REF] Cintra | Orthotropic closure approximations for flow-induced fiber orientation[END_REF] for more details].

The key components of a 2 and b 2 are shown in Fig. 6a andb, respectively. Very faithful results are observed for the components of a 2 , as compared to the particle-based simulations where φN I = 0.1. This suggests that the ORW3 closure approximation is well adapted to express a 4 as ever used in Férec et al. (2009a), where rod-rod interactions are taken into account. For the b 2 components, the difference between the results from the particle-based simulation and the predictions given by the proposed approximations is almost negligible. This indicates the accuracy of the couple iORW-CO4P3 for the combined flow test.

Center-gated disk flow

The second benchmark test problem is the nonhomogeneous isothermal Newtonian radial diverging flow field. This kind of flow appears in injection molding, near a pin gate or in a center-gated disk bay (Bay andTucker 1992a, 1992b). More details dealing this flow can be found in [START_REF] Cintra | Orthotropic closure approximations for flow-induced fiber orientation[END_REF]. [START_REF] Altan | Closed-form solution for the orientation field in a center-gated disk[END_REF] gave an analytical solution for λ p α = 1 and D r = 0. This result will not be presented here, as we want to test the evolution of λ p α with orientation [Eq. ( 2)].

Figure 7 reports the a 11 , a 22 , and a 13 components as well as the b 11 , b 22 , and b 13 at the mid gap-wise thickness position. φN I is set to 0.1. For the orientation tensor components, once again, the results obtained with the proposed approximation are fairly good as compared to the one got from the particle-based simulation. Some discrepancies are observed for the interaction tensor components and especially for the 22 components. Nevertheless, the overall results are found to be satisfactory.

Our first observations show that the general framework from which the approximations are derived is of great relevance. The proposed relations seem to be quite reasonable. A natural extension of the present work can be accomplished by adding Brownian motion and testing the pseudo-shape factor, Eq. ( 2), for nematic polymers in order to provide some phase diagrams (Forest et al. 2004a, b, c).

Concluding remarks

We have developed a general framework to develop closure relations that is independent of the studied physic. In our case, we focused on the time evolution for rod orientation by taking into account the effect of rod-rod interactions into the hydrodynamic contributions. The obtained fittings are in agreement, indicating that our strategy is effective. Improvement of the physic such as adding rotational diffusion will change the closure coefficients.

The consideration of interactions enriches considerably the micromechanical model. By investigating only the convective part, particle-based simulations reveal that the dynamics of concentrated rod suspensions are completely modified as compared to solutions in the dilute case. It is observed that rod-rod interactions slow the orientation kinematics in systems to be more and more concentrated.

The drawback consequence of this finer description of the physic is the introduction of new conformation tensors such as interaction tensors when averaged. We derived a new closure relation to approximate the fourth-order interaction tensor, b 4 , in terms of the second-order interaction tensor, b 2 , to improve the simple linear or quadratic closures initially proposed by Férec et al. (2009a). An orthotropic fitted closure, called iORW, is developed by assuming that the principal fourth-order interaction tensor in terms of the complete second-order polynomial expansion of the three eigenvalues of b 2 .

We also justify and explain how to express b 2 as a function of the orientation tensors. Two invariant-based optimal fitting approximations are proposed: a quadratic form is suggested, and the CO4P2 and CO4P3 expressions are linear combinations of the second-and fourth-order orientation tensors. The coefficients that appear in the different expressions are represented by polynomial expansions in terms of the second and third invariants of the second-order orientation tensor.

For all these approximations, the unknown parameters were obtained using a least-square fitting technique with solutions calculated from the probability distribution function (PDF). Up to now, no numerical solutions exist for the Fokker-Planck equation associated with the enrich micromechanical including rod interaction due to the nonlinearity of the problem. Therefore, the generation of PDF results from a combination of the steady state solutions for simple flows without any interactions.

Numerical investigations were conducted to compare the performance between the approximations for several homogeneous flows, an unsteady combined flow, and a nonhomogeneous radial diverging flow field. The new proposed approximations exhibit more accurate results than any previous closure formula.

This work provides a way to overcome the drawback induced by the fine physic description of rod interactions. By taking into account rod-rod interaction into their micromechanical model, Férec et al. (2009a) enrich considerably the physic but introduce inevitably the use of new approximations to correctly close the overall problem. It means that micromechanical models with fine physical descriptions lead to the development of expressions, whose impacts on the final properties are not well controlled. A plausible way to overcome these problems is to solve the kinetic theories associated with the enriched micromechanical models. Classical approaches such as finite element and finite volume methods will probably failed as problems become rapidly multidimensional. We are convinced that strategies using a proper generalized decomposition will be some efficient methods.

Appendix 1

The new coefficients of iORW are as follows: 

B closure mm = C 1 m + C 2 m λ i 1 + C 3 m λ i 2 + C 4 m λ i 3 + C 5 m λ i 1 2 + C 6 m λ i 2 2 + C 7 m λ i 3 2 (21) +C 8 m λ i 1 λ i 2 + C 9 m λ i 1 λ i 3 + C 10 m λ i 2 λ i 3 . C k m m = 1 m = 2 m = 3 k = 1 -0.

Fig. 2

 2 Fig. 2 Examples of different orientation states: a Planar random in the 1-2 plane. b Biaxial orientation

Fig. 3

 3 Fig. 3 Variations of the a 2 components as function of time for different values of φN I . a a 11 and a 12 tensor components for simple shear flow at a shear rate of 1 s -1 . b a 11 and a 12 tensor components of a 2 for uniaxial elongational flow at a Hencky rate of 1 s -1

Fig. 4

 4 Fig.4UBT triangle for the all possible rod orientation states and the used meshing (the grid is composed of 135 elementary triangles). Also shown in circles are points where PDF are defined closure approximation are given in Appendix 1. In what follows, results with approximation using a quadratic form in terms of a 2 to express b 2 [Eq. (10)] are not shown, as expression (11) reveals to be more accurate. CO4P2 and CO4P3 use a second-and a third-order polynomial function of I 2 and I 3 , respectively [Eqs. (13) and (14)]. The values of the independent parameters a k m are presented in the Appendices 2 and 3.

Fig. 5

 5 Fig. 5 Selected tensor components as functions of time in simple shear flow (shear rate = 1 s -1 and φN I = 0.1). a Orientation tensor. b Interaction tensor

Fig. 7

 7 Fig. 7 Selected tensor components in isothermal Newtonian radial diverging flow using particle-based simulations and, iORW and CO4P3 approximations as a function of the radial location (r/b) at z/b = 0.5. a Evolution of a 11 , a 22 and a 13 . b Evolution of b 11 , b 22 and b 13

Table 1

 1 Expressions of the pseudo-shape factor λ p

	α and	Authors	λ p α	D r
	the orientation diffusion coefficient D r for different models taken in the literature	Jeffery (1922) Folgar and Tucker (1984)	r 2 -1 r 2 +1 1	0 C I | γ |
		Advani and Tucker (1987)		

Table 2

 2 Examples of a 2 and b 2 components for particular rod orientation states

	Orientation state	a 11	a 22	a 33	b 11	b 22	b 33

  The three parameters for the CO4P3 are (note that the a k

	Appendix 3				
	coefficients are multiplied by 10 4 ):	m		
	β m = a 1 m + a 2 m I 2 + a 3 m I 3 + a 4 m I 2 2 + a 5 m I 2 3 + a 6 m I 2 I 3 (23)		
	+a 7 m I 3 2 + a 8 m I 3 3 + a 9 m I 2 2 I 3 + a 10 m I 2 I 2 3 .		
	10 4 • a k m	m = 1	m = 2		m = 3	m = 4
	k = 1	-0.000202907175609	0.003793345630827	0.004676771640489	-0.013571219282275
	k = 2	0.002376331912433	-0.045390224402885	-0.048495402242353	0.151520029088529
	k = 3	-0.001962719646240	0.036071205347976	0.037591157670176	-0.117618222841952
	k = 4	-0.009187354658680	0.185049907603453	0.163829451119346	-0.563395469982333
	k = 5	-0.006306363944156	0.116135110250840	0.098504316934258	-0.341708656333362
	k = 6	0.015158202494512	-0.295581503744650	-0.250908066378273	0.875038982777287
	k = 7	0.011691632139292	-0.251081509419383	-0.177122895587727	0.691458814785002
	k = 8	-0.006449932454001	0.125537769780743	0.077023969296916	-0.322633408773305
	k = 9	-0.028765934401621	0.603646258346171	0.398088400923080	-1.606727456320022
	k = 10	0.023648785610246	-0.478169447153522	-0.303053148392687	1.247489653670536
		002660915999438	0.003489409782309	0.001067720012882
	k = 2	0.828160371150516	0.215367759630567	0.048668855705049
	k = 3	0.789103391328429	1.720041147873011	0.094902496780697
	k = 4	0.476263752772622	0.297783383252226	0.794703264366077
	k = 5	-0.195572713563874	0.110093207391172	0.156823591195991
	k = 6	-0.968072656366994	-0.519365195025538	0.063867202721066
	k = 7	-1.288287460754669	-1.272700626531701	0.137879920843924
	k = 8	-1.227595767448560	-1.651567675520392	-0.390686023987534
	v k = 9	-0.182778698782334	0.457588594903240	-0.363326051732185
	k = 10	-1.817538271393050	-1.857949606062105	-0.510221530451348
	Appendix 2				
	The three parameters for the CO4P2 are (note that the a k m coefficients are multiplied by 10 3 ):		
	β m = a 1 m + a 2 m I 2 + a 3 m I 3 + a 4 m I 2 2 + a 5 m I 2 3 + a 6 m I 2 I 3 .			(22)
	10 3 • a k m	m = 1	m = 2		m = 3	m = 4
	k = 1	-0.003218270630812	-0.062617801293020	0.119688646136867	-0.089748474872973
	k = 2	0.025608298944081	0.548145018484273	-0.917735368583849	0.667031916453076
	k = 3	-0.023906752298510	-0.489915356264443	0.822449243520880	-0.591188123665222
	k = 4	-0.047852286263352	-1.026974365711470	1.727560445560878	-1.305482024414743
	k = 5	-0.034902416392141	-0.724776286275129	1.224999080683643	-0.911112016185228
	k = 6	0.084238140388237	1.754691642707640	-2.960755852489827	2.215705673061144

Selected tensor components in combined flow test with particle-based simulations and, iORW and CO4P3 approximations. a Evolution of a 11 , a 22 and a 12 . b Evolution of b 11 , b 22 and b 12