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Abstract

Lateral gene transfers between ancient species contain information about the relative
timing of species diversification. Specifically, the ancestors of a donor species must have
existed before the descendants of the recipient species. Hence, the detection of a transfer
event can be translated into a time constraint between nodes of a phylogeny if the donor
and recipient can be identified. When a set of transfers are detected by interpreting the
phylogenetic discordance between gene trees and a species tree, the set of all deduced
time constraints can be used to rank the species tree, i.e. order totally its internal nodes.
Unfortunately lateral gene transfer detection is challenging and current methods produce a
significant proportion of false positives. As a result a set of time constraints deduced from
predicted transfers is not always compatible with any ranking of the species tree. We propose
a method, implemented in a software called MaxTiC (Maximum Time Consistency), which
takes as input a species tree and a series of possibly inconsistent time constraints between
its internal nodes, weighted by confidence scores. MaxTiC outputs a ranked species tree
compatible with a subset of constraints with maximum confidence score sum. We extensively
test the method on simulated datasets, under a wide range of conditions that we compare to
measures on biological datasets. In most conditions the obtained ranked tree is very close to
the real one, confirming the theoretical possibility of dating the history of life with transfers
by maximizing time consistency. MaxTiC is available with a documentation and several
examples described in this article: https://github.com/ssolo/ALE/tree/master/maxtic.

I. Introduction

Telling the evolutionary time is usually achieved by combining molecular clocks and the fos-
sil record (Donoghue and Smith, 2003). It was pointed out by Gogarten et al. (1999) and
demonstrated by Szöllősi et al. (2012) that there existed a third source of information about
evolutionary time in ancient lateral gene transfers.
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Indeed, suppose an ancient species A transfered a gene to another species B, and the latter
has descendants that are sampled in a phylogenetic study. If we call X the most recent node of
this phylogeny that is an ancestor of A, and Y the node that directly descends from B, then X
must be older than Y since a gene from a descendant of X has been transferred to an ancestor
of Y (see Figure 1).

X

B

Y

A

Figure 1: From lateral gene transfer to time constraint. A species tree is depicted, with a transfer from
species A to contemporaneous species B. The donor species A possibly belongs to a lineage with no
sampled descendants (dotted line in the phylogeny) (Szöllősi et al., 2013b). The transfer from A to
B informs that speciation X is older than speciation Y. This precedence relation between X and Y
constitutes the time constraint associated with the transfer from A to B.

A single transfer can thus provide a time constraint between two nodes of a phylogeny,
so many transfers combined can provide a multitude of time constraints that can be used to
determine the time order of the internal nodes of a phylogeny and obtain a ranked phylogeny
(Semple and Steel, 2003). As lateral gene transfers have probably been very frequent in evolution,
in particular in microbes (Ochman et al., 2000), this could constitute the most abundant source
of information for dating in the history of life. Interestingly, it may be mostly available in taxa
where fossils are absent.

While this can be done in theory, and could reveal a novel abundant source of information
on the history of life, it has rarely been attempted, mainly because of the difficulty to detect
lateral gene transfers, and identify the donor and recipient lineages (Ravenhall et al., 2015). The
only record of using a collection of predicted transfers for dating a species tree is the method
by Szöllősi et al. (2012), which consists in finding the ranked tree that maximizes the likelihood
according to a model of gene tree species tree reconciliation taking lateral gene transfers into
account. Due to the size of the space of dated trees and the time complexity of the gene tree
species tree method, it is computationally demanding and hardly scales up to large datasets.
This calls for methodological improvements.

A fast alternative is to detect transfers on an unranked species tree, and combine all transfers
to output a ranking. Several programs are available to detect transfers using phylogenetic
incongruence between species trees and gene trees without the need of a ranked species tree
(Bansal et al., 2012; Stolzer et al., 2012; Szöllősi et al., 2015; Badescu et al., 2016; Jacox et al., 2016).
However all these methods output sets of transfers that can be inconsistent, i.e. not compatible
with any ranking of the species tree. At most some of them can output time consistent sets
for a single gene family (Stolzer et al., 2012; Jacox et al., 2016), possibly at the cost of a high
computing time. This inconsistency is due to errors in trees or reconciliations. The species
tree can be partly incorrect, gene families may be wrongly inferred, the gene trees are prone
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to the usual reconstruction uncertainties or systematic artifacts, and reconciliation models are
lacking important events such as incomplete lineage sorting or gene conversion or transfers
with replacement of an homologous gene (Chan et al., 2017; Hasic and Tannier, 2017a,b).

In this paper we propose a method and an associated tool, called MaxTiC, for Maximal
Time Consistency, to compute a ranking of an input species tree, given a set of time constraints
between internal nodes of the species tree, deduced from lateral gene transfers. The constraints
may be weighted with a confidence score, as it is the case in the output of several programs
which sample in the space of solutions (Szöllősi et al., 2013a; Szöllősi et al., 2015; Jacox et al.,
2016). The output ranked tree maximizes the sum of the confidence scores of the compatible
transfers, or equivalently minimizes the incompatible ones. We show that our problem is
equivalent to a well-known difficult problem in computer science, the Feedback Arc Set, and
propose a method combining three heuristics inspired from the computer science literature on
this problem. All is implemented in the MaxTiC tool.

We give the proof of principle that this method is able to efficiently date phylogenetic
trees by generating a number of simulated datasets with SimPhy (Mallo et al., 2016) and
detecting transfers with ALE_undated (Szöllősi et al., 2015). We use a wide range of transfer
rates, population sizes (which has an effect on the gene tree species tree incongruence through
incomplete lineage sorting), variations in the species tree, to test the limits of our method.
We show that under most conditions tested in our simulations, including some settings with
features comparable to the ones observed in published fungi and cyanobacteria datasets, the
ranked tree recovered by the method is very close to the true one, but is never exactly the true
one. Still, this is not really due to the heuristic optimization but rather to false transfers inferred
by ALE. Indeed inferred solutions are slightly better than true values according to the cost
function.

The organization of the paper is the following: We first describe the protocol, including
simulations, transfer detection, conversion of each transfer into a time constraint. Then we
describe our main algorithm and its properties. We finally present the results on the simulated
datasets and discuss the possibility to date a tree of life with transfers.

II. Construction of the simulated dataset

Simulation by SimPhy. We generated simulated datasets with an independent tool, SimPhy
(Mallo et al., 2016). Independent means that it was developed by an independent team, with
other purposes than to test our method. This has in particular the consequence of simulating
processes that are not handled by our inference method, like transfers with replacements or
incomplete lineage sorting. However, it has been developed to validate evolutionary inference
methods in general, it uses birth-death processes, like our inference programs, and it assumes
that there is no uncertainty in gene family clustering, thus they cannot be said to be conceptually
entirely independent (Biller et al., 2016). For all sets of parameters, we used Simphy to generate
a ranked species tree with 500 leaves. Along this species tree, we generated 100 to 5000 gene
trees with a population size between 2 and 106 individuals per species, null rates of duplications
and losses, and a rate of transfers from 10−9 to 10−5. Note that transfers are transfers with
replacements in SimPhy, which is supposed to be interpreted as a transfer and a loss by
ALE_undated, so a null loss rate in SimPhy is in fact a loss rate equal to the transfer rate if it is
seen from the inference model point of view. These ranges of parameters were chosen to give
a very wide overview of the capacities of the method: from settings with too few transfers to
have a clear ranking signal to settings with too many transfers for the capacities of detection
methods; from perfect gene trees to very noisy gene trees. Also some parameters were explored
to answer specific questions on the method, such as "what is the robustness to uncertainties in
the species tree, or in gene trees?", or "how is the ranking signal correlated to the number of
gene families?". We discuss these points in the Results section. Of course not all combinations
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of parameters, conditions and questions are tested in this paper. For example, sensitivity to
errors in the species tree was only tested with one transfer rate – we chose the one giving a
number of transfers close to what we measured on biological datasets. Duplications and losses
were kept silenced which may seem unrealistic, though often transfer studies concentrate on
universal single copy genes. This set of simulations is a compromise between the expense in
computation and the knowledge we gain from it.

Species extinction. We pruned each leaf of the species tree with a probability 0.8, so that the
final species tree has approximately 100 leaves. Gene trees are pruned accordingly by removing
leaves belonging to the removed species. This simulates a sampling of sequenced species,
accounting for species extinction or species absence in the study (Szöllősi et al., 2013b).

Detection of transfers. Transfers were detected by ALEml_undated, a program from the
ALE suite (Szöllősi et al., 2013a; Szöllősi et al., 2015). It takes as input an unranked rooted
species tree and an unrooted gene tree, and produces a sample of 100 reconciled gene trees
(for each of the simulated gene families), sampled according to their likelihood under a model
of duplication, loss, and transfers. Duplication, transfer and loss rates are estimated with a
maximum likelihood objective, for each gene family independently, and the 100 reconciled gene
trees are sampled according to these ML rates. We ran ALE_undated with the (undated) species
tree and the gene trees (considered as unrooted) generated by SimPhy.

From transfers to constraints. In order to reduce the noise from improbable transfers, only
transfers found in at least 5% of the reconciliations for one gene family were kept. For each
transfer inferred by ALE, the most recent node in the species phylogeny which is an ancestor of
the donor species is called X, and the first descendant node of the recipient species is called Y.
A constraint is inferred as X → Y, which means X should be older than Y (see Figure 1). We
assign to the constraint X → Y the support of the transfer, which is the frequency at which the
transfer is found in the 100 reconciled gene trees, summed across all gene families.

Measuring error in time order reconstruction. In order to compare the true (simulated)
ranked tree with the obtained ranked tree we compute a similarity measure derived from
the Kendall τ distance between total orders. The Kendall distance between two orders is the
number of pairs i, j of elements of the two orders such that i is before j in one order, and j is
before i in the other. We apply the Kendall distance to total orders of internal nodes of raked
species trees, and normalize this number by the maximum possible Kendall distance given that
the two orders have to be derived from the species tree, to get a number between 0 and 1 (0 for
the maximum distance and minimum similarity between orders given a species tree, 1 for two
equal orders). This maximum Kendall distance is computed with the following property.

Property 1. Given a rooted tree T inducing a partial order P on its internal nodes, two depth first
searches of T, ordering the children of any node in, respectively lexicographical and anti-lexicographical
order, output two linear extensions of P such that their Kendall distance is maximum, among all pairs of
linear extensions of P.

This property is easy to demonstrate: take any pair i, j of internal nodes of a rooted tree.
Either one is the ancestor of the other – and they appear in the same order in any pair of
linear extensions – or they are incomparable, with a last common ancestor a, having children
a1, the ancestor of i, and a2, the ancestor of j. In one depth first search a1 and its descendants,
including i, appear before a2 and its descendants, including j, and in the other it is the opposite.
So all incomparable pairs appear in a different order, contributing to the Kendall distance. This
obviously gives the maximum possible Kendall distance. Our Normalized Kendall similarity
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between two ranked trees is then:

(τmax(S)− τ(Sr1 , Sr2)/τmax(S))

where τmax(S) is the maximum Kendall distance given an unranked species tree S and τ(Sr1 , Sr2)
is the Kendall distance between the two ranked trees.

Availability. The procedure, programs, integration with ALE, along with a simulated dataset
and a small cyanobacteria dataset are available at https://github.com/ssolo/ALE/tree/
master/maxtic.

III. Finding a maximum consistent set of constraints with MaxTiC.

Definition. We suppose we have as input a rooted, unranked, species tree S and a set of
weighted constraints C, which are directed pairs X → Y of nodes of S. We call a constraint
informative if its two nodes are internal nodes not related by an ancestor/descendant relationship,
and we suppose without loss of generality that C contains only informative constraints.

Some constraints might be conflicting, for example like in Figure 2: Y is found to be older
than X, and Z is found to be older than T, but T is an ancestor of Y and X is an ancestor of
Z. The two constraints Y > X and Z > T cannot be true at the same time in the context of the
drawn species tree.

X
T

Y

Z

Figure 2: A set of two conflicting constraints. Each of the constraints Y > X and Z > T can be fulfilled
by some ranked version of the species tree, but not both.

The problem, that we call Maximum Time Consistency, is to find a ranked species tree,
that is, a total order of the internal nodes compatible with the partial order given by the
ancestor/descendant relation in the tree topology. We say that a constraint is compatible with a
ranked tree if it is directed from an older to a younger node. A subset of constraints on the
internal nodes of a tree S is consistent if there exists a ranked tree based on S such that all
constraints from this subset are compatible with the ranked tree. Otherwise it is conflicting. We
search for a maximum weight consistent subset of C, which is equivalent to finding a ranked
tree with which a maximum weight subset of C is compatible.

Relation with the Feedback Arc Set. If we see the branches of the unranked species tree
as arcs of a directed graph with infinite weight, and the constraints as weighted arcs in this
graph, then the problem we defined translates exactly into an instance of the Feedback Arc Set
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problem. This classical problem is known to be computationally hard: it is NP-complete (Garey
and Johnson, 1990), and no approximation with a constant factor is known. Approximation
algorithms with O(log n log log n) factors exist (Even et al., 1998), however the best algorithms
to solve it in practice have been reported to be randomized local search heuristics (Brandenburg
and Hanauer, 2011; Simpson et al., 2016). This relation with the Feedback Arc Set is important
for our method, because it drives the way we provide good solutions by heuristic algorithms.

Computational complexity. We first check that our problem is also computationally hard. As
we have a species tree with infinite weight arcs, we are not in the general case of the Feedback
Arc Set problem, so the NP-completeness of our variant is not immediate. However it is easy to
reduce the Feedback Arc Set to our problem, leading to the NP-hardness property.

Theorem 1. The maximum time consistency problem is NP-hard.

Proof. Let us take any instance of the Feedback Arc Set in the form of a weighted graph with n
vertices (Figure 3 (a)). Construct a species tree with 2n leaves, connected by n cherry nodes (i.e.
nodes having two leaves as children), and complete the rest of the tree by a comb (Figure 3 (b)).
The cherry nodes are identified with the nodes of the graph, so that any arc can be assimilated
to a constraint, and a ranked species tree maximizing the set of consistent constraints yields a
total order of the vertices of the initial graph maximizing the consistency with the arcs. Any
algorithm finding a maximum time consistent set of constraints, applied on the comb with
cherries, would find the solution to the feedback arc set. This proves NP-hardness of the
maximum time consistency problem.

n
1

n
2

n
3

n
4

n
1

n
2

n
3

n
4 o2o3 o4o5 o6o7 o8o1

1

3

2 1
1

1
2

3

(a) (b)

Figure 3: The reduction of Feedback Arc Set to the Maximum Time Consistency problem. (a) an arbitrary
instance for the feedback arc set. (b) the instance of Maximum Time consistency. An algorithm ordering
the internal nodes of the species tree will find a feedback arc set.

A heuristic principle based on divide-and-conquer approximations. Specificities of our
problem compared to the Feedback Arc Set do not change the theoretical complexity but
can be harnessed to design adapted heuristics. An approximation algorithm to the general
problem, which achieves ratio log2 n, where n is the size of the graph, can be obtained by a
divide and conquer strategy (Leighton and Rao, 1988). First the graph is cut into two balanced
parts. The problem is recursively solved on the two parts and then the two sub-solutions are
mixed. The approximation ratio has been improved to O(log n log log n) with similar techniques
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(Even et al., 1998). The presence of an underlying tree for the graph (the species tree) provides
a "natural" way to recursively cut the graph into two. Indeed, let r be the root of the species
tree (r is always the highest node in any ranked tree). Then define a and b the two subtrees
rooted at the two children of r. Define three sets of constraints: those having two extremities
in a, those having two extremities in b, and those having one extremity in a and one in b.
The subtree a and the first set of constraints, as well as the subtree b and the second set of
constraints, define new instances of the problem. So the divide step is to solve independently
and recursively the problem on these two instances. This results in ranked trees for a and b,
that is, two independent total orders of the internal nodes of a and b. Constructing an order
of all the internal nodes, that is, containing r, the internal nodes of a and the internal nodes
of b, according to the third set of constraints, is the role of the mixing (conquer) step. This is
formally described by Algorithm 1.

Algorithm 1 Heuristic for Maximum Time consistency

1: procedure MaxTiC(r ∈ S, S, C)
2: if r has only leaf descendants then
3: return (r)
4: else if r has one leaf descendant and one internal node descendant r1 then
5: Let C1 be set subset of constraints involving descendants of r1.
6: Let (a1, . . . , ak) be the result of MaxTiC(r1, S, C1)
7: return (r1, a1, . . . , ak)
8: else
9: Let r1 and r2 be the children of r

10: Let Ci be set subset of constraints involving descendants of ri.
11: Let (a1, . . . , ak) be the result of MaxTiC(r1, S, C1)
12: Let (b1, . . . , bl) be the result of MaxTiC(r2, S, C2)
13: Let Cinter be the subset of constraints involving one descendant of r1 and one of r2
14: Return (r)+ the result of Mix_rank(S, a1, . . . , ak, b1, . . . , bl , Cinter)
15: end if
16: end procedure

The mixing principle. The mixing step of the algorithm consists in obtaining a ranked tree
from two ranked subtrees. Note that this procedure can be applied to general approximation
algorithms for the Feedback Arc Set. In Leighton and Rao (Leighton and Rao, 1988), the mixing
step for the Feedback Arc Set was achieved by simply concatenating the two orders obtained
from the solutions to the two subproblems. We propose here a better (optimal) way to achieve
this mixing by dynamic programming. Note that our method improves on the approximation
solutions to the general Feedback Arc Set problem but the approximation ratio however is not
improved. Our way to divide the tree into two subtrees even does not guarantee the log2 n
approximation ratio unless the tree and the constraints are balanced enough. We keep this way
of dividing despite the lesser theoretical performance because it is the occasion to describe the
solution to a more general problem in phylogenetic dating, that we can call Mix ranks, defined
as follows. Suppose we are given a rooted binary tree S, with root r, where the two subtrees a
and b rooted by the children of r are ranked. It can be a common situation where two disjoint
clades have been dated independently by any method, including, but not limited to, a recursive
application of the divide and conquer principle. Suppose also that (possibly conflicting) relative
time constraints between internal nodes of a and b are given, which can be the result of lateral
gene transfer detection, but possibly any kind of chronological constraint. Then we have to
construct a ranked tree for S that contains the input ranks of the children subtrees of the root,
and is compatible with a maximum weight subset of time constraints.
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The algorithm described below proves that this particular situation of the Feedback Arc Set
can be solved in polynomial time.

Theorem 2. Mix ranks can be solved in time O(n2m), where n is the number of nodes of the species
tree and m is the number of constraints.

Indeed, call a1, . . . , ak, resp. b1, . . . , bl , the sequence of internal nodes of a, resp. b, decreas-
ingly ordered by their position in the ranked subtree (by convention a1 and b1 are the oldest
nodes). Call C the set of weighted constraints between internal nodes of a and b. Given a subset
N of the internal nodes of the species tree, note CN the set of constraints which have both their
extremities in N.

o2 o3 o4 o5 o6 o7o1

1
1

3

(a)

r

a1
a2 a3

b1
b2

t1 t2
1

(b)

o1

s
1
2
3
4

1 2 3

0
0

0
0

0
01
0
00
0

Figure 4: An illustration of the mixing principle. (a) The subtrees a and b are ranked, and there
are four constraints between nodes a1, a2, a3 on one side and b1, b2 on the other. (b) The dynamic
programming matrix, with a1, a2, a3 as rows (and an additional row to start the recursion), and b1, b2
as columns (and an additional column to start the recursion). Since b2 has no incoming edge, i.e.
incoming(i, b2) = 0, s(i, 2) = 0 whatever i. We compute s(3, 1) = s(3, 2) = 0 because b1 has no
incoming edge from a3, then s(2, 1) = s(3, 1) = 0 because a2 has no incoming edge. Eventually
s(1, 1) = s(2, 1) + incoming(a1) = 0 + 1 = 1, so the ordering of the whole tree is r, a1, a2, b1, b2, a3
and it costs 1 because the constraint b2 → a1 is not compatible with this order.

Note Nij = {ai, . . . , ak, bj, . . . , bl}. Let then s(i, j) be the minimum sum of the weights in a
set which has to be removed from CNij , in order to get a consistent set, also compatible with
the orders ai, . . . , ak and bj, . . . , bl . It is easy to see that the value of the optimal solution to Mix

ranks is s(1, 1). We compute it recursively with the following equations,

• s(k + 1, j) = s(i, l + 1) = 0 for all i ≤ k and j ≤ l,

• s(i, j) = min(s(i + 1, j) + incoming(ai, j), s(i, j + 1) + incoming(i, bj)), if i ≤ k and j ≤ l,

where incoming(ai, j) is the total cumulative weight of constraints starting with bj . . . bl and
ending on ai, and incoming(i, bj) is the total cumulative weight of constraints starting with
ai . . . ak and ending on bj.

This translates into a dynamic programming scheme. Backtracking along the matrix of s(i, j)
gives the optimal mixing of the two orders a1, . . . , ak and b1, . . . , bl . Putting r before the mixed
order gives an optimal solution. A formal description is provided, see Algorithm 2.
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Algorithm 2 Exact algorithm for mixing ranks

1: procedure MixRank(S, a1, . . . , ak, b1, . . . , bl , C)
2: Let s(k + 1, j) = s(i, l + 1) = 0 for all i ≤ k and j ≤ l
3: for i = k downto 1, and j = l downto 1 do
4: Compute incoming(ai, j) as the sum of all constraints from some bj . . . bl to ai
5: Compute incoming(i, bj) as the sum of all constraints from some ai . . . ak to bj
6: if s(i + 1, j) + incoming(ai, j) < s(i, j + 1) + incoming(i, bj) then
7: s(i, j) = s(i + 1, j) + incoming(ai, j)
8: back(i, j) = ai
9: else

10: s(i, j) = s(i, j + 1) + incoming(i, bj)
11: back(i, j) = bj
12: end if
13: end for
14: Let i← 1, j← 1, Result← ∅ . Here begins the backtracking
15: while i ≤ k and j ≤ l do
16: Result← back(i, j) + Result
17: if back(i, j) = ai then
18: i = i + 1
19: else
20: j = j + 1
21: end if
22: end while
23: if i ≤ k then
24: Return Result + (ai, . . . , ak)
25: else
26: Return Result + (bj, . . . , bl)
27: end if
28: end procedure

The time complexity depends on the computation of incoming(ai, j) which takes at most
O(m) operations, and is called at most O(n2) times, once for all s(i, j). So the running time is
bounded by O(n2m).

Applying the mixing algorithm as a conquer step yields a recursive heuristic for the general
problem, which consists in applying Algorithm 1 with parameters r, S, C, where r is the root of
the species tree S and C is the set of time constraints.

Implementation. In our software MaxTiC, we implemented in Python the heuristic recursive
principle described above. In practice the running time is almost instantaneous for all the
simulated datasets we tested. We also implemented two other heuristics: a greedy heuristic and
a local search approach.

The greedy heuristic consists in sorting the constraints in decreasing order of their weight,
and examine them one by one in that order. Each constraint is kept in a consistent set if it is
compatible with the partial order given by the species tree and not conflicting other constraints
already marked as kept, and discarded otherwise.

The local search consists in performing a randomized hill-climbing in the space of linear
extensions of the partial order given by the species tree, that is, total orders on internal nodes
that do not contradict the partial order. From one of these total orders, the algorithm chooses
one element (internal node) uniformly at random, and changes its position to an alternative
one, chosen uniformly at random among all possible positions. The obtained total order is the
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proposition. The algorithm accepts it as the new state if it is compatible with the partial order
given by the species tree and if it does not decrease the cumulative weight of the compatible
constraints, compared with the current state. It is run for a prescribed time set as a parameter
by the user, and this is its only way to terminate.

We tested this program on simulated data, taking the best solution out of the greedy one
and the heuristic one, and applying on it the local search for a fixed run-time of three minutes.

IV. Results

Transfer rate and number of inferred transfers. We first tested the ability of the ALE method
to infer a likely number of transfers, as well as the effect of inferring transfers in a phylogeny
which is a small subtree of the one on which transfers have been simulated. On Figure 5, we
can see that up to a very high transfer rate, the number of inferred transfers follows a regular
function of the transfer rate. Measures of transfer numbers on biological datasets were done
for comparison purposes from the cyanobacteria and fungi dataset from Szöllősi et al. (2015).
They show that the range of the simulation parameters contains numbers of transfers per family
comparable to published biological datasets.

Figure 5: Mean number of inferred transfers (number of transfers per family and per branch of the species
tree), as a function of the transfer rate in the simulation (log10 scale). Each point is one simulation of a
species tree and 1000 gene trees with its own transfer rate. The right boxplots show the distribution of the
number of inferred transfers on gene families from two published biological datasets: 28 Fungi (red) and
40 cyanobacteria (green) (Szöllősi et al., 2015). For each gene family the number of inferred transfers per
branch is computed. It shows that comparable numbers are found in simulated and biological datasets.

Henceforth we use the mean number of inferred transfers as the reference instead of the
transfer rate, to relate our measures to numbers comparable with what is found in biological
datasets, for which we do not know the transfer rate on the complete phylogeny containing
extinct and unsampled species.

Number of conflicting constraints. We then measured the fraction of constraints that has to
be discarded to get a consistent set of constraints (Figure 6). We compare this value to the
fraction of the constraints not compatible with the true (simulated) ranked species tree (red
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points). We see that the values on reconstructed node orders are close and always a bit under
the true values. This justifies the minimizing approach: the true conflict is close to the minimum.
However as the optimum is always lower than the true value, it also shows that discrepancies to
the truth are not due to limitations in the optimization algorithm but to limitations in the model
itself. Another lesson to be drawn from this figure is that for what seem to be biologically
relevant transfer rates, between 5% and 20% of constraints must be removed to get a consistent
subset. This means that at least this amount of transfer is wrongly inferred and this places a
lower bound on the rate of false positive transfers output by ALE. It has already been observed
that current transfer detection methods usually infer an accurate number of transfers but they
are less precise for the identification of donors and recipient (Abby et al., 2010).

Figure 6: Fraction of constraints that have to be removed in order to get a consistent set, as a function
of the mean number of inferred transfers (log10 scale). Red dots are for the fraction of constraints in
conflict with the true (simulated) tree, and black dots are for the fraction of constraints in conflict with the
reconstructed tree, minimizing the conflicts. Horizontal boxplots show the number of inferred transfers
from two biological datasets: 28 Fungi (red) and 40 cyanobacteria (green) (Szöllősi et al., 2015).

Similarity between inferred and true ranked trees as a function of the number of gene
families. We give an idea of how many gene trees (and in consequence how many transfers)
are necessary to get a good dating information. In Figure 7 (bottom), we plot the Kendall
similarity between the true tree and the obtained tree, as a function of the number of gene trees,
for a constant transfer rate of 1.6× 10−6, corresponding to approximately 5 inferred transfers
per family (all families have approximately 100 genes).

We see that the method starts with a very low similarity if there are not enough gene trees,
which is expected as in the absence of transfers there is no information to infer the ranked
tree. Then the similarity rapidly increases, almost reaching a plateau at about 400 families, then
slowly increasing up to 5000. This means that the more gene trees are available, the best the
result will be, but with little gain after 1000 gene trees. On the top panel of the Figure 7, we
see that the conflict (ratio of removed constraints to obtain a consistent set) also grows quickly
and then stays remarkably stable. This shows that the rate of signal and conflict is relatively
constant in all families.
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Figure 7: Top: Fraction of the constraints removed by MaxTiC to get a consistent set as a function of the
number of gene trees. Bottom: Normalized Kendall similarity of the true ranked tree and the obtained
ranked tree, as a function of the number of gene trees in the experiment.

Sensitivity to the transfer rate. We then investigated the effect of the transfer rate on the
accuracy of the result. We measured the normalized Kendall similarity as a function of the
average number of transfers per gene family. The results are shown on Figure 8. As expected,
too few transfers give a low quality result, because of a lack of signal, and too many transfers
make the similarity to the true node order decrease. However the slopes are very different:
whereas a reasonable number of transfers are sufficient to give a good ranked tree, the ranked
tree stays reasonably good even with a huge number of transfers (several dozens per family).

Note, however, that in any conditions, the normalized Kendall similarity to the true ranked
tree remains upper-bounded slightly above 95%, and under almost all conditions, in particular
conditions that produce numbers of transfers consistent with those observed in Fungi and
Cyanobacteria, it is between 90% and 95%. So it is possible, with ALE_undated to detect
transfers, to get a result close to the real order of speciations in a wide range of conditions, but
the real order seems never to be found.

Note finally that the amount of conflict (that can be measured on real data) is not necessarily
a good proxy for the similarity (that requires the knowledge of the true ranked tree): as shown
by a comparison of Figures 6 and 8, the behaviours of the two variables have no evident
correlation when the transfer rate increases.

Sensitivity to non modeled processes and errors in the gene trees. We examine the effect
of non modeled processes or gene tree errors (Figure 9). In Simphy it is possible to vary the
population size, and with the population size the probability of incomplete lineage sorting
(ILS) increases. ALE does not model ILS, thus any deviation from the species tree topology
resulting from ILS will be interpreted as a series of DTL events. Indeed it can be seen on
Figure 9 (middle) that for a same transfer rate, the number of inferred transfers increases with
population size, thus with the amount of ILS. On The top panel of Figure 9 it can be seen that
these supernumerary transfers are not time compatible as the frequency of conflicting transfers
increases also with population size. However on the bottom panel, we can see that nonetheless,
and despite a decrease in the Kendall similarity with the true ranked tree, it is still possible to
reasonably rank a species tree even in the presence of a high rate of false transfers due to ILS or
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Figure 8: Normalized Kendall similarity of the true ranked tree and the obtained ranked tree, as a function
of number of transfers, per branch and per family (log10 scale). The boxplots show the distribution of the
number of inferred transfers on gene families from two published biological datasets: 28 Fungi (red) and
40 cyanobacteria (green) (Szöllősi et al., 2015). For each gene family the number of inferred transfers per
branch is computed.

phylogenetic error.

Figure 9: Minimum fraction of conflicting constraints, mean number of inferred transfers per family and
normalized Kendall similarity of the true ranked tree and the obtained ranked tree, as three functions of
population size (log10 scale), for a fixed transfer rate (10−6 in the simulation). Population size favors
incomplete lineage sorting in SimPhy, as such it is used here to measure the effect of non modeled
processes or as a proxy for errors in phylogenetic reconstruction.

13

.CC-BY-NC 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/127548doi: bioRxiv preprint first posted online Apr. 14, 2017; 

http://dx.doi.org/10.1101/127548
http://creativecommons.org/licenses/by-nc/4.0/


Submitted for recommendation to Peer Community in Evolutionary Biology, 2017

Sensitivity to errors in the species tree. Finally, the topology of the species tree is in general
not known with a high precision, so we tested the robustness of the method to errors in the
species tree. We chose a simulated dataset with a transfer rate of 10−6, because this is one
of the rates that lead to a number of transfers per family close to what we measured on the
two biological datasets. Then we compared the normalized Kendall similarity of 5 simulations
with the true species tree (blue dots in Figure 10), with 5 simulations for 5 different conditions:
re-rooting the species tree at a grand-child of the root (red dots), and respectively applying 5, 10,
15 and 20 random "nearest neighbor interchanges" (NNIs) in the species tree (green dots). We
plot in Figure 10 the normalized Kendall similarity in function of the obtained Robinson-Foulds
distance to the true tree (A certain number of random NNIs leads to a Robinson-Foulds distance
of at most this number).

Figure 10: Normalized Kendall similarity of the true ranked tree and the obtained ranked tree, for different
species trees in which errors have been introduced. The Kendall similarity is computed on the common
clades, that is, on the fraction of true clades in the modified species tree. The three horizontal lines show
three quantiles of the distribution of normalized Kendall similarity of randomly generated ranked trees.
This shows that transfers give a robust dating information even in the presence of a highly erroneous
species tree.

The tendency of Figure 10 shows a good robustness to errors in the species tree, showing
that even with quite distant species trees, the rank of true clades is well preserved.

Application to a small Cyanobacteria dataset. In order to test the ability of the program to
find good solutions in biological conditions, and to test the dating method on a tree coming
from biology, we examined the Cyanobacteria transfers found in Szöllősi et al. (2015) on a
subtree restricted to 14 leaves out of the 40 in the original study. This restriction has the purpose
to be able to enumerate all possible rankings (there are 69300 of them on this tree) and to test
our heuristic against an exhaustive solution search. This example is described into details, with
all associated data, in the maxtic repository https://github.com/ssolo/ALE/tree/master/
maxtic.

We found that 35% of the total constraint weight has to be discarded to get a consistent
set of time constraints. This is similar to the worst conditions in our simulations, with the
largest contribution of non-modeled processes in the gene trees. This is not surprising since it
is known that with real sequences phylogenetic errors are not rare. This number corresponds
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to both the optimal value that was found using the exhaustive search, and the value given by
the Maximum Consistency Heuristic, so it is a good sign that we can find decent solutions in
instances coming from a biological dataset.

A study of the full 40 leaf tree, along with comparisons with other domains of life, tests of
the transfer dating methods with molecular clocks, can be found in a companion paper (Davin
et al., 2017).

V. Conclusion

In this paper, we give a proof of principle of a method to get a ranked species tree with
the information provided by gene transfers. We present a method and a software, called
MaxTiC for Maximum Time Consistency, taking an unranked species tree as input, together
with a set of possibly conflicting weighted time constraints, and outputting a ranked tree
maximizing the total weight of a compatible subset of constraints. We validate this principle
for dating on simulations from an independent genome simulator Simphy, with characteristics
that we compare to published biological datasets. The results confirm that we can date with
transfers under a wide range of conditions including errors in gene trees and species trees. This
additional source of information for dating can be a good alternative to fossils and the (relaxed)
molecular clock since the fossil record is poor or difficult to interpret precisely in clades where
transfers are abundant.

The scores of the solutions are informative about the inference of trees, transfers and dates.
The 5% to 35% conflict in constraint sets tells us that there is at least this amount of false positive
at the level of time constraints. In biological data we can invoke clustering sequences into
families, and gene tree reconstructions to explain part of the error. However here on simulated
data we control for these and the false positive rate, while lower, remains important. This could
also be explained by uncertainties or errors in reconciliation scenarios. A more conservative
way of transforming transfers into time constraints, which would give less weight to particular
reconciliations can be proposed: if, back to Figure 1, we detect a transfer between A and B but
X or Y are not represented in the associated gene tree, the definition of the time constraint
could be relaxed to the first represented ancestor of A, and first represented descendants of B.
In our experience, such coding approximately yielded half as much false positives, but without
improving time order inference.

This points to an interesting byproduct of our method and analyses. MaxTiC is able to filter
out a set of transfers detected by phylogenetic methods and detect false positive. Even if the
false positive rate is high, MaxTiC produces good rankings, meaning that besides dating, it can
be used to discriminate bona fide transfers from artefactual ones.
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Jacox, E., Chauve, C., Szöllősi, G. J., Ponty, Y., and Scornavacca, C. (2016). eccetera: comprehen-
sive gene tree-species tree reconciliation using parsimony. Bioinformatics.

Leighton, T. and Rao, S. (1988). An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In Proc. 29th
Annual Symp. Foundations of Computer Science, pages 422–431.

Mallo, D., De Oliveira Martins, L., and Posada, D. (2016). Simphy: Phylogenomic simulation of
gene, locus, and species trees. Syst Biol, 65(2):334–344.

Ochman, H., Lawrence, J. G., and Groisman, E. A. (2000). Lateral gene transfer and the nature
of bacterial innovation. nature, 405(6784):299.

Ravenhall, M., Škunca, N., Lassalle, F., and Dessimoz, C. (2015). Inferring horizontal gene
transfer. PLoS Comput Biol, 11(5):e1004095.

Semple, C. and Steel, M. (2003). Phylogenetics. Oxford lecture series in mathematics and its
applications. Oxford University Press.

Simpson, M., Srinivasan, V., and Thomo, A. (2016). Efficient computation of feedback arc set at
web-scale. Proceedings of the VLDB Endowment, 10(3):133–144.

16

.CC-BY-NC 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/127548doi: bioRxiv preprint first posted online Apr. 14, 2017; 

http://dx.doi.org/10.1101/127548
http://creativecommons.org/licenses/by-nc/4.0/


Submitted for recommendation to Peer Community in Evolutionary Biology, 2017

Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., and Durand, D. (2012). Inferring duplications,
losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics,
28(18):i409–i415.
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Szöllősi, G. J., Davín, A. A., Tannier, E., Daubin, V., and Boussau, B. (2015). Genome-scale
phylogenetic analysis finds extensive gene transfer among fungi. Philosophical transactions of
the Royal Society of London. Series B, Biological sciences, 370:20140335.

17

.CC-BY-NC 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/127548doi: bioRxiv preprint first posted online Apr. 14, 2017; 

http://dx.doi.org/10.1101/127548
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Construction of the simulated dataset
	Finding a maximum consistent set of constraints with MaxTiC.
	Results
	Conclusion
	Acknowledgments

