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We study the spreading of information in a wide class of quantum systems, with variable-range
interactions. We show that, after a quench, it generally features a double structure, whose scaling
laws are related to a set of universal microscopic exponents that we determine. When the system
supports excitations with a finite maximum velocity, the spreading shows a twofold ballistic behav-
ior. While the correlation edge spreads with a velocity equal to twice the maximum group velocity,
the dominant correlation maxima propagate with a different velocity that we derive. When the
maximum group velocity diverges, as realizable with long-range interactions, the correlation edge
features a slower-than-ballistic motion. The motion of the maxima is, instead, either faster-than-
ballistic, for gapless systems, or ballistic, for gapped systems. The phenomenology that we unveil
here provides a unified framework, which encompasses existing experimental observations with ul-
tracold atoms and ions. It also paves the way to simple extensions of those experiments to observe
the structures we describe in their full generality.

Introduction. – The ability of a quantum system
to establish long-distance correlations and entanglement,
as well as mutual equilibrium between distant parts, is
determined by the speed at which information can prop-
agate throughout the system. For lattice models with
short-range interactions, Lieb and Robinson have demon-
strated the existence of a maximum propagation speed
limit, even for non-relativistic theories. This bound sets
a linear causality cone beyond which correlations decay
exponentially [1]. In a large class of many-body systems
the information is carried by quasi-particles and the cone
velocity may be related to their maximum velocity [2, 3],
whenever it exists. Ballistic propagation of quantum cor-
relations has received experimental [4, 5] and numeri-
cal [6–8] assessment, with, however, a cone velocity that
may significantly differ from that expected.

For long-range interactions, a different form of causal-
ity arise due to direct coupling between local observables
at arbitrary long distances. Long-range interactions ap-
pear in a variety of contexts, including van der Waals
interactions Rydberg atom gases [9–12], effective photon-
photon interactions in nonlinear media [13], dipole-dipole
interactions between polar molecules [14–16] and mag-
netic atoms [17–21], photon-mediated interactions in su-
perconductors [22] and artificial ion crystal [23–27], and
solid-state defects [28–30]. They can be modelled by cou-
plings decaying algebraically, 1/Rα, with the distance
R. For such systems, known extensions of the Lieb-
Robinson (LR) bound in D dimensions include a loga-
rithmic bound, t⋆ ∼ log(R), for α > D [31] and an alge-
braic bound, t⋆ ∼ Rβ with β < 1, for α > 2D [32]. In
both cases, they are super-ballistic. No bound is known

for α < D, which in principle allows for instantaneous
propagation.

Information spreading in systems with long-range in-
teractions has been intensively studied, in a variety of
models, both experimentally and numerically. One the
one hand, there is a consensual agreement that long-
range LR bounds are usually too loose to predict the
actual dynamics. On the other hand, they appear to be
strongly model dependent, and seemingly contradictory.
For instance, for the long-range XY (LRXY) model in one
dimension, super-ballistic propagation has been reported
in ion chains [33] and numerical simulations within trun-
cated Wigner approximation [34], even for α < 1. Con-
versely, for the long-range transverse Ising (LRTI) model,
experiments reported ballistic propagation irrespective to
the value of α [35]. Moreover, time-dependent density
matrix renormalization group (t-DMRG) and variational
Monte-Carlo (t-VMC) numerical simulations indicate in-
stantaneous, sub-ballistic, and ballistic spreading laws for
increasing values of the exponent α [36–41].

Here, we provide a universal picture of correla-
tion spreading in generic quantum lattice models with
variable-range interactions. We show that, generally, the
space-time correlation map features a twofold causality
structure. While the outer structure determines the LR
edge, the inner structure determines the propagation of
local maxima. For short-range interactions, they are
both determined by the many-body dispersion relation
and can be associated, respectively, to the group and
phase velocities. For intermediate long-range interac-
tions, the inner structure is also completely determined
by the dispersion relation and strongly depends on its
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nature. It is super-ballistic for gapless systems and bal-
listic for gapped systems. In turn, the outer structure
depends on the dispersion relation, but not on the gap,
and depends on the observable. It is always sub-ballistic,
except for observables with a strong infrared divergence.
Our results shed new light on correlation spreading in
quantum systems and provides a unified picture to inter-
pret previous results present in the literature.

Time evolution of local observables. – Consider a
quantum system defined on an hypercubic lattice of di-
mension D and governed by the Hamiltonian

Ĥ =
∑

R

h(R) K̂1(R) +
∑

R,R′

J(R,R′) K̂2(R,R′), (1)

where R,R′ ∈ Z
D span the lattice sites. The first term

accounts for local interaction with an external field h(R)
via the one-site operators K̂1(R). The second term de-
scribes off-diagonal coupling of amplitude J(R,R′) via
the two-site operators K̂2(R,R′). The generic Hamilto-
nian (1) applies to a variety of systems. In the follow-
ing, we consider both quantum particle or spin models.
The Bose-Hubbard model is constructed using the par-
ticle operators K1(R) ≡ n̂R (n̂R − 1) and K2(R,R′) ≡

−â†
R
âR′ − â†

R′ âR, where âR and n̂R = â†
R
âR are, re-

spectively, the annihilation and number operators in the
lattice site R. The amplitudes are, respectively, the two-
body interaction strength, h(R) = U/2, and the tunnel
amplitude J(R,R′) = J . For spin models, the opera-
tors K̂j represent spin operators, namely K̂1(R) ≡ Ŝz

R

and K̂2(R,R′) ≡ Ŝx
R
· Ŝx

R′ (Ising model) or K̂2(R,R′) ≡

Ŝx
R
· Ŝx

R′ + Ŝy
R
· Ŝy

R′ (XY model). Then h(R) is the mag-
netic field and J(R,R′) the spin-exchange amplitude.

The dynamics is induced by a quench protocol (see for
instance Refs. [4, 5, 33, 35]): After preparing the system
in the ground state of some initial (pre-quench) Hamil-
tonian Ĥ0, the Hamiltonian is abruptly changed to the
final (post-quench) value Ĥ at time t = 0. The latter
governs the resulting unitary evolution of the system. It
may be studied by measuring either response functions,
C(R, t) = −i〈[ÂX(t), B̂Y (0)]〉, or equal-time correlation
functions, G(R, t) ≡ 〈ÂX(t)B̂Y (t)〉 − 〈ÂX(t)〉〈B̂Y (t)〉,
where ÂX and B̂Y are two local operators acting on
the finite sublattices X and Y separated by the dis-
tance R. Here, we focus on particle or spin correla-
tion functions, which are accessible in present-day exper-
iments [4, 5, 33, 35]. Our results are, however, straight-
forwardly extended to response functions.

The starting point of our analysis is the observation
that the system’s dynamics is driven by the many-body
excitations of the post-quench Hamiltonian. In the most-
relevant low-energy sector of the spectrum, they may
be assumed to be quasi-particle excitations. Assuming
discrete-space translation invariance within the lattice,
they are plane waves with well-defined quasi-momentum
k and energy Ek. The correlation function may thus be

generically written

G(R, t)=g(R)−

ˆ

B

dk

(2π)
D
F (k)

ei(k·R+2Ekt)+ei(k·R−2Ekt)

2

(2)
where we set ~ to unity and the integral spans the first
Brillouin zone B owing to lattice periodicity. In the re-
mainder of this work, we disregard the quantity g(R)
since it does not contribute to the time evolution and we
assume isotropic couplings. Equation (2) represents the
motion of counter-propagating quasi-particle pairs, with
velocities determined by the after-quench dispersion rela-
tion Ek, and an amplitude F(k) that is constructed from
the overlap of the initial state, the quasi-particle ampli-
tudes, and the operators ÂX and B̂Y . Formally, Eq. (2)
can be derived explicitly in exactly-solvable models. An
important example is that of quadratic theories, which
can be diagonalized by means of Bogoliubov transforma-
tions. Many models can be mapped into this form, us-
ing canonical transformations, meanfield approaches or
spin-wave theories (see for instance Refs. [7, 37, 39–43]
for examples in the context of out-of-equilibrium dynam-
ics). For non exactly-solvable models, one may resort
on numerical calculations, e.g. exact diagonalization or
tensor-network techniques [44, 45].

Short-range couplings. – To start with, it is instruc-
tive to consider the case where the quasi-particle group
velocity is bounded. It applies to models with couplings
restricted to the nearest-neighbor lattice sites or decaying
sufficiently fast (e.g. exponentially or algebraically with a
large-enough exponent α [37–40]). The integral in Eq. (2)
is evaluated using the stationary-phase approximation.
In the infinite time and distance limit along the line
R/t = const, it is dominated by the momentum contribu-
tions with a stationary phase (sp), i.e.∇k(kR∓2Ekt) = 0
or, equivalently,

2Vg(ksp) = ±R/t, (3)

where Vg = ∇kEk is the group velocity. Since the latter is
bounded in the (finite) Brillouin zone, it has a maximum
V ⋆

g and Eq. (3) may have a solution ksp or not. For
R/t < 2V ⋆

g , Eq. (3) admits a solution and the correlation
function reads [46]

G(R, t) ∝
F(ksp)

(

|∇2
kEksp

|t
)

D

2

cos
(

kspR− 2Eksp
t+

π

4

)

. (4)

For R/t > 2V ⋆
g , G(R, t) is vanishingly small. The

correlations are thus activated ballistically at the time
t = R/2V ⋆

g , which defines a linear LR edge characterized
by the velocity VLR = 2V ⋆

g . This result is consistent with
the Calabrese-Cardy picture [2]. Note that for k⋆ 6= 0,
the quantity F(k⋆) is in general finite while |∇2

kEk⋆ | van-
ishes. Hence the amplitude of G(R, t) diverges on the
cone, which indicates a sharp LR edge.


