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Abstract

Possibilistic networks are belief graphical models based
on possibility theory. A possibilistic network either rep-
resents experts’ epistemic uncertainty or models uncer-
tain information from poor, scarce or imprecise data.
Learning possibilistic networks from data in general and
from imperfect or scarce datasets in particular, has not
received enough attention. This work focuses on param-
eter learning of possibilistic networks. The main contri-
butions of the paper are i) a study of an extension of the
information affinity measure to assess the similarity of
possibilistic networks and ii) a comparative empirical
evaluation of two approaches for learning the parame-
ters of a possibilistic network from empirical data.

Introduction
Belief graphical models are compact and powerful repre-
sentations of uncertain information. Examples of such mod-
els are Bayesians networks, credal networks (Cozman 2000)
and possibilistic ones (Borgelt and Kruse 2003). Belief net-
works are either built from information elicited directly
from experts or learnt automatically by machine learning
techniques from empirical data. Possibilistic formalisms are
more suitable for representing qualitative and incomplete in-
formation. However, there are only few works dealing with
learning possibilistic networks from data (Kruse and Borgelt
1995; Haddad, Leray, and Amor 2015). In particular, learn-
ing a possibilistic network may be sound in case of small
datasets or datasets with missing or imprecise information
(Dubois and Prade 2016).
Learning a graphical belief model comes down in general
to i) learn the graphical component, also called structure
(namely, extract and encode the independence relationships)
and ii) learn the parameters (fill the local tables) associated
with each variable. In this paper, we focus on parameter
learning of possibilistic networks. Namely, given a structure
and a dataset, the goal is to assess local possibility tables of
each variable in the context of its parents. The main contri-
butions of the paper are:
• A study of an extension of the information affinity mea-

sure (Jenhani et al. 2007) to assess the similarity of two
possibilistic networks having the same structure.
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• An empirical comparison of two main approaches for
learning possibility distributions from data on synthetic
datasets. This evaluation compares the networks learnt us-
ing two different approaches using a generalized form of
the information affinity measure.

• An empirical comparison of learning naive possibilistic
network classifiers from real datasets. The evaluation here
aims to compare the predictive power of possibilistic clas-
sifiers learnt from small datasets containing missing data.

Possibilistic networks

Bayesian networks allow to compactly encode a probabil-
ity distribution thanks to the conditional independence re-
lationships existing between the variables. Credal networks
(Cozman 2000), based on the theory of credal sets, gen-
eralize Bayesian networks in order to allow some flexibil-
ity regarding the model parameters. They are for instance
used in robustness analysis and for encoding incomplete and
ill-known knowledge and reasoning with the knowledge of
groups of experts. Possibilistic networks are the counterparts
of Bayesian networks based on possibility theory (Dubois
and Prade 1988), more suited for handling imperfect, quali-
tative and partial information.

Possibilistic networks

A possibilistic network PN=<G,Θ> is specified by:

i) A graphical component G consisting of a directed acyclic
graph (DAG) where vertices represent the variables and
edges represent direct dependence relationships between
variables. Each variable Ai is associated with a domain
DAi

containing the values ai taken by a variable Ai.

ii) A numerical component Θ allowing to weight the uncer-
tainty relative to each variable using local possibility ta-
bles. The possibilistic component consists in a set of local
possibility tables θi=π(Ai|par(Ai)) for each variable Ai

in the context of its parents par(Ai) in the network PN .

Note that all the local possibility distributions θi must
be normalized, namely ∀i=1..n, for each parent context
par(ai), maxai∈Di

(π(ai | par(ai))=1.

Example 1. Fig. 1 gives an example of a possibilistic net-
work over four Boolean variables A, B, C and D. The struc-
ture of G encodes a set of independence relationships. For
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Figure 1: Example of a possibilistic network

example, variable C is independent of B and D in the con-
text of A.

In the possibilistic setting, the joint possibility distribution
is factorized using the following possibilistic counterpart of
the chain rule:

π(a1, a2, .., an) = ⊗n
i=1(π(ai|par(ai))). (1)

where ⊗ denotes the product or the min-based operator de-
pending on the quantitative or the qualitative interpretation
of the possibilistic scale (Dubois and Prade 1988). In this
work, we are interested only in product-based possibilistic
networks since we view possibility degrees as upper bounds
of probability degrees.

Learning the parameters of a possibilistic

network

Learning the parameters of a possibilistic network is the
problem of assessing the entries of local possibility tables
π(Ai|par(Ai)) for each variable Ai given a structure S and
a dataset D. The structure here is assumed to be given (eg.
when learning naive classifiers, the structure is fixed in ad-
vance by assumption) or learnt automatically. There are ba-
sically two ways to learn the parameters (Haddad, Leray,
and Amor 2015): i) Transformation-based approach (TA for
short) and ii) Possibilistic-based approach (PA for short).
Note that the authors in (Serrurier and Prade 2015) propose
a possibilistic-based method for learning the structure of a
Bayesian network.

Transformation-based approach

This approach consists in first learning the parameters of a
probabilistic network then transforming the obtained proba-
bilistic network into a possibilistic one (Haddad, Leray, and
Amor 2015; Benferhat, Levray, and Tabia 2015a; Slimen,
Ayachi, and Amor 2013).

Many probability-possibility transformations exist
(Dubois, Prade, and Sandri 1993). Among these transforma-
tions, the optimal transformation (OT ) (Dubois et al. 2004)
is defined as follows:

πi =
∑

j/pj≤pi

pj , (2)

where πi (resp. pi) denotes π(ωi) (resp. p(ωi)). The trans-
formation of Equation 2 transforms p into π and guarantees
that the obtained possibility distribution π is the most spe-
cific1 (hence most informative) one that is consistent and
preserving the order of interpretations.

In case where the probabilistic model is a credal one, one
can make use of imprecise probability - possibility trans-
formations turning for instance an interval-based probabil-
ity distribution (IPD) into a possibilistic one. For instance,
the transformation proposed in (Masson and Denoeux 2006)
allows to find a possibility distribution dominating all the
probability measures defined by probability intervals. This
transformation tries on the one hand to preserve the order
of interpretations induced by the IPD and the dominance
principle requiring that ∀φ⊆Ω, P (φ)≤Π(φ) on the other
hand. Such transformations correspond to viewing possibil-
ity degrees as upper bounds of probability degrees (Dubois,
Prade, and Sandri 1993). In (Destercke, Dubois, and Cho-
jnacki 2007), the authors claim that any upper generalized
R-cumulative distribution F built from one linear extension
can be viewed as a possibility distribution and it also dom-
inates all the probability distributions that are compatible
with the IPD. Let Cl be a linear extension compatible with
the partial order M induced by an IPD. Let φ1, φ2..φn be
subsets of Ω such that φi={ωj |ωj ≤Cl

ωi}. The upper cu-
mulative distribution F built from one linear extension Cl is
as follows (see (Destercke, Dubois, and Chojnacki 2007) for
more details):

F (φi) = min(
∑

ωj∈φi

uj , 1−
∑

ωj �∈φi

lj) (3)

The obtained cumulative distribution F is a possibil-
ity distribution dominating the IPD and it is such that
P (φi)=Π(Ai). The advantage of such a transformation, also
called p-box transformation, is its low computational cost
(linear in the size of domains) and the fact that the obtained
distribution is better in terms of specificity (meaning that the
transformation process losses less information).

Possibilistic-based approach

One view of possibility theory is to consider a possibility
distribution π on a variable Ai as a contour function of a
random set (Shafer and others 1976) pertaining to Di, the
domain of Ai. A random set in Di is a random variable
which takes its values on subsets of Di. More formally,
let Di be a finite domain. A basic probability assignment
or mass function is a mapping m : 2Di �−→[0, 1] such that∑

ai⊆Di
(m(ai))=1 and m(∅)=0. A set ai⊆Di such that

m(ai)>0 is called a focal set.
The possibility degree of an event ai is the probability

of the possibility of the event i.e. the probability of the dis-
junction of all events (focal sets) a′i in which this event is
included (Borgelt, Steinbrecher, and Kruse 2009):

π(ai) =
∑

a′
i|ai∩a′

i �=∅
m(a′

i) (4)

1Let π′ and π′′ be two possibility distributions, π′ is more spe-
cific than π′′ iff ∀ωi∈Ω, π′(ωi)≤π′′(ωi)
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A random set is said to be consistent if there is at least one
element ai contained in all focal sets a′i and the possibility
distribution induced by a consistent random set is, thereby,
normalized. Exploring this link between possibility theory
and random sets theory has been extensively studied, in par-
ticular, in learning tasks, we cite for instance (Borgelt, Stein-
brecher, and Kruse 2009; Joslyn 1997). In what follows,
we present obtained results i.e. the possibilistic-likelihood-
based parameters algorithm.

Given a DAG and an imprecision degree Si, let Dij =

{d(l)ij } be a dataset relative to a variable Ai, d
(l)
ij ∈ Dij (resp.

d
(l)
ij ⊆ Dij) if data are precise (resp. imprecise). The number

of occurrences Ai = aik such that Pa(Ai) = j, denoted by
Nijk, is the number of times Ai = aik such that Pa(Ai) = j
appears in Dij : Nijk = card({l s.t. Ai = aiks.t.Pa(Ai) =

j ∈ d
(l)
ij }).

ˆπ(A = aik|Pa(Ai) = j) =
Nijk∑ri
k=1 Nijk

∗ Si (5)

where qi is card(Pa(Xi)), ri=card(Di) and Si corresponds
to the imprecision degree relative to a variable Ai. To ob-
tain normalized possibility distributions, we divide each ob-
tained distribution by its maximum. It is evident that this
operation eliminates Si. However, we could assign to each
value of Xi an imprecision degree which could be either set
by an expert or inferred from the dataset to learn from.

Comparing approaches for learning

parameters of possibilistic networks

When learning belief graphical models, the evaluation is
generally done by comparing reference networks with the
learnt ones. Reference networks are graphical models that
are either chosen by an expert or randomly generated. From
the reference model, a dataset is generated following the dis-
tribution encoded by the reference model. This dataset is
then used to learn models using the approach to be evalu-
ated. The problem then comes down to compare the learn
model with the reference one. A comparison may take into
account only the joint measures encoded by the learnt and
the reference models. In addition, one may want also to take
into account the structure of the learnt and reference models.
Given that we are only interested in comparing possibilistic
networks with same structure, there is no need to consider
the graphical component in our comparisons. One simple
but costly way of comparing the reference network with the
learnt one is to compare only the joint distribution encoded
by the reference model with the learnt model distribution.
An example of similarity measure for possibility distribu-
tions is information affinity (Jenhani et al. 2007). However
the size of the distribution may be very huge (it fact, it is ex-
ponential in the number of variables of the network) making
it impossible to compare joint possibility distributions. We
propose a heuristic method that compares the networks lo-
cal distributions locally and aggregates the results to provide
an overall similarity score of two possibilistic networks.

Similarity of two possibility distributions

Many measures were proposed for assessing the similarity
between two possibility distributions π1 and π2 over the
same universe of discourse Ω. Among such measures, infor-
mation affinity (Jenhani et al. 2007), is defined as follows:

InfoAff(π1, π2) = 1− d(π1, π2) + Inc(π1, π2)

2
(6)

where d(π1, π2) represents the mean Manhattan distance
between possibility distributions π1 and π2 and it is de-
fined as follows: d(π1, π2)= 1

N

∑N
i=1 |π1(ωi) − π2(ωi)|. As

for Inc(π1, π2), it is a measure of inconsistency and it
assesses the conflict degree between π1 and π2. Namely,
Inc(π1, π2)=1-maxωi∈Ω(π1(ωi)∧ π2(ωi)) where π1(ωi)∧
π2(ωi) denotes a combination operation of two possibility
distributions. In (Jenhani et al. 2007) , the min operator is
used in a qualitative setting. In a quantitative setting, a prod-
uct operator can be used as well. The measure of Equation 6
satisfies the following natural properties:
• (P1) Non-negativity: InfoAff(π1, π2)≥0.
• (P2) Symmetry: InfoAff(π1, π2) = InfoAff(π2, π1).
• (P3) Upper bound and Non-degeneracy:
InfoAff(π1, π2) is maximal iff π1 and π2 are identical.
Namely, InfoAff(π1, π2)=1 iff ∀ω∈Ω, π1(ω)=π2(ω).

• (P4) Lower bound: InfoAff(π1, π2) is minimal iff π1

and π2 contain maximally contradictory possibility distri-
butions. Namely, InfoAff(π1, π2)=0 iff
i) ∀ω∈Ω, π1(ω)∈{0, 1} and π2(ω)∈{0, 1}, and

ii) π1(ω)=1-π2(ω)

• (P5) Inclusion: If π1, π2 and π3 are three possi-
bility distributions over the same universe of dis-
course Ω and ∀ω∈Ω, π1(ω)≤π2(ω)≤π3(ω) then
InfoAff(π1, π2)≥InfoAff(π1, π3).

• (P6) Permutation: This property states that permut-
ing the degrees or indexes of possibility distributions
should result in the same information affinity. Formally,
InfoAff(π1, π2)=InfoAff(σ(π1), σ(π2)) where π1,
π2 are two possibility distributions over Ω and σ(π) is
a permutation2 of elements of π.

Similarity of two possibilistic networks

To assess the similarity of two possibilistic networks G1 and
G2 having the same structure (same DAG), it may be rele-
vant to compare every local possibility distribution πi

1 in the
network G1 with πi

2, namely its corresponding distribution
in G2. This can be done for instance using an aggregation
function that takes into account all the local distributions and
returns a global similarity score between G1 and G2.

GrInfoAff(G1, G2) = Aggi=1..m(InfoAff(πi
1, π

i
2)) (7)

To the best of our knowledge, there is no decomposable
similarity measure over possibilistic networks. As exam-
ples of aggregation functions, one can use the minimum,

2For example, let Ω={ω1, ω2, ω3} and π1=(1, .7, 0) and
π2=(.6, 1, .2) and let σ(π1)=(0, .7, 1) and σ(π2)=(.2, 1, .6). Then
it is clear that InfoAff(π1, π2)=InfoAff(σ(π1), σ(π2)).
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maximum, mean, weignted mean, sum, product, etc.
In order to study the properties of similarity measures of
Equation 7, let us first rephrase properties P1-P6 in case
where the possibility distributions π1 and π2 are compactly
encoded by means of networks G1 and G2.
• (GP1) Non-negativity: GrInfoAff(G1, G2)≥0.
• (GP2) Symmetry:
GrInfoAff(G1, G2) = GrInfoAff(G2, G1).

• (GP3) Upper bound and Non-degeneracy:
GrInfoAff(G1, G2) is maximal iff the joint possibility
distributions πG1

and πG2
encoded respectively by G1

and G2 are identical. Namely, GrInfoAff(G1, G2)=1
iff ∀i=1..n, ∀ai∈Di, π1(a1a2..an)=π2(a1a2..an). This
property only requires that the two joint possibility
distributions encoded by G1 and G2 are identical to give
a maximal similarity score.

• (GP4) Lower bound: GrInfoAff(G1, G2) is minimal
iff the joint distributions πG1 and πG2 contain max-
imally contradictory possibility distributions. Namely,
GrInfoAff(G1, G2)=0 iff
i) ∀i=1..n, ∀ai∈Di, πG1(a1a2..an)∈{0, 1} and

πG2(a1a2..an)∈{0, 1}, and
ii) πG1(a1a2..an)=1-πG2(a1a2..an)

• (GP5) Inclusion: If πG1 , πG2 and πG3 are three pos-
sibility distributions encoded respectively by three
possibilistic networks G1, G2 and G3 such that ∀ai∈Di,
πG1(a1a2..an)≤πG2(a1a2..an)≤πG3(a1a2..an) then
GrInfoAff(G1, G2)≥GrInfoAff(G1, G3).

• (GP6) Permutation: This property states that
permuting the degrees or indexes of joint pos-
sibility distributions should result in the same
GrInfoAff . Formally, GrInfoAff(πG1 , πG2)=
GrInfoAff(σ(πG1), σ(πG2)) where σ(πGi) is a per-
mutation of the degrees or indexes of the joint possibility
distribution πGi

.
The following proposition provides for each aggregation

function among max, min, sum, mean and product the set
of properties defined above that are satisfied by the affinity
measure based on such an aggregation function.
Proposition 1. Let G1 and G2 be two possibilistic net-
works defined over the same set of variables V ={A1, .., An}
and sharing the same DAG. Then GrInfoAff satisfies the
properties given in Table 1 depending on the used aggrega-
tion function.

The proof is omitted due to space limitations. In our first
series of experiments, we used the mean aggregation func-
tion since it satisfies most of the properties and it outputs a
score taking into account all the local scores of local tables.

Experimental studies

Assessing the similarity of possibilistic networks

Experimentation setup In this experiment, given a
dataset D and a network structure (DAG) S, we compare
learning a possibilistic network parameters using two ap-
proaches, TA and PA. We denote by GTA (resp. GPA) the

M
ax

im
um

M
in

im
um

Su
m

M
ea

n

Pr
od

uc
t

Non-negativity (GP1) � � � � �
Symmetry (GP2) � � � � �

Upper bound (GP3) � � � � �
Lower bound (GP4) � � � � �

Inclusion (GP5) � � � � �
Permutation (GP6) � � � � �

Table 1: Properties satisifed by some aggregation functions

possibilistic network having the structure S and its parame-
ters are learnt over the dataset D using the transformation-
based approach TA based on the p-box transformation (resp.
the possibilistic-based approach PA).
We first generated a set of possibilistic networks with dif-
ferent features (number of variables, number of parents per
variable, rate of imprecise data, etc.). For each possibilistic
network G, we generate datasets according to G. More pre-
cisely, for each possibilistic network G (characterized by its
number of variables denoted # variables, the mean number
of parents per node denoted μ variables and the mean do-
main size of variables μ domain), we generate many datasets
(with different sizes). Regarding the dataset generation pro-
cess, it consists in generating an imprecise dataset represen-
tative of its possibility distribution. The sampling process
constructs a database of N (predefined) observations by in-
stantiating all variables w.r.t. their possibility distributions
using the α-cut notion expressed as follows:

α− cutAi = {ai ∈ Di s.t. π(ai) ≥ α} (8)

where α is randomly generated from [0,1]. Obviously, vari-
ables are most easily processed w.r.t. a topological order,
since this ensures that all parents are instantiated. Instanti-
ating a parentless variable corresponds to computing its α-
cut. Instantiating a conditioned variable Ai s.t. Pa(Ai = A)
corresponds to computing the α-cut of π(Ai|Pa(Ai) = A)
computed as follows:

π(Ai|Pa(Ai) = A) = max
ai∈A

(π(Ai|ai), π(ai)) (9)

Table 2 gives the details on the generated possibilistic net-
works and the corresponding datasets.

Name # variables μ parents μ domain # datasets
Net10 10 1.6 3.9 9
Net20 20 2.65 3.41 8
Net30 30 2.76 3.48 7

Table 2: Datasets properties used in experiments 1.

Results: Table 3 gives the results of computing the sim-
ilarity on each dataset Di, the possibilistic network GTA

i

(resp. GPA
i ) learnt using the TA (resp. PA) approach with

the reference network Gi used to generate Di. The results of
Table 3 show that on the one hand the learnt possibilistic net-
works using the TA approach are close to the reference ones.
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Dataset TA PA
Net10 0.63 0.86
Net20 0.64 0.86
Net30 0.67 0.86

Table 3: Results of experiments 1.

Namely, they have rather a good similarity with the refer-
ence possibilistic networks used to generate the datasets.
Moreover, the obtained similarity scores do not seem to be
affected by the number of variables, variable domains size,
etc. Regarding the possibilistic networks learnt using the PA
approach, their similarity scores are slightly better, but this
is expected as the datasets generation process and the PA
approach have the same view of possibility degrees. Such
results also rise the issue of similarity measures on possi-
bilistic networks which is still an open issue.

Predictive power of possibilistic classifiers

In this section, we evaluate the predictive power of credal
network classifiers (Corani and Zaffalon 2008), naive
Bayes classifiers and naive possibilistic classifiers (Benfer-
hat and Tabia 2012). More precisely, we compare on many
datasets the classification efficiency of naive credal clas-
sifier (NCC for short) and the corresponding possibilis-
tic classifiers obtained either using the possibilistic-based
approach (PNCPA) or using the transformation-based ap-
proach (PNCTA). Moreover, we compare our results to
naive Bayes classifier (NBC) as a baseline.
Classification using belief graphical models is a special kind
of inference: given an observation, it is required to determine
the class label of the observed instance among a predefined
set of class labels. In classification problems, one node rep-
resents the class variable C while the remaining ones are at-
tributes A={A1, A2,..,An} that may be observable. Given an
observation denoted (a1,a2,..,an) of A, the candidate class c
is predicted by possibilistic classifiers as follows:

c = argmaxck∈DC (Π(ck|a1a2..an)), (10)

where the term Π(ck|a1a2..an) denotes the conditional pos-
sibility degree of having ck the actual class given the obser-
vation a1a2,..,an.
A naive possibilistic (resp. Bayes) network classifier is a
simple form of possibilistic (resp. Bayes) classifier. It as-
sumes that attributes are independent in the context of the
class node. Hence, the only dependencies allowed in naive
networks are from the class node C to each attribute Ai.
Learning a naive classifier in our context comes down to
learning the local tables (namely the table of C and a con-
ditional table for of each Ai in the context of C) from data
since the structure is fixed in advance.

Experimentation setup To evaluate the NCC classifier,
we use measures used in (Corani and Zaffalon 2008):
• Determinacy (Det): It is the percentage of predictions out-

putting a unique (precise) class label.
• Single-Accuracy (SiAcc): It denotes the percentage of cor-

rect classifications when the predictions of NCC are pre-
cise.

• Set-Accuracy (SetAcc): It is the proportion of imprecise
predictions containing the right class label.

A 10-fold cross validation is used in this experiment.

Benchmarks The experimental study is carried out on the
following datasets where some data values are missing (here,
missing data is assumed to be not missing at random). The
first four datasets of Table 4 are real datasets used in the
literature for evaluating classifiers with missing data (3). The
remaining ones are collected from different sources.

Name # instances # variables # classes % missing
breast 286 9 2 4 %

housevotes 435 16 2 24 %
mushroom 8124 22 2 31 %

post-operative 90 8 3 3 %
audiology 226 70 24 98%

sick 3772 30 2 20%
primary-tumor 339 18 21 46%

kr-vs-kp 3196 37 2 0 %
soybean 683 36 19 18%

crx 690 16 2 2%

Table 4: Datasets used in our experiments.

Results Table 5 gives the results of evaluating the NCC
classifier on the datasets of Table 4. Table 5 shows good sin-

Dataset Det SiAcc SetAcc
breast 92.43 % 74.08 % 100 %

housevotes 99.52 % 90.26 % 100 %
mushroom 96.10 % 99.56 % 100 %

post-operative 49.67 % 67.57 % 84.36 %
audiology 7.76% 99.55% 99.03%

sick 98.93% 97.54% 100%
primary-tumor 13.59% 77.11% 63.37%

kr-vs-kp 99.18% 88.16% 100%
soybean 47.38% 92.56% 97.85%

crx 94.01% 86.34% 100%

Table 5: Results of NCC classifier on datasets of Table 4.

gle accuracy rates with high determinacy rates except for the
post-operative, audiology and primary-tumor datasets.
Typically, it’s on small datasets with many classes where the
NCC is not efficient.
Table 6 gives the results of evaluating the NBC (Naive
Bayes Classifier), PNCTA and PNCPA classifiers on the
datasets of Table 4. Results of Table 6 show that classi-
fiers NBC, PNCPA and PNCTA have most of the time
comparable results in terms of correct classification rates
on some datasets but they show real performances on some
other datasets. This is also valid for the results of the NCC
classifier. Now, comparing PNCPA and PNCTA, this lat-
ter achieves better results on two datasets while the former
has better classification rates on the two other datasets. It
is not obvious what really makes a given approach better, a
thorough analysis of the properties of the datasets is needed
to help understanding such results.

3http://sci2s.ugr.es/keel/missing.php
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% of correct classifications
Dataset NBC PNCPA PNCTA

breast 72.88% 72.73 % 70.27%
housevotes 90.11 % 89.19 % 58.71 %
mushroom 95.73 % 77.35 % 85.34 %

post-operative 68.11 % 67.78 % 71.11%
audiology 72.79% 55.90% 11.54%

sick 96.97% 95.53% 94.41%
primary-tumor 49.54% 28.42% 43.42%

kr-vs-kp 87.82% 85.86% 86.89%
soybean 92.66% 80.46% 75.51 %

crx 85.38% 85.80% 91.01%

Table 6: Results of the NBC, PNCS and PNCT classifiers
on the datasets of Table 4.

Discussions and concluding remarks

The main objective of this paper is comparing two methods
for assessing the parameters of a possibilistic network given
a structure and a dataset. To do this, we proposed to compare
them against two criteria: the similarity of the obtained net-
works and the predictive power of the networks used as clas-
sifiers. In order to assess the similarity of two possibilistic
networks, a generalization of the possibilistic affinity mea-
sure is analyzed with respect to the use of different aggrega-
tion functions. The first series of experiment in our compari-
son mainly shows that the possibilistic-based method learns
slightly better and more information in terms of information
affinity than the method based on the probability-possibility
transformation. This is not really surprising since the data
was generated according to the possibility distributions of
the reference networks. This also confirms that there is in-
evitably some information loss when transforming probabil-
ity distributions into possibilistic ones (Dubois et al. 2004;
Benferhat, Levray, and Tabia 2015b). Regarding the second
series of experiments, one important result is that the clas-
sifiers based on possibilistic networks have comparable effi-
ciency with naive Bayes and credal classifiers. On the other
hand, the possibilistic classifiers where the parameters have
been learned with two different approaches have basically
comparable results. Overall, these results show that there is
no approach that clearly outperforms the others on all the
datasets. Such results are preliminary but encouraging, a fur-
ther comparative study on a large number of benchmarks
and problems (classification and inference in general) using
naive and non naive models, will be needed to really com-
pare the two approaches. Moreover, we’ll be in particular
interested in comparing these possibilistic approaches with
EM approach used to estimate parameters from partially ob-
served data in probabilistic models.
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