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Abstract. WalkSAT is a local search algorithm conceived for solving
SAT problems, which is also used for sampling possible worlds from a
logical formula. This algorithm is used by Markov Logic Networks to
perform slice sampling and give probabilities from a knowledge base de-
fined with soft and hard constraints. In this paper, we will show that
local search strategies, such as WalkSAT, may perform as poorly as a
pure random walk on a category of problems that are quite common in
industrial fields. We will also give some insights into the reasons that
make random search algorithms intractable for these problems.
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1 Introduction

In many industrial fields, it is necessary to manage large temporal streams of
raw data that usually represent the first observable layer of a very complex
system with a broad variety of interactions between agents. Being able to extract
more valuable informations from this data is a major concern, especially in case
of critical activities like air traffic safety, market surveillance, or cyber-attack
detection. These needs have led to much research about efficient methods for
analysing this kind of temporal data and recognising high level information.

In this paper, we focus on a specific formalism from the complex event pro-
cessing domain known as Chronicles [8], more precisely on this latest version [9].
Chronicles are a powerful way to represent and recognise activities on tempo-
ral data flows. However, since chronicles are defined with logical formulae, using
them on unreliable data may prove hard. Indeed, these streams are usually made
of events detected by sensors, which can fatally miss some event or even produce
them erroneously making the chronicles inefficient. Our first intent was to make
chronicles able to deal with uncertainty by combining them with Markov Logic.

Markov Logic Networks (MLN), introduced by [10], are graphical models that
try to combine the expressiveness of first-order logical formulae and the ability of
graphical models to deal with uncertainty. During the last ten years, MLN have
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been quite popular and have led to many practical and efficient experiments [2,
11,18], ranging over a wide spectrum of fields, including automatic image analysis
[2,7] or event recognition [16,17]. The efficiency of MLN inference mainly relies
on algorithm MC-SAT [10] which approximates probabilities of different worlds
using a sampling technique. This sampling is performed by MaxWalkSAT for
sampling plausible worlds. In this paper, we will mostly focus on this algorithm
and issues that appear when it is applied to a specific category of problems.

MaxWalkSAT is a SAT solver, extended from WalkSAT, which handles wei-
ghted soft and hard constraints. SAT solvers are mainly divided into two fami-
lies: complete and local search. Complete methods are extensions of the Davis-
Putnam-Logemann-Loveland algorithm (DPLL) from [3] that assigns truth va-
lues to predicates of a first-order logic (FOL) formula until reaching a satisfactory
assignment, known as world. This problem is NP-hard, but different techniques
of pruning speed up the resolution.

Local search methods, as WalkSAT, on the other hand, try to find a satis-
factory world by solving each inconsistent clause one by one. An advantage of
local search strategies is that they are an approximately uniform sampler.

This paper is organised as follows. In Section 2, we will present briefly chro-
nicles and their design with a FOL formula in Conjunctive Normal Form (CNF).
In Section 3, we will introduce the Markov Logic and the WalkSAT algorithm.
In Section 4, we will narrow chronicles design to a simple but common problem
on FOL, for which we will show that trying and finding a satisfiable solution for
this structure with WalkSAT strategies is exponential on time, resulting in MLN
providing untrustworthy probabilities. In Section 5, we will give some insights
into the reasons that lead WalkSAT strategies to be intractable in this case.

2 Chronicles

The purpose of chronicles is the detection of meaningful information within tem-
poral data flows. Data is composed of events, called Low Level Events (LLE),
together with their detection time. Using these LLE and Allen’s operators3 [1],
it is possible to define formulae describing the recognition of specific High Level
Events (HLE). These HLE can be reused to compose more complex HLE. Fi-
gure 1 presents the recognitions of a chronicle where an event A precedes two
events B, without any event C between the two B, which is denoted A((BB)−
[C]). Here, (BB)− [C] is a sub-chronicle used to define the final chronicle.

A B CAC BB B BB
1 2 3 4 5 6 7 8 9 10

Fig. 1. All recognitions of chronicle A((BB)− [C])

3 In fact, chronicles use more than 15 interval operators, including Allen’s and some
duration-related constraints. For further details, the reader may refer to [9].



On the Use of WalkSAT Based Algorithms for MLN Inference 3

As said before, this logical construction needs the analysed data to be lossless
or errorless. To make chronicles robust to uncertainty, we modelled them into
Markov Logic. In order to achieve this, we transformed each needed operator
into a FOL formula. This step is almost straightforward.

For instance, the sequence operator OpSeq may be defined as follows:

Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ (t2 ≤ t3) =⇒ OpSeq(c1, c2, t1, t2, t3, t4) (1)

¬Ch(c1, t1, t2) =⇒ ¬OpSeq(c1, c2, t1, t2, t3, t4) (2)

¬Ch(c2, t3, t4) =⇒ ¬OpSeq(c1, c2, t1, t2, t3, t4) (3)

¬(t2 ≤ t3) =⇒ ¬OpSeq(c1, c2, t1, t2, t3, t4) (4)

where variables ci represent the type of a chronicle and tj instant of time. Ch and
OpSeq are predicates that respectively define when a chronicle of a certain type
has been recognised and when a sequence between two chronicles is satisfied.
For instance, if the predicate Ch(c1, t1, t2) is valued to true, a recognition of a
chronicle of type c1 has started at time t1 and terminated at time t2. OpSeq is
valued to true if two chronicles of types c1, c2 have been recognized at the given
times and if chronicle c2 happens after the recognition of c1. Notice that these
rules are equivalent to formula (1) with ⇐⇒ but usually FOL problems are
presented in CNF, so we adopt this presentation here.

Once the sequence has been defined, new types of chronicle may be con-
structed, such as the following (where A and B are chronicles types and AB the
new type that defines the sequence of two chronicles A and B):

OpSeq(A,B, t1, t2, t3, t4) =⇒ Ch(AB, t1, t4) (5)

∃t2, t3 ¬OpSeq(A,B, t1, t2, t3, t4) =⇒ ¬Ch(AB, t1, t4) (6)

3 MLN and MaxWalkSAT

3.1 Markov Logic

A first-order knowledge base (KB) is a set of clauses, which may be seen as
constraints on possible worlds of predicate values. If a rule is violated by a world
x, this world does not satisfy the KB. With MLNs, the latter rule is weakened,
letting clauses being wrong by associating them to a weight that reflects how
strong the constraint is. The higher is the weight, the more probable is the
clause to be satisfied. MLNs are Markov random fields where ground predicates
are vertices and clauses are cliques on the graph. MLNs are designed using
Markov Logic (ML). In ML, each formula Fi is associated to a weight wi and
the probability distribution over possible worlds x is given by

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
(7)

where ni is the number of true groundings of Fi and Z =
∑

X=x exp (
∑

i wini(x))
is the partition function. On ML, an infinite weight on a formula is equivalent to
defining a hard constraint as the probability will be zero if the formula is false.
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The inference with MLN relies on MC-SAT: a MCMC (Markov Chain Monte-
Carlo) technique used to approximate the probability distribution. MC-SAT uses
a slice sampling approach to represent the probability distribution over worlds.
In this algorithm, it is necessary to be able to sample worlds from the KB. For
this purpose, MC-SAT uses SampleSAT [20], to perform approximately uniform
samples. SampleSAT consists on taking the solution given by any WalkSAT
method, i.e a SAT solver using random search to find a solution for a FOL
formula, smoothed by temperature annealing.

MLN uses MaxWalkSAT which is a weighted version of WalkSAT that allows
both soft and hard constraints but the principle remains identical.

3.2 WalkSAT Strategies on Details

In their paper, [20] describe a way to sample approximately uniform solutions
from a hard 3-SAT problem using a WalkSAT algorithm.

WalkSAT [14] (Algorithm 1) is an improved version of GSAT [15]: a simple
procedure that tries and reaches a solution of a KB with a gradient technique that
minimises the number of false clauses. WalkSAT adds a random step probability
parameter that sets the chances to take a random step, i.e. flipping a random
atom of the selected false clause4, thus allowing escaping local optima.

Algorithm 1: WalkSAT(KB,mt,mf , p)

inputs : KB, a knowledge base in CNF
mt, maximum number of tries
mf , maximum number of flips
p, probability of random step

outputs: bestSol, the best solution found
1 for i← 1 to mt

2 tmpSol← a random assignment for the KB
3 bestSol← tmpSol
4 for i← 1 to mf

5 Choose a random unsatisfied clause c
6 if Uniform(0, 1) < p
7 flip a random atom in c
8 else
9 flip best atom in c

10 if tmpSol better than bestSol
11 bestSol← tmpSol

12 return bestSol

4 A Simple Intractable Problem for WalkSAT

In this section, we show that using MLNs for solving a chronicle problem is
intractable, and more generally, that this happens when the definition of a system
with logical formulae contains too many biconditional statements.

4 For MaxWalkSAT, the cost function is no longer the number of false clauses, but
the sum of their weights.
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P1,1 P2,1 P3,1 P4,1 P5,1

P1,2 P2,2 P3,2 P4,2

P1,3 P2,3 P3,3

Fig. 2. A simplified chronicles representation with a height of 3 and a base length of 5

4.1 Problem Statement

For the sake of clarity, we show a simplified chronicle problem F . As chronicles
may be seen as a succession of deductions at different levels, like a truncated
pyramid of deductions, we will choose the following representation:

Given a set of boolean variables V = {x1,1, . . . , xi−j+1,j , . . . , x1,k} for j ∈
{1, . . . , k} and i ∈ {1, . . . , k−j+1} and given the set of clauses R = {c1, . . . , cn},
the problem is designed as follows: F =

∧
ci∈R

ci and (xi,j ∧ xi+1,j =⇒ xi,j+1) ∈ R
(xi,j+1 =⇒ xi,j) ∈ R
(xi,j+1 =⇒ xi+1,j) ∈ R

with

{
0 < j ≤ k;
0 < i ≤ k − j + 1

(8)

where j is the height of a predicates layer, i the position of a predicate on jth

layer and k the total number of layers. An example of this problem with a height
of three and twelve nodes is shown on Figure 2. It is worth noting the similarity
with the sequence operator definition provided previously on eq. 1.

To complete this problem, we add all predicates from the first layer as evi-
dences. This simulates the recognition or non-detection of LLE on the data flow;
note it will make the number of solutions drop from 2k to 1.

4.2 Experimental Setup

For our experiments, we used MaxWalkSAT as a SAT solver implemented in
Alchemy 2 [19] Our KB is designed with infinite weights on every clause, so it
is supposed to produce equivalent results than WalkSAT [4]. This version uses
a TABU implementation which will not let a predicate be flipped twice without
n other predicates having been flipped in between5.

We designed two experiments. In the first one, we want to set the number of
nodes but keep control on the length of the first layer. So we ask MaxWalkSAT
to solve, at the same time, parallel instances of F (eq. 8) with the first layer

5 In our case, n was set at 10.
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Height 2 3 4 5 6 7 8 9 10

Nodes per struct 3 6 10 15 21 28 36 45 55

Structures 666 333 200 133 95 71 55 44 36

Total flips 1505 3530 8265 25324 71567 406655 980000 984068 984189

Percentage solved 100% 100% 100% 100% 100% 100% 50% 10% 0%

Table 1. Number of flip before depending on the height and length of the structure
with 2000 nodes.

length equal to the structure height. We set the nodes number to the closest
value around 2000 considering previous constraints. This experiment could be
seen as a chronicle problem where many distinct chronicles are being recognised
on the same data flow.

In the second experiment, we wanted to study the impact of the length of
first layer on the resolution time with a fixed height. We launch MaxWalkSAT
on a single instance of a problem with height 4.

On both problems, MaxWalkSAT stops if it finds a solution or reaches one
million flips6.

4.3 Experimental Results

Table 1 shows the experiment results. The total number of needed flips quickly
rises with the structure size growing, and MaxWalkSAT stops finding the optimal
solution as soon as the height structure reaches 8. It could seem normal, given
that, at constant nodes number, the number of clauses goes up, but keep in mind
that this structure is not random and it is just made of repetitions of the same
pattern. Usually, random strategies find all solutions for problems of this size.
For instance [20], found all solutions for problems with more than 20 000 clauses
and almost 5 000 variables.

We have indicated the percentage of substructures solved even if the whole
problem is not, because random strategies can restart from the beginning (num-
ber of tries7 in alg. 1). But we can see that, when reaching a height of ten, restart
is not even useful since no structure is solved.

Unfortunately, the algorithm stops with a really low amount of nodes but,
looking only at the steps where all the problem is fully solved, it is interesting
to note that, per structure, the number of flips is worse in average than a pure
random walk strategy on 3SAT known to be exponential regarding the number
of nodes, namely O(1.334n) [12].

One could think height is the main problem, since the algorithm has then to
propagate truth along longer deduction layers. So on our second experiment on

6 In fact, the solver will stop before reaching the million flips because sometimes, when
the algorithm has to flip the best atom, the flip does not occur if it leads to a worse
solution than the current one, but this still counts as a flip. Our results just consider
efficient flips, i.e. times when the value of a variable actually changes.

7 With MLNs, the number of tries is usually set to 1 due to the cost on the algorithm.
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Base length 10 20 25 30 40 50

Total nodes 34 74 94 114 154 194

Total clauses 92 192 232 292 392 592

Flips 6450 62394 386969 864892 886892 898827

Table 2. Number of flips needed to solve with the height fixed to 4.

Fig. 3. An instance with strong difference on the node degree

tab. 2, we designed the same case than previously but with dependencies between
the structures. Even if we showed that problems with numerous instances of
height 4 were easily solved, we have evidenced that, at constant height, the
problem becomes quickly intractable; especially if deductions shared a lot of
common atoms, letting a predicate having an even small influence on all others.

In the light of the considerations above, it seems that the general structure
has as much impact as the number of double implications in the formula.

5 Discussion

5.1 General discussion

In this section, we discuss the reasons that make random walk strategies ineffi-
cient when dealing with this kind of logical structure. Structural problems have
already been isolated like in [13] where GSAT has shown poor experimental
results on specific situations. For instance, in a graph colouring problem using
only three colours, if the graph presents nodes of a comparatively higher degree,
GSAT tends to be stuck. An instance is shown on Figure 3 where GSAT will
often be stuck with the two bottom nodes assigned to the same colour. WalkSAT
has been introduced in this same article to solve this problem.

But we have shown that, even in balanced cases, a computational problem
may arise, especially when a FOL formula is designed with clauses and their
inverse. This substructure allows the solver to flip the same atom a huge number
of times without being able to determine when it leads to an improvement.

In a local search, decision is completely correlated to the context around the
atom to flip. For instance, in our problem, a node has 18 neighbours, which
define the context. It is interesting to know that, on the 218+1 contexts, the
WalkSAT algorithm has a 46.2% chance of flipping the atom of interest from the
good configuration to the wrong one, and a 36.6% chance the other way around.
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xi−1 xi xi+1. . . . . .

Fig. 4. Conflicting propagation of truth based on local search

If we choose a FOL formula mostly designed with rules of the following kind:
x1∧· · ·∧xn ⇐⇒ y, it CNF will have one clause of size n+1 and n clauses of size
2. It is easy to see that in this configuration there are 2n+1−1 solutions where y
is false and only one when y is true. And if y is used for higher deductions of this
kind, putting y to false has a cost only if atoms on the above layer have been
already set to true. This make usually WalkSAT more likely to put y to false.
More simply, this sub-problem is almost equivalent to the highlighted structure
by Selman and Kautz, which is easily solved by WalkSAT. But in our problem, an
additional difficulty may account for the poor performance of WalkSAT. Indeed,
the structure is repeated many times, with its high-degree nodes serving as low-
degree nodes in several higher instances of the structure: this intrication is likely
to cause a drop in performance. Assume for instance that such a node of degree
n occurs also with a low degree in k structures. There will be n + k clauses
where it will occur negatively and k + 1 clauses where it will occur positively:
consequently, the local search will show a structural tendency to set it to false.

Independently from the structure, double implications are intuitively proble-
matic to solve with a local search. Usually, a deductive system tends to propagate
truth values. But, with local search, tracks of this propagation are lost, and the
algorithm is only guided by the number of truth values around the node8. Figure
4 is a simple but clear case of the inefficiency of WalkSAT on double implicati-
ons. In this situation, where xi−1 is valued true (light gray) and xi+1 false (dark
gray), determining the value of xi will be random and meaningless.

5.2 Extension of the Problem to MLN

We expressed at the beginning of this article that local search methods lead MLN
to give poor probabilities for deductions problems. The reason is straightforward:
as the WalkSAT method cannot reach solutions that require a high level of
deduction, using it as sampler would result in worlds with only few layers of the
deduction consistent with the evidence. Therefore, the sample sets produced for
MCSAT will not be reliable enough to produce trustworthy results.

6 Conclusion

Our first intent was to improve chronicles to let them handle uncertainties. But
we have shown in this paper that MLNs can not perform well when applied on
such problems. This is not due to the MCMC technique they use, but on a deeper

8 Especially the number of nodes with a certain truth value.
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problem correlated to the SAT domain. We have highlighted that specific logical
problems designed with a lot of biconditional statements may lead local search
techniques to be stuck, even on problems with small dimensions compared to
other works where these methods have been used.

In the Max-SAT 2016 competition, many benchmarks — whether crafted
or industrial — are designed that way. Considering the performances variations
between complete and local methods, the highlighted problem might be a re-
ason explaining these differences. We know that many parameters impact the
efficiency of SAT-solvers, like the number of solutions or the diameter of the
associated neighbourhood graph [6], so, obviously, inner structures might not be
the only reason, but seem to be an interesting lead.

Even if complete methods have better results, they still have difficulties to
solve large problems and local algorithms are still needed for many tasks. But,
for future works, this inner structural problem should be taken in consideration
when we design and use local search methods. To help with this design, it would
also probably be useful to quantify somehow difficulties linked to structure re-
petitions evoked in 5.1. Some other candidates for local search would also have
to be assessed in the context of MLN: some algorithms on the Max-SAT com-
petition have sometimes really good results on benchmarks that seem designed
as chronicles. It might be interesting to investigate them.

Another possibility will be to look at complete methods; latest improvements
on the field made algorithms almost as fast as local search. However, in the con-
text of MLN where it is necessary to make MCMC calculations to compute
probabilities, local search methods have a big asset, as they provide approxima-
tely uniform samples [20]. On the other hand, to our knowledge, the question
whether complete methods also provide such samples has not been studied yet,
probably as complete methods used to be too computation time-demanding to
be even considered in this context, and would have to be assessed beforehand.

Finally, there are other approaches like the probabilistic logic programming
that mix probabilities and logical formulae, Problog [5] for instance. WalkSAT
algorithms are sometimes used there too, but many probabilistic logic program-
ming approaches make use of complete methods instead. Hence, investigating
these approaches would be an interesting lead to solve the problem arisen here,
and we plan to tackle them in future work.
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