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Abstract. Fault Trees or Bow Tie Diagrams are widely used for sys-
tem dependability assessment. Some probabilistic extensions have been
proposed by using Bayesian network formalism. This article proposes a
general modeling approach under the form of a probabilistic relational
model (PRM), relational extension of Bayesian networks, that can repre-
sent any fault tree, defined as an event tree with possible safety barriers,
simply described in a relational database. We first describe an underlying
relational schema describing a generic fault tree, and the probabilistic de-
pendencies needed to model the existence of an event given the possible
existence of its related causes and eventual safety barriers.

Keywords: Fault trees, Bow Tie diagram, Bayesian Network, Proba-
bilistic Relational Model

1 Introduction

Risk prevention has always been a major concern in many areas such as industrial
system, offshore and public security... Nowadays, different approaches for risk
analysis in the areas of Dependability (operating reliability) have been proposed
in the literature such as preliminary risk analysis (PRA), Petri networks, Bow-
Tie method, Fault Tree method.

Fault Trees or Bow Tie Diagrams are widely used for system dependability
assessment. Some probabilistic extensions have been proposed by using Bayesian
network formalism. This article proposes a general modeling approach under the
form of a probabilistic relational model (PRM), relational extension of Bayesian
networks, that can represent any fault tree, defined as an event tree with possible
safety barriers, simply described in a relational database. We first describe the
underlying relational schema describing a generic fault tree, and the probabilis-
tic dependencies needed to model the existence of an event given the possible
existence of its related causes and eventual safety barriers.

The rest of the paper is organized as follows: Section 2 presents the back-
ground about Fault Trees, Probabilistic Graphical Models (PGMs) such as Prob-
abilistic Relational Models, and related works about use of PGMs for reliability.
Section 3 presents our contribution, starting from a description of a Fault Tree,
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and building a generic PRM from its relational schema to the probabilistic de-
pendencies modeling the initial fault tree. We summarize our work and discuss
open questions and perspectives offered by our contribution in Section 5.

2 Background

2.1 Fault Trees (FTs)

Several formalisms have been proposed in Systems Dependability Assessment.
They are classified into two categories: combinatorial models (as fault trees or re-
liability block diagrams) and state-space models (as Markov chain or Petri nets).
Among the combinatorial models, FT is one of the most popular and diffused
formalisms for analysis of large, safety critical systems [9]. A FT is synthetically
defined by all combinations of events that can lead to failure. This search of com-
binations of events that can cause a failure continues with a search of minimum
cut-sets (sets of basic events, or conditions, necessary and sufficient to produce
the failure) and then an evaluation of the likelihood of the occurrence of the fail-
ure from the combination of the likelihood that elementary events occur. The FT
modeling is based on a descending approach (top-down approach). It is based on
the following assumptions: (i) events are binary events (working/not-working);
(ii) events are statistically independent; and (iii) relationships between events
and causes are represented by means of logical gates [1]. In risk analysis, to as-
sess the impacts of an undesired event, an event tree (ET) is added to the FT,
resulting in bow tie model. The goal is to place and assess barriers to prevent
or protect from the undesired event. An example of Fault tree associated with
safety barriers is described in Figure 1.

However, the FTs and Bow tie diagrams are static models. Dynamic fault
trees have been proposed to extend standard FTs to dynamic systems [5].

2.2 Probabilistic Relational models

For representing uncertain knowledge, Probabilistic Graphical Models, in par-
ticular, Bayesian networks (BNs) are increasingly used in the field of artificial
intelligence [11]. They are a powerful modeling and analysis tool that has been
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Fig. 1. Example of a Fault Tree with safety barriers.
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Fig. 2. (left) An example of relational schema. (right) An example of Probabilistic
Relational Model.

applied in a variety of real-world tasks. Bayesian networks have been extended
in order to model more complex problems, such as dynamic ones with Dynamic
Bayesian networks, object-oriented ones or relational ones with Probabilistic
Relational Models.

As defined in [7], A Probabilistic Relational Model (PRM) IT for a relational
schema R (i.e., set of entities and relations) is defined through a qualitative
dependency structure S and a set of parameters associated with it 6s. The
relational schema R describes a set of classes X = {X1,..., X }, each of which
has a set of descriptive attributes denoted by A(X), which take on a range of
values V(X.A) and a set of reference slots denoted by R(X) = {p1 ... px}. Each
X.p has X as domain type and Y as a range type, where Y € X. A sequence
of slots p; ... pg, where Vi, Range[p;] = Dom[p;+1] defines a slot chain K. The
notion of aggregation is also adopted from the database theory: an aggregate ~y
takes a multi-set of values of some ground type, and returns a summary of it, a
single-valued attribute is derived from the aggregation function.

Formally, a PRM II is defined as follows. For each class X € X and each
descriptive attribute A € A(X), we have:

— A set of parents Pa(X.A) = {Uy,...,U;}, where each U, has the form X.B
if it is a simple attribute in the same relation or v(X.K.B), where K is a
slot chain and v is an aggregation function.

— A legal conditional probability distribution (CPD), P(X.A|Pa(X.A)).

An example is described in Figure 2 (right) for the relational schema depicted
in Figure 2 (left). Probabilistic inference is performed on a Ground Bayesian
Network (GBN) obtained from a PRM for the given database instance Z. A
GBN is generated by a process (also called unrolling) of copying the associated
PRM for every object in Z. Thus a GBN will have a node for every attribute of
every object in Z and probabilistic dependencies and CPDs as in the PRM.
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2.3 Related work

The formalism of BNs is well suited to represent complex multi-state systems.
Recent works have shown that reliability formalisms such as event trees, fault
trees (FTs) or Bow Tie diagram are easy to model by an equivalent BN. For
example, [13] has shown that a reliability structure represented as a reliability
block diagram can be transformed into a Bayesian network model. This approach
makes it possible to compute the reliability of the system using probabilistic in-
ference in the equivalent BN. Similar works have proposed a language allowing
to transform fault trees or Bow Tie diagrams into Bayesian networks [1, 6, §8].
However, these approaches do not allow to model the dynamic aspect of the sys-
tem. In [2,12,14], a description of a Dynamic fault tree (DFT) with a Dynamic
Bayesian network (DBN) has been proposed. These works consider time as a
discrete variable and describe temporal probabilistic dependencies with Markov
chain. A generalization to continuous time has been proposed by [10, 3].

The majority of the previously cited methods deal with Boolean variables (ex-
istence of an event). A few of them consider the notion of barrier, and when this
barrier is defined, its existence is also Boolean. In addition, BNs are not adapted
to model large and complex domains because the structure of the network is fixed
in advance. Thus, no part is reusable and therefore explicitly requires rewriting
structure or parameter regularity. The data and the model are not decoupled,
so taking into account a new component requires updating BN model by an
expert or a complete learning of the model. As in the oriented-object framework
used in [14], Probabilistic relational models (PRMs) improve the possibilities of
generalization in this direction.

3 Contribution

We propose here a general modeling approach under the form of a probabilistic
relational model (PRM) that can represent any fault tree, defined as an event
tree with possible safety barriers, simply described in a relational database.

3.1 Fault Tree modeling

We suppose that our FT is defined by a triplet (£, G, B).

& = {E;} is a set of events, with a prior probability PriorStrength(E;)
defined in a set of ordered discrete values {absent,low, ...strong}.

G = {G;} is aset of gates, with Inputs(G;) C &, Output(G;) € &, Type(G,;) €
{OR,AND, ...} and DependencyStrength(E;, output(G;)) € {absent, low, ...
strong} for each E; € Inputs(G;).

B = {Bg, (E;,G;)} is a set of barriers. A barrier By, is associated to one spe-
cific event E; appearing as an input of a given gate G, with a BarrierStrength(By, E;, G;) €
{absent, low, ... strong}. We can notice here that our definition of barrier is re-
lated to one association input-output for a given gate, more general than the
usual one where a barrier is only describing an effect on a gate output.
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Fig. 3. Relational schema for Fault Tree modeling.

3.2 A PRM for Fault Tree modeling

Relational schema From the previously defined Fault Tree, we propose a
relational schema described in Figure 3 with two entity classes Event, class of
events, and Barrier, class of barriers. and two association classes CausedBy,
association between events, and BarrierOf association between a barrier and
one association of events.

Instances of the classes are defined by the following rules: (i) one instance of
Event for each E; € &, (ii) one instance of Barrier for each By € B, (iii) one
CausedBy instance for each G; € G and E; € Inputs(G;) with Cause = E; and
Ef fect = Output(G,), and (iv) one BarrierOf instance for each { By, (E;, G;)} €
B with Barr = B), and CauseByld is the instance related to gate G; and input
E;.

Probabilistic dependencies The probabilistic dependencies are defined over
the corresponding attributes of the previous classes. Fvent.existence € {absent,
low, ... strong } represents the potential existence of an event. This attribute can
be observed, or will be estimated depending on its prior strength (Event.Prior Strength)
and the existence of the events than can raise it in the fault tree.

We propose to model the logical gate between an event and its possible causes
by an ICT (independence of causal influence) model [4] by adding Caused By.Triggering
attribute as an inhibitor node between each cause and the effect node. This at-
tribute Triggering has the same domain than Fvent.Existence. This model
will correspond to probabilistic dependencies between CausedBy.Triggering
and CausedBy.Cause.Existence, and deterministic function v (determined by
gate type) between Fuvent.existence and the set of possible triggering associa-
tions Event.Ef fect=!.Triggering. For instance the deterministic function cor-
responding to an OR gate is the max function.

The triggering will be weighted by Caused By.DependencyStrength or inhib-
ited by the strength of the associated barriers CausedBy.CauseById~'.BarrierStrength.
As this association can possibly be inhibited by several barriers, we decide here to
use the max aggregation function to merge the effects of these possible barriers.
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Fig. 4. Probabilistic relational model for Fault Tree modeling.

Conditional Probability distributions The conditional probability distribu-
tion (CPD) P(Event.Existence | Prior Strength,y(Event.Ef fect . Triggering))
is defined by a simple dependency. When the corresponding event is a root event,
v(Event.Ef fect—t.Triggering)) = NULL and this CPD is an increasing func-
tion depending only on PriorStrength. In the opposite, when this event is not

a root event, this CPD is independent from the PriorStrength and corresponds
only to the deterministic function ~.

The conditional probability distribution concerning CausedBy.Triggering,
P(CausedBy.Triggering | CausedBy.Cause.Existence, ...
CausedBy.DependencyStrength, maz(Caused By.CauseByld—1.BarrierStrength)),
is defined by two components. First the dependency between Caused.Triggering
and CausedBy.Cause.existence is parametrized like in any ICI model, where the
strength of each cause is here weighted by the Caused By.DependencyStrength
or inhibited by the several possible BarrierStrength.

The distributions P(Event. Prior Strength), P(Caused By. DependencyStrength),
P(Barrier.BarrierStrength) correspond to probability distribution of observed
root attributes, so their exact definition has no impact in our model. We choose
here uniform distributions.

Ground Bayesian network Figure 4 shows the corresponding probabilistic
relational model (PRM) defined with its relational schema, its associated prob-
abilistic dependencies and conditional probability distributions. As defined in
section 2.2, probabilistic inference is performed on the Ground Bayesian Net-
work obtained from a PRM by unrolling the PRM template model for each
instance of each class in the database.

We present here a simple example with the description of a FT (Figure 1)
in the database of Figure 5 with 6 events, 3 OR gates and 2 barriers. Figure 6
describes the ground BN obtained from our PRM for this FT. Given a set of
FEvent.Existence and possible BarrierO f.BarrierStrength, the GBN can fi-
nally be queried to estimate the probability of other Fvent. Existence.

Figure 6 presents two scenarios in the same context where Landslide effect
is low, Weather damage is medium and Traffic offense is strong. In the first
scenario, we consider that the two barriers are low, and we observe that the
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Event BarrierOf Barrier
Landslide effect low ? BO1 Safety nets c2 ? Safety nets
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CausedBy
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c2 Weather damage Stopping road traffic strong ?

c3 Stopping road traffic |Accident medium ?

c4 Stopping road traffic |4 hour traffic jam strong ?

C5 Traffic offense Accident medium ?

C6 Accident 4 hour traffic jam strong ?

Fig. 5. Instantiations of the relational schema describing the FT model of Figure 1.
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Fig. 6. Ground Bayesian network obtained by unrolling the PRM of Figure 4 on the
instance given in Figure 5, with two scenarios of probabilistic inference.

probability of having a low Stopping road traffic is 69%, the probability of a
strong Accident is 49%, and the probability of a low 4 hour traffic jam is 42%.

In the second scenario, we consider strong barriers, and we observe that the
probability of having a low Stopping road traffic is 91% (increasing because of
the Safety net barrier), the probability of a strong Accident is 14% (decreasing
because of the Police patrol barrier), and the probability of a low 4 hour traffic
jam is 81% (because of the cumulative effects of both barriers).

4 Conclusion and Perspectives

This preliminary work proposes a general modeling approach under the form of
a probabilistic relational model, that can represent any fault tree, defined as an
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event tree with possible safety barriers, simply described in a relational database.
We first describe the underlying relational schema used to model a generic fault
tree, and the probabilistic dependencies needed to model the existence of an
event given the possible existence of its related causes and eventual barriers.
The way we model barriers in this work is more general than a simple inhibi-
tion of a gate output. Our barriers can (totally or partially) inhibit any input of a
logical gate. As already proposed in the literature, we also use ICI models (such
as NoisyMax) in order to deal with probabilistic extensions of the logical gates
used in Fault Trees. With our proposal, adding new events, gates or barriers
simply consists in adding new instances in the database, and generating a new
ground Bayesian network where probabilistic inference can then be performed.
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