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Fault Trees or Bow Tie Diagrams are widely used for system dependability assessment. Some probabilistic extensions have been proposed by using Bayesian network formalism. This article proposes a general modeling approach under the form of a probabilistic relational model (PRM), relational extension of Bayesian networks, that can represent any fault tree, defined as an event tree with possible safety barriers, simply described in a relational database. We first describe an underlying relational schema describing a generic fault tree, and the probabilistic dependencies needed to model the existence of an event given the possible existence of its related causes and eventual safety barriers.

Introduction

Risk prevention has always been a major concern in many areas such as industrial system, offshore and public security... Nowadays, different approaches for risk analysis in the areas of Dependability (operating reliability) have been proposed in the literature such as preliminary risk analysis (PRA), Petri networks, Bow-Tie method, Fault Tree method.

Fault Trees or Bow Tie Diagrams are widely used for system dependability assessment. Some probabilistic extensions have been proposed by using Bayesian network formalism. This article proposes a general modeling approach under the form of a probabilistic relational model (PRM), relational extension of Bayesian networks, that can represent any fault tree, defined as an event tree with possible safety barriers, simply described in a relational database. We first describe the underlying relational schema describing a generic fault tree, and the probabilistic dependencies needed to model the existence of an event given the possible existence of its related causes and eventual safety barriers.

The rest of the paper is organized as follows: Section 2 presents the background about Fault Trees, Probabilistic Graphical Models (PGMs) such as Probabilistic Relational Models, and related works about use of PGMs for reliability. Section 3 presents our contribution, starting from a description of a Fault Tree, and building a generic PRM from its relational schema to the probabilistic dependencies modeling the initial fault tree. We summarize our work and discuss open questions and perspectives offered by our contribution in Section 5.

Background

Fault Trees (FTs)

Several formalisms have been proposed in Systems Dependability Assessment. They are classified into two categories: combinatorial models (as fault trees or reliability block diagrams) and state-space models (as Markov chain or Petri nets). Among the combinatorial models, FT is one of the most popular and diffused formalisms for analysis of large, safety critical systems [START_REF] Leveson | System safety and computers[END_REF]. A FT is synthetically defined by all combinations of events that can lead to failure. This search of combinations of events that can cause a failure continues with a search of minimum cut-sets (sets of basic events, or conditions, necessary and sufficient to produce the failure) and then an evaluation of the likelihood of the occurrence of the failure from the combination of the likelihood that elementary events occur. The FT modeling is based on a descending approach (top-down approach). It is based on the following assumptions: (i) events are binary events (working/not-working); (ii) events are statistically independent; and (iii) relationships between events and causes are represented by means of logical gates [START_REF] Bobbio | Improving the analysis of dependable systems by mapping fault trees into Bayesian networks[END_REF]. In risk analysis, to assess the impacts of an undesired event, an event tree (ET) is added to the FT, resulting in bow tie model. The goal is to place and assess barriers to prevent or protect from the undesired event. An example of Fault tree associated with safety barriers is described in Figure 1.

However, the FTs and Bow tie diagrams are static models. Dynamic fault trees have been proposed to extend standard FTs to dynamic systems [START_REF] Dugan | Dynamic fault-tree models for faulttolerant computer systems[END_REF].

Probabilistic Relational models

For representing uncertain knowledge, Probabilistic Graphical Models, in particular, Bayesian networks (BNs) are increasingly used in the field of artificial intelligence [START_REF] Pearl | Probabilistic reasoning in intelligent systems: Networks of plausible reasoning[END_REF]. They are a powerful modeling and analysis tool that has been applied in a variety of real-world tasks. Bayesian networks have been extended in order to model more complex problems, such as dynamic ones with Dynamic Bayesian networks, object-oriented ones or relational ones with Probabilistic Relational Models. As defined in [START_REF] Friedman | Learning probabilistic relational models[END_REF], A Probabilistic Relational Model (PRM) Π for a relational schema R (i.e., set of entities and relations) is defined through a qualitative dependency structure S and a set of parameters associated with it θ S . The relational schema R describes a set of classes X = {X 1 , . . . , X 1 }, each of which has a set of descriptive attributes denoted by A(X), which take on a range of values V(X.A) and a set of reference slots denoted by R(X) = {ρ 1 . . . ρ k }. Each X.ρ has X as domain type and Y as a range type, where Y ∈ X . A sequence of slots ρ 1 . . . ρ k , where ∀i, Range[ρ i ] = Dom[ρ i+1 ] defines a slot chain K. The notion of aggregation is also adopted from the database theory: an aggregate γ takes a multi-set of values of some ground type, and returns a summary of it, a single-valued attribute is derived from the aggregation function.

Formally, a PRM Π is defined as follows. For each class X ∈ X and each descriptive attribute A ∈ A(X), we have:

-A set of parents P a(X.A) = {U 1 , . . . , U l }, where each U i has the form X.B if it is a simple attribute in the same relation or γ(X.K.B), where K is a slot chain and γ is an aggregation function. -A legal conditional probability distribution (CPD), P (X.A|P a(X.A)).

An example is described in Figure 2 (right) for the relational schema depicted in Figure 2 (left). Probabilistic inference is performed on a Ground Bayesian Network (GBN) obtained from a PRM for the given database instance I. A GBN is generated by a process (also called unrolling) of copying the associated PRM for every object in I. Thus a GBN will have a node for every attribute of every object in I and probabilistic dependencies and CPDs as in the PRM.

Related work

The formalism of BNs is well suited to represent complex multi-state systems. Recent works have shown that reliability formalisms such as event trees, fault trees (FTs) or Bow Tie diagram are easy to model by an equivalent BN. For example, [START_REF] Torres-Toledano | Bayesian networks for reliability analysis of complex systems[END_REF] has shown that a reliability structure represented as a reliability block diagram can be transformed into a Bayesian network model. This approach makes it possible to compute the reliability of the system using probabilistic inference in the equivalent BN. Similar works have proposed a language allowing to transform fault trees or Bow Tie diagrams into Bayesian networks [START_REF] Bobbio | Improving the analysis of dependable systems by mapping fault trees into Bayesian networks[END_REF][START_REF] Duval | A Bayesian networkbased integrated risk analysis approach for industrial systems: application to heat sink system and prospects development[END_REF][START_REF] Khakzad | Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network[END_REF]. However, these approaches do not allow to model the dynamic aspect of the system. In [START_REF] Boudali | A discrete-time Bayesian network reliability modeling and analysis framework[END_REF][START_REF] Portinale | Supporting reliability engineers in exploiting the power of dynamic Bayesian networks[END_REF][START_REF] Weber | Complex system reliability modelling with dynamic object oriented Bayesian networks (doobn)[END_REF], a description of a Dynamic fault tree (DFT) with a Dynamic Bayesian network (DBN) has been proposed. These works consider time as a discrete variable and describe temporal probabilistic dependencies with Markov chain. A generalization to continuous time has been proposed by [START_REF] Montani | Radyban: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks[END_REF][START_REF] Boudali | A continuous-time Bayesian network reliability modeling, and analysis framework[END_REF].

The majority of the previously cited methods deal with Boolean variables (existence of an event). A few of them consider the notion of barrier, and when this barrier is defined, its existence is also Boolean. In addition, BNs are not adapted to model large and complex domains because the structure of the network is fixed in advance. Thus, no part is reusable and therefore explicitly requires rewriting structure or parameter regularity. The data and the model are not decoupled, so taking into account a new component requires updating BN model by an expert or a complete learning of the model. As in the oriented-object framework used in [START_REF] Weber | Complex system reliability modelling with dynamic object oriented Bayesian networks (doobn)[END_REF], Probabilistic relational models (PRMs) improve the possibilities of generalization in this direction.

Contribution

We propose here a general modeling approach under the form of a probabilistic relational model (PRM) that can represent any fault tree, defined as an event tree with possible safety barriers, simply described in a relational database.

Fault Tree modeling

We suppose that our FT is defined by a triplet (E, G, B). E = {E i } is a set of events, with a prior probability P riorStrength(E i ) defined in a set of ordered discrete values {absent, low, ...strong}.

G = {G j } is a set of gates, with Inputs(G i ) ⊂ E, Output(G i ) ∈ E, T ype(G i ) ∈ {OR, AN D, ...} and DependencyStrength(E i , output(G j )) ∈ {absent, low, ... strong} for each E i ∈ Inputs(G j ). B = {B k , (E i , G j )} is a set of barriers.
A barrier B k is associated to one specific event E i appearing as an input of a given gate G j , with a BarrierStrength(B k , E i , G j ) ∈ {absent, low, ... strong}. We can notice here that our definition of barrier is related to one association input-output for a given gate, more general than the usual one where a barrier is only describing an effect on a gate output. 

A PRM for Fault Tree modeling

Relational schema From the previously defined Fault Tree, we propose a relational schema described in Figure 3 with two entity classes Event, class of events, and Barrier, class of barriers. and two association classes CausedBy, association between events, and BarrierOf association between a barrier and one association of events.

Instances of the classes are defined by the following rules: (i) one instance of Event for each E i ∈ E, (ii) one instance of Barrier for each B k ∈ B, (iii) one CausedBy instance for each G j ∈ G and E i ∈ Inputs(G j ) with Cause = E i and Ef f ect = Output(G j ), and (iv) one BarrierOf instance for each {B k , (E i , G j )} ∈ B with Barr = B k and CauseById is the instance related to gate G j and input E i .

Probabilistic dependencies

The probabilistic dependencies are defined over the corresponding attributes of the previous classes. Event.existence ∈ {absent, low, ... strong } represents the potential existence of an event. This attribute can be observed, or will be estimated depending on its prior strength (Event.P riorStrength) and the existence of the events than can raise it in the fault tree.

We propose to model the logical gate between an event and its possible causes by an ICI (independence of causal influence) model [START_REF] Díez | Canonical probabilistic models for knowledge engineering[END_REF] by adding CausedBy.T riggering attribute as an inhibitor node between each cause and the effect node. This attribute T riggering has the same domain than Event.Existence. This model will correspond to probabilistic dependencies between CausedBy.T riggering and CausedBy.Cause.Existence, and deterministic function γ (determined by gate type) between Event.existence and the set of possible triggering associations Event.Ef f ect -1 .T riggering. For instance the deterministic function corresponding to an OR gate is the max function.

The triggering will be weighted by CausedBy.DependencyStrength or inhibited by the strength of the associated barriers CausedBy.CauseById -1 .BarrierStrength. As this association can possibly be inhibited by several barriers, we decide here to use the max aggregation function to merge the effects of these possible barriers. Conditional Probability distributions The conditional probability distribution (CPD) P (Event.Existence | P riorStrength, γ(Event.Ef f ect -1 .T riggering)) is defined by a simple dependency. When the corresponding event is a root event, γ(Event.Ef f ect -1 .T riggering)) = N U LL and this CPD is an increasing function depending only on P riorStrength. In the opposite, when this event is not a root event, this CPD is independent from the P riorStrength and corresponds only to the deterministic function γ.

The conditional probability distribution concerning CausedBy.T riggering, P (CausedBy.T riggering | CausedBy.Cause.Existence, ... CausedBy.DependencyStrength, max(CausedBy.CauseById -1 .BarrierStrength)), is defined by two components. First the dependency between Caused.T riggering and CausedBy.Cause.existence is parametrized like in any ICI model, where the strength of each cause is here weighted by the CausedBy.DependencyStrength or inhibited by the several possible BarrierStrength.

The distributions P (Event.P riorStrength), P (CausedBy.DependencyStrength), P (Barrier.BarrierStrength) correspond to probability distribution of observed root attributes, so their exact definition has no impact in our model. We choose here uniform distributions.

Ground Bayesian network Figure 4 shows the corresponding probabilistic relational model (PRM) defined with its relational schema, its associated probabilistic dependencies and conditional probability distributions. As defined in section 2.2, probabilistic inference is performed on the Ground Bayesian Network obtained from a PRM by unrolling the PRM template model for each instance of each class in the database.

We present here a simple example with the description of a FT (Figure 1) in the database of Figure 5 with 6 events, 3 OR gates and 2 barriers. Figure 6 describes the ground BN obtained from our PRM for this FT. Given a set of Event.Existence and possible BarrierOf.BarrierStrength, the GBN can finally be queried to estimate the probability of other Event.Existence.

Figure 6 presents two scenarios in the same context where Landslide effect is low, Weather damage is medium and Traffic offense is strong. In the first scenario, we consider that the two barriers are low, and we observe that the probability of having a low Stopping road traffic is 69%, the probability of a strong Accident is 49%, and the probability of a low 4 hour traffic jam is 42%.

In the second scenario, we consider strong barriers, and we observe that the probability of having a low Stopping road traffic is 91% (increasing because of the Safety net barrier), the probability of a strong Accident is 14% (decreasing because of the Police patrol barrier), and the probability of a low 4 hour traffic jam is 81% (because of the cumulative effects of both barriers).

Conclusion and Perspectives

This preliminary work proposes a general modeling approach under the form of a probabilistic relational model, that can represent any fault tree, defined as an event tree with possible safety barriers, simply described in a relational database. We first describe the underlying relational schema used to model a generic fault tree, and the probabilistic dependencies needed to model the existence of an event given the possible existence of its related causes and eventual barriers.

The way we model barriers in this work is more general than a simple inhibition of a gate output. Our barriers can (totally or partially) inhibit any input of a logical gate. As already proposed in the literature, we also use ICI models (such as NoisyMax) in order to deal with probabilistic extensions of the logical gates used in Fault Trees. With our proposal, adding new events, gates or barriers simply consists in adding new instances in the database, and generating a new ground Bayesian network where probabilistic inference can then be performed.
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 1 Fig. 1. Example of a Fault Tree with safety barriers.
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 2 Fig. 2. (left) An example of relational schema. (right) An example of Probabilistic Relational Model.

Fig. 3 .

 3 Fig. 3. Relational schema for Fault Tree modeling.
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 4 Fig. 4. Probabilistic relational model for Fault Tree modeling.
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 56 Fig. 5. Instantiations of the relational schema describing the FT model of Figure 1.