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Abstract Arbuscular mycorrhizal fungi are root symbionts
that play a key role in crop growth. A systematic quantitative
analysis of the response of crops to arbuscular mycorrhizal
inoculation, however, remains to be done. Additionally, little
is known regarding the role of mycorrhizal specificity and the
diversity of the inoculum on crop growth. Therefore, we col-
lected data from 115 inoculation studies, including 435 exper-
iments. We then used meta-analysis to examine the effect of
crop identity, arbuscular mycorrhizal fungus identity, and my-
corrhizal diversity on crop biomass increase, following inocu-
lation. Our results show that total crop biomass was on average
34.9 % higher in inoculated versus non-inoculated plants. We
found that specific combinations of arbuscular mycorrhizal fun-
gus genera and host plant families were more beneficial for
growth promotion as compared to other combinations.
Moreover, a single-species inoculum increased crop growth
response on average by 41.2 % compared to a multi-species
inoculum. Overall, our findings show that a broad range of
crops highly benefit from the inoculation with arbuscular my-
corrhizal fungi. They also strongly suggest that selecting spe-
cific arbuscular mycorrhizal taxa for specific crops is the most
promising approach to enhance crop growth. There is no “one-
size-fits-all” arbuscular mycorrhizal fungus. Finally, and at least
in stable and controlled environments, inoculation with a single

arbuscular mycorrhizal species is more effective, compared to
inoculation with a mixture of different arbuscular mycorrhizal
taxa. This may be explained by fungi superior in extraradical
growth, but less beneficial to the host, that outcompete the more
mutualistic fungi. Therefore, it may be beneficial to maintain a
high dominance of one beneficial arbuscular mycorrhizal taxon
in simplified agricultural systems.

Keywords AMF . Biodiversity . Host preference . Host
selectivity .Meta-analysis . Specificity

1 Introduction

Arbuscular mycorrhizal fungi (Glomeromycota) are wide-
spread and obligate plant symbionts known to play a key role
in the functioning of agricultural ecosystems and crop produc-
tivity (Verbruggen et al. 2010). These fungi establish a symbi-
osis with the majority of the land plants and generally provide
mineral nutrients to the host plant in exchange for plant-
assimilated carbohydrates (Smith and Read 2008).
Furthermore, they form a large network of hyphae and have a
great impact on soil formation and soil aggregation (Wilson
et al. 2009). Finally, arbuscular mycorrhizal fungi can provide
protection of the host plant against fungal and nematode path-
ogens (Veresoglou and Rillig 2012). Overall, arbuscular mycor-
rhizal fungi have been shown to increase host plant biomass
production (Hoeksema et al. 2010), although a systematic anal-
ysis on the response of crop species in particular remains to be
done (Fig. 1). However, whereas the symbiosis is often seen as
an unambiguous mutualism where especially the host plants
often benefit from the association, arbuscular mycorrhizal fungi
have also been reported to be of little benefit to the host plant
and even to be parasitic by causing a net carbon cost for the host
(Johnson et al. 1997; Graham and Eissenstat 1998).
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Based on morphological characteristics of spores, 244
arbuscular mycorrhizal species have been described so far
(Schüssler 2014). Direct sequencing of fungal ribosomal RNA
genes from the soil on the other hand has revealed the existence
of 341 virtual arbuscular mycorrhizal taxa so far (operational
taxonomic units (OTUs)) (Öpik et al. 2013). Consequently, the
number of known arbuscular mycorrhizal species/virtual taxa is
very low, compared to the c. 200.000 plant species they asso-
ciate with (Brundrett 2009), suggesting that arbuscular mycor-
rhizal specificity to the host plant is very low (Mosse 1975;
McGonigle and Fitter 1990). Nevertheless, some studies found
evidence that co-existing plant species harbor different
arbuscular mycorrhizal communities (Vandenkoornhuyse
et al. 2003; Torrecillas et al. 2012). Furthermore, specificity in
the arbuscular mycorrhizal symbiosis may also occur at a higher
level, such as the ecological group (Öpik et al. 2009) or family
(Torrecillas et al. 2012) of the host plant.

In addition to the extent of arbuscular mycorrhizal fungi
specificity, little is known regarding the role of arbuscular my-
corrhizal diversity on host plant growth. In a more general
context, there is now convincing evidence that higher species
diversity is generally beneficial for a range of ecosystem func-
tions (Cardinale et al. 2012). For example, a higher plant spe-
cies or pollinator species richness may result in higher biomass
production and crop pollination, respectively, either through the
sampling effect or through the complementarity effect. The
sampling effect refers to having a greater chance of including
a very effective species with respect to the ecosystem function-
ing, whenever there is a higher species diversity (Turnbull et al.
2013). The complementarity effect refers to resource

partitioning through functional complementarity, which leads
to a more efficient exploitation of resources in the system
(Tilman 1997). Also, arbuscular mycorrhizal taxa are known
to be functionally different, for example, regarding the forma-
tion of extra-radical hyphae, colonization rates and their phos-
phorus foraging strategy (Hart and Reader 2002). This may
result in a more efficient exploitation of soil resources in case
of the presence of different arbuscular mycorrhizal taxa and a
direct fitness benefit for the host plant. For example, compared
to colonization by a single arbuscular mycorrhizal fungus, col-
onization by two arbuscular mycorrhizal fungi with different
spatial abilities to acquire soil phosphorus induces a larger
growth response in the host plant (Smith et al. 2000).
Although van der Heijden et al. (1998) already provided in-
sights in the relation between mycorrhizal diversity and ecosys-
tem functioning, their results were based on microcosms and
macrocosm mimicking European calcareous grasslands, and
are as such difficult to transpose to crops in an agricultural
context. Even though there have been many experimental stud-
ies testing the growth response of a broad range of crops to
single and multiple mycorrhizal inoculations, the results obtain-
ed appear to be inconsistent. On the one hand, many studies
have shown an increased growth benefit of crops to inoculation
with multiple arbuscular mycorrhizal fungi compared to inocu-
lation with a single arbuscular mycorrhizal fungus (e.g., Ortas
and Ustuner 2014; Pellegrino and Bedini 2014a). On the other
hand, Hart et al. (2013), for example, showed that high fungal
diversity in the roots of a plant can facilitate the persistence of
low-quality symbionts, resulting in a very limited growth ben-
efit to their host. Consequently, it is still unclear to what extent
mycorrhizal diversity can promote growth in the host plant.

Meta-analysis is a statistical technique used to summarize
and quantify a selected set of studies (Borenstein et al. 2011).
Given the large number of studies, performed with different
crops and different arbuscular mycorrhizal fungi, a meta-
analysis now allows to integrate their results and provide
quantitative answers regarding the outcome of different
arbuscular mycorrhizal taxa-host plant combinations and to
what extent mycorrhizal diversity can promote crop growth.
More specifically, the objectives of this study were to (i) quan-
tify the overall growth response of crop species to arbuscular
mycorrhizal inoculation, (ii) assess the importance of
arbuscular mycorrhizal specificity on the growth response of
crop species, and (iii) evaluate to what extent arbuscular my-
corrhizal diversity can promote crop growth.

2 Materials and methods

2.1 Data compilation

Data were compiled based on articles retrieved from a Web of
Knowledge search on the 15th of October 2015, using the

Fig. 1 An example of an inoculation experiment, related to the study of
Van Geel et al. (2015), to compare the growth response of mycorrhizal to
non-mycorrhizal apple seedlings. In order to establish a single-species
culture, arbuscular mycorrhizal fungal spores were first isolated from
the field. Next, spores with similar morphology were carefully applied
to the root tips of Plantago lanceolata (a), a good host plant known to
form a symbiosis with a broad variety of arbuscular mycorrhizal fungi.
After 6 months of growth in the greenhouse, the cultures were used to
inoculate apple seedlings (b) and to evaluate the growth response to AMF
inoculation in comparison to non-mycorrhizal seedlings. Bar indicates
200 μm
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search string “arbuscular mycorrhiza* AND inoculat*”
(resulting in 1701 articles). Articles were then included in the
meta-analysis when they included at least one experiment that
met the following criteria: (i) a crop was inoculated with one or
more arbuscular mycorrhizal taxa and the vegetative or gener-
ative response (root, shoot, or fruit biomass) was compared
with the non-mycorrhizal crop (control) and (ii) both ameasure
of variance in plant response and the number of replicates were
reported. Furthermore, when multiple phosphorus levels were
compared within a study, we only included the “normal” treat-
ment in our meta-analysis, and not the fertilized treatment.

From each experiment that met these criteria, we retrieved
data on plant growth (root, shoot, total, and/or fruit biomass),
with and without mycorrhizal inoculation. If not reported,
standard deviations were calculated from sampling sizes and
standard errors. When results were only reported in figures,
the raw data were extracted using GetData Graph Digitizer
(version 2.26; http://getdata-graph-digitizer.com). From each
experiment, also crop species, arbuscular mycorrhizal fungi
taxon (species names were annotated according to Schüssler
and Walker (2010)) and inoculum type (single-species vs.
multi-species inoculum) were recorded.

2.2 Statistical analysis

For each experimental comparison between inoculated and
control treatments, an effect size for plant biomass response
was calculated. We used total plant biomass when available or
calculated it as the sum of root and shoot biomass. In the
minority of cases where total plant biomass was not available
or could not be calculated, we used shoot biomass as a proxy
for total plant biomass. We then used the response ratio
Ln(R)=Ln(XAMF/Xc) as the effect size, where XAMF and Xc
are the mean total biomass values for the inoculated and con-
trol treatments, respectively (Hedges et al. 1999). A positive
value of Ln(R) indicates a positive effect of arbuscular mycor-
rhizal fungi inoculation on total plant biomass. A value of
Ln(R)=0 indicates that arbuscular mycorrhizal fungi inocula-
tion had no effect. For each experimental comparison, both
Ln(R) and the variance of Ln(R) were calculated using
MetaWin v2.1 (Rosenberg et al. 2000). Because only a limited
number of experimental comparisons between arbuscular my-
corrhizal fungi inoculation and control treatments (66 out of
435, 15%) reported a measure of fruit biomass, nomeaningful
analysis was possible on the effect of arbuscular mycorrhizal
fungi inoculation on fruit biomass.

We then used general linear models (GLMs) in SPSS 20.0
(SPSS Inc., Chicago, IL, USA) to simultaneously estimate the
effects of multiple explanatory variables on total plant bio-
mass to arbuscular mycorrhizal fungi inoculation. Two
models were ran with Ln(R) as the response variable and the
following fixed explanatory variables: arbuscular mycorrhizal
fungi genus, crop family, arbuscular mycorrhizal fungi genus

× crop family (model 1) and inoculum type (single-species or
multi-species inoculum) (model 2). The observations with
multiple AMF taxa were omitted in model 1. The Bayesian
information criterion (BIC) was used to select the most parsi-
monious model out of a suite of reduced models compared
with the full model (i.e., with the lowest BIC). In all cases, we
used the full model which had the lowest BIC. The high num-
ber of crop species and arbuscular mycorrhizal taxa in our
dataset did not allow to conduct a meaningful analysis at the
species level. It is normal conduct in meta-analysis to give
higher weight to more accurate effect sizes (Borenstein et al.
2011). Therefore, a weight factor (1/variance of the effect size)
was included in all models.

When a study reported more than one experiment, these
experiments were included as separate data records. To test
whether this approach may have led to an overrepresentation
of the effect of studies that included a high number of exper-
iments, we randomly chose one observation from each study
and conducted the same analysis (He and Dijkstra 2014). The
mean effect sizes that were calculated this way were similar to
the effect sizes based on the whole dataset, suggesting that
overrepresentation did not occur (He and Dijkstra 2014).
Finally, the presence of a publication bias was tested using
scatter plots of effect size versus their variance and the sample
size of each experiment. No patterns indicative of publication
bias could be discovered (data not shown).

3 Results and discussion

In total, 115 publications met our criteria, resulting in 435
experimental comparisons between arbuscular mycorrhizal
fungi inoculation and control treatments. Both models showed
an overall positive response of total biomass to inoculation
with arbuscular mycorrhizal fungi. Our first model estimated
the overall response ratio of total biomass at 0.290 (95 % CI
0.133 to 0.448), the second model at 0.307 (95 % CI 0.248 to
0.366). Although our first model found no overall significant
main effect of arbuscular mycorrhizal fungi genus, the 95 %
confidence intervals of the mean effect sizes for the genera
Glomus and Funneliformis did not include zero, indicating a
positive growth response to inoculation with arbuscular my-
corrhizal fungi (Fig. 2a). Similarly, although there was no
main effect of crop family, the crop families Cucurbitaceae
and Poaceae showed the strongest positive response to
arbuscular mycorrhizal fungi inoculation and the 95 % confi-
dence intervals of the effect sizes did not include zero
(Fig. 2a). Whereas no main effects of arbuscular mycorrhizal
fungi genus and crop family on total plant biomass were
found, the significant interaction between arbuscular mycor-
rhizal fungi genus and crop family indicated that the effect of
arbuscular mycorrhizal fungi genus is dependent on crop fam-
ily (Table 1) and that the main effects discussed above have to
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be interpreted in this context. Especially, the symbiosis be-
tween arbuscular mycorrhizal fungi from the genera
Funneliformis or Glomus and crops from the Cucurbitaceae
and arbuscular mycorrhizal fungi from the genus Rhizophagus
and crops from the Rubiaceae resulted in a strong plant growth
response (Fig. 2a). On the contrary, the symbiosis between
arbuscular mycorrhizal fungi from the genera Funneliformis
orGlomus and crop plants from the family Solanaceae did not
result in a positive growth response (95 % confidence inter-
vals did overlap with zero). Also, the symbiosis between
arbuscular mycorrhizal fungi from the genera Rhizophagus
and crop plants from the family Cucurbitaceae did not result
in a positive growth response.

Whereas arbuscular mycorrhizal fungi were originally con-
sidered to be non-specific (Mosse 1975; McGonigle and Fitter
1990), more recent studies demonstrated an affinity of certain

-1 -0.5 0 0.5 1 1.5
Response Ratio

AMF Genus (P= 0.895)
Glomus (47)
Funneliformis (104)
Claroideoglomus (20)
Acaulospora (6)
Rhizophagus (80)

AMF Genus X Crop Family (P<0.017)
Claroideoglomus

Rutaceae (4)
Poaceae (8)
Solanaceae (3)

Funneliformis
Cucurbitaceae (22)
Fabaceae (3)
Rutaceae (16)
Poaceae (39)
Solanaceae (17)
Malvaceae (5)

Glomus
Cucurbitaceae (7)
Amaryllidaceae (4)
Rosaceae (3)
Poaceae (11)
Fabaceae (5)
Rutaceae (8)
Solanaceae (9)

Rhizophagus
Rubiaceae (4)
Asteraceae (11)
Rutaceae (12)
Amaryllidaceae (13)
Poaceae (17)
Cucurbitaceae (3)
Solanaceae (16)

Crop Family (P= 0.135)
Cucurbitaceae (39)
Amaryllidaceae (34)
Rosaceae (5)
Rutaceae (73)
Poaceae (87)
Rubiaceae (8)
Solanaceae (80)
Fabaceae (11)
Asteraceae (13)

Inoculum Type (P< 0.001)
Single (268)
Mixture (96)

a

b

Fig. 2 The estimated marginal
means (±95 % confidence
intervals) of the general linear
model analyses relating the effect
size for the total plant biomass to
the identity of the inoculated
arbuscular mycorrhizal fungi
(AMF) and the identity of the crop
(a) and to the inoculum type (b).
The effect of arbuscular
mycorrhizal inoculation was
considered statistically significant
if the 95% confidence intervals of
the mean effect size did not
overlap with zero. A positive
response ratio (Ln(R)) indicates a
positive effect of arbuscular
mycorrhizal inoculation on total
plant biomass. P values reported
are those obtained in both general
linear model analyses (Table 1).
The number of observations in
each group is shown in
parentheses. Groups with less
than three observations are not
shown. Arbuscular mycorrhizal
fungi is abbreviated as AMF

Table 1 Results from the general linear model analysis relating the
effect size for total plant biomass to the genus of the inoculated
arbuscular mycorrhizal fungi (AMF) and the crop family (model 1, and
to the inoculum type (model 2)

Explanatory variables df F P

Model 1

Intercept 1 3.815 0.052

AMF genus 9 0.469 0.895

Crop family 13 1.451 0.135

AMF genus × crop family 29 1.690 0.017

Model 2

Intercept 1 104.265 <0.001

Inoculum type 1 33.545 <0.001
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arbuscular mycorrhizal taxa for specific plant species or cul-
tivars (e.g., Vestberg 1992; Vandenkoornhuyse et al. 2003;
Torrecillas et al. 2012). Our results demonstrate that specific
combinations of arbuscular mycorrhizal fungi genera and host
plant families are more efficient for growth promotion of
crops as compared to others. We showed that arbuscular my-
corrhizal specificity may also translate into differing growth
responses of crops. Insufficient available data in the literature
did not allow us to systematically evaluate specificity at the
species level. Nevertheless, when the most frequently occur-
ring arbuscular mycorrhizal species in our dataset was consid-
ered, Funneliformis mosseae (n=104), still large differences
in plant growth were found between crop species (P<0.001).
Cucumber, for example, showed a significantly higher growth
response compared to cotton, maize, tobacco, or tomato when
inoculated with F. mosseae, suggesting a trend of arbuscular
mycorrhizal specificity at the species level as well.

Our second model resulted in a significant effect of inocu-
lum type on the effect size for total plant biomass (Table 1).
Although both inoculum types (single-species vs. multi-
species inoculum) resulted in a positive growth response, the
single-species inoculum had a mean growth response of 0.481
(95 % CI 0.433 to 0.528), compared to only 0.133 (95 % CI
0.025 to 0.241) for the multi-species inoculum (Fig. 2b).
These results were somewhat counter-intuitive as it was ex-
pected that sampling and complementarity effects would
result in higher plant growth following inoculation with
multiple arbuscular mycorrhizal taxa. On the contrary, our
analysis indicates that crop plants that could have been
colonized by multiple arbuscular mycorrhizal taxa perform
less, compared to crop plants colonized by a single
arbuscular mycorrhizal taxon. These findings resemble those
of Veresoglou and Rillig (2012) who found that a host plant
colonized by multiple arbuscular mycorrhizal taxa suppresses
fungal pathogens less efficiently than when colonized by a
single arbuscular mycorrhizal species.

van der Heijden et al. (1998) found that increasing the
arbuscular mycorrhizal diversity in artificial mesocosms led
to increased plant productivity. The proposed mechanism for
this effect, however, was based on variable plant growth re-
sponses of different arbuscular mycorrhiza-host plant combi-
nations. In our model 1, we also demonstrated variable growth
responses of different arbuscular mycorrhiza-host plant com-
binations, and therefore, our results, based on growth re-
sponses of individual crops, are consistent with van der
Heijden et al. (1998). Additionally, the lower effect on the
growth response of crops of the multi-species compared to
the single-species inocula can be explained by the nature of
the studies included in our meta-analysis, which were mainly
short-term inoculation studies performed in controlled artificial
environments. Indeed, a higher magnitude and stability of eco-
system functions associated with diversity are likely most ev-
ident under changing and/or heterogeneous conditions that

crops experience in the field. In plant communities, the stabi-
lizing effect of diversity on ecosystem properties can be ex-
plained by temporal complementarity between species (Loreau
and de Mazancourt 2013). In stable controlled experiments,
however, temporal complementarity can hardly play any role.

In these stable controlled environments, the lower effect of
arbuscular mycorrhizal diversity on individual host plants may
be explained by competition among arbuscular mycorrhizal
taxa, with arbuscular mycorrhizal fungi superior in extraradical
growth, but less beneficial to the host plant, outcompeting
more mutualistic arbuscular mycorrhizal fungi (Werner and
Kiers 2015a). Hart et al. (2013), moreover, have shown that
diverse arbuscular mycorrhizal communities on Plantago
lanceolata can support the persistence of a less-beneficial sym-
biont. Complementary, also priority, effects, i.e., the impact of
species arrival on subsequent community development, may
negatively affect host plant growth following inoculation with
different arbuscular mycorrhizal taxa.Werner andKiers (2015)
argued against space limitation as the mechanism allowing
priority effects to emerge in the arbuscular mycorrhizal fungal
system. Instead, their data supported an active downregulation
of specific mycorrhizal partners by the host. Such systemic
suppression of arbuscular mycorrhizal fungi by the host has
also been observed in split-root experiments in which an
established arbuscular mycorrhizal symbiosis suppressed sub-
sequent colonization by different arbuscular mycorrhizal spe-
cies in the second side of the split-root system (Vierheilig et al.
2000). Although arbuscular mycorrhizal species were inocu-
lated simultaneously in all studies in our dataset, certain taxa
may be more efficient colonizers and may consequently inhibit
colonization by arbuscular mycorrhizal fungi that are more
beneficial to the host plant.

As said, our meta-analysis is based on results from short-
term inoculation studies performed in controlled artificial en-
vironments. Plants are grown separately in a soil that has been
kept moist, autoclaved, mixed with sand, and placed in plastic
pots. The soil is inoculated with a single arbuscular mycorrhi-
zal fungus that may not naturally interact with the host. Also,
the host is not exposed to naturally occurring arbuscular my-
corrhiza, pathogens, or plants. Therefore, caution is required
before extrapolating our results to natural settings with com-
plex community interactions and changing environmental
conditions (Lekberg and Koide 2014).

We used a multi-factor model with two categorical predic-
tors to assess the role of different arbuscular mycorrhizal taxa
and crop families on the response of crops to mycorrhizal
inoculation. Because data availability was dependent on what
was found in the literature, some combinations of levels of
predictor variable occurred more than others, generating in-
complete orthogonality between the explanatory variables of
our model 1. In such an unbalanced design, the fitted param-
eter values may be different from the observed parameter
values. Although some small differences between fitted and
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observed parameter values occurred in our dataset, the data
from the observed parameter values generally supported the
same conclusions.

4 Conclusion

Our findings may have important implications regarding ap-
plications of arbuscular mycorrhizal fungi in agriculture. They
could serve as a general guideline towards selecting
arbuscular mycorrhizal strains to be used as inocula in agri-
culture and potentially guide agricultural management prac-
tices. On the one hand, they confirm that a broad range of crop
plants can benefit from the inoculation with arbuscular my-
corrhizal fungi and that there is a high potential for additional
growth. On the other hand, our results suggest that specific
arbuscular mycorrhizal taxa-host plant combinations enhance
the growth of a crop and that, at least in stable and controlled
environments, inoculation with a single arbuscular mycorrhi-
zal species may be more beneficial to crop species, compared
to inoculation with a mixture of different arbuscular mycor-
rhizal taxa. In other words, our results indicate that there is no
“one-size-fits-all” arbuscular mycorrhizal fungus, and suggest
that there may be potential benefits in maintaining high dom-
inance of one very beneficial arbuscular mycorrhizal taxon.
Yet, caution is required when extrapolating our results to nat-
ural field conditions with more complex community interac-
tions and variable environmental conditions. Further research
should focus on finding the particular arbuscular mycorrhizal
taxon-host plant combination that will maximize growth re-
sponse, both ex situ and under field conditions. Finally, we
encourage researchers conducting arbuscular mycorrhizal in-
oculation experiments to report also on the marketable part of
the plant and not only on the root and shoot biomass.
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