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Asymptotic behavior of critical points of an energy
involving a “circular-well” potential

Petru Mironescu * Ttai Shafrir ¥

June 8, 2017

Abstract

We describe the asymptotic behavior of critical points of fQ[(l/Z)IVuI2 + W(u)/e?]
when ¢ — 0. Here, W is a Ginzburg-Landau type potential, vanishing on a simple
closed curve I'. Unlike the case of the standard Ginzburg-Landau potential W(u) =
(1-u|?)?/4, studied by Bethuel, Brezis and Hélein, we do not assume any symmetry
on W or I'. In order to overcome the difficulties due to the lack of symmetry, we
develop new tools which might be of independent interest.

1 Statement of the problem

Let Q c R? be a smooth bounded star-shaped domain. Let I ¢ R? be a smooth simple
curve and let g : 0Q2 — I" be a smooth boundary datum of degree d. Consider, for every
€ >0, a critical point u, € H;(Q;Rz) of the energy

1
Eo(u)= /Q 5

Here, W : R? — [0,00) is a smooth potential vanishing precisely on T'; for the exact
assumptions on W, see (1.5)—(1.10) below.

In the Ginzburg-Landau (GL) case, i.e., when W(u) = (1 — |u|?)?/4, the asymptotic be-
havior of {u.} when € — 0 was studied by Bethuel, Brezis and Hélein, first for minimizers
when the boundary condition has zero degree in [4], and later for minimizers and, more
generally, for critical points for arbitrary boundary datum in the seminal work [5].

The analysis in [5] for minimizers of the GL energy can be adapted with no signif-
icant difficulty to the case of general W, at least when W is non-degenerate, see (1.9).
Using more involved arguments, it is even possible to describe the asymptotic behavior
of minimizers in the case of a general boundary condition g that does not necessarily
take values into I'; see André and Shafrir [3].

W(u)
&2

IVu|? + ) (1.1)
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We address here the question of the asymptotic behavior of critical points of the en-
ergy (1.1), i.e., of solutions of

(1.2)

1

Aug = —2VW(u5) in Q
€

Us=g on 0f)

that need not be energy minimizing with respect to their own boundary condition. As we
will see below, the answer to this question requires new ideas and ingredients.

The method of proof in [5, Chapter X] for critical points of the GL energy is based on
a clever decomposition of the gradient Vu,. Its starting point is the identity

0 ( 0 ) N 0 ( 0 ) 0 (1.3)
— |Ug X —U — |Ug X —U = .
0x1 € 0x1 € O0xg ¢ 0x9 ¢ ’

which is a direct consequence of the fact that W(u) = W(|u|) in the GL case. We could not
find an analogous identity to (1.3) for general W. Our method is different and relies on
two main tools:

1. Selection of “good rays” (see Subsection 5.2).
2. A maximum principle for the phase (see Proposition 2.1).

Combined, they allow us to prove a crucial estimate, namely
E (u;)<C(lloge|+1). (1.4)

The first ingredient is new even for the GL energy (and leads to a simplification of
the original arguments in [5, Chapter X]), and the second one is much more subtle in the
case of a general potential W than in the GL case.

For the analysis of solutions to (1.2) we will need, in the spirit of [5], the additional
assumption that Q is strictly star-shaped. This assumption enables us to prove that the
second term in the energy (1.1) remains bounded when ¢ — 0, and then to perform the
“bad discs” construction a la Bethuel-Brezis-Hélein [5], which is the starting point of the
study of the location of the vortices.

The remaining part of the analysis is similar to the one in [5] (with some technical
complications), and leads to our main result, Theorem 1.1 below. In order to state it, we
first present all the assumptions on I' and W.

W :R? - [0,00) is a smooth function satisfying W 1({0}) =T (1.5)
and

I' is a simple closed smooth curve in R2. (1.6)
We assume without loss of generality that

IT| =2n (1.7)
and consider

7:S! — T an arc length parametrization of T. (1.8)
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We also suppose that W is non-degenerate in the following sense:
W) = pdist?(,T) if dist((,T) <&, (1.9)

for some 1,6 > 0 (and then it follows from (1.5) that (1.9) holds on any compact subset of
R?).

In addition, we impose the following coercivity assumption on the behavior of W at
infinity:

ow
B (z)=0for |z|=r> Ry, (1.10)
r

for some Ry > max{|z|;z€T}.

1.1 Theorem. Let Q) be a smooth, bounded, strictly star-shaped domain in R2, Let W, T
and 71 satisfy (1.5)—(1.10). Let g : 0Q2 — I' be a smooth boundary condition of degree d. For
each € >0, let u, denote a solution of (1.2). Then up to a subsequence we have

_ D _ Dn _
ugnqu*:r(em(Z)(ﬁ) (; ZN|) )in ct(O\fas,...an}),  (L11)
—ai —4anN

where
1. ay,...,an € Q are mutually distinct points.

2. Dy,...,Dy € Z\{0} satisfy the compatibility condition Z;V:le =d.

3. nis a harmonic function in Q.

4. a€(0,1).

In the spirit of [5], we may also prove that the configuration (ai,...,ay) is a criti-
cal point of a suitable renormalized energy associated with the degrees (D J,)§§f: , and the
boundary condition; see Remark 5.17 in Section 5.

Let us mention that non minimizing solutions do exist. For the GL energy, their
existence was established in different situations. In the special case where Q is the
unit disc and g(z) = 2%, with |d| = 2, the GL energy has critical points of the form
up(re?) = fo(r)e'®, and these solutions are not minimizing for sufficiently small ¢ [5].
Non minimizing critical points also exist when d = 0: F.H. Lin [10] constructed exam-
ples of “mixed vortex-antivortex solutions”. More specifically, for all N =1 there exists
gn :0Q — S of degree 0 and non minimizing corresponding critical points u ¢, such that

-1
Up, — Uy =" NE) i ( 27a4jN )(_1)1 )
" j=1 z—a 7.N |

Other existence results concerning non minimizing solutions for the the GL energy
were proved by Almeida and Bethuel [1] and by F. Zhou and Q. Zhou [13], using varia-
tional and topological methods. We believe that at least some of these methods lead to
the existence of non minimizing critical points of (1.2) for a general W, but we did not
investigate this issue.



Except for the upper bound (1.4), we did not establish a more precise estimate for the
energy E.(u.). In the case of the GL-energy, Comte and Mironescu [6] proved that the
following is true:

N
E.(u)=n (Z D?) lloge| +O(1). (1.12)
j=1

It would be interesting to generalize the validity of (1.12) to our setting.

The paper is organized as follows. In Section 2 we introduce some notation and prove
a maximum principle for the phase, that plays an important role in the remaining part
of the paper. In Section 3 we study the case of boundary data of zero degree (d = 0) under
the additional assumption that the solutions stay close to I', i.e., no vortices appear.
The techniques of this section are used in Section 4 to treat the more general case of a
boundary data depending on ¢ (again, for vortex-less solutions). This latter case is very
useful in the proof of convergence away from the vortices in Theorem 1.1. Section 5 is
devoted to the proof of the main result, Theorem 1.1.
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2 Preliminaries

2.1 Coordinates and Euler-Lagrange equations

Consider I's := {z € R?; dist(z,I') < 8}. For sufficiently small 6t (depending on T') the Eu-
clidean nearest point projection Il on I' is well-defined and smooth in I's. (see e.g. [8,
Sec. 14.6]).

Assume in what follows that u : @ — R? is a smooth map such that

ulx)el's., Vx€w. (2.1)



(Here, w c R? is some open set.) Locally in w, we can associate to u two smooth coor-
dinates, ¢ and ¢, such that [Tou = 7(e'?) and ¢ is the signed distance of u to I' (taken
with the plus sign inside I'). Analytically, this means that the functions ¢ and ¢ satisfy
(t(x), p(x)) € (=0T,6T) xR and

u(x) =1 (e“f’<x>) +Hx)7 (T (e“/’(x))) . (2.2)

Here, 7i(z) denotes the inward unit normal to I at the point z € T.
Equivalently, we have

M(u(x) =1 (e“”(x)) and #(x) = (u(x) - () - 7 (). (2.3)

Note that ¢ is globally defined, but ¢ is only locally defined in w, and that ¢ is (locally)
unique mod 27. It is useful to note that ¢ is globally defined when w is simply connected.

A simple calculation (see [2, Lemma 4.1]) shows that for u satisfying (2.1) we have
(denoting by x(z) the curvature of I' at the point z € I')

IVul? = (1-tx (1)) * IVl + VE? = (1 - tx (Mo w))? [Vl + Ve[, (2.4)
Moreover, for such u we have (using (1.9)) that
W) = ale,t)t? (2.5)

where a(g,?) is a smooth positive function, 27-periodic in the ¢-variable.

Assume next that u = u, is a solution of (1.2) in Q and that w < Q is such that (2.1)
holds. Then locally in w we may use (2.5) to write the Euler-Lagrange equations (1.2) for
the function u in the new coordinates ¢ and ¢ as follows.

a,t?
—div(aVe) = b|Ve|® - ——, (2.6a)
&

t
~At+ Qe+ art) = c|Vel?. (2.6b)
In (2.6), the coefficients a = a(p,t), b = b(g,t) and ¢ = c(p,t) are given by
a=(1-tx (1(e)))* = 1+0(t)
1
b= —5%0 = o) ) (2.7)

1
c= _Eat =0()

2.2 A maximum principle for the phase

By (2.5)—(2.7), for sufficiently small 6y € (0,6r) there exist positive constants co,...,cs
such that for |¢| < 6y there holds:

1-al < coltl, (2.8a)
2a — |ast| = cq, (2.8b)
lcl < ca, (2.8¢)
—| = csltl, (2.8d)
‘ﬂ‘ <2cy, (2.8e)
a
a
_‘P’ <cs. (2.8
a




Note that 6y depends only on T'.
Next we prove a maximum principle for the phase ¢, that will be useful throughout
the paper. For this purpose, we introduce two numbers, 0 < 1 < dg and m > 0, satisfying

c1

and
2¢481 + m(meg +¢3)83 < 1. (2.10)
Note that 6; and m depend only on I' and W.

2.1 Proposition. Let u = u, be a critical point of E. in a bounded simply connected
domain w, continuous on w and satisfying dist(u(x),I’) <61, Vx € w. Considert =t¢,p = ¢,
associated to u via (2.2). Then

min{¢ - ——|=min|{¢p - —|, 1la
s \PT e )TN
2 2
m mt
+—| = +—. 2.11b
mwax(cp 5 ) max| ¢ +— ) ( )

2.2 Corollary. If, in addition to the hypotheses of Proposition 2.1, we have u.(0w) < T,
then

t2 t2
ming < @(x) — mi~(x) < p(x)+ mi7(x) <maxy, Vx€cw. (2.12)
Oow ow
In particular,
ming < ¢p(x) <maxe, Vx€w. (2.13)
ow 0w

Proof of Proposition 2.1. First, we may rewrite the equation (2.6a) as

1 b At?
~Ap==Va-Vo+—|Ve|* - .
a a a&E
Using
Va -V =a,|Vol> +a;Vo-Vt=-2b|Vo* +a,V-Vt

yields

2

b @yt
—A(p:——IV(p|2+%V(p-Vt——(p—2. (2.14)
a a a e

From (2.6b) we deduce

£2
5 (2.15)

t2
.\ (5) = —|Vt|? - tAt = —|VE2 + ct|V|2 — Qa + ast)—
€



Combining (2.14)—(2.15) and invoking (2.8) gives

mt2
~A (7 - (p) <(meg + c3)|t||Vo|? — m|Vt|? + 2c4| V|| Vi]|

(2.16)
t2
+(C5—m01)£—2.
We also have
mi2 2
mee — 2,2 2 . 2
’V( 2 cp) m-t°|Vt|® = 2mitVe -Vt + |Vl 2.17)
>m2t2|Vt|? - 2m|t||V ||Vt + |Vl ?.
By (2.16)—(2.17) we obtain, for any £ > 0,
£2 £2 2
—A(m——q))—k'v(m——(p) <(meslt] +csltl - B) IVl? — (m + Em2t%) |Vt)2
2 2 (2.18)

t
+(2¢c4 +2km|t)) V||Vt + (c5 — mcl)—2.
€

Next we are looking for conditions that will insure that the right-hand side of (2.18)
is nonpositive. First, by our assumption (2.9) the last term is indeed nonpositive. The
sum of the first three terms on the right-hand side of (2.18) is a quadratic form in the
two variables |V¢|,|Vt| whose discriminant A is given by

N4 =(cqg+Emlt)? - (k —mcaltl — clt)) m (1 + kmt?)

2 3 (2.19)
=cy +m(mecg +c3)|t|—km (1 —2c¢4lt]|—m(meg + c3)|t]| ) )

By (2.10) and (2.19) it follows that for sufficiently large 2 we have A < 0, implying
that the right-hand side of (2.18) is nonpositive. For such % it follows that the function
v := mt?/2 — ¢ satisfies

AeR?) = ke’ (Av + E|Vv|?) 2 0 in w.

By the maximum principle, maxgv = maxgy, v, which is equivalent to (2.11b).
By similar calculations, the function w := m#?/2 + ¢ satisfies A(e*¥) = 0, implying
(2.11a). O

3 Asymptotic behavior of solutions without vortices

In this section we shall study the asymptotic behavior of solutions u, of (1.2) in a smooth
bounded simply connected domain Q in R%2. We assume a priori that the solutions are
vortex-less. Actually, we shall assume a stronger condition, namely that the solutions
are “sufficiently close” to I', in a sense to be precised below (see (3.1)). We are given a
smooth boundary condition g : 0Q2 — I' of degree zero and a family of solutions {u.} of
(1.2). Since g is of degree zero, we may globally write it as g = 7(e'¥?) for some smooth
po:0Q — R.
We next assume that

dist(u.(x),I) <61, Vx €, (3.1)



where 07 is chosen to satisfy the hypotheses of Proposition 2.1.
Then we may write, globally in Q and with smooth ¢, and ¢,

ux)=1 (e“”f(x)) +te(x)n (T (e“”g(x))) ,VxeQ. (3.2)
Let ¢ denote the harmonic extension of ¢g to (2 and define the I'-valued map u¢ by
Ug:=T (el() . (3.3)

The main result of this section establishes, in the spirit of [4], a convergence result of u,
to the limit u.

3.1 Theorem. Let, for 0 < € < €), u, denote a solution of (1.2) satisfying (3.1). Then we

have
ur—ugin C**(Qase—0,Va<l, (3.4)
[Auelloo = C, (8.5)
lue — wolloo < Ce?, (3.6)
IV(ue —uo)lloo < Ce. (8.7

Theorem 3.1 is an immediate consequence of several intermediate estimates (Lemma
3.2 to Proposition 3.9) that we now state and prove.

We start with two simple estimates satisfied by the solutions. These estimates are
valid in any bounded domain (2 provided |u.| < R on 0Q.

3.2 Lemma. We have
luelliLo) < Ro, (3.8)

where R is given by (1.10).

Proof. We claim that the set E := {x € Q; |u.(x)] > Ro} is empty. Indeed, this follows
from the maximum principle for subharmonic functions since, on the one hand, we have
lug| = Ro on OF and, on the other hand, u, satisfies in £

2
Aluel®) =2 (IVuel? + Aug - ue)) = S VW) 120

(the latter inequality following from (1.10)). O
From Lemma 3.2 we deduce the following gradient bound.

3.3 Lemma. We have for some constant C,

C
IVuel Lo < pe (3.9

The proof of Lemma 3.3 uses the same rescaling argument as in [4] and is therefore
omitted.

Next we prove:



3.4 Lemma. We have lim,_ ¢, = 0 uniformly on Q.

Proof. Arguing by contradiction, assume that for a subsequence ¢, — 0 and a sequence
of points {x,} c Q2 we have lim, . t¢,(x,) = T with T # 0. We distinguish two cases:

dist(x,,00)

1. lim 00.
n—oo £n
dist 0Q
2. liminfM < 00.
n—o0 En

dist(x,,,0Q)
—, by

In Case 1 we define a rescaled sequence on Bg, (0), with R, :=
&n

Ue,(x):=ug, (X, +Epx). (3.10)

By our assumptions, R,, — oo and, by standard elliptic estimates, a further subse-
quence, still denoted by {z,,}, converges in Cllof (R?) to a limit @, solution of A% = VW (&)
on all of R? and such that dist(zi(x),I’) < 81, Vx € R?. The associated ,$ then solve the
system (2.6), with € =1 on R2 and #(0) = T # 0. But then the proof of Proposition 2.1
shows that the two functions e*’ and e*?, where

_ miz and & mi? e
vi=——@pand w:=—+ @,
2 ¢ 2 ¥
are subharmonic and bounded on R2. It follows that both ¥ and @ are identically constant
in R2, and therefore the same holds for 7 and @. In particular =T # 0 and V@ = 0. But

then, in view of (2.8b), equation (2.6b) is violated. Contradiction.

Consider next Case 2. We may assume that L = nh_)ngO w exists. By Lemma 3.3,
we have L > 0. Arguing similarly to Case 1 we define the rescaled sequence {u.,} by
(3.10). Again, a subsequence converges to a solution of Au = VW(u), this time on a half-
plane H, with a constant boundary condition & =y on 0H, for some point y €T

With no loss of generality, we may assume that H = R x (0,00). We know that for
some point (xg,yo) € H with yy = L we have #(xg,L) = T # 0. In addition, the boundary
condition Z =y implies that the corresponding coordinates # and ¢ satisfy £ = 0 on 0H
and ¢ = ® =const. on 0H.

As above, the functions e’ and e*? are subharmonic. Since they are also bounded,
the maximum principle applies on H and we obtain that both functions attain their

maximum on 0H. We obtain that

72 =2
t t
CDs@(x)—mT(x) <)+ 2 2(x) <@, VxeH.
It follows that = 0, contradicting #(x¢) =T # 0. O

Next we prove strong convergence of {u.} to u in H'.

3.5 Proposition. As € — 0, we have

1
ue — ugin HY(Q) and E (u;) — 5/ [Vuol?. (8.11)
Q



Proof. Write ¢ =w.+( (see (3.3)). The phase ¢, is determined up to an integer multiple
of 2. We fix ¢, by imposing

We =0 on 0Q). (3.12)
Note that by Corollary 2.2 we have
lYelloo < 2M := 2|l @ollco- (3.13)

We rewrite (2.6a) (dropping the subscript €) as

2

. . 2 9 a(pt
—div(aVy) =div((e - 1)V{) + b (|V1//| +2Vy - V{+ V(| ) - 8—2 (3.14)

Multiplying (3.14) by w € H, 3((2) and integrating yields

fmne=
Q Q

Using Cauchy-Schwarz inequality, (3.13), (2.8a), (2.8d), (2.8f), Lemma 3.4 and Poincaré
inequality, it follows that for some constant C = C(g) and for sufficiently small € we have

2
/|w|2sc/ t—z (3.15)
Q Q€

Similarly, we rewrite (2.6b) as

2 9 a,t?
(1-a)V{-Vy +b (VY| +2Vy - VI + V(| )w—g—2w .

—At+(2a+att)i2 = c(IVyl? + 2V - V{ + |V 1?). (3.16)
&

Multiplying (3.16) by t € H é(Q), integrating and using (2.8b) leads to

J

Using (2.8b) and (2.8¢) in (3.17) gives

J

Plugging (3.15) into (3.18) yields (using Lemma 3.4)

J

Combining (3.15) and (3.19), we find that

2
IVt +(2a + att)z—Q] = /Qct (V| +2Vy -V + VL), (3.17)

t2
|Vt|2+c1€—2 sCIItlloo(1+/|V1//|2). (3.18)
Q

2

t
IVt + 5|= o(1). (3.19)

/ V% = o(1). (3.20)
Q

The conclusion (3.11) clearly follows from (3.19)—(3.20). O

10



3.6 Remark. From the Euler-Lagrange equation (1.2), Lemma 3.2 and standard elliptic
estimates, we get the following uniform bounds, when ¢ is bounded away from zero, i.e.,
for {uelese,:

luellwer < C(p,eo), Vp <oo, and [u.llcre <Cla,ep), Va<1. (3.21)

Combining (3.21) with Proposition 3.5 we obtain a uniform bound for E.(u.) for all € > 0.

3.7 Lemma. {¢,} is bounded in WH*(Q).

Proof. We use the same notation as in the proof of Proposition 3.5 and write ¢, =y, +{ =
v + (. We will actually show that

/ Vet = 0(1), (3.22)
Q

that clearly implies the result for small € (and then the result for any ¢ > 0 follows from
Remark 3.6). Rewrite (2.6a) as

~Ay = b|Vy|® + 26V -V + b|V{|? + div ((a — DV + (@ — 1)Vy)
R-R,
cx(ptz 9 .
1 -—5—=blVy[*+R+S inQ, (3.23)
\_.i_/
S=S;
v =0 on 0Q).

We split v = w1 + w2 + 3 where

— Ay =b|Vy|?, ~Ays =R, ~Ay3=S in Q
Y1 =bIVyl®, -Aya =R, -Ays in {2, (3.24)
Y1 =w2=w3=0ondQ.
Fix any p > 2. By standard elliptic estimates, using (2.8a) and (2.8d),
IVyal, <C1{I126Vy - V|, + IIbIV(|2|Ip + (@ -V, + I@— DVl ,} (3.25)

<Calltleo (IVYlp +1).

2
Next we estimate w;. Let p > 1 and set ¢ := sz . Then, by Sobolev embedding (in
p

1 172 1/
two dimensions), W24(Q) — WL2(Q). Note also that 50 = - + TP’ hence
q

||f||§q <\fl2lfllp, ¥ f€LP(Q). (3.26)
By elliptic estimates, (2.8d) and (3.26) we obtain

IVy 1l <Cillyillyze < C2llbIVylPlly < Cslitleol VY ll3,

(3.27)
=CylltllooIVl2VYlp < o(D) - Elool Vi llp,

where we used (3.20) in the last inequality.

11



Finally, we turn to 3. Multiplying (2.6b) by ¢, integrating and using (2.8b) and the
Cauchy-Schwarz inequality yields

C1
;ntné < /QctIV(,o|2 < CltllzllVel3,

implying that (for small ),

/t4s/t25054||w||3. (3.28)
Q Q

Recall also that by (3.19),
i£ll2 = o(e). (3.29)
Again by elliptic estimates and (3.26) we get
C C C
IVyslp < 1821 = 15, < It . (3.30)

Choose p = 4. Using (3.28)—(3.29) in (3.30) gives:

IVyslla < 8% -0(e)-€llVollg < o(1)- (IVyllg+1). (3.31)
Combining (3.25),(3.27) and (3.31) and using Lemma 3.4 we obtain
IVylls<o)-(IVylla+1),
and (3.22) follows. 0

3.8 Lemma. {u,} is bounded in H3(Q).

Proof. Again by Remark 3.6, it suffices to consider small e. Using the L*bound of
Lemma 3.7 for Vg, in (3.28) yields

/ 2 < Cet. (3.32)
Q

Since |[VW(u.)| = O(t.), we deduce from (3.32) that the right-hand side of the equation in
(1.2) is bounded in L2(Q2) and the conclusion follows from elliptic estimates. O

3.9 Proposition. We have

Itelloo < Ce?, (3.33)
[Vtcloo < Ce, (3.34)
lWelloo < Ce?, (3.35)
IV elloo < Ce. (3.36)

12



Proof. We use an argument from [4, Step B.4]. Fix ¢ > 2. Multiplying (2.6b) by |£|972¢/(2)?~1
and integrating gives

1¢1\? (=1, 402 1\
01/9(8_2) = Qgg(q_l)ltl |Vt +(2a+att)(£—2)

I )H t
= [ clVoI*|5| .
/ch i (82 €2
t
We conclude, using Holder inequality and (2.8¢), that the function f, = f := — satis-
€
fies

(3.37)

c1||f||3s/c|V<p|2|f|q‘1scznvwn%qufng‘l,
Q
ie.,
C
Ifllg < = 1Vel,. (3.38)
C1

By Lemma 3.8 and Sobolev embedding, {Vu,} is uniformly bounded in L"(Q2) for every
r €[1,00), and we obtain from (3.38) that ||, < C,. It follows that for each g > 2 the
right-hand side of the equation in (1.2) is bounded in L9(Q2). Hence {Vu,} is uniformly
bounded in L*°(Q2), and therefore

IVgllo<C, (3.39)
for some constant C. Going back to (3.38) we obtain that
cg\ =2
Ifllg = (0—2) C QM. (3.40)
1
Passing to the limit ¢ — oo in (3.40) yields
co\=2
1 lloo < (—2) c,
c1

and (3.33) follows.

Next, using (3.39) and (3.33) in (2.6b) gives the |Af|lo < C. Combining this estimate
with (3.33) and applying an interpolation inequality (see [4, Lemma A.2]) yields (3.34).
To prove (3.35)—(3.36) for v, we use (3.39) and the estimates

a—-1=0()=0(?) and b=0()=0(?),
which allow us to rewrite (3.23) in the form
Ay =F +divG, with [|[Flle = O(%) and [|G oo = O(e?).

The estimate (3.35) follows by elliptic estimates and finally (3.36) is deduced via in-
terpolation as above. O

The proof of the main result of this section is an easy consequence of our previous
estimates.

Proof of Theorem 3.1. Since, by (2.5), [VW(u.)| = O(¢,), (3.5) follows from (1.2) and (3.33).
By standard elliptic estimates we obtain that {u.} is uniformly bounded in C1A(Q) for all
B <1, and (3.4) follows by the Arzela-Ascoli theorem (the identification of the limit as ug
follows from Proposition 3.5). Finally, (3.6) is a consequence of (3.33) and (3.35), while
(3.7) follows from (3.34) and (3.36). O
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4 Boundary condition depending on ¢

In the next sections we shall also need a version of Theorem 3.1 in the case where the
boundary condition depends on &, and does not necessarily take values into I' (analo-
gously to [4, Theorem 2] which deals with minimizers for the GL energy). For  as in
Section 3, assume that the family {g.} of maps g.:0Q — R2, ¢ > 0, satisfies:

||gz-:||H1(aQ) =C, (4.1)
/ W(g,) < Ce>. (4.2)
0Q

From (4.1)—(4.2) it follows in particular that, possibly up to a subsequence,
8¢ — g in H°(0Q)), V0 <s <1, and thus in C%(0Q), Va € (0,1/2), (4.3)

for some g € H1(0Q;T).
For each € >0 (or € €(0,¢&qp)), let u. denote a solution of

1 .
{Aus = g—sz(ue) in ) 4.4)

Us =8¢ on 0Q)

We now make the crucial assumption that u, satisfies (3.1) (at least for small ). Then
we have

degllog, =0 and thus degg =0. (4.5)

(Recall that IT is the Euclidean projection on I'.)

As before, we write g(x) = 1('?°®), with ¢o € H(0Q;R). Define, in Q, the I'-valued
map ug by (3.3), i.e., ug = 7(e¥), where ( is the harmonic extension of @0 to Q2. Our main
result establishes the convergence of {u.} towards uy when € goes to zero:

4.1 Theorem. Under the assumptions (4.1)-(4.4) and (3.1) we have, as € — 0,

Uge — Uq strongly in HYQ) and in Co(ﬁ), (4.6)
[Auel L) < Ck, (4.7)
ug — ug strongly in C¥*(K), Va <1, (4.8)
lue — uolLow) < Cxe? and V(e — uo)llLox) < Cke, (4.9)

for every compact K cc ().

The proof follows similar steps to those of Section 3 and part of the analysis carries
over with slight modifications to the current situation. This is the case for the analogous
results to Lemma 3.2 and Lemma 3.4 that we state in the next proposition.

4.2 Proposition. We have |u;lloc < Ry and lim,_.gt. = 0 uniformly on Q.
Next we turn to an H'-convergence result, generalizing Proposition 3.5.

4.3 Proposition. We have

1
us — ugin H(Q) and E (u;) — 5/ [Vuol?. (4.10)
Q
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Proof. We define the pair of functions ¢, and ¢, associated with u. via (3.2). We let (,
denote the harmonic extension of .5 to 2. Analogously to the proof of Proposition 3.5,
we then write ¢, = v, + {,, with ¥, =0 on 0Q.

Clearly, (4.3) implies that, possibly after subtracting suitable integer multiples of 27
from the ¢.’s, we have @90 — @o in H 12(5Q), and thus

lim |vcg|2:/|vc|2. (4.11)
E—*O Q Q

Repeating the calculations at the beginning of the proof of Proposition 3.5, with (.
playing the role of {, yields, analogously to (3.15),

t2
/|wg|zsc/ —=. (4.12)
Q Q€

Now, since in the current setting ¢, is not identically zero on 602, multiplying (3.16) by ¢,
integrating and using (2.8b) yields

/ / ot
= tga_
Q oq on (4.13)

+/ cte (|VWE|2 +2V’W5-V{E + |V(£|2)
Q

2

t
IVte|? + (2a + attg)g—‘;

where n stands for the outward normal on 0Q2. In order to deal with the boundary term
in (4.13), we use a Pohozaev identity type argument, as in [4, Proposition 3]. So let
V =(V1,V2) be a smooth vector field on ) satisfying V =n on 0{2. We consider the vector
field V- Vu, = (V- V(ug)1,V - V(ug)2). We take the scalar product of both sides of the
equation in (4.4) and V - Vu, and integrate. A direct computation (see [4]) gives

/(Aug)(vvug):/
Q Q
_/ ((Vl)x2+(V2)x1)(u£)x1'(ué‘)xg (414)
Q
2 2
3 Lolanl o] )
2 Jaa

oo
(Here, do stands for the tangential derivative on 0L2.)
On the other hand, we have

1.
5 divV IViee 2 = (VD) @)y 12 = (Vo) (1), 12

Oou,
on

1 VW(ug)-(V-Vug):i/V-V(W(uE))
82 Q 82 Q
1 (4.15)
:—2(—/(diVV)W(uE)+/ W(ug)).
€ Q 0Q
Equating (4.14) and (4.15), using (4.1), (4.2), (4.11) and (2.5) yields
2 2
/ Z—ij sCl/ (Z:; <Cy (1+/ IVug|2+W£L2Lg) )
Q. 4Q Q , (4.16)

<Cjs (1+/
Q

t
|Vtg|2+|wg|2+£—§ )
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By (4.16), the Cauchy-Schwarz inequality and (4.2) we obtain

1/2 1/2

ot ot |2 . 9 g 12
t.— =<Ce¢ — =C'e|l+ [Vie|® + |Vl +—5 . 4.17)
Q. on 00 on Q €
Substituting (4.17) in (4.13) leads to
#2 #2 1/2
/ IVtel* +c1— scg(l +/ Vel + Vel + = )
Q £ Q £ (4.18)
+C||tg||oo(1+/ |wg|2).
Q
Combining (4.12), (4.18) and Proposition 4.2 we get
2
2 te
/ |ViEe|”+ 2| = o(1). (4.19)
Q
Using (4.19) in (4.12) finally gives
/ IVyel? = o(1), (4.20)
Q
and (4.10) follows from (4.19)—(4.20) and (4.11). O

Analogously to Lemma 3.7, and in particular to (3.22), we have:

4.4 Lemma. v, — 0 in W4(Q).

Proof. We first notice that since {¢p;|sq} is bounded in H 1(6Q) by (4.1), the family {(,} is
bounded in H32(Q). Since H32(Q) — W*(Q), we get:

{¢} is bounded in W*(Q). (4.21)
Arguing as in the proof of Lemma 3.7 we use (3.23) to split

YVe=Y1etP2etTY3e.
The same arguments that led to (3.25) and (3.27) (with p =4) yield

IVy2,ella<Cliteloo (IVela+1) (4.22)
and

IV1ella < Cllyellweas < o(1)- lEellooll Vipells. (4.23)

The only difference with respect to the case where g. = g stands in the estimate of
¥3¢. Multiplying (2.6b) by ¢, and integrating gives

2. € 2
IIVt£||2+€—2||t£||2 S/

ot
Cts|V(,0£|2+/ tg—ESC||t£||2||V¢g||i+C£, (4.24)
Q oo On

where in the last inequality we used the Cauchy-Schwarz inequality and (4.17) combined
with (4.19)—(4.20).
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Next we claim that
Itel2lVeel3 <e, (4.25)

for sufficiently small €. Indeed, arguing by contradiction, assume that (4.25) does not
hold, i.e., for a sequence €, — 0 we have

e, 21 Ve, I3 > £n. (4.26)
Then, from (4.24) we get that

C1 2 2
8—2||tgn 15 < Clite, 2l Ve, I3,
n

and the argument of the proof of Lemma 3.7 applies, so thanks to (4.21) we get, as in
(3.31), that

C
IVyse, lla < 8—2 c0(en) €xlIVQe, l4 =0(1)- (llVWgn 4+ 1)- (4.27)
n
From (4.22),(4.23) and (4.27) we obtain that (3.22) holds, and therefore
Ve, lla<A, (4.28)
for some constant A > 0. It follows from (4.28) and (4.26) that
= o
En ll2 142

which contradicts (4.19).
Using (4.25) in (4.24) gives

C1
IVEell3 + St I3 < Cé, (4.29)

which implies, in particular, that

/ |te|? = o(1) / t2 = o(e%), (4.30)
Q Q

for any g > 2. By (4.30), Sobolev embedding and elliptic estimates we obtain

IVysella < CllAyselys <C ( / ESW) ==  0(e9%) = o(e4), (4.31)
Q

Combining (4.22)—(4.23) with (4.31) we are led to
IVyella <o) (IVyela+1),
implying that |Vw,|l4 = 0(1), as claimed. O

We next prove local estimates in Q. It suffices to consider a sequence €, — 0, but for
simplicity we will drop the subscript n.

Fix some small o > 0, depending on (2, such that the nearest point projection onto 0Q2
is smooth in the set {x € Q; dist(x,0Q) < r¢o}. Set, for 0 <r <rg, Q, :={x € Q; dist(x,0Q) >
r}, which is a smooth domain. Using (4.29) and the Fubini theorem we can find some
r=rg such that ro/2<r <rgand

/ 2
0Q,

t
Vte|*+ 5| < Ce. (4.32)
€
For such r, we claim the following.
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4.5 Lemma. We have
A

Proof. By (4.32) and the Cauchy-Schwarz inequality we have

tg_
0Q, On

Applying (4.24) on €, using (4.34) and Lemma 4.4 yields

2
IVtel* + 5| < Ce™. (4.33)
&

<Cel2. %2 = 2. (4.34)

#2 1/2
/ IVtg|2+clg—; sc(/ ti) +Ce?, (4.35)
Q, Q,
which clearly implies (4.33). O
4.6 Lemma. We have
||Vu5||Loo(Qr) <C. (436)

Proof. Choose 7 € (rog/6,ry/5) satisfying (4.32) on 0Q27. Then the above arguments apply
for Q7. In particular, (4.33) holds on Q7 and using Fubini theorem we can find s €
(Fo/4,r¢/3) such that

/ags

Since |VW(u,)| = O(t,), the estimate (4.33) on Q7 implies that IAuellr2q, = 0(1). By
standard interior elliptic estimates, it follows that

2
VEc*+ 5| = Ce”. (4.37)

luellg2,) < C,
and then, by Sobolev embeddings,
IVuellLr,) < Cp, Vp €l1,00). (4.38)

Next we argue similarly to the proof of Proposition 3.9. For any g > 2, multiplying (2.6b)
by |t:172t./(€2)?1 and integrating over Q; gives

|tel\? (g-1)
€1 =] = 2(g-1)
Q. \ € o, 1e¥4

tel\272 ¢ tel\272 (te) (Ot
et () s L E) ()

Qs & a0, \ € on
We apply the above with ¢ = 5/2. Using (4.37) and Cauchy-Schwarz inequality we esti-

mate the boundary integral by

1t Y2 (2, (ot 1 1/2 12
Ju L&) (&G = U ) U, e
00, \ € € n €° ooy 0Qs (4.40)

1
:£—3~o(€2)-0(8): o(1).

t
|t£|q 2|Vte| +(2a+att£)(|g£|) ]
(4.39)
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t
From (4.39)—(4.40) and Hoélder inequality we deduce that the function f; := —; satis-
€
fies

cillfell o) < /Q eIV PIfel® + 0(1) < cal Vel 5 I fel3 o, +0C(1).
S

Applying (4.38) to the above yields

IfellY 5, < Clfeldae, , +o(D),
implying that | f:| L52(Q,) = O(1) and therefore ||Aug|| L52(Q,) = O(1). By elliptic interior
estimates we obtain that luellweseq,) = 0(1), and (4.36) follows by Sobolev embedding.

O

We are now ready to complete the proof of the main result of this section.

Proof of Theorem 4.1. The strong convergence u, — ug in H(Q) was established in Propo
sition 4.3. To complete the proof of (4.6) we need to prove the uniform convergence. This
follows from the two uniform convergences on Q: ¢, — 0 (see Proposition 4.2) and v, — 0
(which results, by Morrey theorem, from the Wl4-convergence that was established in
Lemma 4.4).

For the proof of (4.7) we only need to verify the following estimate:

I¢ell ooy < Cce?, (4.41)

for every compact K cc Q). We shall prove (4.41) using an argument from [4]. We first
use Kato’s inequality in (2.6b) to get

|2l
Altel = sgn(te) Ate = (2a + arte)— — c|Vepe|* sgn(t,).
Hence, by (2.8b) and (4.36),
[Zel )
—A|t£|+cl—2§Cr in Q,. (4.42)
€

Now recall [4, Lemma 2] that states that the radial solution w = w(r) of

—e2Aw+w=0 1in Bg(0) (4.43)
w=1 on 0BR(0) '
_ 3
satisfies, for € < ZR’
w(r) < eT"BYV@ER) 1 Bo(0). (4.44)

Let d := dist(K,0Q2), so that (4.42) is satisfied with r := d/2. Let x¢ be an arbitrary point
in K. With no loss of generality we may assume xo = 0. From (4.42)—(4.44) and the
maximum principle we obtain that

|te| < Ce® +exp [v/er(lx|? — d%/4)/(2ed)] in B 4/2(0).
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In particular,

|£:(0)|
2

2= C+ 812 exp [—d /c1/(8¢)]. (4.45)

Since the right-hand side of (4.45) remains bounded as € — 0, (4.41) follows, complet-
ing the proof of (4.7).

From (4.7) and elliptic estimates we obtain that u. is bounded in Wli’cp(Q) for every
p < oo, and (4.8) follows from Morrey theorem. Finally, (4.9) follows from the previous
estimates by the same arguments as in the proof of Theorem 3.1. O

We will need in the next section also the following variant of Theorem 4.1 and The-
orem 3.1. The proof is very similar to the proofs of these theorems, and is therefore
omitted.

4.7 Theorem. Let Q be a smooth bounded and simply connected domain in R2. Let
xo € 0Q2 and suppose that R > 0 is sufficiently small such that 0Bg(x¢) N OS2 consists of
exactly two points.

Suppose that g : 0(Bgr(xg) N Q) — I' is a continuous map of degree zero such that the
restriction 8100nEBr(x0) is smooth. Let @o be a continuous function such that g = t(e'*¥°).

Let { be the harmonic extension of ¢o to QN Bgr(xg) and set ug := 7(e¥).
For each € >0 let g, : 0(Q N Bg(x)) — R? satisfy:

ge=gon 0QNBgr(xy) (4.46)

I&ell mr10BR (x0)n) = Cs (4.47)

/ W(g,) < Ce?, (4.48)
0BR(JC())HQ

ge— g in H(0Bg(x0)nQ), 0<s<1. (4.49)

Let u, be a solution of (4.4) on QNBRg(xg) (instead of ) satisfying (3.1). Then for every
R1€(0,R) we have:

”Aué‘”L“(ﬁﬂBRl(xo)) <CRry, (4.50)
ue — ug in CH*(Q N Bg, (xo)), (4.51)
lue —uo ”Loo(ﬁﬂBRl(xO)) = CR1 827 (4.52)
IV = w0l poo@npp, (o) = CR1E- (4.53)

Note that (possibly after passing to a subsequence) the condition (4.49) actually fol-
lows from conditions (4.46)—(4.48) via the compact embedding H(0Br(x¢)NQ) — H(0Br(xo)N
Q),0<s<1.

5 General solutions

5.1 Preliminary estimates

Assume that Q is a smooth bounded domain in R?, strictly star-shaped with respect to a
point z € Q. With no loss of generality, we may assume that z =0, and thus

x-n=x-n(x)=c>0, Vxeo) (5.1)

20



(with n = n(x) the outward normal to 02 at x € 0Q).

Let g :0Q2 — I' be a smooth boundary datum of degree d. For each € > 0, let u. denote a
solution of (1.2). As in the previous sections, we denote by #(x) = f.(x) the signed distance
of ug(x) to I'. In contrast with the previous sections, we do not impose a condition like
(3.1), and thus we allow solutions with vortices.

We start with some basic estimates satisfied by the solutions u.. We first notice that
the results of Lemma 3.2 and Lemma 3.3 hold true since their proofs do not rely on the
degree of g.

Next we prove a Pohozaev identity that does rely heavily on the star-shapeness as-
sumption.

5.1 Lemma. We have

_|_
o €2 oQ

for some C independent of ¢.

2

Iuel” o (5.2)

on

Proof. The proof is standard and requires only a simple adaptation of the proof in [5].
We argue as in the proof of Proposition 4.3 multiplying both side of the equation in (1.2)
by V - Vu,, but this time with V = (x1,x9). For this choice of V, (4.14) reads

ou,

1
/Aug-(V-Vug):/ -(x-Vug)——(x-n)IVugI2 , (5.3)
Q Q. On 2
while (4.15) becomes
1 1 2
£ Ja & Ja £ Ja
Combining (5.3) with (5.4) yields
2 1 ou,|? 1 dg|? du, 0g
R W + — . = — . = = . -—,
82/9 (ue) Q/ag(x n) on /aQ 2(x n) oo (x-0) on 0o
which, in view of (5.1), clearly implies (5.2). O

Since by (1.9) there exists 0 < yg < p such that W() = o dist2((, I') for { € Bg,, it
follows from (5.2) that

/ dist®(u(x),T)
—_— S
Q

: c. (5.5)

Using the two estimates (5.2) and (3.9), we can show, using the argument of [5, Chap-
ter 4], that for any small 62 > 0 (we will always take d9 < §1, see Proposition 2.1) the set

Se 5, = {x € Q; dist(ug(x),I") > 62} (5.6)
can be covered by a finite number of “bad discs” {B Ag(x;:.)}ﬁil with
(<5177 < Sen, (5.7)
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where k. is bounded uniformly in €.
Indeed, we first use (3.9) to choose A > 0 such that

dist(ug(x),I) > 69 = {B,lg/4(x) c Q and dist(u(y),I)>62/2,Vye€ B/lg/4(x)}. (5.8)

Then, we take a collection of mutually disjoint discs {B 15/4(955.)}?;1 which is maximal with
respect to the property that (5.7) holds true. Note that by (1.5) there exists n =1(d2) such
that

W(z)>n,VzeBg, \I's,2, (5.9)

where I's,0 = {z € R2;dist(z,T) < §9/2}. Taking into account (3.8) we get from (5.8)—(5.9)
that

1
= W(ue)=nA%n/16, j=1,... k.. (5.10)
€ Be/alx?)

The uniform bound for k. follows by combining (5.10) with (5.2). By construction S, 5, ©
UfilB Ag(xj). Next, by increasing A if necessary, we may also assume that the bad discs
are well-separated, in the sense that B4,15(x§.) NBape(xy) = @ if j # ¢ (this may results in
decreasing the value of &.).

Passing to a subsequence €, — 0, but continuing to denote €, by ¢, for simplicity, we
may assume k. =k is independent of €. Note that outside the bad discs the function #(x)
is well-defined and that we have

k
|6(0)] < 82, Vx € Qe := O\ [ Bae(x?). (5.11)
j=1

The definitive value of § satisfying 62 < §1 will be chosen in Section 5.3; see the proof
of Proposition 5.12.

We next prove that the xj’s are relatively far away from 0().

5.2 Lemma. We have
dist(xj.,aQ)
lim————— =

oo, j=1,...,k. (5.12)
e—0 £

Proof. We argue by contradiction and assume that (5.12) does not hold for some j along
some sequence €, — 0. For notational simplicity, we drop the subscript n. We will obtain
a contradiction via a blow up analysis. Let, for small ¢, y* denote the projection of xj

onto 4Q, and let ¢ denote the rotation of R? such that %#¢(0,—1) = n(y®). Consider
1 _
ve(w):=u (y* +eRx), x € = (%°) 1 (Q-»%).
€

Using (3.8) and (5.2), together with the boundary condition in (1.2), we find that, up
to a subsequence and uniformly on compacts of H := {x € R?; xy > 0}, v, converges to a
solution v of

Aw=VWw) inH

w=woel on 0H . (5.13)
3 ’ '
o on 0H

O0x9
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here, wy is a constant. Let us note that w is not a constant. Indeed, we assumed by
contradiction that (5.12) does not hold, and then the fact that w is not constant follows
from (5.7).

Consider now the map

{w, in H

- 5.14
wo, inRZ2\H 6.14)

w=

In view of (5.13), the map w satisfies Aw = VW(@) in R2, first in the distributions
sense, then, by elliptic regularity, in the classical sense. By unique continuation, we
have w = wg. (The unique continuation property follows from [12]; there, w is a scalar
function, but this is not relevant for the proof. For an explicit result relevant for vector-
valued functions, see e.g. [11, Appendix].) This contradicts the fact that w is not a
constant, and achieves the proof of the proposition. O

Now that we know that the “bad discs” Bj.(x%) are well-inside 2, we may define
the integer dj. as the degrees of u, on 0B, (x%). By (3.9), these integers are uniformly
bounded, so we may assume that their values are independent of ¢ as well, and thus

deg(u,0B:(x)=d;, Ve, j=1,...,k. (5.15)

In the sequel, in case there is no risk of confusion, we shall often drop the subscript

Our next estimate yields in particular a simple answer to Open Problem 19 in the
book [5] (previously solved in [6] using a different method); see Corollary 5.5 below.

5.3 Proposition. We have st IVt2<C.

Proof. The proof uses the following pointwise inequality:
IVW(2)|2 < MW (2), Vz € Bp, , (5.16)

for some M > 0. The validity of (5.16) for z in a neighborhood of T" follows from (2.5); the
extension to arbitrary z € Bg, is clear (see also Remark 5.4 below for a simple alternative
argument valid also for degenerate W). Arguing as in [5, Ch. V], we obtain using the
Galgardo-Nirenberg inequality, (5.16) and (5.2) that
1 1/2
IVullpay <Cillull i3 luld? < Callullfs < 03{—2||VW(u)nz + 1}
€ (5.17)

1 1o 1/2 C5
SC4{€—2”W(U)”1 +1} 581—/.

Next we multiply (2.6b) by ¢ and integrate over Q.. Using (5.17), (2.8b) (recall that
09 <01 <0p) and (5.5) we get

A

k ot

Jj=1/0Bje(x5) on

2
cit ~
VE? + — ]501/ IVopl?|¢] +
2 Q,
1/2

B 1/2 - R .2 o
<Cq (/ |Vu|4) / tZ) +C25C’1C§ (/ —2) +C9<Cs.
€ € Q, €

ot
For the bound of the boundary integrals we used the estimate ‘a—‘ < —on 0B Ag(xj)
n|l ¢

(by (3.9)). The conclusion of the proposition is a direct consequence of (5.18). O

(5.18)
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5.4 Remark. The inequality (5.16) was proved by Dieudonné in [7], in connection to
his simplfied proof to a result of Glaeser [9] about the square root of a nonnegative C2-
function. A variant of Dieudonné’s argument, valid for any W € C%(R?), goes as follows.
Fix a function ¢ € C‘ZO(IRZ;[O, 1]) such that { =1 on Bg, and set, in R2, F(z) = &(z2)W(z) +
(1-&(2))|z|2. Note that F is a smooth nonnegative function on R2. Let

1
K := Zmax||D%F(2)|,
2 zeRr2

where ||A|| stands for the spectral norm of the matrix A. By Taylor formula

0<F(z+h)<F(z)+VF()-h+ K|k, (5.19)

VF
for every z,h € R2. Applying (5.19) for A := —% yields |VF(z)? < 4KF(z), whence

(5.16).
5.5 Corollary. Let u. satisfy (1.2). Then

/ IV (dist(ue, D)2 < C, Ve >O0. (5.20)
Q
In particular, in the GL case, i.e., W(u) = (1 - |u|?)?/4, we have

/|V|u£||2SC,V£>O. (5.21)
Q

Proof. Since

IV(dist(ue, Illoo = IVuelloo <

o Q

(by (3.9)), we have

/ IV (dist(u,, D)% < C. (5.22)
Uiy Bre(x9)

The result of the corollary readily follows from Proposition 5.3 and (5.22). (Recall that,
in Q., we have dist(u.,I') = |¢,].)
In the GL case, it suffices to note that dist(u.,I) =1 — |ug|. O

5.2 A O(|log ¢|) bound for the energy
The main result of this section is the following.
5.6 Proposition. We have E.(u.) <C(]loge|+1), Ve > 0.

In view of Proposition 5.3, of (3.9) and (5.2), it suffices to obtain the following bound
for the energy of the phase ¢:

/ IVp|? < C(|loge| +1), Ve >O0. (5.23)
Qe

Since ¢ is defined only locally in Q. (only its gradient V¢ is defined globally), it will
be convenient to introduce a new function, which is globally defined in ..
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5.7 Definition. Let Il denote the nearest point projection on I' in a §9-tubular neighbor-
hood of T'. The S'-valued map

k . \—dj
QEBZ-—»T_l(H(u))-H(Z xJ) J

j=1 |Z_xj|

(with d; as in (5.15)) has zero degree around each of the holes B,.(x;), j =1,...,k. Hence,
there exists a unique (up to addition of an integer multiple of 27) scalar function n =7,
such that

z—xj

k d;
T (IIw) = e [ ( ) in Q.. (5.24)

j=i\lz—xjl
By adding an appropriate multiple of 27 we may assume that

i 27). 2
nalngIEE[O, ) (5.25)

Since g is smooth, we deduce from (5.25) that
IMellLee0) < C(8). (5.26)

Our first step consists of proving an L> bound for 1. In order to be able to apply
the maximum principle of Proposition 2.1 we will remove from (. a collection of rays,
connecting the boundaries of the holes B)(x;), j = 1,...,k, to the boundary of Q. The
choice of these “good rays” will depend on energy considerations. For any j=1,...,%k and
a €[0,27), we let D j(a) be the half-line

Dj(a):= {x‘; +re'“;relle,oo),
and then set

Rj((l) ::DjﬂQg.

5.8 Lemma. Foreach j=1,...,k and 0 <& <1/2, there exists aj = a;(€) € [0,27) such that
R;:=Rj(a;) satisfies
on

/ 0
Rj 67‘

Here, 0/0r stands for the tangential derivative along R ;.

< C|logel"21VnliL2q,)- (5.27)

Proof. Since

27
Ianzz/ / \Vni2rdr| da,
Q. 0 Rj(a)

there exists a; € [0,27) such that

1
\Vnl2rdr < —|Vyl%,,, .. (5.28)
Therefore,
: 1/2 1/2
0 diamQ d 0 2
/ < / ar / 2 rdr| = Clloge™Vnl 2, O
Rj(a) 10T Ae r Rj(a) 10T
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k
Next, we denote w,:= Q. \ | JR;.
j=1
For each j, let 6; denote the polar coordinate around the point x;, taking values in
[aj,a;+2m). Then the function

k
©=0,:=) d;b;, (5.29)
j=1
is smooth in w, and satisfies
k
1Ol Loow,) < 41 Y _ Idjl. (5.30)
j=1

We define ¢ = ¢ :=n+0 in w.. Note that

d4
—x;\%
/ ) = ¢"O+M = o in @,

() = ™ 1‘[ (

|z —xj

so that ¢ is a well-defined phase of u in w,.

5.9 Lemma. We have

Inlz~an =< C (1logel 1Vl 2q,) +1) (5.31)
and
lim sup sup{lp(x)|; x € w,, dist(x,0w,) <6} < C (Ilogell/2 IVAllL2q,) + 1) . (5.32)
5—0

Proof. We may assume that 0 <& < 1/2. Let r;(a) be the smallest r > Ae such that xj +
re'® € 0Q. By Lemma 5.8 and (3.9), for each x € [xj. + Ae“",xj +rj(a)e'®] we have

< CIoge I Vnll 2, + 1). (5.33)

‘n(x) -1 (xj + rj(aj)elaj)

Note that (3.9) is needed in case R; intersects some of the other discs {B ()}l before
reaching 02 for the first time, at x‘; +rj(a;). In particular, the following holds:

‘n(xj +Aeet)—n (xj + rj(aj)e‘“f) <

C|lloge/MIVnll 2, +1)- (5.34)
On the other hand, by (3.9) we have
nx)—nNI<C, j=1,...,k, Vx,y€ GBAe(xj-). (5.35)

We obtain (5.31) by combining (5.33)—(5.35) with (5.26).
Finally, (5.32) follows from (5.31) and (5.30). l

5.10 Lemma. We have [1llL~q,) <C (Ilogasll/2 IVnlL2q,) + 1).
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Proof. We apply the maximum principle in Proposition 2.1 to ¢ on each component of
the open set {x € w,; dist(x,0w.) > 6}, then we let § — 0 (with fixed ¢). Using (5.32), we
find that

suplg| < C llogeMIVnll 2, + 1) (5.36)
We
The bound for 7 is a consequence of (5.30) and (5.36). l

Proof of Proposition 5.6. By (2.6), n satisfies in Q)

2

t
—div(aVn) = - div(aVe) + div(aVO) = b|Ve|? — So” + div(aVO)
e2 (5.37)

=f +div(aVO),
with
9 a(pt2
f=fe=bIVol'-—o. (5.38)

Above we denoted by VO the vector field

Eo o (x— xj)i

L

k
VO=) d;VO,= _—
; =

J

which is smooth in B2 \ {xi,... ,xi}. We claim that
”fe”Ll(Qs) <C. (5.39)

Indeed, the second term on the right-hand side of (5.38) is bounded in L(Q,) by Proposi-
tion 5.3. The L! boundedness of the first term b IV(,ol2 follows from the calculation (5.18)
and the inequality (2.8d).

Multiplying (5.37) by n and integrating yields

0
/aanIzzf fn—/ aV@-Vn+/ a—(pn
Q. Q. Q. 00, On

<[I£ I11Inllo + Cllogel VN2, + Clnlloo
<C|IogeM2IVnll 2, + 1)

(5.40)

The second line in (5.40) uses (5.2) on 02 and (3.9) on 0B M(xj). The third line follows
from Lemma 5.10.
From (5.40) we get

VA3, < Cllloge| +1), (5.41)

and therefore
190122, < 2(190125,, + 197122, ) = CClTogel + D). (5.42)
As explained above, estimate (5.42) implies Proposition 5.6. O

Combining Lemma 5.10 with (5.41) we obtain the following.
5.11 Corollary. We have ||nli1=~q,) < C(|loge| + 1).
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5.3 An LP-bound for the gradient, p €[1,2)

The main result of this section is

5.12 Proposition. We have |Vu,lrr ) <Cp, 1=p<2.

Proof. Fix any p € (1,2). We will apply the bad discs construction from Subsection 5.1

with a d2 = d2(p) < 61, that we define below. By standard elliptic estimates, there exists
a constant A, = A,(Q) such that the solution w of the problem

{;A:u;: dive zf; 0 (5.43)
with g € (LP(Q))? satisfies

IVwliLr) < ApligllLe)- (5.44)
We require from d9(p) to satisfy

0<52(p)5min(61,ﬁ), (5.45)

where c( is defined in (2.8a). We choose 62 = d2(p) accordingly such that (5.11) holds. In
the sequel, (2, denotes the set given in (5.11) for this choice of §2. Note that the number
of discs and the value of A may change with 62, but we shall use the same notation as
before.

Let H = H, denote the harmonic function in Q satisfying H =7, on Q2. By (5.26) and
the maximum principle,

IH o) = 1Ml Lepq) < C(g). (5.46)
Note that

Inelwi-voraq) < C,

since

=C,
WLr(Q)

k A \dj
j=1 |Z_xj|

see (5.24). Therefore, we also have

”H”Wl,p(Q) =<C. (5.47)

Consider a function ¢ = &, € C®(Q) satisfying

k k 4
0=<é<1,é=1onQ\ Y Bope(x}), §=0o0n U Bspen(a}), 1Vélloo < s (5.48)
j=1 j=1

Note that, by (5.12), for small ¢ the discs {B2¢(x;)} do not intersect the boundary, and
thus ¢ =1 on 0Q2. From the properties of £ we obtain, in particular, that

”anp = ”vé”LP(Uk. 132/15(x§)) < C£2/p—l = O(l) (549)
J= J
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In Q, we set :=7, = 5217 and H = H, := &2H. From (5.46)—(5.49) we conclude that
1H o < C. (5.50)

Note that, although 7 is defined only in €, the function 7 is globally defined (and
smooth), since n = 0 on a neighborhood of B M(xj).
The function 7} satisfies

—div(aV7) = —div(a&2Vn) — div(anV(2))
=-&2div(a V) —aV(E?) - Vo +div(aé2VO) + div(—2anéVeE)
N ~ o\ ~~ > \“’—J \—’—/
F Fy G, Gy

=F1+Fy+divGy +divGas.

Therefore,

~A@—H) =F1+Fy+divG+divGy +div(aVH)
+div((e - 1)V - H)) in Q . (5.51)
n-H =0 on 0Q)

By elliptic estimates, there exists B, = B,(2) > 0 such that the solution w of the problem

—Aw=v 1InQ
(5.52)
w=0 on 0()
with v € L1(Q), satisfies
Vwlp <Bpllvllz. (5.53)

Note that F; = &2f is bounded in L1(Q); here, f is defined in (5.38). The same holds
for F'y since, by (3.9),

/ aV(&?)- Vol = / aV(E?)- Vol < C16% | VE ool Vit oo < Co.
Q Uk_y Baae(@)\Baaea(xS)
Using the inequality

C
IVO(x)| = —, with r = r(x) := dist(x, {x],...,x;}),
r

we find that G is bounded in L? (). Similarly, G is bounded in L?(Q), since

1 P
/ IGal? < Cslinl%, (—) €2 < Cye? PllogelP = o(1),
Q E

by Corollary 5.11 and (5.48). Finally, aVH is bounded in LP(Q) by (5.50).
We also note that

|t(x)| < 52(p) on supp(V(7 —H)) c Q..
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Using the above in (5.51) we get by (5.44) and (5.53) that

VG~ E)lie < Ap (@ = DV@ = EDliLe +1G1llLe + 1Gelle + laVH | L»)
+ B, (IF1llg: + I Falls) (5.54)
< A, coba(p)IVG - H)lz» +C.

Combining (5.45) and (5.54), we find that IIV(ﬁ—fI )z < C, which in conjunction with
(5.50) implies that [|VjllL» < C. Since [|VO|r(q,) < C, we obtain that

198l Lot By < C- (5.55)

The conclusion of Proposition 5.12 follows from (5.55) and the fact that, by (3.9), {Vu,}
is bounded in L?(Bgy Ag(xj.)). O

5.4 A bound for the energy away from the singularities

We denote by a1,...,ay € Q the different limits of the families {xj}, Jj=1,...,k (possibly
along a subsequence). Since two different families can converge to the same limit, we
have N < k. At this point we do not exclude the possibility that some of the a;’s belong to
0Q). Consider some r > 0 such that

r<minfla; —a;l;i # j} and r <dist(a ;,0Q)), V j such that a; € Q. (5.56)
We denote
~ N —_—
Q,:=Q\ JB,(a)),
j=1

and by D; the degree of u, on d(B,(a;)N{2) for small £ and (small but fixed) p. The
following equality is clear: if J; :={¢; x;, — a;}, then D ; = ZgEJj dy.

5.13 Theorem. For each r as in (5.56) we have

E (ugs;Q.) <Cr). (5.57)

Proof. By the boundedness of {Vn} in L1(€),) (see Proposition 5.12), it follows that there
exists 7 =r(g) € (r/2,r) such that

N
> / IVnldo < C1(r). (5.58)
j=1J0Bxa,)nQ

Similarly, we can find for each j € {1,...,N} a number §; € [0,27) such that the set
ﬁj :ﬁj(ﬁj):: {aj+se’ﬁf;s >N Qs
satisfies

M ds < Colr). (5.59)

/ 0
R;10s
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Repeating the proof of Lemma 5.10 and using (5.58) and (5.59), we find that

Il oo,y < C3(r). (5.60)
For ¢ sufficiently small we have

lxy—ajl <72, Vled;, j=1,...,N. (5.61)

Next, we multiply the equation (5.37) satisfied by n and integrate over Q7. This yields as
in (5.40)

)
/a|vn|2:/ fn—/ aVG)-Vn+/ =+ +1s. (5.62)
O Q5 QO 00, On

By (5.39) and (5.60) we have |I1]| < C4£r). We claim that also |I3| < C5(r). Indeed, we
use (5.2) and (5.60) for the integral on 027N <2 and for the integral on dB#(a;) N we
use (5.58) and the fact that thanks to (5.61) we have
e C

—| <= on dB#a,).

on r

Applying the Cauchy-Schwarz inequality to I3 and the above estimates in (5.62) leads to

/a|vn|2scﬁ(r)+/ g|vn|2+/ 2 ver. (5.63)
& 5. 2 5. 2

Q5 Q5

Since fﬁf(a/Z)IV@I2 < Cq7(r)(|logr| + 1), we get from (5.63) that f§F|V17|2 <Cg(r). It
follows that also fﬁ; IV(pI2 < Cy(r), which clearly implies (5.57). O

5.5 Convergence of {u, }
The bound of Proposition 5.12 implies that for a subsequence {u,,} we have
ue, — u, weakly in W-P(Q), Vp €[1,2), (5.64)
for some u., € ﬂ )Wl’p (;T"). The fact that u. is I'-valued follows from (5.64) and the
pel1,2

estimate (5.2) that implies the convergence ¢, — 0 in L2(Q).
We can now further state

5.14 Proposition. We have
ue, — u. in C%Q\{ay,...,an}), Vae(0,1). (5.65)

The limit u, is a I'-valued harmonic map in Q\{a1,...,an}.

Proof. We argue as in [5, Proof of Theorem VI.1]. For notational simplicity, we drop in
what follows the subscript n. It suffices to show that for every xg € Q\{ay,...,an} there
exists R > 0 such that u, — u. in CY%(QnBg(xy)). Consider first the case xg € Q. We
choose R > 0 such that Bogr(xg) € Q\{a1,...,an}. Since, by (5.57),

E (ug;Bar(xp)) < C,
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we can use Fubini’s theorem to find R’ € (R,2R) such that (after passing to a further
subsequence),

1
= |\Vu 2+

/03Rl(x()) 2

Then, applying Theorem 4.1 we obtain that, up to a further subsequence, u. — ug in
CL%(Bg(xp)), and that ug is a harmonic map in Br(xg) (since it can be written as ug =
7(e¥) where ( is a harmonic function in Bg(xo)). Using the uniqueness of the limit, we
find that u¢ = u., and that the original subsequence {u,,} converges to u, in C LaBr(xo)).

It remains to consider the case xo € 0Q2\{a1,...,an} (at this stage we do not exclude
the possibility that some of the a ;’s belong to 9C2). We choose a small R > 0 such 0Bg(xg)N
0Q2 consists of exactly two points and

—W(ZE) <C.

R < min |xg—a;l.
1sjsN| 0 Jl

Again by (5.57), we have
E (ue;Q2NBagr(xg)) < C,

and by Fubini’s theorem there exists R’ € (R,2R) such that (after passing to a further
subsequence),

W(ue)

<C.
52

1
| Vu 2+

/OBR/(xo)ﬁQ 2

Applying Theorem 4.7 we obtain that u, — u, in CY*(Bg(x) N Q). O

Next we deduce further properties of the map u . that will enable us to conclude the
proof of Theorem 1.1.

5.15 Proposition. We have {a1,...,an} < Q.

Proof. The proof is the same as that of [5, Theorem X.4], so we just mention the main
idea. By Pohozaev identity (5.2) and Proposition 5.14 it follows that

Jo

The map v, := 7 tou, is an S'-valued smooth harmonic map on Q\{ay,...,an}, and
satisfies: v, € WHP(Q;S!) for all p €[1,2), v, =7 Log on 4Q, and thanks to (5.66), also

Jo

Therefore, all the hypotheses of [5, Lemma X.14] are satisfied, and we can conclude
that v, is smooth in a neighborhood of 0Q2. Clearly, the same holds for u .. O

2

Ou 4
el < oo (5.66)

on

1

v, |2

on

To conclude the proof of Theorem 1.1 we need to show that the limit u. has the form
given in (1.11).
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5.16 Proposition. We have

_ D _ D
u*(z):-[(eﬂ](z)(ﬂ) 1(2 aN) N), (567)

|z —ail lz—anl

for some smooth harmonic function 1 in Qand Dq,...,Dy e Z\{0}.

Equivalently, Proposition 5.16 asserts that the S'-valued harmonic map t 'ou, is

the canonical harmonic map associated with 7710 g and {(a j,D j)}ﬁ-v: 1> as defined in [5,
Sec 1.3].

Proof. We apply the same argument as in [5, Ch. VII], which uses the Hopf differential.
Setting

W= We = |(u£)x1 |2 - |(u£)x2 |2 - 21(u5)x1 '(uf)x2’

we find by a direct computation

ow 1 ou
9z = 9 ( x1 t lwxz) =Au,- ((ue)x1 - l(ue)xz) =2Au,- 6_; (5.68)

Moreover, by (1.2),

0

Ug Ou,
= £2Au5-
0z

0z

iW(ug) =VW(u,)- (5.69)
0z

By (5.68)—(5.69),

a_w_i(ZW(ug))
0z 0z '

£2
Note that up to a further subsequence we have

W) « ¥
We) . § 6, (5.70)
j=1

£2

for some positive m;’s. (Convergence is in the weak star topology of C(Q).) Indeed,
combining (4.9) and (4.52) we obtain, for any sufficiently small R > 0,

N
W(ue) < Cre? in Q\ | Br(a)),

Jj=1

which clearly implies (5.70) with m ; = 0. The fact that m; > 0 for all j follows from (5.10).
Defining the distribution

i)
=—||—=*
0z |\nz
we obtain by a direct calculation that f = 8. := w —2a is a holomorphic function in Q (see

also [5]).
Since, by (4.7)—(4.8),

W(ue))

Q
X 2

a=ag:

b

1 9
SIW(u) ot
&

=<C,j=12,
Lo@\UY Br(a,)

0x;
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W —
we obtain that { (ZLS)} is bounded in C1(Q\ Uév_ 1Br(a;)), and we deduce by the argu-
c =

ment of [5] that {f.} is bounded in C?OC(Q). It follows that, up to a further subsequence,

Be — P« in Cﬁ)c(Q), V k, for some holomorphic function f. in Q. In addition, using (5.70)
we find that
a(1) X 1Y 1.,
A — Ay :g(g)*;mjéajz—;;mijm 1n@(IR ) (571)

Therefore, w, = B + 2. — B« +2a. in 2'(Q).
Since Proposition 5.14 implies that

We — Wy 1= |(u*)x1|2 - |(u,,ﬂ)xQ|2 —21(Us)y; - (Us)y, In Cﬁ)c(ﬁ\{al,...,az\]}),
we obtain
Wy = By +2a, in 2'(Q\{a,...,an}). (5.72)

Fix any j € {1,...,N} and assume without loss of generality that a; = 0. Recall that
77 loy is a harmonic map in Q\{a1,...,an} (Proposition 5.14) and belongs to W12(Q)
when 1 < p <2 (Proposition 5.12). In addition, we have deg(u ,0) =D ;. Arguing as in [5,

Remark I.1] we may write, near 0,
u. =7 (exp(D;0 +1c;logr+1h)),

where A is a harmonic function.
It follows that if we write, locally near 0, u. = 7(e'?) with ¢ := D ;0 + clogr + h, then
we have
ci—1D; oh
J /9

2
Wy = |(u*)x1|2_ |(u*)x2|2_2l(u*)x1 (u*)xz = ((Px1 - l(pr)Z = (T + &) . (6.73)

From (5.71)—(5.73) we obtain

2m;
D) =— J ,
(cj—1Dj) -
nD?
implying that ¢; =0 and also m; = — The fact that c; = 0 for all j implies that u, has
the form (5.67). Since we know already that m; # 0 for all j, it follows that also D; # 0
for all j. O

5.17 Remark. Arguing as in [5, Ch. VII], we may conclude from (5.73) that dh/0z = 0.
This implies that the configuration (a1,...,ay) is a critical point of the renormalized

energy associated with the degrees (D j)ﬁ.\’: , and the Sl-valued boundary condition 7 log,

see [5, Corollary VIIIL.1].
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