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I. INTRODUCTION

Since the pioneering work by the German physicist Franz Emil Melde, 1 a wealth of studies have been devoted to the vibrating string issue. In its basic presentation, it provides an educational introduction to wave propagation as well as an entertaining tutorial of undergraduate level. Moreover, its laboratory experimental illustration requires a rather simple and low-cost apparatus. Tying up a string to an electric vibrator and holding its other end by hand makes it possible to give prominence to main lessons: existence of standing waves, with nodes and antinodes, existence of resonance frequencies depending of the tension of the string and so on. 2 Nevertheless, the prima facie simplicity of this basic presentation is utterly misleading. When one tries to put up the string problem into equations, a lot of difficulties crop up. As soon as the oscillation amplitude is no longer negligible with respect to the wavelength, the motion itself of the string entails a change in its length. This length change raises the following question: is the string unstretchable or not ? If the answer is "yes", the only possibility to observe nonzero amplitudes is to slacken the string, hence the experimental setup sometimes proposed, where the free end of the string is not fixed but pulled thanks to some external device (generally a weight acting on the string by means of a pulley). If the answer is "no", the free end can be fixed, the elongation of the string in the course of the motion being made possible -and duly limited -by its elasticity.

Although presented at the simplest level as transverse, the motion of the string consequently entails (in both cases) a longitudinal displacement. This longitudinal displacement, in turn, brings in a modification of the longitudinal tension of the string, hence changes in the transverse propagation celerity associated with a wealth of nonlinearities. In the case where the free end of the string is fixed, seeking the resonance by tuning the vibrator's frequency becomes quasi impossible, due to these nonlinearities. Suppose for instance that one slowly increases the latter frequency from zero with the aim of finding the fundamental mode of the string. As the vibrator's frequency approaches the fundamental mode's frequency, the oscillation amplitude increases accordingly. This entails an extra longitudinal tension of the string wich consequently increases the transverse propagation celerity itself and thus blueshifts the sought resonance frequency. The experimentator who tunes up has then the feeling that the resonance flees upwards from his tuning. At some point, this chase is abruptly broken off and the string oscillation amplitude instantaneously wanes; accordingly the longitudinal extratension also wanes, which automatically redshifts the resonance frequency of the string. The experimentator has then the feeling that he has overshot the resonance. If, attempting to recapture the high-amplitude oscillation he has just lost, the latter now tunes the vibrator's frequency downwards, he finds that the string's motion follows for the way back a path which is different from that it followed during the upwards tuning. This behaviour, which leads to the observation of hysteresis cycles, has been reported and studied by many authors. 3-15 Some of them, as for instance Tufillaro, 6 use the Duffing equation. It is not our case; our aim in the present article is to propose an ab initio introduction to the nonlinear string problem, in which we bring in the simplifying approximations step by step.

II. MODELLING THE STRING

Let us consider an elastic string with no-load length L 0 and mass per unit length µ 0 . It has a cross section S and is made in a material with Young modulus E. Let us tie one end of this string to a fixed point O and tighten it by pulling at its other end with a static force F = F e z . The string is then stretched along direction e z , its length becomes L > L 0 . Assuming the string obeys Hooke's law, its static equilibrium length is given by

E L -L 0 L 0 = F S =⇒ L = L 0 1 + F G , (1) 
where G = ES. The string is thus mechanically equivalent to a spring with a stiffness coefficient equal to G/L 0 . As commonly done, 16 we make the additional assumption that the cross section S is small enough for this spring to be regarded as threadlike: its deformations entail no bending torque at all; the latter point will be shortly argued in the experimental section of this article. Let s 0 be the curvilinear abscissa along the unstretched string and s the curvilinear abscissa along the stretched string at equilibrium (see figure 1). We denote by s 0 = s = 0 the end of the string which is tied at point O and by s 0 = L 0 (resp. s = L) the other end. Moreover, according to (1) and since the stretching of the string is homogeneous, the abscissae s 0 and s labelling the same string element are linked by

s = s 0 1 + F G . (2) 
The above correspondance is illustrated in figure 1. Besides, it is noteworthy that the whole string can be regarded as an infinite set of infinitesimal springs with no-load length ds 0 and stiffness coefficient G ds0 . Let us now consider the string slice [s 0 , s 0 + ds 0 ]. At equilibrium, it is aligned along axis z, where it occupies the interval [s, s + ds], with ds = ds 0 1 + F G ; its mass is µds = µ 0 ds 0 . In the course of the motion of the string, the position at time t of the extremity s 0 (henceforth re-labelled s) of this slice is r(s, t) = s e z + u(s, t). Similarly, the extremity s 0 + ds 0 (henceforth re-labelled s + ds) is at r(s + ds, t) = (s + ds) e z + u(s + ds, t). The situation is illustrated in figure 2a. Observe that the displacement field u(s, t) is defined here with respect to the equilibrium position of the string under tension F e z (and not to its no-load position), hence our choice of the "s" labelling instead of the "s 0 " one.

Let T be the tension of the string. By convention, we define here T (s, t) as the force exerted at time t onto the string element s -by the string element s + (see figure 2b). Note that the latter choice (down-stream onto up-stream) is mostly made in the literature devoted to the vibrating string. With the same convention, the unitary tangent vector T is, as displayed in figure 2a,

T (s, t) = e z + ∂ u ∂s e z + ∂ u ∂s , (3a) 
and the tension of the string is then T (s, t) = T (s, t) T (s, t), where T (s, t) is the scalar tension. Remembering that the string slice [s, s + ds] is mechanically equivalent to a spring with no-load length ds 0 = ds/ 1 + F G and stiffness coefficient G ds0 , the latter scalar tension reads

T (s, t) = G ds 0 ∂ r ∂s ds -ds 0 = G e z + ∂ u ∂s 1 + F G -1 , (3b) 
thus yielding the expression of the vector tension

T (s, t) = G 1 + F G -e z + ∂ u ∂s -1 e z + ∂ u ∂s . (3c) 
III. THE DYNAMICS OF THE STRING Applying Newton's Second Law to the string slice [s, s + ds], we get the motion equation

µ ∂ 2 u ∂t 2 = ∂ T ∂s . (4) 
Substituting the right-hand side of (3c) for T in the above equation, one obtains the differential equation ruling the displacement field u(s, t) of the string. Obviously, it is not possible to find out an analytical solution for the latter. Nevertheless, assuming that the stress ∂ u ∂s is small enough (|| ∂ u ∂s || 1), one can expand the right-hand side of (b) (a) equation (3c) in increasing powers of ∂ u ∂s and obtain a simpler equation of motion. With this aim, it is convenient to split tension T and displacement u in a longitudinal (//) and a transverse (⊥) part:

s -s s + s M s + ds M + dM T(s,t) -→ e z -→ -→ -→ -→ u ( s ,
T = T // e z + T ⊥ , u = u // e z + u ⊥ , (5a) 
where T ⊥ and u ⊥ are respectively the orthogonal projections of T and u on the ( e x , e y ) plane. With theses notations, we have

T ⊥ = T // ∂ u ⊥ ∂s 1 + ∂u // ∂s . (5b) 
A. The low-strain approximation

Up to order 3 in strain ∂ u ∂s , we have

e z + ∂ u ∂s -1 = 1 + ∂u // ∂s 2 + ∂ u ⊥ ∂s 2 -1/2 = 1 - ∂u // ∂s + ∂u // ∂s 2 - 1 2 ∂ u ⊥ ∂s 2 - ∂u // ∂s 3 + 3 2 ∂u // ∂s ∂ u ⊥ ∂s 2 + O ∂ u ∂s 4 , (6a) 
so that the components of the tension are

T // = F + (F + G) ∂u // ∂s + G 1 2 ∂ u ⊥ ∂s 2 - ∂u // ∂s ∂ u ⊥ ∂s 2 + O ∂ u ∂s 4 , (6b) 
O vibrator s = 0 s = L e z -→ e x -→ -→ ξ (t)
FIG. 3: A transverse excitation of the string: the end s = L of the string is tied to the moving part of a vibrator oscillating in the ( ex, ey) plane. In the absence of nonlinearities, only the modes whose polarization is parallel to ξ(t) (here along ex) are excited.

and

T ⊥ = F ∂ u ⊥ ∂s + G ∂u // ∂s - ∂u // ∂s 2 + 1 2 ∂ u ⊥ ∂s 2 ∂ u ⊥ ∂s + O ∂ u ∂s 4 . ( 6c 
)
As a consequence, the vectorial equation of motion (4) reads

µ ∂ 2 u // ∂t 2 = ∂T // ∂s = (F + G) ∂ 2 u // ∂s 2 + G ∂ ∂s 1 2 ∂ u ⊥ ∂s 2 - ∂u // ∂s ∂ u ⊥ ∂s 2 + O ∂ u ∂s 4 (7a) µ ∂ 2 u ⊥ ∂t 2 = ∂ T ⊥ ∂s = F ∂ 2 u ⊥ ∂s 2 + G ∂ ∂s ∂u // ∂s - ∂u // ∂s 2 + 1 2 ∂ u ⊥ ∂s 2 ∂ u ⊥ ∂s + O ∂ u ∂s 4 . (7b) 
Linearizing the right-hand sides of the above equations, one obtains a couple of d'Alembert wave equations, with the associated celerities given by

c // = F + G µ , c ⊥ = F µ . (8) 
As well known, the longitudinal celerity c // is larger than the transverse celerity c ⊥ .

B. Transverse excitation of the string

Observe that, so far, we have introduced no hierarchy between components ∂u // ∂s and ∂ u ⊥ ∂s . We are going to do it now, and assume that, by means of an ad hoc device, our string is transversally excited. Such a transverse excitation can be experimentally implemented, for instance, by fixing the s = L end of the string onto the moving part of a vibrating device oscillating in the ( e x , e y ) plane. For instance, in figure 3, an electric vibrator oscillating in the e x direction is represented. Had it not been for the nonlinearities, the string would oscillate in the ( e x , e y ) plane, as predicted by the Melde theory, briefly recalled below.

At the linear approximation, the longitudinal component of tension T is just F e z , as at equilibrium; the longitudinal displacement u // is consequently zero, and equation (7a) can be ignored. The wave equation ruling the transverse displacement u ⊥ is obtained by linearizing equation (7b):

∂ 2 u ⊥ ∂t 2 = c 2 ⊥ ∂ 2 u ⊥ ∂s 2 . ( 9 
)
Assuming a monochromatic excitation of the string associated with the monochromatic vibrator's motion: ξ(t) = ( ξ 0 e -iωt ), the forced regime solution of ( 9) is of the form

u ⊥ (s, t) = ( a sin ks e -iωt ), (10a) 
with k = ω c ⊥ and a a complex amplitude. Fulfilling the boundary condition at s = L a sin kL = ξ 0 ,

(10a) finally reads

u ⊥ (s, t) = ξ 0 sin ks sin kL e -iωt . (10c) 
As well known, the above amplitude of u ⊥ (s, t) diverges when k = k n = nπ L . Not surprisingly, the latter resonances correspond to the preferential excitation of the set of transverse eigenmodes of the string which are described by the (normalized) functions

U n, (s) = 2 L sin n π L s , (11) 
where is the polarization unitary vector and integer n corresponds to the number of antinodes (see figure 4). The angular frequency of eigenmode n is

ω n = c ⊥ nπ L .
Of course, in the true life, the amplitude of vibration of the excited string never diverges. This is due to a wealth of dissipative processes that damp the oscillations. A nonexhaustive list is proposed below.

-The string moves in the air. Although a rapid estimation of the associated Reynolds number suggests that the viscous regime is not relevant to describe the friction of the string against the surrounding air, the latter friction undoubtedly damps the movement.

-The string radiates sound when it oscillates: the characteristic noise emitted by the vibrating string borrows its energy from the motion itself.

-The string is mechanically coupled to the experimental setup, hence a further less of energy.

-The string cannot be modelled by a purely elastic spring; its response to any mechanical streching is visco-elastic, entailling an energy dissipation in the bulk itself of the string. In this respect, although it is not strictly speaking a source of dissipation, let us mention that this response is a priori nonlinear, departing from Hooke's Law.

To account for the above mechanisms and the absence of any divergences of the oscillation amplitude, it is convenient to complete the right-hand side of the wave equation ( 9) with a phenomenological viscous dissipation term of the form

-1 τ ∂ u ⊥ ∂t .
With this commonly used trick, the forced regime solution is still of the form (10a), but k is now a complex wave vector k = k + ik given by

k 2 = ω 2 c 2 ⊥ 1 + i ωτ k ω c ⊥ and k 1 2τ c ⊥ for ωτ 1. ( 12 
)
Let us insist upon the fact that introducing a simple viscous dissipation term is but a trick: nothing proves that this dissipation process should be linear in displacement u, a fortiori that it should be accounted for by means of a first time-derivative ∂ u ⊥ ∂t term: a third time-derivative ∂ 3 u ⊥ ∂t 3 could be envisaged for instance, as encountered in the Abraham-Lorentz force in electrodynamics. Should the latter possibility occur, we would still keep the same form for result (12), but letting nevertheless the phenomenological time τ be ω-dependent.

Notwithstanding the above considerations about the very origins of the dissipation, it is noteworthy that, introducing the phenomenological viscous term -1 τ ∂ u ⊥ ∂t , the complex amplitude a still fulfils the boundary condition (10b) and the transverse displacement u ⊥ (s, t) is still given by (10c). But now, | sin kL| 2 = sin 2 k L + sinh 2 k L never vanishes and amplitude | a| never diverges since

a 2 = ξ 2 0 sin 2 k L + sinh 2 k L . ( 13 
)
However, when sweeping the frequency of the vibrator, the latter amplitude passes through a maximum every times sin k L passes through zero: the resonances occur for k L = nπ. Since k k when ωτ 1 (see (12)), these resonances are observed for the angular frequencies ω ω n , not surprisingly. It should nevertheless be kept in mind that, even for ω = ω n , every eigenmode of the string is excited in the forced regime (not only eigenmode n), provided of course that its polarization is not orthogonal to the excitation amplitude ξ 0 . From now on, we shall focus on the fundamental resonance, corresponding to k L = π (n = 1).

O s = 0 s = L n = 1 n = 2 e z -→ e x -→
FIG. 4: First two transverse eignemodes of the Melde string. Both ends of the string are transversally fixed: U n, (s = 0) = U n, (s = L) = 0, where the integer n (n = 1, 2, . . . ) is the number of antinodes and the unitary vector , standing for the polarization of the eigenmode, belongs to the ( ex, ey) plane (here = ex).

C. Taking nonlinearities into account

In fact, due to nonlinearities, things are not that simple and a perturbative resolution of equations (7a) and (7b) could be implemented as follows. As a first step (order 1), one would solve for u ⊥ the linearized equation (7b). Including the dissipation term, we are left with result (10c): let us denote u

(1) ⊥ (s, t) this result. The second step would consist in solving for u // the following truncated equation (7a):

∂ 2 u // ∂t 2 -c 2 // ∂ 2 u // ∂s 2 = G µ ∂ ∂s 1 2 ∂ u (1) ⊥ ∂s 2 , ( 14a 
)
and then to denote u

(2)

// the solution thus obtained. It is noteworthy that, since u

⊥ (s, t) oscillates with time at the angular frequency ω, u

(2) // is the sum of a static term and a term oscillating at 2ω. Observe too that both terms are proportional to a 2 , namely the square of the amplitude a of the first-order solution (see equations [START_REF] Elliot | Intrinsic nonlinear effects in vibrating strings[END_REF]). The third step of our perturbative resolution would consist in solving for u ⊥ the following equation, derived from (7b):

∂ 2 u ⊥ ∂t 2 -c 2 ⊥ ∂ 2 u ⊥ ∂s 2 = G µ ∂ ∂s ∂u (2) // ∂s + 1 2 ∂ u (1) ⊥ ∂s 2 ∂ u (1) ⊥ ∂s , (14b) 
and denote u

⊥ the solution then obtained. Observe that u

⊥ is the sum of two terms, both proportional to a 3 and respectively oscillating with time at the angular frequencies ω and 3ω. More generally, expanding the right-hand side of equation (3c) at higher orders and carrying on the perturbative resolution of equation ( 4), one would find that the longitudinal displacement u // oscillates with time at all the even multiples of ω (0, 2ω, 4ω, etc.) and u ⊥ at all the odd mutiples of ω (ω, 3ω, 5ω, etc.). Nevertheless, simple though they may be in their principle, the corresponding calculations are somehow cumbersome.

In fact, if the experiment is conducted in such conditions that the longitudinal celerity c // should be much larger than the transverse celerity c ⊥ (which is often the case when the string is made of a hard material like steel), then a drastic simplification of the problem can be brought as explained hereafter.

D. The high longitudinal celerity approximation

Let us consider equation (14a) again. Its right-hand side oscillates with space like sin 2ks, i.e. with the wavevector 2k. Consequently,

∂ 2 u //
∂s 2 is expected to be roughly equal to 4k 2 u // . Similarly, as mentioned above,

∂ 2 u //
∂t 2 is roughly equal to 4ω 2 u // . Now, due to the transverse dispersion relation (12), ω 2 c 2 ⊥ k 2 c 2 // k 2 . Thus, if the left-hand side of equation (14a), the time-derivative term is negligible compared to the space-derivative term, and we are left with

-c 2 // ∂ 2 u // ∂s 2 G µ ∂ ∂s 1 2 ∂ u (1) ⊥ ∂s 2 , (15a) 
or equivalently, allowing for (4) and (6b),

∂ ∂s F + (F + G) ∂u (2) // ∂s + G 1 2 ∂ u (1) ⊥ ∂s 2 = ∂T [2] // ∂s 0, ( 15b 
)
where

T [2] // = T (0) // +T (2) 
// . The above approximate result can be summarized as follows: whenever the string equilibrium tension F is small compared to the string modulus G, i.e. whenever the transverse celerity c ⊥ is small compared to the longitudinal celerity c // , the longitudinal propagation can be regarded as instantaneous as far as its impact upon the transverse propagation is concerned. As a consequence, the longitudinal extratension T

(2) // (s, t) does in fact depend only on t. This entails a substantial simplification of equation (15b): since F G, the latter reads

∂ ∂s ∂u (2) // ∂s + 1 2 ∂ u
(1) ⊥ ∂s 2 0, so that in fine the transverse wave equation (14b) can be simplified in the d'Alembert-like wave equation

∂ 2 u ⊥ ∂t 2 -c 2 ⊥eff ∂ 2 u ⊥ ∂s 2 0, (16a) 
where c ⊥eff is a time-dependent celerity given by

c 2 ⊥eff = c 2 ⊥ + G µ ∂u (2) // ∂s + 1 2 ∂ u (1) ⊥ ∂s 2 = T [2] // µ . (16b) 
Moreover, the above expression of the longitudinal tension T

[2]

// can be ever simplified. Observing indeed that ∂T

[2] // /∂s = 0 is equivalent to T [2] // (t) = 1 L L 0 ds T [2]
// (s, t) and remembering that u // (s = 0) = u // (s = L) = 0, we can integrate (16b) and finally get

T [2] // = F + G 2L L 0 ds ∂ u (1) ⊥ ∂s 2 . ( 17 
)
It is noteworthy that the above result can be easily interpreted on simple geometrical grounds. As assumed in our model, a string with no-load length L 0 can be regarded as a spring with stiffness G/L 0 . As illustrated in figure 1, and recalled below in the experimental section, we used this feature to set the equilibrium longitudinal tension F by increasing the string's length by the static elongation L -L 0 = F G L 0 (see (1)). Now, in the course of its motion, the string is further elongated. In the framework of our present study, namely assuming a purely transverse excitation of the string, a high longitudinal celerity (G F ), and in the low-strain approximation, the total instantaneous length of the string can be approximated by

L 0 ds 1 + ∂ u ⊥ ∂s 2 L + 1 2 L 0 ds ∂ u ⊥ ∂s 2 , (18) 
hence the extra longitudinal tension in the right-hand side of [START_REF] Morse | Theoretical Acoustics[END_REF]. At this step, one can make the following remark.

T [2]
// is obtained here by means of a perturbative calculation using ∂ u

(1) ⊥ ∂s . In fact, we can get rid of this pertubative feature. Simply assuming that the string is transversally excited at frequencies in speaking terms with the transverse fundamental eigenfrequency, we can neglect the longitudinal propagation (this is due to c // being much larger than c ⊥ ). Hence the longitudinal tension T // can be regarded as constant along the string. Now, up to order 2, we have, owing to (6b),

T // = F + (F + G) ∂u // ∂s + 1 2 G ∂ u ⊥ ∂s 2 = F + G 2L L 0 ds ∂ u ⊥ ∂s 2 , (19) 
which is the same result as [START_REF] Morse | Theoretical Acoustics[END_REF], where ∂ u ⊥ ∂s has been substituted for ∂ u

(1) ⊥ ∂s . The latter difference is important in the sense that equation (16a) should now be looked for a self-consistent solution, as detailed below.

E. Looking for a self-consistent solution of the transverse motion equation

Let us consider equation (16a) and look for a monochromatic solution of the form (10a). Our choice of the sin ks spatial dependence is of course due to the u ⊥ (s = 0, t) = 0 boundary condition. As for the other boundary condition at s = L, one should keep a sin kL = ξ 0 , as in (10b). Using expression (10a), formula (19) reads hence c ⊥eff (t). Next, gathering the terms oscillating as e -iωt in (16a), we are left with the dispersion-like relation

T // = F + 1 4 Gk 2 a 2 1 + sin 2kL 2kL cos 2 ωt, (20) 
ω 2 = k 2 c 2 ⊥ + 3 16 c 2 // k 2 a 2 1 + sin 2kL 2kL (21)
in which a 2 is given by [START_REF] Hassan | Video-based spatial portraits of nonlinear vibrating string[END_REF]. Setting ϕ = kL, equation ( 21) becomes

Lω c ⊥ 2 = ϕ 2 1 + 3 16 c 2 // c 2 ⊥ ξ 2 0 L 2 ϕ 2 sin 2 ϕ + sinh 2 k L 1 + sin 2ϕ 2ϕ , (22) 
where we have set k L ϕ. The above equation can be graphically discussed. In figure 5, we have displayed its right-hand side as a function of ϕ. For given values of the angular frequency ω and vibrator's amplitude ξ 0 , it can be solved for ϕ. Depending on the latter values, one or three solutions are found, explaining the experimentally observed bistability of the string's motion as detailled hereafter. Two kind of experiments indeed can be envisaged from figure 5.

We first suppose that the vibrator's amplitude ξ 0 is fixed (the red curve in figure 5 is thus fixed) and that its frequency is swept throughout the Melde resonance (the horizontal blue line in figure 5 is thus translated upwards and downwards). Sweeping the excitation frequency from low to high, the "left" solution (i.e. corresponding to ϕ < π) is followed by continuity until it disappears for some angular frequency ω = ω . At the latter angular frequency, the system "jumps" to the "right" solution (ϕ > π), which is the only available, and follows it. A contrario, decreasing the excitation frequency, this "right" solution is followed by continuity until it disappears in turn for ω = ω . It is noteworthy that, in the above double sweeping, the "medium" third solution is never caught by the system. Figure 6 displays the longitudinal tension of the string as a function of the excitation frequency ω/2π, for a fixed vibrator's amplitude ξ 0 = 0.5 mm. A hysteresis cycle is expected.

A second kind of hysteresis is expected when fixing the excitation frequency (the blue line in figure 5 is thus fixed) and varying the vibrator's amplitude ξ 0 (the red curve in figure 5 is thus modified). Starting from zero and increasing ξ 0 , the low-tension solution is followed by continuity until ξ 0 reaches ξ 0 , then the system "jumps" to the high-tension solution. Starting from a high vibrator's amplitude (ξ 0 > ξ 0 ) and decreasing ξ 0 , the high-tension solution is followed by continuity until ξ 0 reaches ξ 0 and jumps back to the low-tension solution. The corresponding expected cycle is displayed in figure 7 5. When increasing the vibrator's frequency, the ϕ < π solution is followed by continuity until ω = ω ; when decreasing the excitation frequency, the ϕ > π solution is followed by continuity until ω = ω . The dotted line corresponds to the medium solution (never caught by the system). 7: Expected hysteresis cycle when sweeping the vibrator's amplitude ξ0 at the constant frequency f = 89 Hz. Parameters L, τ and F are the same as in figure 5. When increasing ξ0 from zero, the low-tension solution is followed by continuity until ξ0 = ξ 0 ; when decreasing ξ0, the high-tension solution is followed by continuity until ξ0 > ξ 0 . The dotted line corresponds to the (never caught by the system) medium solution displayed in figure 5.

ξ 0 = ξ 0 ↗ ξ 0 = ξ 0 ↘ FIG.

IV. EXPERIMENTS A. Experimental setup

In order to illustrate the nonlinear behaviour of the vibrating string, we have realized several experiments described below. Our experimental setup was very analogous to that displayed in figure 3. A piano wire made of brass, with diameter 2r = 0.42 mm, linear mass density µ = 1.02 g/m and Young modulus 18 E = 130 GPa was fixed at point O by means of a chuck. The position of this chuck was adjustable along direction e z thanks to a T&O electronic micrometer head (with range 0-25 mm and precision 0.001 mm). The other end of the string (point C) was fixed to a FGP NTC 100 10 dN force captor used to measure the longitudinal tension T of the wire. The transverse motion of the string was excited with a permanent-magnet Brüel & Kjaer LDS-V201 vibrator, equipped with a Brüel & Kjaer 4390 accelerometer. As displayed in figure 5, this vibrator was placed at the position z = L = 100.8 cm of the z-axis and oscillated in the e x direction. In order both to avoid any off-axis effort exerted by the string onto the vibrator and to let the force captor evaluate the very longitudinal tension of the wire, the latter could freely slide through a ring fastened to the moving part of the vibrator (point A). A camera, focussed at the point z = L/2 when studying the FIG. 8: A brass piano-like wire is horizontally extended between a chuck (point O) and a force captor (point C). The static longitudinal tension of the wire is adjusted by varying distance OC thanks to a micrometer device (palmer). The wire passes freely at point A through a ring fixed to the moving part of an electric vibrator oscillating in the ex direction. The amplitude of the vibrator's motion is determined by means of an accelerometer co-moving with the ring. A camera is focussed at the middle of OA and calibrated so as to mesasure the amplitude of the string's transverse oscillation. At last, when studying the linearly polarized oscillation of the string, a couple of heavy vertical metallic bars is inserted in order to prevent any oscillations of the string in the ( ey, ez) plane.

fundamental mode, enabled to measure the oscillation amplitude. In order to prevent any oscillation of the string in the ( e y , e z ) plane, we have designed a polarizing device, namely a couple of heavy vertical bars along which the wire could run with minimal friction. The whole experiment was monitored by means of a computer using the LabVIEW software.

B. Calibrations

The force captor was calibrated directly, using a set of standard masses, so the delivered electric tension was converted into force units (Newtons).

The G parameter of the string introduced in the text (see (1)) was estimated multiplying the brass's modulus E available from literature by the measured cross section S of our string. The latter estimation was then refined by a direct measurement of the string's static longitudinal tension as a function of its elongation imposed and determinated thanks to the micrometer head controling the chuck's position. The result of this calibration is displayed in figure 9. As can be easily checked, the string's response is quasi-linear, i.e. the elongation is proportional to the applied tension, in the range [12N, 30N]. Moreover, we made sure that the string is elastic (no appreciable plasticity) within the latter range. It should nevertheless be mentioned that the string's stiffness was sensitive to the temperature variations associated with its motion, chiefly at large oscillation amplitudes. For this reason, we cautiously made the string oscillate for a while prior to any experimental measurement. For our fits, we used the value G = 1.8 × 10 4 N.

As mentioned above (see text after equation (1)), we have regarded the string as a threadlike spring obeying Hooke's law, neglecting any bending torque. It is possible to justify this assumption. With this aim, let us consider the string as a cynlinder with diameter 2r. As a consequence of its nonzero transverse geometrical dimension, the string's various strands are not uniformly stretched when it is curved. This results in a torque that tends to diminish the string's curvature. In the framework of the linear response, the motion equation becomes 17

µ ∂ 2 u ⊥ ∂t 2 = F ∂ 2 u ⊥ ∂s 2 -Gκ 2 ∂ 4 u ⊥ ∂s 4 , ( 23a 
)
where κ is the so-called "gyration radius", in this case equal to r/2, hence Gκ 2 = Gr 2 /4. The dispersion relation thus reads

ω 2 = c 2 ⊥ k 2 1 + 1 4 G F k 2 r 2 . ( 23b 
)
In the case of our string, and for k = π/L 3 m -1 , the corrective term 1 4 G F k 2 r 2 ∼ 10 -4 : the bending torque and correlated effects can be ignored.

C. Longitudinal tension versus transverse amplitude

To begin with, we have attempted to verify the theoretical amplitude-dependence of the longitudinal tension displayed in [START_REF] Morse | Theoretical Acoustics[END_REF]. With this aim, we have fixed the vibrator's angular frequency near the string's foundamental angular frequency ω 1 = c ⊥ π L , in such a manner that the camera should focus on the vibration antinode. A gratuated setting stick is placed vertically, along direction e x . As a consequence, the latter amplitude is directly measured by simply reading the graduations of the stick thanks to the camera. The amplitude of the vibrator's oscillation is varied, in order to vary the string's oscillation amplitude, while the force captor records the longitudinal tension of the string. The measured extratension is the sum of two components (as expected from ( 17)): a static component and a component oscillating at twice the vibrator's frequency. The former component is displayed in figure 10 as a function of the square of the measured string's oscillation amplitude a 2 . In this figure, the extratension is mesured for an equilibrium tension F = 29.8 N, the string's oscillation squared amplitude is reported in mm 2 . Formula (19) is verified, with an experimental slope of 0.0228 N/mm 2 , to be compared with the theoretical value of 0.0219 N/mm 2 expected from the measured value of G. Observe that, when operating in the vicinity of kL = π, the 1 + sin 2kL 2kL factor can be substituted by unity in formula (20). 

D. Bistability

We have performed the two kinds of experiments described in subsection III E, and we present hereafter the experimental cycles we have obtained in the vicinity of the string's first Melde resonance for a static measured tension F = 30 N.

A first series of hysteresis cycles could be obtained by sweeping the vibrator's oscillation frequency on either side of the theoretical Melde foundamental frequency f 1 = ω 1 /2π = c ⊥ /2L. In such sweepings, the string's mechanical impedance varies, so we had to carefully adjust the electric power injected in the vibrator in order to maintain a constant ring amplitude ξ 0 throughout the sweeping. A meaningful experimental cycle is presented in figure 11, with all the same parameters as in the theoretical cycle displayed in figure 6, except for F which is chosen equal to 30 N (instead of 28,5 N). Note that the experimentally observed thresholds ω and ω are in accordance with the expected values.

A second series of hysteresis cycles could be observed by fixing the vibrator's frequency and sweeping its amplitude ξ 0 . A typical result is presented in figure 12. The same parameters are used in the theoretical prediction of figure 7 and in the experimental implementation of figure 12, save for the slight difference (already mentioned) in the static longitudinal tensions, respectively 28.5 N in figure 7 and 30 N in figure 12. The agreement between the predicted and observed threholds ξ 0 and ξ 0 is noteworthy.

At this step, one may formulate the following remark. A priori, the theoretical model we have proposed to account for the nonlinear string behaviour brings in one single adjustable parameter, namely τ . We should consequently be able to fit our experimental data by simply adjusting the value of τ . In fact, to ensure a better agreement between theory and experience, we chose to let the equilibrium longitudinal tension F as an adjustable parameter as well. The reason for is that the result of the calculation turns out to be very sensitive to the value of F . It is noteworthy that, using the simple couple of values (τ = 0.15 s, F = 28.5 N), we were able not only to predict the general outlines of the observed hysteresis cycles, but also the values of the frequency thresholds ω and ω (compare figures 6 and 11) and of the amplitude thresholds ξ 0 and ξ 0 (compare figures 7 and 12). Observe too that it could be argued that the slight discrepancy (∼ 5 %) between the measured value of F (30 N) and the value used in the fit (28.5 N) should be attributed to some -yet not elucidated -experimental artifact. As for the 0.15 s value found for the relaxation time τ , it is in good accordance with the observation of the free decay of the string's oscillations.

Let us repeat that, as explained in section III B, our introducing a phenomenological simple viscous dissipation term in the string's motion equation is but a trick. As a consequence, and as recalled above, the relaxation time τ (or equivalently the sinh k L L/2c ⊥ τ term in the denominator of the right-hand side of (13)) should be regarded as but an adjustable parameter. Not surprisingly, the thresholds ω , ω , ξ 0 and ξ 0 do depend of this adjustable parameter. Now, solving equation ( 22), one makes the following observation: contrary to ω and ξ 0 , the thresholds ω and ξ 0 hardly depend on τ . We performed the above series of hysteresis cycles (of both kinds) with F = 30 N, and we gathered the measured values of ξ 0 and ω . The corresponding data are presented in figure 13 (red dots); we have also displayed the theoretical prediction ξ 0 (f ) (blue curve), for F = 28.5 N. As can be checked, the experimental points line up (which is per se satisfactory), but still with a slope discrepancy with respect to the theoretical curve.

V. CONCLUSION

The Melde vibrating string is often presented as a good paradigm of transverse wave propagation. So it is as long as minute oscillation amplitudes are considered. Should the string's total length be modified in the course of the motion, and its elasticity be sollicited, a wealth of geometrically induced nonlinearities severely impair the simplicity of the basic presentation.

In this paper we have considered an elastic string obeying Hooke's law, and transversally excited by means of an electric vibrator. Provided that the string is stiff enough, the longitudinal propagation celerity is much larger than the transverse one, and can be regarded as instantaneous with respect to the latter. Within the framework of this approximation, the longitudinal tension is time-dependent but constant along the string, entailing substantial simplifications of the problem.

A fascinating consequence of the nonlinearities is the occurrence of bistability, as observed and described by many authors. For given oscillation amplitude and frequency of the vibrator, there may exist not one but three solutions of the motion equations, leading to the observation of hysteresis cycles. In this article, we have studied two kinds of cycles, obtained either by sweeping the frequency at constant amplitude or by sweeping the amplitude at constant frequency. Both kinds of cycles could be interpreted and numerically accounted for by means of a simple model bringin in a single adjustable parameter, namely the effective viscous relaxation time of the string's oscillation.

FIG. 1 :

 1 FIG. 1: Two equivalent labellings of the string using curvilinear abscissae. (a) Curvilinear abscissa s0 along the no-load string; the string slice [s0, s0 + ds0] has a mass µ0ds0 and is mechanically equivalent to a spring with no-load length ds0 and stiffness G ds 0 . (b) Curvilinear abscissa s along the string at equilibrium under tension F ez; the same string slice, now labelled [s, s + ds], has a mass µds = µ0ds0, with µ = µ0/ 1 + F G .

FIG. 5 :

 5 FIG.5: Graphical resolution of equation (22) for L = 1 m, τ = 0.15 s, F = 28.5 N, ξ0 = 0.5 mm. The red curve is the plot of the right-hand side of (22), the blue horizontal lines are the left-hand side at three frequencies. For ω/2π = 70 Hz and 115 Hz, the red curve and the blue line do intersect once; a threefold intersection is found for ω/2π = 95 Hz, leading to a bistable behaviour.

FIG. 6 :

 6 FIG.6: Expected hysteresis cycle when sweeping the vibrator's frequency throughout the Melde (first) resonance at the constant amplitude ξ0 = 0.5 mm. Parameters L, τ and F are the same as in figure5. When increasing the vibrator's frequency, the ϕ < π solution is followed by continuity until ω = ω ; when decreasing the excitation frequency, the ϕ > π solution is followed by continuity until ω = ω . The dotted line corresponds to the medium solution (never caught by the system).
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 910 FIG.9: Check and calibration of the elasticity of the string. Longitudinal tension of the string as a function of its static elongation, monitored by the micrometer head. Hooke's law is satisfactorilly verified within the [12N, 30N] tension range.

FIG. 11 :

 11 FIG.11: Experimental hysteresis cycle when sweeping the vibrator's frequency throughout the Melde (first) resonance at the constant amplitude ξ0 = 0.5 mm, with F = 30 N. The red dots are associated with the upwards sweeping (increasing frequency), the blue squares with the downwards one (decreasing frequency).

FIG. 12 :FIG. 13 :

 1213 FIG.12: Experimental hysteresis cycle when sweeping the vibrator's amplitude ξ0 at the constant frequency f = 89 Hz, with F = 30 N. The red dots are associated with the upwards sweeping (increasing ξ0), the blue squares with the downwards one (decreasing ξ0).
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