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Abstract
& Key message When areas of interest experience little
change, remote sensing-based maps whose dates deviate
from ground data can still substantially enhance precision.
However, when change is substantial, deviations in dates
reduce the utility of such maps for this purpose.
& Context Remote sensing-based maps are well-established as
means of increasing the precision of estimates of forest inven-
tory parameters. The general practice is to use maps whose
dates correspond closely to the dates of ground data. However,
as national forest inventories move to continuous inventories,
deviations between map and ground data dates increase.
& Aims The aim was to assess the degree to which remote
sensing-based maps can be used to increase the precision of
estimates despite differences between map and ground data
dates.
& Methods For study areas in the USA and Norway, maps
were constructed for each of two dates, and model-assisted

regression estimators were used to estimate inventory param-
eters using ground data whose dates differed by as much as
11 years from the map dates.
& Results For the Minnesota study area that had little change,
7-year differences in dates had little effect on the precision of
estimates of proportion forest area. For the Norwegian study
area that experienced considerable change, 11-year differ-
ences in dates had a detrimental effect on the precision of
estimates of mean biomass per unit area.
& Conclusions The effects of differences in map and ground
data dates were less important than temporal change in the
study area.

Keywords Landsat . Lidar . Model-assisted estimator

1 Introduction

Forest inventory and monitoring programs report estimates of
parameters related to forest area and biomass using data ac-
quired from arrays of ground plots. Although completely valid
inferences can be constructed using only the ground data, the
resulting precision may be less than acceptable, particularly
for highly variable populations and for regions for which sam-
pling intensities are small due to cost and logistical con-
straints. Remotely sensed auxiliary data, often in the form of
forest attribute maps, have the potential to increase the preci-
sion of estimates with no increase in sample size.

Although the utility of maps based on remotely sensed
auxiliary information for enhancing inference is well-
documented (GOFC-GOLD 2014; GFOI 2013), acquisition
and processing of the remotely sensed data for large regions
may be expensive, labor-intensive, and time-consuming. For
example, the Forest Inventory and Analysis (FIA) program of
the US Forest Service conducts the nation’s national forest
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inventory (NFI) and reports inferences for parameters related
to forest area and biomass at 5-year intervals. Because acqui-
sition of nationwide remotely sensed data and construction of
the necessary maps are beyond the scope of the program’s
capabilities, particularly at 5-year intervals, the Landsat-
based National Land Cover Dataset (NLCD) (Vogelmann
et al. 2001; Homer et al. 2004, 2007) constructed by the US
Geological Survey is used. However, the NLCD dates do not
necessarily coincide with the FIA reporting dates, and the
NLCD has been updated at only approximately 10-year inter-
vals. As a second example, the utility of lidar-assisted ap-
proaches for estimating forest biomass is increasingly reported
(e.g., d’Oliveira et al. 2012). However, for many countries
with tropical forests, the cost of even a single set of lidar data,
whether acquired wall-to-wall or in strips, may be prohibitive.
The cost of multiple sets of lidar data corresponding to peri-
odic remeasurements of the ground plots would be even more
prohibitive.

In addition to the cost factors, estimation procedures based
on aggregating map unit data, often characterized as pixel
counting, are inherently biased because of map classification
and prediction errors. Further, map accuracy indices produce
no direct estimates of bias or variances. A popular emerging
approach that produces these estimates while simultaneously
compensating for the effects of both outdated maps and map
errors is to combine map estimates with ground data using the
design-based, model-assisted regression estimator (Baffetta
et al. 2009; Gregoire et al. 2011; McRoberts 2010, 2011;
d’Oliveira et al. 2012; McRoberts and Walters 2012;
McRoberts et al. 2013; Næsset et al. 2011, 2013a, 2013b;
Vibrans et al. 2013; Sannier et al. 2014), also characterized
as the generalized regression estimator (GREG) (Särndal
2011). This estimator adjusts map-based estimates for classi-
fication and prediction errors due to factors such as deviations
between the dates of the remotely sensed data and the ground
reference data (Sect. 2.3.3). Although this feature makes the
estimator unbiased, or at least nearly unbiased, the trade-off
for adjustment of greater map errors is less precise estimates.
Nevertheless, if the map errors are not substantial, the estima-
tor may still be more precise than simple random sampling
estimators that use only the ground reference data. Other than
Næsset et al. (2011) who comment that fitted models do not
compensate for the effects of temporal deviations between
response and predictor variables, few reports have been pub-
lished regarding the degree to which compensation is possible
for substantially outdated maps or the degree to which preci-
sion is affected.

The overall objective of the study was to assess the degree
to which temporal differences between remote sensing-based
maps and ground data affect bias and precision estimates for
estimates of inventory parameters. For a study area in
Minnesota, USA, the population parameter of interest was
proportion forest area for which a Landsat-based map of the

probability of forest cover was used to enhance estimation.
For a study area in Våler, Norway, the population parameter
of interest was mean biomass per unit area for which a bio-
mass map based on airborne laser scanning (ALS) data was
used to enhance estimation. The rationale for these choices
was twofold. First, forest area and volume-related variables
such as biomass are the two most important and commonly
reported forest inventory and monitoring variables. Second,
these study areas, response variables, and auxiliary data pro-
vide a diverse context for the study.

2 Materials and methods

2.1 Study areas

2.1.1 Minnesota study area

The study area was defined by the portion of the row 27, path
27, Landsat scene in northeastern Minnesota, USA, that was
cloud-free for the two image dates, 16 July 2002 and 30
July 2007 (Fig. 1). The Landsat Thematic Mapper (TM) spec-
tral data were transformed using the normalized difference
vegetation index (NDVI) transformation (Rouse et al. 1973)
and the three tasseled cap transformations (TCgreen, TCbright,
TCwet) (Kauth and Thomas 1976; Crist and Cicone 1984) for
each image. The six original bands of spectral data and the
four transformations were used as independent variables when
constructing models of the relationship between the ground
and remotely sensed data (Sect. 3.1.1).

Fig. 1 Study area in northeastern Minnesota, USA. Source: state
boundaries - National Atlas of the United States, 2005
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Ground training data were obtained for permanent
plots established by the FIA program using a quasi-
systematic sampling design that is regarded as produc-
ing an equal probability sample (McRoberts et al.
2010). Each FIA plot consists of four 7.32-m (24-ft)
radius circular subplots that are configured as a central
subplot and three peripheral subplots with centers locat-
ed at distances of 36.58 m (120 ft) and azimuths of 0°,
120°, and 240° from the center of the central subplot.
Centers of forested, partially forested, or previously for-
ested plots are estimated using global positioning sys-
tem (GPS) receivers, whereas centers of non-forested
plots are verified using aerial imagery and digitization
methods. Data were available for 238–252 FIA plots
measured each year in the interval [2000, 2009]. Plots
in the study area are remeasured at 5-year intervals; so,
for example, the plots measured in 2000 were
remeasured in 2005.

Field crews visually estimate the proportion of each subplot
that satisfies the FIA definition of forest land: minimum area
of 0.4 ha (1.0 ac), minimum crown cover of 10 %, minimum
crown cover width of 36.6 m (120 ft), and forest land use.
Field crews also observe species and measure diameter at-
breast-height (dbh) (1.37 m, 4.5 ft) and height for all trees with
dbh of at least 12.7 cm (5 in). Growing stock volumes are
estimated for individual measured trees using statistical
models, aggregated at subplot-level, expressed as volume
per unit area, and considered to be observations without error
(McRoberts and Westfall 2014).

For this study, data for only the central subplot of
each plot were used to avoid dealing with spatial corre-
lation among observations for subplots of the same plot.
Deletion of data for the remaining subplots resulted in
little loss of information, because the correlation among
observations for subplots of the same plot was greater
than 0.85. Because the 168.3-m2 subplots are consider-
ably smaller than the larger 900-m2 TM pixels, the pro-
portion of a subplot bisected by a forest/non-forest
boundary may be considerably different than the propor-
tion of the pixel bisected by the same forest/non-forest
boundary. Therefore, such subplots were deleted for pur-
poses of model construction but retained for purposes of
estimation. In addition, because FIA field crews classify
subplots with respect to land use, not land cover, sub-
plots whose tree cover has been removed are still clas-
sified as forest if forest land use is expected to contin-
ue. Thus, observations of land cover for subplots with
forest land use but no measurable volume were consid-
ered to be missing at random and were deleted for pur-
poses of model construction but retained for purposes of
estimation. Following deletions, forest/non-forest obser-
vations for 186–202 plots per year remained for model
construction. For the central subplots, proportion forest

was combined with the 10 Landsat variables for pixels
containing subplot centers. For future reference, the
term plot refers to the central subplot of each FIA plot
cluster.

The Minnesota study area consists primarily of State and
County ownerships that are managed for timber production
with rotation cycles on the order of 40 years. However, the
study area also includes substantial numbers of private own-
erships which may or may not be managed for specific objec-
tives. The dominant forest types are aspen-birch (Populus
spp., Betula spp.) and maple-beech-birch (Acer spp., Fagus
spp., Betula spp.) with lesser amounts of spruce-fir (Picea
spp., Abies spp.).

2.1.2 Våler study area

The 853-ha s tudy area was loca ted in Våle r
Municipality in southeastern Norway and included 176
systematically distributed, circular, 200-m2 forest inven-
tory plots (Fig. 2). The dominant tree species are
Norway spruce (Picea abies (L.) Karst.) and Scots pine
(Pinus sylvestris L.). Tree-level aboveground biomass
(AGB, Mg/ha) was estimated for both 1999 and 2010
using statistical models based on field observations of
species and measurements of dbh (1.3 m) and height
(Marklund 1988). For 1999 and 2010, plot-level AGB
was estimated as the sum of individual tree AGB pre-
dictions, scaled to Mg/ha, and considered to be obser-
vations without error (McRoberts and Westfall 2014).
Aerial stereo photography was used to delineate four
classes related to stand age and species dominance that
served as the basis for four strata: (1) recently regener-
ated forest, (2) young forest, (3) mature, spruce-
dominated forest, and (4) mature, pine-dominated forest.
Sampling intensities were approximately equal for the
first three strata, but for the fourth stratum, the intensity

Fig. 2 Study area in Våler Municipality in southeastern Norway
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was only approximately one-third of that for the other
three strata (Næsset et al. 2013a).

Wall-to-wall ALS data were acquired for the study
area in 1999 and 2010. For each year, distributions of
first echo heights were constructed for the 200-m2 cir-
cular plots and 200-m2 square grid cells that tessellated
the study area. A threshold of 1.3 m above the ground
surface was used to remove the effects of echoes from
ground vegetation whose biomass is not included in
tree-level AGB. For each plot and cell, heights corre-
sponding to the 10th, 20th, …, 100th percentiles of the
distributions were calculated and were available for in-
clusion as independent variables for constructing models
of the relationship between AGB and the ALS metrics.

2.2 Map construction

2.2.1 Mapping forest/non-forest

The relationship between a dichotomous response variable
such as forest/non-forest, here denoted Y (y=0 denotes non-
forest, y=1 denotes forest), and continuous independent var-
iables, X, is often expressed in the form,

pi ¼ f Xi;βð Þ þ εi ð1Þ
where i indexes population units, pi is the probability that
yi=1, β is a vector of parameters to be estimated, and εi is
the random residual with mean 0 (Agresti 2007). The func-
tion, f(Xi;β), expresses the expectation of Y in terms ofX and
β and is often formulated using the logistic function leading to
the model,

pi ¼
exp β0 þ

XJ

j¼1

β jxi j

 !

1þ exp β0 þ
XJ

j¼1

β jxi j

 ! þ εi ð2Þ

where j=1, …, J indexes the independent variables, and
exp (.) is the exponential function. The model parameters are
estimated using maximum likelihoodmethods as described by
Agresti (2007).

Parameters for the binomial logistic regression model
were estimated separately using the 2002 FIA and
Landsat data and using the 2007 FIA and Landsat data.
A three-step procedure was used to assess quality of fit
of the models to the data: (1) all plot observation/model
prediction pairs, (yi, bpi), were ordered with respect to bpi;
(2) the ordered pairs were grouped into categories of
approximately equal numbers of pairs, and the group
means of the plot observations and the corresponding

model predictions were calculated; and (3) a graph of
the observation means versus the model prediction
means was constructed. If the model is correctly speci-
fied, a graph of means of observations against means of
predictions should lie along the 1:1 line.

2.2.2 Mapping biomass

For the Våler study area, a nonlinear logistic model was used
to estimate the relationship between AGB and the ALS met-
rics. The model had the mathematical form,

yi ¼
α

1þ exp β0 þ
XJ

j¼1

β jxi j

 ! þ εi; ð3Þ

where i indexes population units, xij is the jth lidar met-
ric, α and the βs are parameters to be estimated, and εi
is the residual term. An advantage of the logistic model
expressed by Eq. (3) over a linear model is that all
predictions are constrained by the lower horizontal as-
ymptote of ŷ=0 and the upper horizontal asymptote ofby ¼ bα which is estimated from the sample data. This
logistic regression model should not be confused with
the binomial logistic regression model described in
Sect. 2.2.1.

The model was fit using least squares techniques with the
parameters estimated separately for each stratum for each of
1999 and 2010 using the corresponding inventory and ALS
data. For each model, the quality of fit of the model to the data
was assessed using pseudo-R2 calculated as

R2* ¼ SSmean−SSerr
SSmean

; ð4Þ

where SSmean is the sum of squared deviations of the observa-
tions around their mean and SSerr is the sum of squared devi-
ations of the observations from their predictions. The same
three-step procedure as described in Sect. 2.2.1 was also used,
albeit using ŷi rather than bpi.
2.3 Analyses

2.3.1 Assumptions and technical objectives

All analyses were based on three underlying assumptions: (1)
a finite population, U, consisting of N units in the form of
either square, 900-m2 Landsat pixels for theMinnesota dataset
or square 200-m2 grid cells for the Våler dataset; (2) a sample,
S, of n population units in the form of the plots; and (3) avail-
ability of auxiliary remotely sensed Landsat data for all pixels
and ALS data for all lidar cells. In the following sections, the
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terms population unit, pixel, and grid cell are used
interchangeably.

For assessments of forest area, the objective is typi-
cally to estimate the area for a class of the response
variable. Because the estimate of class area is simply
the product of total area which is usually known and
the estimate of the class area proportion, the parameter
of interest for the Minnesota portion of the study was
proportion forest at time t, denoted μt. For the Våler
study area, the parameter of interest was mean AGB
at time t, also denoted μt. For inventory applications,
the ultimate objective is construction of an inference
in the form of an approximately 95 % confidence inter-
val for μt expressed as

bμt � 2⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vbar bμt� �q

; ð5Þ

where Vbar bμt� �
is the estimator of the variance of bμt.

Thus, the study emphasis was estimation of μt and the

standard error of its estimate, SE bμt� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vbar bμt� �q

.

2.3.2 Simple random sampling estimators

For both study areas and for each year for which ground data
were available, the parameters of interest were estimated using
the simple random sampling (SRS) estimators,

bμtgrnd
SRS ¼

1

n

X
i∈S

z
tgrnd
i ð6aÞ

and

Vbar bμtgrnd
SRS

� �
¼ 1

n n−1ð Þ
Xn
i∈S

z
tgrnd
i −bμtgrnd

SRS

� �2
; ð6bÞ

where tgrnd denotes the date of the ground data, z denotes the
ground observations of forest or non-forest for the Minnesota
study area or AGB for the Våler study area.

2.3.3 Model-assisted regression estimators

Model-assisted regression estimation is an approach to in-
creasing precision that uses auxiliary information. For both
study areas and each ground data year, an initial estimate
can be calculated as the mean over map predictions, regardless
of the year of the map,

bμtmap

init ¼
1

N

XN
i¼1

bztmap

i ; ð7aÞ

where tmap denotes the date of the remotely sensed data
and bz denotes the prediction of the probability of forest

from Eq. (2) or the AGB prediction from Eq. (3).
However, this estimator may be biased due to map clas-
sification and prediction error for multiple reasons such
as changes in the response variable between the map
and ground data dates. The bias of this estimator is
estimated as

Bbias bμtmap

init

� �
¼ 1

n

X
i∈S

bztmap

i −ztgrndi

� �
: ð7bÞ

The model-assisted, generalized regression estimator
(GREG) of the mean is

bμt grnd
GREG ¼ bμtmap

init −Bbias bμtmap

init

� �

¼ 1

N

XN
i¼1

bztmap

i −
1

n

X
i∈S

bztmap

i −ztgrndi

� �
ð7cÞ

with variance estimator,

Vbar bμtgrnd
GREG

� �
¼ 1

n n−1ð Þ
X
i∈S

εi−εð Þ2; ð7dÞ

where εi ¼ bztmapi −ztgrndi

� �
and ε ¼ 1

n ∑
i∈S

εi (Särndal et al. 1992,

Sect. 6.5; Särndal 2011). The potential advantage of the GREG

estimators is that ∑
i∈S

εi−εð Þ2 from Eq. (7d) may be smaller than

∑
i∈S

bz tgrndi −bμ tgrnd
SRS

� �
from Eq. (6b) in which case Vbar bμtgrnd

GREG

� �
should be smaller thanVbar bμtgrnd

SRS

� �
. TheGREGbias and variance

estimates are generally expected to be smaller when |tmap−tgrnd| is

Fig. 3 Accuracy of logistic regression model predictions for Minnesota
study area
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smaller. However, the estimator is still, at worst, nearly unbiased,
regardless of the difference in dates.

2.3.4 Stratified estimators

For the Våler study area, the unequal sampling intensities
within strata necessitated use of stratified estimators.
Because the plots were distributed systematically, the within-
strata sample sizes were considered random rather than fixed
as would be the case for stratified sampling. Thus, the post-

stratified (STR) estimators as provided by Cochran (1977)
were used,

bμSTR ¼
XH
h¼1

wh⋅bμh; ð8aÞ

and

Vbar bμSTRð Þ ¼
XH
h¼1

wh⋅
bσ2
h

n
þ 1−whð Þ⋅ bσ2

h

n2

" #
; ð8bÞ

where n is the total sample size, h=1,…,H denote the strata,
wh are the strata weights calculated as the proportions of the
study area in strata, and the within-strata means and variances,

μh and bσ2
h are estimated using both the SRS and the GREG

estimators.

2.3.5 Estimating mean proportion forest and biomass per unit
area

For the Minnesota study area, three estimates of proportion
forest were calculated for each tgrnd∈[2000, 2009]: one using
the SRS estimators, one using the GREG estimators and the
2002 map, and one using the GREG estimators and the 2007
map. For the Våler study area, three estimates of mean AGB
were calculated for each of 1999 and 2010: one using
the SRS estimators within strata, one using the GREG
estimators and the 1999 map within strata, and one
using the GREG estimators and the 2010 map within
strata. Under the assumption of unbiasedness of the es-
timators, differences in the three estimates for the same
ground data year should be small.

Fig. 4 Group means of biomass observations versus group means of
predictions for stratum 1 and 1999 for Våler study area

Table 1 Estimates of proportion forest area for Minnesota study area

Ground data
year, tgrnd

Sample size Simple random sampling estimators Model-assisted regression (GREG) estimators (map year, tmap)

2002 2007

bμSRS SE bμinit Bîas bμGREG SE bμinit Bîas bμGREG SE

2000 252 0.709 0.028 0.643 −0.033 0.676 0.025 0.639 −0.019 0.659 0.025

2001 238 0.637 0.031 0.643 0.028 0.615 0.024 0.639 0.018 0.621 0.025

2002 249 0.721 0.028 0.643 −0.026 0.668 0.022 0.639 −0.022 0.661 0.022

2003 247 0.700 0.029 0.643 −0.044 0.687 0.023 0.639 −0.003 0.643 0.022

2004 245 0.679 0.030 0.643 0.002 0.641 0.024 0.639 0.006 0.633 0.023

2005 252 0.707 0.028 0.643 −0.020 0.673 0.025 0.639 −0.017 0.656 0.025

2006 238 0.662 0.030 0.643 0.002 0.641 0022 0.639 −0.007 0.647 0.023

2007 249 0.750 0.027 0.643 −0.055 0.698 0.020 0.639 −0.051 0.690 0.019

2008 247 0.749 0.028 0.643 −0.093 0.734 0.021 0.639 −0.022 0.692 0.021

2009 245 0.699 0.029 0.643 −0.018 0.661 0.023 0.639 −0.014 0.653 0.022

844 R.E. McRoberts et al.



3 Results

For the Minnesota study area, the logistic regression models
adequately represented the relationships between the probabil-
ity of forest and Landsat variables (Fig. 3). If bpi < 0:5 is used
to predict non-forest and bpi≥0:5 is used to predict forest, the
overall accuracies of the 2002 and 2007 classifications were
0.89 and 0.92, respectively. For the Våler study area, R2* values
for the eight biomass models, one for each of the four strata for
each of the 2 years, were in the range 0.72–0.96 with six of the
eight greater than 0.90; these large R2* values were reflected in
the strong and similar relationships between observations and
model predictions for both 1999 and 2010 (e.g., Fig. 4).

For the Minnesota study area, annual estimates of propor-
tion forest for each year in the 2000–2009 period were similar,
regardless of the estimation approach (Table 1). The bias es-
timates were uniformly small, not more than 15 % of the
estimates of the means, and had little effect on the GREG
estimates. SE estimates were also uniformly small, not more
than 4 % of the means, with the GREG estimates slightly
smaller than the SRS estimates.

For the Våler study area, the three population-level estimates
of mean AGBwere similar for 1999 and also for 2010 (Table 2).
With the exception of stratum 2, the within-strata estimates were
also similar. When the ground and map years were the same, all
within-strata GREG bias estimates were less than 5 % of the
estimated means, and the GREG SE estimates for the entire
study area were less than 2 % of the estimated means with the
latter considerably smaller than the SRS estimates. However,
when the ground and map years differed, estimates of bias were
considerably larger which, in turn, caused the SE estimates to be
larger. Nevertheless, for the 2010 ground data and the 1999map,
the GREG SE estimate was still smaller proportionally by 0.13
than the SRS estimate, but such was not the case for the 1999
ground data and the 2010 map for which the GREG SE estimate
was larger proportionally by 0.25 than the SRS estimate.

4 Discussion

For the Minnesota study area, the small bias estimates associ-
ated with the GREG estimators can be attributed to the accu-
racy of both the 2002 and 2007 maps and the lack of change
over the 2000–2009 interval. One result is the similarity in the
annual estimates of proportion forest. The slightly smaller SEs
for the GREG estimators than for the SRS estimators can be
attributed to the combination of the utility of the auxiliary map
data and the effectiveness of the GREG estimators. Despite
differences in map and ground data dates of as much as
7 years, no appreciable effect on either estimates of proportion
forest area or the precision of estimates as indicated by SEs
were discernible. T
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For the Våler study area, the 1999 population estimates of
mean AGB were similar as were the within-strata estimates,
except for stratum 2, regardless of the estimation method;
likewise, the 2010 estimates were very similar, with the ex-
ception of stratum 2, regardless of the estimation method. The
reason results were different for stratum 2 is not apparent.
When the ground and map years were the same, the smaller
GREG estimates of SEs relative to the SRS estimates can be
attributed to the utility of the combination of map auxiliary
data and the GREG estimators. However, when the ground
and map years differed, the greater bias and SE estimates
can be attributed to AGB change that is not reflected in the
outdated maps. Further, when the ground and map years dif-
fered, the utility of the auxiliary map data for increasing pre-
cision was greatly diminished, despite the accuracy of the
adjusted estimates of the means.

The beneficial features of the GREG estimators are impor-
tant, particularly for the Våler study area. First, as previously
noted, when the ground and map years were the same, the
GREG estimates of SEs were much smaller than the SRS
estimates. Second, when the ground and map years differed,
the bias estimates were large, but the GREG adjustment for
them compensated for the fact that the outdated maps did not
reflect current ground conditions. Therefore, and perhaps
most importantly, the GREG estimates for the entire study
area were very similar, regardless of the ground year and
map year combination and despite changes in the resource
between the 2 years. However, the price to be paid for the
large GREG adjustments for estimated bias was much greater
SE estimates; in particular, the GREG SE estimate for the
combination of the 1999 ground data and the 2010 map was
larger than the SRS SE estimate.

5 Conclusions

Three conclusions can be drawn from the study. First, the
generalized regression estimators use the auxiliary informa-
tion in the Landsat-based forest/non-forest maps and the air-
borne laser scanning-based biomass maps to increase the pre-
cision of estimates. This feature of the estimators was con-
firmed by the smaller standard errors for the generalized re-
gression estimates of mean proportion forest and mean AGB
than for the simple random sampling estimates when ground
and map years were the same.

Second, the feature of the model-assisted generalized re-
gression estimators that corrects for estimated bias makes the
estimator unbiased, or at least nearly unbiased. This feature
was illustrated by the similarity in estimates of mean propor-
tion forest for the Minnesota study area and estimates of mean
AGB for the Våler study area despite using maps that were
outdated by 7 to 11 years. In particular, the corrections for
estimated bias produced comparable estimates of population

means, regardless of the temporal differences between the
ground and map data and regardless of the change in the
resource between the ground and map years.

Third, the price to be paid for using outdated maps is
loss of precision, particularly when substantial change in
the response variable occurs between the map and
ground data dates. For the Minnesota study area for
which change was rare, differences in dates by as much
as 7 years had only negligible effects on both bias es-
timates and precision. However, for the Våler study area
for which change was more substantial, differences in
dates by 11 years had detrimental effects on precision to
the extent that in one case the simple random sampling
estimates were more precise than the generalized regres-
sion estimates.

Although broad generalizations based on these two study
areas are ill-advised, several generalizations are still possible:
(1) despite relatively large temporal differences between map
and ground data dates and substantial change in the response
variable, the adjustment for estimated bias produced similar
estimates of population means; (2) the crucial factor affecting
precision is not necessarily the temporal difference between
map and ground data dates but rather the degree of change in
the response variable.
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