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On feedback stabilization of linear switched

systems via switching signal control

Raphaël M. Jungers∗, Paolo Mason†

Abstract

Motivated by recent applications in control theory, we study the feedback stabilizability
of switched systems, where one is allowed to chose the switching signal as a function of x(t)
in order to stabilize the system. We propose new algorithms and analyze several mathe-
matical features of the problem which were unnoticed up to now, to our knowledge. We
prove complexity results, (in-)equivalence between various notions of stabilizability, existence
of Lyapunov functions, and provide a case study for a paradigmatic example introduced by
Stanford and Urbano in the nineties.

1 Introduction

Switched systems are a paradigmatic family of complex systems, which has sparked many inter-
esting research efforts in the last decades. They appear naturally in many engineering situations,
or as abstractions of more complicated systems. In this framework, the basic stability and stabi-
lizability questions which one might ask turn out to be extremely challenging. This is true even
in the particular case in which the dynamics switch within a given set of linear modes, and even
if only a finite set of linear modes is available, which is the case considered in this paper.
In order to support this claim, let us mention one question: Is it possible to design a switching
signal giving rise to an asymptotically stable behaviour, i.e. such that for any starting point the
corresponding trajectory converges to zero? It is well known that the answer to this question for
discrete time linear switched systems depends on the so-called joint spectral subradius, and this
quantity is known to be Turing-uncomputable even if we restrain to the case of two available linear
modes [3],[20, Section 2.2.4].
If the joint spectral subradius determines the possibility of stabilizing the system in open loop
assuming the switching signal independent of the initial state, the quantity we focus on here is
instead related to the feedback stabilization problem: suppose that one can observe at every time
t the value of x(t), and is allowed to control the system based on this sole information; is there a
strategy allowing to globally stabilize the system?
This question appears naturally in several applications, and has motivated the interest of control
theorists in recent years. Let us mention [24] for a study of this problem motivated by super-
visory control and measurement scheduling and [17] concerning the problem of optimizing drug
treatments of some viral pathologies, like HIV. Other important applications are in bisimulation
of hybrid systems [15], where the switched system is an abstraction of a more complex one. See
[5, 7, 18, 27] for more works and applications around the stabilization of switched systems.
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Concerning the stabilization issue for discrete-time switched systems, to our knowledge the first
work mentioning the advantage of making use of switching laws depending on the initial condition,
is [36]. The examples provided in [36] suggest in particular that the existence of a stabilizing
switching sequence independent on the initial condition is not equivalent to the stabilizability by
a feedback law. Subsequent papers have provided algorithmic ways of constructing a stabilizing
feedback switching rule: In [41, 42], a first sufficient LMI (Linear Matrix Inequalities) condition
is given. This condition ensures the existence of an ellipsoid which can be left invariant under
a proper state feedback switching rule. Characterizations of the existence of such an invariant
ellipsoid (often termed as quadratic stability), are given in [34, 40]. In [14], a more general condition
is given, which allows for more complex invariant sets, described by piecewise quadratic functions.
This condition (under its most general form) is a BMI (Bilinear Matrix Inequality), but relaxations
of it are given, which can be more easily checked, and still are more general than the above
mentioned condition. Other conditions can be found in [11, 14, 29]. Interesting improvements on
the BMI approach have been obtained recently [10].

A further improvement has been obtained in [43], where it is shown how to iterate such condi-
tions in order to decrease their conservativeness, at the cost of increasing the computation time.
Asymptotically, these conditions become necessary; that is, if the system is stabilizable via control
of the switching signal, there is a condition in the hierarchy that will be satisfied. See [24] for
similar results with a slightly different notion of stabilizability. As pointed out by the authors, in
practice, for reasonably large systems, the conditions could become too computationally expensive
before to reach one that is satisfied.

Let us notice that the stabilization problem for discrete-time switched systems has been largely
studied even beyond the framework considered in this paper, namely in the case in which additional
linear control terms are taken into account. See, for instance, [2, 25, 26, 28] for the feedback sta-
bilization problem under arbitrary switching, and [5, 23, 43] for the stabilization problem through
the joint action of a linear controller and a controller-ruled switching signal.

Concerning continuous-time systems, the feedback stabilization problem has attracted a con-
siderable attention in the non-linear control community since many decades. In particular let us
mention that many noteworthy results have been obtained starting from the 80s, dealing with
necessary and sufficient conditions for asymptotic controllability and stabilizability as well as ex-
istence and properties of control-Lyapunov functions, see for instance [1, 6, 8, 35]. In many cases
these results directly apply to the switched systems setting. However, there exist only few works
specializing on the stabilizability problem in the case of continuous-time switched systems. In this
context let us mention that for two dimensional linear continuous-time switched systems the sta-
bilizability property can be characterized in a quite explicit way (see e.g. [9]), namely a switched
system is stabilizable if and only if it satisfies a few simple algebraic inequalities.

In this paper we deal with both the analytic and the algorithmic side of the stabilization
problem, mainly in the discrete-time case. In the first part we perform a qualitative analysis
of the stabilizability issue for discrete-time linear switched systems, showing in particular, in
Proposition 1 and Corollary 1, that such systems admit a stabilizable switching law depending on
the initial point if and only if they are stabilizable by means of an homogeneous feedback. One of
the main ingredients in order to prove this result consists in the construction of a suitable control-
Lyapunov function. The possibility of stabilizing the dynamics by a switching law depending on
the initial point is measured by the pointwise stabilization radius ρ̃ which describes the lowest
possible exponential growth rate of the system. This object is analogous to the joint spectral
subradius, which measures the possibility of stabilizing the system by means of a switching rule
independent of the initial point. These two quantities turn out to be different in general, as
shown in Example 1 below, inspired by the results in [36]. On the other hand they are equal in the
particular case in which all the available linear modes share a pair of nested proper invariant cones,
as shown in Theorem 1. Concerning the pointwise stabilization radius, we show in Proposition 2
the rather surprising fact that there does not always exist an homogeneous feedback law that
exactly achieves ρ̃.

In the second part of the paper we analyze the algorithmic side of the stabilizability problem
for discrete-time linear switched system. Unsurprisingly, many negative results can be derived: we
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show in Proposition 6 that the stabilizability problem is NP-hard, even for nonnegative matrices,
and in Proposition 7 that it is undecidable. We provide two algorithms that respectively deliver a
lower and an upper bound on the stabilization radius (to our knowledge this is the first systematic
lower bound in the literature). However, the problem of approximating the stabilization radius
appears very hard to tackle in general, and even for low dimensional systems. In order to support
this claim, we analyze a specific example in Section 5. For this system, based on the theoretical
results obtained in the preceding sections, we propose a few approaches in order to approximate
the best convergence rate that one can ensure. Then we present a technical result providing an
obstruction to the computation of the optimal achievable rate of decay, namely we show that
there exists a dense set of initial conditions for which the achievable rate of decay is constant
and strictly lower than the upper bound obtained algorithmically. As a consequence, a nontrivial
lower bound for the stabilization radius appear to be hard to obtain without resorting to ad hoc
techniques. Note that many of the obtained results may be easily transposed in the framework of
continuous-time linear switched system as we observe in Section 6.

2 Setting and elementary properties

Given a compact set of matricesM = {Aσ
∣∣σ ∈ Σ} ⊂ Rd×d, we consider the discrete-time switched

system defined by the difference equations of the form

x(s+ 1) = Aσ(s)x(s), x(0) = x0,

associated with a switching sequence σ(·). We denote by xσ,x0(t) the corresponding solution, that
is xσ,x0(t) = Aσ(t) . . . Aσ(1)x0 for t ∈ N.

In this section we formalize some basic notions of stabilizability we will deal with and some
related elementary properties. In the definition below we introduce two natural notions of stabi-
lizability related to the use of open loop and closed loop switching laws, respectively.

Definition 1. We say that M is pointwise stabilizable if for any x0 ∈ Rd there exists a switching
law σx0

(·) such that limt→∞ xσx0 ,x0
(t) = 0.

We say that M is feedback stabilizable if there exists a 0-homogeneous1 function σ : Rd → M
such that, for any x0 ∈ Rd, limt→∞ x(t) = 0, where x(·) is a solution of the corresponding closed
loop system starting at x0. In addition we say that M is uniformly feedback stabilizable if there
exists σ(·) as above such that for any positive ε1, ε2 there exists T ∈ N such that if |x0| < ε1 the
corresponding trajectory x(·) satisfies |x(t)| < ε2 if t ≥ T .

The difference between the definitions of pointwise and feedback stabilizability is subtle. In
the former pointwise stabilizability, one has to decide the switching signal once and for all at time
zero. In the latter feedback stabilizability, we assume that the controller has the knowledge of
the state x(t) at every instant, and the controller has to decide its actuation based on this sole
knowledge.

In order to tackle the more general situation where one is interested in the minimal achievable
rate of growth of the system, we now introduce numerical values that quantify the notion of
stabilizability.

Definition 2. We introduce the following stabilizability indices:

• For a given x ∈ Rd let us consider the quantity

ρ̃x(M) = inf{λ ≥ 0
∣∣ ∃σ(·) switching sequence, M > 0 s.t. |xσ,x(t)| ≤Mλt|x|,∀t ≥ 0}

and define the pointwise stabilization radius of the switched system as

ρ̃(M) = sup
x∈Rd

ρ̃x(M).

1A function f : Rd → R is 0-homogeneous if f(λx) = f(x) ∀λ 6= 0, ∀x.
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• In the previous definition the constant M may depend on the initial condition. This is no
more the case if we consider the following definition:

ρ̃′(M) = inf

{
λ ≥ 0

∣∣∣ ∃M > 0 s.t. |xσ,x(t)| ≤Mλt|x| for any x ∈ Rd,
t ≥ 0 and some switching signal σ depending on x

}
.

A closely related quantity, that has received more attention in the literature, is the joint spectral
subradius

ρ̌(M) := lim
t→∞

inf
σ(·)
‖Aσ(t) . . . Aσ(0)‖1/t.

In terms of control theory, this latter quantity represents the open loop stabilizability of a switched
system by a switching law which is independent on the initial point, unlike the ones involved in
the computation of ρ̃(M). See [20] for more on the joint spectral subradius. To the best of our
knowledge, Stanford and Urbano [36] are the first ones to observe that ρ̌(M) 6= ρ̃(M). They
provide an example for which the two quantities are different, which we reproduce in a slightly
different form here below. See [4] for a recent study of a very similar example (though not
concerned with feedback stabilizability).

Example 1. Let us consider M = {A1, A2}, where

A1 =

(
cos π4 sin π

4
− sin π

4 cos π4

)
=

√
2

2

(
1 1
−1 1

)
, A2 =

(
1
2 0
0 2

)
.

In this case it is easy to see that ρ̌(M) = 1. Indeed, det(Aσ(t) . . . Aσ(0)) = 1 independently on the
switching sequence, which implies that ‖Aσ(t) . . . Aσ(0)‖ ≥ 1 and thus ρ̌(M) ≥ 1. On the other
hand we have ρ̌(M) ≤ ‖A1‖ = 1 by submultiplicativity, and thus ρ̌(M) = 1.
If one is allowed to tune the switching sequence depending on the value of x(t), the situation is
different: indeed, for any x ∈ R2 there always exists a natural number nx ≤ 3 such that the absolute
value of the angle formed by the vector Anx1 x and the x1 axis is smaller or equal than π/8. As a
consequence it is easy to obtain the estimate |A2A

nx
1 x| < 0.9|x| and thus ρ̃(M) < 0.91/4 ∼ 0.974.

For similar examples and a more detailed exposition, see e.g. [36].

In the next lemma, we state properties that we will need in the rest of the paper.

Lemma 1. The pointwise stabilization radius satisfies the following basic properties:

(i) Homogeneity: For any compact set of matrices M, ∀γ > 0, ρ̃(γM) = γρ̃(M),

(ii) For any compact set of matrices M, ∀t ∈ N, ρ̃(Mt) = ρ̃(M)t.

The same properties hold for ρ̃′.

Proof. It is easy to see that there is a bijection between trajectories of the system defined by M
and the one defined by γM (resp. Mt) such that the number λ in the definition of ρ̃ and ρ̃′

becomes γλ (resp. λt). The thesis follows immediately.

We now establish the equivalence of the two quantities introduced in Definition 2 and we
characterize the notion of pointwise stabilizability in terms of them. The following proposition
may be easily obtained by adapting the proof of the similar result [37, Theorem 3.9].

Proposition 1. The following conditions are equivalent:

(i) ρ̃′(M) < 1,

(ii) ρ̃(M) < 1,

(iii) M is pointwise stabilizable.

Remark 1. By Lemma 1 and Proposition 1 we deduce that ρ̃(M) and ρ̃′(M) coincide.
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We now present a rather surprising result, which shows the subtlety of the stabilization radius:
Obviously, linear switched systems are homogeneous, that is, if one multiplies the initial condition
by λ > 0, the whole trajectory is multiplied by λ. Furthermore, if a switching signal σ makes a
trajectory starting at x0 converge to zero, the same switching signal makes the trajectory starting
at λx0 converge to zero, for any λ > 0.
For this reason, one might think that it is enough to develop a switching strategy based on the
‘direction’ of x in the state space (i.e. x/|x|), but independent on its norm. A controller could
then work by tracking the value x(t)/|x(t)|, as a dynamical system evolving on the unit ball, and
would decide ‘in real time’ which switching signal to apply, depending on this point on the unit
ball.
However, we show in the second part of the proposition that it is not true: there are systems, which
are stabilizable, but where no such controller (i.e. an homogeneous function of x) can achieve the
stabilization radius.

Proposition 2. For any x0 ∈ Rd, there exists a switching law σx0
(·) such that

lim sup
t→∞

|xσx0 ,x0(t)|1/t ≤ ρ̃(M). (1)

On the other hand there does not always exist a 0-homogeneous feedback such that each solution
x(·) of the corresponding closed loop system satisfies lim supt→∞ |x(t)|1/t ≤ ρ̃(M).

Proof. Let us prove the first part of the statement. First, if ρ̃x0(M) < ρ̃(M), the proof is obvious.
So, let us suppose that ρ̃x0

(M) = ρ̃(M). We construct a suitable solution xσx0 ,x0
(·) of the system

such that lim supt→∞ |xσx0 ,x0
(t)|1/t = ρ̃(M). Let us denote by Mn the value of M in the definition

of ρ̃′ corresponding to λ = ρ̃(M)+2−n. By definition of ρ̃′ we know that it is possible to construct
xσx0 ,x0

(·) such that there exists t1 ∈ N large enough satisfying |xσx0 ,x0
(t1)| ≤ 1

M1
(ρ̃(M)+1)t1 |x0|.

Define x1 = xσx0 ,x0
(t1). Reasoning as before we can prolong xσx0 ,x0

(·) on [0, t1 + t2], where t2 ∈ N
is such that |xσx0 ,x0(t1 + t2)| ≤ M1

M2
(ρ̃(M) + 1

2 )t2 |x1| ≤ 1
M2

(ρ̃(M) + 1
2 )t2(ρ̃(M) + 1)t1 |x0| and in

addition

|xσx0 ,x0
(t1 + s)| ≤ (ρ̃(M) +

1

2
)s(ρ̃(M) + 1)t1 |x0|

for s ∈ [0, t2]. Following the same lines one can prolong indefinitely the trajectory adding at each
time an interval of length tn ∈ N to its domain in such a way that

|xσx0 ,x0
(t)| ≤ (ρ̃(M) + 2−N )t−TN

N∏
n=1

(ρ̃(M) + 2−n+1)tn |x0|,

where TN =
∑N
n=1 tn and t ∈ [TN , TN+1]. Without loss of generality we assume that TN goes to

infinity with N , so that t can be arbitrarily large. We have

log(|xσx0 ,x0(t)|1/t) ≤ t− TN
t

log(ρ̃(M) + 2−N ) +

N∑
n=1

tn
t

log(ρ̃(M) + 2−n+1) +
1

t
log(|x0|).

which converges to log(ρ̃(M)) as t goes to infinity, concluding the proof of the first part.
We now provide an explicit example to prove the second part of the proposition. Let us consider

the discrete-time system corresponding to the following set of matrices

M = {A,B} =


2 0 0

0 1 0
0 0 1

 ,

0 1 1
0 1 1
0 1 1

 . (2)

The intuition behind this example is as follows: both matrices have spectral radius equal to two,
so, one has to make use of both of them in order to keep the trajectory bounded. To do so, one can
exploit the fact that BAt = BA (intuitively, B ‘kills’ the explosion of At). However, one cannot
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apply B too often, because for instance (taking e = (1, 1, 1)T as the initial condition) BAte = 2e.
Now, because e is an eigenvector of BAt, any homogeneous function would lead to a periodic
application of BAt, leading to an exponential growth. Hence, an aperiodic switching strategy is
needed, precluding the use of a homogeneous strategy. We now formalize this reasoning.

We claim that for any 0-homogeneous function σ(x) the corresponding feedback solution xe(·)
starting at the all-ones vector e is such that lim supt→∞ |xe(t)|1/t > 1. We proceed by contradic-
tion: let us suppose that there exists such a function σ(x) with lim supt→∞ |xe(t)|1/t ≤ 1. First,
certainly Aσ(e) 6= B, because Be = 2e, and this would imply that |xe(t)|1/t = 2. Also, certainly
this trajectory must contain some multiplication by B, because |Ate| ≈ 2t. Let us call T the first
t such that x(t) is multiplied by B. Since BAT e = 2e, the trajectory of x must be of the shape
. . . BATBAT e, and we see that limt→∞ |xe(t)|1/t > 1, leading to a contradiction.
Let us now show that ρ̃e(M) = ρ̃(M) = 1. Since ‖BAt‖ is bounded by a constant which is
independent on t, and obviously ρ̃(Mt+1) ≤ ‖BAt‖, it turns out by item (ii) in Lemma 1 that
ρ̃(M) ≤ 1. The inequality ρ̃e(M) ≥ 1 comes from the fact that the second component is always
non-decreasing along trajectories of the system starting at e.

Summarizing the above proposition, the intuitive meaning of the quantity ρ̃ is the following:
it is the infimum of the asymptotic rates of growth that one can ensure. In the first part of the
proposition, we show a reassuring result, namely that this infimum is in fact attained. In the
second part however, we show that paradoxically, the optimal switching strategy at time t, in
order to ensure this rate of growth, might depend on the norm of the point.

We conclude this section with a result showing a sort of optimality property of the stabilization
radius.

Proposition 3. There always exist x0 ∈ Rd and σ0(·) such that |xσ0,x0
(t)| ≤ ρ̃(M)t|x0| for any

t ∈ N.

Proof. For an arbitrary ε > 0, let λε = ρ̃(M) + ε and consider a trajectory xσε,xε(·) satisfying
|xσε,xε(t)| ≤Mλtε|xε| for any t ∈ N and some M > 0. Let tε such that

sup
t∈N

|xσε,xε(t)|
λtε|xε|

≤ (1 + ε)
|xσε,xε(tε)|
λtεε |xε|

. (3)

Define x̂ε =
xσε,xε (tε)
|xσε,xε (tε)| and σ̂ε(·) = σε(tε + ·). Then from (3) we have

sup
t∈N

|xσ̂ε,x̂ε(t)|
λtε

≤ 1 + ε. (4)

Passing to the limit as ε goes to 0, we have (up to subsequences) that x̂ε converges to some unit
vector x0 and xσ̂ε,x̂ε converges to a trajectory xσ0,x0

uniformly on compact subsets of N. Thus,
passing to the limit at the left- and right-hand side of (4) we get the thesis.

3 Two tools from control theory

In this section we analyze the stabilizability notions introduced above in the discrete-time setting
by taking advantage of two classical tools from control theory: control-Lyapunov functions and
the joint spectral subradius.

3.1 Control-Lyapunov functions and their mathematical properties

Let us introduce the following adapted definition of control-Lyapunov function.

Definition 3. We say that a positively homogeneous2 function V : Rd → R+ is a control-Lyapunov
function for M if

2A function f : Rd → R is said positively homogeneous if f(λx) = |λ|f(x) ∀λ 6= 0, ∀x.
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(1) there exist two constants 0 < m ≤M such that m|x| ≤ V (x) ≤M |x|,

(2) there exists µ ∈ (0, 1) such that for any x ∈ Rd there exists σx(·) with V (xσx,x(t)) < µtV (x)
for t ∈ N.

If there exists a control-Lyapunov function forM and µ is given by item (2) above, then clearly
ρ̃(M) ≤ µ < 1, that is the system is pointwise stabilizable. If in addition the control-Lyapunov
function is regular enough, then the system turns out to be (uniformly) feedback stabilizable, as
stated by the result here below.

Proposition 4. If M admits a Lipschitz continuous control-Lyapunov function V then M is
uniformly feedback stabilizable, and the stabilizing feedback σ(·) can be taken piecewise constant.

Proof. The existence of a stabilizing feedback is trivial, as it is enough to associate with any x ∈ Rd
such that |x| = 1 the value σx(0), where σx is as in Definition 3, and then extends by homogeneity
on the whole space Rd \ {0}.

The fact that the stabilizing feedback can be taken piecewise constant follows from the conti-
nuity of V and the continuous dependence of the solutions with respect to the initial data. Indeed
these properties imply that a switching law that produces a certain rate of decrease of V at time
1 starting at x0 provides the same rate of decrease starting from any point of a small enough
neighborhood of x0, which can be extended by homogeneity to a cone. By a simple compactness
argument there exists a finite number of cones covering Rd \ {0} in each of which the stabilizing
feedback law may be taken constant. This concludes the proof of the proposition.

We now provide a converse Lyapunov theorem for our class of systems. We skip the proof,
since our result is a quite straightforward adaptation of the one presented in [38, Section 4.3.1].

Proposition 5. For any λ > ρ̃(M) the function Vλ : Rd → R+

Vλ(x) = sup
t≥0

inf
σ(·)

|xσ,x(t)|
λt

(5)

is well-defined, absolutely homogeneous, Lipschitz continuous and satisfies Vλ(xσ,x(t)) ≤ λtVλ(x)
for any x ∈ Rd, t ∈ N and some σ(·), depending on x. In particular M is pointwise stabilizable if
and only if it admits an absolutely homogeneous control-Lyapunov function.

An immediate consequence of the above result is the equivalence between the pointwise sta-
bilizability and the uniform feedback stabilizability as stated in the following corollary. Notice
that this result does not contradict Proposition 2, even though they are opposite in spirit: the
corollary below indicates that feedback stabilizability and pointwise stabilizability are equivalent,
even though, for feedback stabilizability, the ‘most stabilizing’ switching behavior is not always
attainable by a homogeneous feedback.

Corollary 1. The three equivalent conditions in Proposition 1 are also equivalent to the following:

(iv) M is uniformly feedback stabilizable.

Proof. Clearly, if M is uniformly feedback stabilizable then it is also pointwise stabilizable. The
other implication trivially follows from Proposition 4 and Proposition 5.

Remark 2. Vλ(x) might not be convex. This makes ρ̃ hard to compute. For instance, it hampers
our ability to provide a guaranteed accuracy for our algorithms, while this is possible for, for
instance, the joint spectral radius (see [20, Theorem 2.12]). Indeed, the joint spectral radius admits
a similar notion of Lyapunov function, but in that case it is convex.

Remark 3. The function

V̂λ(x) = inf
σ(·)

sup
t≥0

|xσ,x(t)|
λt

is also a control-Lyapunov function forM. This function can be shown to be lower semi-continuous
but in general there is no clear indication that it is also Lipschitz.
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3.2 The joint spectral subradius

As already observed (see Example 1), in general the joint spectral subradius ρ̌(M) can be strictly
larger than the stabilization radius. We now show that if all the matrices in M are positive (i.e.
they map a cone inside itself), then ρ̃(M) = ρ̌(M). Positive systems have attracted much attention
since the work of Perron and Frobenius; more recently, in particular in the control community,
they have regained interest, both thanks to their strong properties, but also to the variety of
systems that can be modeled (or are equivalent) to positive systems (see e.g. [12, 31]).
We say that a matrix A possesses an invariant (proper) cone K if AK ⊂ K. We say that a convex
closed cone K ′ is embedded in K if (K ′ \ {0}) ⊂ intK. In this case we call {K,K ′} an embedded
pair. (The embedded cone K ′ may be degenerate, i.e., may have an empty interior.) An embedded
pair {K,K ′} is called an invariant pair for a matrix A (resp. a set of matrices M) if the cones
K and K ′ are both invariant for A (resp. for all the matrices in M). Finally, given a particular
cone K, for two vectors x, y ∈ Rd, we note x ≥K y for x − y ∈ K. Given v ∈ Rd \ {0} we define
Rdv as the half-space {x ∈ Rd|vTx ≥ 0}. We say that a cone is proper if it is contained in some
half-space.

Lemma 2. If a convex closed cone K is proper, then there exists C > 0 such that w1 ≥K w2 ≥K 0
implies |w1| ≥ C|w2|.

Proof. By contradiction assume there exist two sequences {wk1}k≥1, {wk2}k≥1 of vectors in K such
that, for k ≥ 1, wk1 ≥K wk2 ≥K 0, |wk2 | = 1 and limk→∞ wk1 = 0. Without loss of generality we
assume that wk2 converges to a unit vector w∗ ∈ K. Then one has that wk1 −wk2 ∈ K converges to
−w∗ ∈ K, which contradicts the fact that K is embedded in Rdv.

Theorem 1. If the matrices in M have a common invariant embedded pair of proper cones
{K,K ′}, then ρ̃(M) = ρ̌(M).

Proof. We make use of results from [30] for approximating the joint spectral subradius. In that
paper, it is shown that for any set of matricesM with an invariant cone K, the following quantity
is a lower bound for ρ̌(M) :

σ̌K(M) = sup
{
λ ≥ 0

∣∣ ∃ v ≥K 0, v 6= 0 Av ≥K λv ∀A ∈M
}
. (6)

It turns out that σ̌K(M) is actually also a valid lower bound for ρ̃(M). Indeed, it is easy to see
that if Av ≥K λv, then BAv ≥K λBv, provided that B leaves K invariant. Thus, the existence
of v as in (6) for each λ < σ̌K(M) implies that

Av ≥K λtv, ∀A ∈Mt,

and thus, by Lemma 2, |Av| ≥ Cλt|v| ∀A ∈ Mt, which implies ρ̃(M) ≥ σ̌K(M). Similarly, one
has that ρ̃(M) ≥ σ̌K(Mt)1/t.

Now, if the set M has an embedded pair of invariant cones, we have that ([30, Corollary 3])

lim
t→∞

σ̌K(Mt)1/t = ρ̌(M).

Combining the above equations, one gets ρ̃(M) = ρ̌(M).

Corollary 2. If all the matrices in M have only positive entries, then ρ̃(M) = ρ̌(M).

Proof. As shown in [30, Corollary 1], sets of positive matrices share an invariant embedded pair
of proper cones.

We remark that matrices with positive entries constitute the simplest example of matrices
satisfying Theorem 1, but recent work shows that there are much more general sets of matrices
with this property (see [13]). Thus, in the case where the matrices share an embedded pair of
cones, one can use algorithms for providing a lower bound to the joint spectral subradius ρ̌(M) in
order to obtain a lower bound on ρ̃(M). See for example [16, 30] for methods that perform well
in practice (even sometimes terminate in finite time).

8



4 Algorithms

We explore here the algorithmic computation of ρ̃ and focus on the discrete-time setting. We first
consider basic complexity questions, which were untouched in the literature, to the best of our
knowledge. We then provide upper and upper bounds on the quantity, that at least in theory,
perform as well as can be hoped in view of the complexity results.

4.1 Complexity

Let us show that one should not expect a polynomial time algorithm for the problem. We add
that the proofs in this subsection use the same technique as in [21].

Proposition 6. Unless P = NP, there is no polynomial time algorithm for solving the stabiliz-
ability problem, even for nonnegative matrices. More precisely, there is no algorithm that receives
a pair of nonnegative integer matricesM, and that decides in polynomial time (w.r.t. the size and
number of matrices) whether ρ̃(M) < 1.

Proof. Our proof is by reduction from the mortality problem which is known to be NP-hard, even
for nonnegative integer matrices [3, p. 286]. In this problem, one is given a set of matrices M,
and it is asked whether there exists a product of matrices inM which is equal to the zero matrix.

We now construct an instance M′ such that ρ̃(M′) < 1 if and only if the set M is mortal:
simply take M′ = {A′ = 2A | A ∈M}.

Suppose first that M is mortal. Then, the corresponding product in M′ is also equal to zero,
and thus ρ̃(M′) = 0.
If, on the other hand, M is not mortal, then all products of matrices in M have nonnegative
integer entries, so that we have

∀A ∈Mt, |Ae| ≥ 1,

and thus,
∀A′ ∈M′t, |A′e| ≥ 2t

(we recall that we note e = (1, . . . , 1)T ). This implies that ρ̃(M′) ≥ 2.

If one relaxes the requirement that the matrices and the vectors are nonnegative, then the
problem becomes even harder, and can be undecidable, as shown in the next proposition.

Proposition 7. The stabilizability problem is undecidable.

Proof. It is known that the mortality problem with matrices having entries in Z is undecidable
[20, Corollary 2.1]. We reduce this problem to the stabilizability problem in a way similar as in
Proposition 6, except that we build larger matrices of size n2 (where n is the size of the initial
matrices). The matrices in the set M′ are of the shape M′ = {diag(2A, . . . , 2A) | A ∈ M}, with
n copies of the same matrix on the diagonal.

Now if M is mortal, again ρ̃ = 0.
If, on the other hand, M is not mortal, then every product A of matrices in M has a nonzero
column (say, the ith one), and thus, the product Aei has a norm larger than one, where ei is the ith
standard basis vector (recall that the entries have integer values). Thus, defining v = (e1, . . . , en)
(that is, the concatenation of the n standard basis vectors), for any product A′ in M′t, we have
that |A′v| ≥ 2t, and ρ̃(M′) ≥ 2.

4.2 Upper bound

In this section we provide an algorithm, which not only derives successive upper bounds on ρ̃,
but also has the property that these bounds asymptotically converge to the true value ρ̃. Note
that algorithms with such a property were recently proposed in [24, 43]. Our algorithm is more
elementary, and this might be a good property for scaling issues. However, each iteration is very
simple, and it is expected that for practical applications, where only a few iterations are done,
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other methods, relying on powerful optimization technologies like Semidefinite Programming, will
outperform the technique developed here. We then describe how to adapt the algorithm in order
to make it even more scalable, at the price of loosing the guarantee of convergence. Our algorithm
is based on the following simple proposition:

Proposition 8. If M is pointwise stabilizable then for any ε > 0 there exists a large enough time
tε such that every point of the unit ball can be mapped at time tε, with a suitable feedback switching
strategy, into the ball centered at the origin and of radius ε.

Proof. Since ρ̃′ < 1 there exists λ < 1 and M > 0 such that |xσ,x(t)| < Mλt|x| for any x ∈ Rd

and some σ(·) depending a priori on x. It is thus enough to take t ≥ ln(ε/M)
lnλ .

This proposition allows us to propose an asymptotically tight upper bound on the stabilization
radius. In other words, we provide a sequence of sufficient conditions for stabilizability, which are
asymptotically necessary. So, the theoretical efficiency of our method is similar to the one from
[43] (see the introduction for more details). We think that the simplicity of the method (compute
products of increasing length t and iterate) offers a valuable alternative to [43], which uses more
complex optimization methods. Also, we think that this approach bears advantages in comparison
with [14] in that one has a clear procedure to follow, which is guaranteed to terminate after a finite
amount of time if the system is stabilizable. On the contrary, the matrix inequalities proposed in
[14] are non-convex, and thus there is no clear procedure to efficiently find the optimal upper bound
provided by these inequalities. On top of that, in [14], if the optimal upper bound is found, one has
no guarantee that this bound is close to the actual value of ρ̃, while our Algorithm 1 is guaranteed
to converge asymptotically. However, as said above, for a fixed number of iterations (or, say, when
computational time is a strong constraint), it is expectable that the previous algorithms, which
are based on more involved optimization techniques, outperform the one presented here.

Algorithm 1: An asymptotically tight algorithm

Data: A set of matrices M and an integer T
Result: Outputs a sequence of upper bounds rt, t = 1, . . . , T ;
begin

1 t := 0;
2 while t ≤ T do
3 t := t+ 1;
4 Compute Mt ;
5 Minimize γ such that

∀x : |x| = 1, ∃A ∈Mt s.t.|Ax| ≤ γ (7)

6 Output rt := γ;

Theorem 2. Algorithm 1 iteratively provides an upper bound rt ≥ ρ̃ which asymptotically con-
verges towards ρ̃.

Proof. At every step of the algorithm, one must solve the optimization problem 7, which can be
solved by bisection on γ. Indeed, for a fixed γ, the (in)equalities in Problem (7) are algebraic, and
can be solved with standard procedures, like Tarski-Seidenberg elimination [33, 39]

Remark 4. Theorem 2 provides a theoretical procedure that asymptotically converges towards
the true value. It is well known that algebraic equation solvers are very slow in practice, so,
practical implementations of algorithm 2 would advantageously make use of heuristics in order to
approximately solve (7).
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We conclude this section by establishing a result that will be applied in the next section and
which provides an alternative way to estimate the stabilization radius.

Proposition 9. Let µ > 0 and t̄ ∈ N. Suppose that for every z ∈ Rn of norm 1 there exists a
product Az ∈Mtz for some tz ≤ t̄ such that |Azz|1/tz ≤ µ, then,

ρ̃(M) ≤ µ.

Proof. Let us extend Az, tz by homogeneity: Az := Az/|z|, tz = tz/|z|. Then for any z0 ∈ Rn we can

construct a trajectory z(·) by concatenation in such a way that z(sk) = A(k)A(k−1) . . . A(1)z0 for
some sk > 0, where the matrices A(i) are defined recursively starting from i = 1 as A(i) = Az(si−1)

(assuming s0 = 0). In particular si =
∑i−1
j=0 tz(j) and |z(si)| ≤ µsi |z0|. By compactness of M

we have that ‖M‖ is uniformly bounded for M ∈ ∪t≤t̄Mt by a constant C > 0, from which we

deduce that |z(t)| ≤ C max{1, µ−t̄}µt|z0|. The thesis follows.

4.3 Lower bound

In the previous section we have presented an algorithm providing an upper bound on ρ̃(M). The
lower bound appears to be much more complicated to analyze numerically, and the purpose of
this section is to provide an analytic criterion to estimate it. This is, to our knowledge, the first
algorithm providing a lower bound on ρ̃(M) in the literature.

Theorem 3. One has ρ̃(M) ≥ minA∈M σm(A) where σm(A) is the smallest singular value of the
matrix A.

Proof. Recall that σm(A), the square root of the smallest eigenvalue of the non-negative definite
symmetric matrix ATA, satisfies

σm(A) = min
x∈Rd\{0}

|Ax|
|x|

.

We thus have

|Aσ(t) . . . Aσ(1)x|
|x|

=
|Aσ(t) . . . Aσ(1)x|
|Aσ(t−1) . . . Aσ(1)x|

. . .
|Aσ(1)x|
|x|

≥
(

min
A∈M

σm(A)

)t
for any σ(·). Thus, by definition of ρ̃′(M) = ρ̃(M) for any λ > ρ̃(M) there exists M > 0 such

that λt

M > (minA∈M σm(A))
t

for every t > 0, that is λ ≥ minA∈M σm(A), proving the thesis.

One can iterate this lower bound for longer and longer products of matrices in M, thanks to
Lemma 1. It can be seen on simple examples (even on a single matrix) that this can improve
the lower bound. Unfortunately, the method may also fail to converge to the true value of ρ̃(M).
Indeed, in the proof of the theorem above, we could actually replace ρ̃(M) by ρ̃x(M). In other
words, minx∈Rd\{0} ρ̃x(M) ≥ minA∈M σm(A), but the left-hand side of the previous equality
coincides with ρ̃(M) only if ρ̃x(M) is constant outside the origin. This is not the case for instance
if M is given by a single matrix with at least two eigenvalues with different modulus.

5 A case study: the Stanford–Urbano example

In this section we return to Example 1, and apply our results. We show that already for this
simple example, the issue of estimating the stabilization radius appears to be very difficult. We
will see in particular that although numerical algorithms allow to compute upper bounds for the
stabilization radius, its computation is complicated by the fact that lower bounds appear to be
much more difficult to obtain. Indeed, a simple application of Theorem 3 to the matrices from
Example 1 gives ρ̃(M) ≥ 1/2, and applying the same result to Mt, together with Item (ii) in
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Figure 1: The function V̂λ for λ = 0.88.

Lemma 1, does not improve the bound. Worse than that, we will show that ρ̃z(M) = 1
2 for z

belonging to a dense subset of R2, which suggests that improvements of the trivial lower bound
could possibly be obtained only with much more subtle techniques.

Let us now derive an upper bound on ρ̃(M) better than the one already obtained in Example 1.
For this purpose we apply Proposition 9 and, in particular, it is possible to check numerically,
by taking t̄ = 9 as maximal value for the times tz, that one can improve the upper bound to
ρ̃(M) ≤ 0.886. Considering longer matrix products appears to be computationally very costly
and does not seem to improve significantly the obtained estimate of ρ̃(M).

As an alternative method, estimates of the Lyapunov functions in Section 3.1 can also be
computed numerically, providing a heuristic estimate of ρ̃(M). Figure 1(a) shows an estimate of
the candidate Lyapunov function described in Remark 3 taking λ = 0.88. This estimate is obtained
by computing an approximation of V̂λ on a large number of points and by interpolating such
values. One can see that the corresponding ratio min{V̂λ(A1x), V̂λ(A2x)}/V̂λ(x), which represents
the largest decrease rate of V̂λ along trajectories and is depicted in Figure 1(b), slightly exceeds
the value 0.88 only on very small intervals. Such a heuristic numerical analysis suggests that
ρ̃(M) < 0.88. For smaller values of λ the function V̂λ appears to be much more irregular and the
condition min{V̂λ(A1x), V̂λ(A2x)}/V̂λ(x) ≤ λ is violated on larger intervals, so that there is no
clear indication that ρ̃(M) < λ.

In the following we will derive a result highlighting a technical obstruction to further improving
the trivial lower bound ρ̃(M) > 1

2 . In order to do so, we introduce the notion of forward orbit of
a point z0, defined as

{xσ,z0(t) ∈ R2 | σ : N→ {1, 2}, t ∈ N}.

For our particular matrices, it turns out that the forward orbit of z0 actually coincides with the
complete orbit of z0, i.e.

{Aν(t)
σ(t) . . . A

ν(0)
σ(0)z0 | σ : N→ {1, 2}, ν : N→ {−1, 1}, t ∈ N}.

This is an immediate consequence of the fact that A−1
1 = A7

1 and A−1
2 = A2

1A2A
−2
1 = A2

1A2A
6
1.

Looking at the union of the orbits starting from points on the x1 axis we can say something more,
namely that it is symmetric with respect to the x1 axis and coincides with the set of points from
which there exists a trajectory reaching the x1 axis in finite time:

R =

{
z ∈ R2 \ {0}

∣∣∣ (1, 0)T =
Az

|Az|
, for some A ∈Mt, t ∈ N

}
∪ {0}.
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Proposition 10. The set R is a countable union of straight lines passing through the origin.
The corresponding angles with the x1 axis form a strict subset of the set of angles having rational
tangent and this subset is dense in R. As a consequence R is dense in R2.

Proof. The set R is made of a countable union of straight lines passing through the origin since it
contains all those for which the tangent of the angle with the x1 axis is 4k, k ∈ Z. Also, the tangent
of the angle formed by each line in R with the x1 axis is a rational number. Indeed the maps A1

and A2 act on the angles in such a way that a rational tangent p
q becomes 4p

q and p−q
p+q , respectively,

and the set R can be identified with the (integer) couples {p, q} obtained by applying iteratively
these two operations starting from {p, q} = {0, 1}. We can also assume that at each iteration the
numbers p, q are positive (the orbit is symmetric with respect to the x1 axis) and relatively prime.

In particular, applying A1 or A−1
1 leads, up to the sign, to the couple {p+q2 , |p−q|2 }, when both p, q

are odd, while it leads to {p+ q, |p− q|} if one among p, q is even. On the other hand, applying k
times A2 or A−1

2 leads to couples of the form {4kp, q} or {4kq, p}, up to a common divisor.
We claim that all the couples {p, q} that can be generated with these operations starting from

the x1 axis are such that both p, q are different from 2 in Z/4Z.
Since applying A2 or A−1

2 to the x1 axis keeps it invariant, we start by applying A1 or A−1
1 , and

we get the couple {1, 1}. We now apply Ak2 or A−k2 and we get a couple which, in Z/4Z, is equal
to {0, 1}. We apply again A1 or A−1

1 and we get a couple of the form {±1,±1} in Z/4Z. A further
application of Ak2 or A−k2 leads to {0,±1} in Z/4Z. In particular we get that all the couples that
can be obtained by iterating this procedure must be of the form {0,±1} or {±1,±1} in Z/4Z,
proving the claim.

We deduce that R cannot be identified with the set of all angles having rational tangents. For
instance it does not include the angle of tangent 1

2 , as well as all the elements of the corresponding
orbit.

Let us now show that R corresponds to a set of angles which is dense in [0, 2π]. For this
purpose, let us consider the matrix product A2A1. One can check that this matrix has complex
non real eigenvalues and that it is similar to the rotation

R =

( √
5

2
√

2
−
√

7
2
√

2√
7

2
√

2

√
5

2
√

2

)
.

The angle θ of the rotation is such that cos 2θ = 1
4 , from which one easily deduces that this angle is

incommensurable with π (see e.g. [19]). We thus deduce that the set of points obtained applying
iteratively A2A1 and starting from the x1 axis correspond to a set of angles which is dense in
[0, 2π]. This concludes the proof of the proposition.

Note that the property that the orbit corresponds to a set of angles dense in [0, 2π] remains
true if one replaces a point of the x1 axis with any other starting point.

Since the value ρ̃z(M) is constant on each orbit, and thus onR, we have the following important
consequence of Proposition 10.

Corollary 3. There exists a dense subset Ω of R2, with R ⊆ Ω, such that ρ̃z(M) = 1
2 for each

z ∈ Ω.

At the light of the above result, the following question is very natural:

Is there a point z ∈ R2 (and thus a dense subset of R2) such that ρ̃z(M) > 1
2?

A positive answer to this question would reveal interesting discontinuity properties of the function
z 7→ ρ̃z(M). However, due to the complexity of the set of trajectories starting from a given
point z, giving an estimate of the value ρ̃z(M) appears to be very difficult. Summing up, for the
considered example the issue of approximating with arbitrary precision the value ρ̃(M) by simple
numerical methods appears to be a very hard, if not intractable, task.

In conclusion, the analysis performed in this section suggests that any accurate computation
of the stabilization radius cannot, in general and even for very simple examples, be obtained by
usual algorithmic methods, but should instead rely on ad hoc arguments.
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6 The continuous-time case

Given a compact and convex set of matricesM = {Aσ
∣∣σ ∈ Σ} ⊂ Rd×d, we consider in this section

the continuous-time switched system defined by the differential equations of the form

ẋ(s) = Aσ(s)x(s), x(0) = x0,

where σ(·) is a switching sequence. As in the discrete-time setting, we denote by xσ,x0
(t) the

corresponding solution, that is xσ,x0
(s) = Φσ(s)x0 for s ≥ 0, where Φσ(s) is the fundamental

matrix associated with the differential equation. Several notions and results in Sections 2 and 3 are
still valid in the continuous-time case without need of substantial changes. In particular the notion
of pointwise stabilizabity given in Definition 1 is still meaningful. Similarly, the stabilizability
indices introduced in Definition 2 are still well-defined, and the continuous-time counterparts of
Proposition 1 and Proposition 3 hold true. A partial counterpart of Lemma 1 also holds, as it is
straightforward to show that ρ̃(M+ γId) = eγ ρ̃(M), where M+ γId is the set of matrices of the
form M + γId with M ∈M.

On the other hand, in the continuous-time case one has to be careful in the definition of
feedback stabilizability in order to avoid existence and uniqueness issues for ordinary differential
equations with possibly discontinuous right-hand side. In particular, several non-equivalent and
meaningful notions of solutions exist in the case of a discontinuous feedback σ(·). To circumvent
this problem, we choose here to deal with an adapted notion of (uniform) feedback stabilizability
based on a ‘sample-and-hold’ scheme. Note that the use of this kind of schemes is consistent with
the sampling process used in computer control. Moreover the use of other notions of solutions,
such as Filippov solutions, appears to be less practical and may prevent to obtain fully general
stabilization results (see e.g. [8]). Even so, we think that the study of the feedback stabilization
properties for linear switched systems, in relation with other notions of solutions, is worth further
investigation.

Definition 4. For δ > 0 we say that a 0-homogeneous function σ : Rd → M is a δ-stabilizing
feedback if for any x0 ∈ Rd, the trajectory starting from x0 and defined by ẋ(t) = Aσ(x(δk))x(t) on
each interval [δk, δ(k + 1)), k ∈ N, converges to 0.

In addition we say that M is uniformly feedback stabilizable if for any positive ε1, ε2 there
exists T ∈ R+ such that for any δ > 0 small enough there exists a δ-stabilizing feedback such that
if |x0| < ε1, the trajectory x(·) starting from x0 satisfies |x(t)| < ε2 if t ≥ T .

Note that, for the stabilization of continuous-time nonlinear control systems, the use of sample-
and-hold feedback controls in combination with control-Lyapunov functions is not new. It has been
investigated for instance in [8]. In that paper the asymptotic controllability property for nonlinear
control systems is proved under the assumption that there exists a continuous control-Lyapunov
function, and allowing more general sampling times compared to our Definition 4 (namely, the
differences among subsequent sampling times are small enough but not necessarily equal). The
following result is the continuous-time counterpart of Proposition 4. Here the notion of control-
Lyapunov function is that of Definition 3 with the exception that t ∈ R+ in Item (2).

Proposition 11. If M admits a Lipschitz continuous control-Lyapunov function V then M is
uniformly feedback stabilizable, and, for each δ > 0 small enough, the δ-stabilizing feedback σ(·)
can be taken piecewise constant.

The previous result may not be seen as a particular case of the main theorem in [8], as the
latter does not guarantee any regularity property of the feedback law. Also, opposed to [8], our
result can be proved without resorting to sophisticated tools from nonsmooth analysis, as shown
below.

Proof of Proposition 11. Given an initial point x0 ∈ Rd let us consider the switching law σx0(·) as

given by Definition 3. For δ > 0 let us consider the matrix Ā = 1
δ

∫ δ
0
Aσx0 (s)ds. SinceM is convex

we have that Ā ∈ M, that is there exists σ̄(x0) such that Aσ̄(x0) = Ā. Consider now the solution
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x̄(·) of the equation ẋ = Āx with initial condition x0 and set y(·) = xσx0 ,x0(·) − x̄(·). Then y(·)
satisfies the equation

ẏ(t) = Āy(t) + (Aσ(t) − Ā)xσx0 ,x0
(t)

with initial condition y(0) = 0. The corresponding solution at time δ, given by the variation of
constants formula, is

y(δ) = eδĀ
∫ δ

0

e−tĀ(Aσ(t) − Ā)xσx0 ,x0(t)dt.

Since

e−tĀ(Aσ(t) − Ā)xσx0 ,x0
(t) =(e−tĀ − Id)(Aσ(t) − Ā)xσx0 ,x0

(t)+

+ (Aσ(t) − Ā)(xσx0 ,x0
(t)− x0) + (Aσ(t) − Ā)x0

and by compacity ofM, and since moreover the integral on [0, δ] of the last term is zero, we have
that (for δ small) there exists a constant C > 0 such that

|y(δ)| ≤ Cδ2|x0|.

Let L be the Lipschitz constant of the Lyapunov function V . Then

V (x0)− V (x̄(δ)) ≥ V (x0)− V (xσx0 ,x0
(δ))− |V (x̄(δ))− V (xσx0 ,x0

(δ))|
≥ m(1− µδ)|x0| − Cδ2|x0|

≥ 1

2
m
(

log
1

µ

)
δ|x0|

for δ small enough, which immediately shows that σ̄(·) is a δ-stabilizing feedback.
Finally, exactly as in the discrete-time case, the fact that the δ-stabilizing feedback can be

taken piecewise constant follows from the continuity of V and the continuous dependence of the
solutions with respect to the initial data.

Remark 5. The feedback constructed in the proof of Proposition 11 actually stabilizes the system
robustly with respect to small perturbations of the sampling times.

Proposition 5 and Corollary 1 still hold in the continuous-time case (in particular a proof of
the continuous-time counterpart of Proposition 5 may be adapted from an analogous result in [38,
Section 4.3.1]) and they are summarized by the following result. Note that converse Lyapunov
theorems for the stabilization (or asymptotic controllability) of more general classes of nonlinear
control systems may be found for instance in [22, 32].

Proposition 12. For any λ > ρ̃(M) the function Vλ : Rd → R+

Vλ(x) = sup
t≥0

inf
σ(·)

|xσ,x(t)|
λt

(8)

is well-defined, absolutely homogeneous, Lipschitz continuous and satisfies Vλ(xσ,x(t)) ≤ λtVλ(x)
for any x ∈ Rd, t ∈ R+ and some σ(·), depending on x. In particular M is pointwise stabilizable
if and only if it admits an absolutely homogeneous control-Lyapunov function. As a consequence
the following conditions are equivalent:

(i) ρ̃′(M) < 1,

(ii) ρ̃(M) < 1,

(iii) M is pointwise stabilizable,

(iv) M is uniformly feedback stabilizable.
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7 Conclusion and open questions

Stabilizability of switched systems is a natural goal for control theorists, with several promising
applications. The problem raises many subtle mathematical questions. In this paper, we tried to
motivate a thorough analysis of these questions. We showed that many counterintuitive phenomena
occur, which one must pay attention to for a proper treatment of the problem. As a striking
example, we showed that (Proposition 2), even though linear switched systems are homogeneous
systems, the optimal switching law might not be a homogeneous function of the statespace. From
a numerical point of view, the stabilization problem appears to be extremely challenging. The
discussion and the results obtained throughout the paper raise several open question. Among
them we wish to recall the next two ones:

Open Question 1. Is there an algorithm, or a characterization, to decide whether ρ̃(M) = ρ̌(M)?

Open Question 2. Is it possible to improve Theorem 3 and provide a generally better formula
for a lower bound? In particular, how to find a better lower bound on ρ̃(M) in Example 1?

As for the first question, let us mention that sufficient conditions for this equivalence, for a
slightly different notion of feedback stabilizability (stronger than ours, motivated by applications
involving supervisory control and measurement scheduling), have been shown in [24]. Concerning
the second question, let us notice that a result improving Theorem 3 could for instance lead to a
better estimate (from below) of ρ̃(M) in Example 1. Nevertheless the analysis in Section 5 seems
to suggest that an exact computation of such a quantity should rely on ad hoc methods.
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