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Hybrid Electric Vehicles are becoming more and more prevalent for economic and environmental reasons. Many studies have been conducted in order to improve Hybrid Electric Vehicle performance by increasing their autonomy while respecting the power demand of the electric motor and various constraints. Focusing on the Hybrid Electric Vehicle energy management problem, di↵erent approaches and strategies already exist based on non-linear modelling, selection of adequate architecture and source design or the expertise of the manufacturer in the domain. In this paper, a new combinatorial approach is presented to optimally manage o✏ine Hybrid Electric Vehicle energy distribution, composed of two energy sources: a fuel cell as a main source and a super-capacitor for energy storage.

Introduction

On Earth, more than one billion cars circulate today, and manufacturers produce more than 80 million new vehicles every year [START_REF] Emadi | Modern automotive power systems: Advancements into the future[END_REF], in addition to other means of transport, nearly all propelled by an Internal Combustion Engine (ICE) with conventional energy (gas and oil). A huge amount of carbon dioxide particles is released daily in the atmosphere, that is harmful to human health and to the environment. The public, better informed of climate change risks by extensive literature, and the scientific community now are organised to put pressure on political and economic decision-makers to take appropriate measures to counteract this threat and promote energy transition. Car manufacturers contributing to this policy, as well, invest in research and development of new vehicle prototypes with hybrid or full electrical energy traction [START_REF] Van Den Hoed | Commitment to fuel cell technology? how to interpret carmakers' e↵orts in this radical technology[END_REF].

Even though the first Hybrid Electric Vehicle (HEV) was conceived at the end of 19th century, the low autonomy and the important mass of elec-tric vehicles encouraged the industry to develop and use ICE, since oil was available, a↵ordable and the number of vehicles was low. Over time and because of rising oil prices and abnormal rate of CO 2 emissions in the air, car manufacturers and researchers conducted a lot of research in order to commercialise a new generation of HEVs equipped with renewable energy sources with a better performance.

The energy management field is very large, also in transportation applications. Actually, many research works deal with solving to optimality energy and power delivered by several decentralised sources, most of them using renewable energy sources. Hydrogen and Fuel Cell are promising in such mobile systems. The optimal problem is more complex when the design-case and the use-case are mixed.

In [START_REF] Trovão | A multi-level energy management system for multi-source electric vehicles -An integrated rule-based meta-heuristic approach[END_REF], it can be noticed it is more convenient to separate two problems depending on the time horizon. For a long term, energy management can be driven with criteria depending on prediction, cost of investment and infrastructure and sizing optimization steps. A real-time energy management is requested for an optimal power split on-board subject to power and energy constraints using given sizing elements and power train architecture; all studies for plug-in HEV or linking HEV to the grid are specific too.

In [START_REF] Sousa | A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles[END_REF], it can be seen the strategy will be di↵erent and also the optimisation criterion can be di↵erent. In HEV traction case, the power demand has to be delivered (no scheduling and no peaks cancelling policy are possible). A global optimisation is thus possible knowing the power flow characteristics and the entire mission profile. A global optimum is reached subject to energy minimization all over the known trip.

In this paper, a particular hybrid structure of an electric vehicle with two sources is considered: Fuel Cell (FC) as a main source of electrical energy used for the propulsion of the vehicle (called a powertrain or traction chain), and a pack of super-capacitors for energy storage used to support the FC during traction phases. The goal is to improve vehicle autonomy with the knowledge of the mission profile to achieve. Nevertheless, o✏ine smart energy management is crucial if the demands of the electrical engine are to be met while respecting di↵erent HEV constraints related to system function, safety conditions, and sources design.

Di↵erent approaches were studied in previous works, in order to manage energy distribution for the same type of traction chain and increase its autonomy by minimising fuel consumption by the main source. Among these approaches, the most cited in the literature is undoubtedly Dynamic Programming, used o✏ine when the mission profile is known [START_REF] Pérez | Optimization of power management in a hybrid electric vehicle using dynamic programming[END_REF]. This method, based on Bellman's principle after the discretisation of the energy space of the storage system [START_REF] Guemri | Heuristics and lower bound for energy management in hybrid-electric vehicles[END_REF], reveals some weaknesses related to the choice of the discretisation step-size that significantly a↵ects computation time and decision quality. Another method frequently cited in this problematic is an Optimal Control approach [START_REF] Delprat | Optimal control of a parallel powertrain: from global optimization to real time control strategy[END_REF] based on Pontryagin's minimum principle and the calculation of derivatives of the Hamiltonian function [START_REF] Sciarretta | Optimal control of parallel hybrid electric vehicles[END_REF] or the reporting of all source consumptions in an equivalent space where optimal control is conducted (equivalent consumption management strategy [START_REF] Gao | Equivalent fuel consumption optimal control of a series hybrid electric vehicle[END_REF]). This method induces polynomial approximation, which generates some errors and does not take into account some saturation constraints due to the limitation in sources design. Moreover, parameter setting to satisfy the state of energy constraints is somehow tricky.

Recently, much work has been carried out, mainly to accurately solve the global optimisation problem o✏ine when the mission is known (based on multi-level [START_REF] Trovão | A multi-level energy management system for multi-source electric vehicles -An integrated rule-based meta-heuristic approach[END_REF], simulated annealing [START_REF] Sousa | A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles[END_REF], quasi-Newton method [START_REF] Guemri | Heuristics and lower bound for energy management in hybrid-electric vehicles[END_REF]) or by using artificial intelligence approaches (e.g., Particle Swarm Optimisation [START_REF] Caux | On-line energy management for HEV based on particle swarm optimization[END_REF]). Other methods are preferred in the literature with real-time on-line implementation objectives: an on-line optimal control approach [START_REF] Serrao | ECMS as a realization of Pontryagin's minimum principle for HEV control[END_REF] with an adaptive principle (equivalent consumption minimisation strategy -ECMS [START_REF] Musardo | A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management[END_REF]) or heuristics and rule-based approaches (Fuzzy Logic [START_REF] Schouten | Energy management strategies for parallel hybrid vehicles using fuzzy logic[END_REF] and type-II optimized Fuzzy Logic [START_REF] Ne↵ati | Energy management strategies for multi source systems[END_REF] possibly in combination with a genetic algorithm [START_REF] Caux | On-line fuzzy energy management for hybrid fuel cell systems[END_REF] or adding an adaptive mechanism [START_REF] Khayyam | Adaptive intelligent energy management system of plug-in hybrid electric vehicle[END_REF]), in order to minimise hydrogen consumption by the fuel cell system. Control strategies based on load following also have been experimented in [START_REF] Bizon | Energy control strategies for the fuel cell hybrid power source under unknown load profil[END_REF]. The solutions obtained by these approaches are suboptimal due to their non-linear formulation of the problem or the setting of some parameters generally involving important computation times.

In the work presented in this paper, the above state-of-the-art approaches are exploited with the objective of comparing them with the new propositions. Therefore, a new approach is proposed to address the best power set points for the HEV system in order to manage energy distribution and minimise hydrogen consumption with a reduced computation time. It consists of proposing a new linear modelling, which is then solved to optimality by using Integer Linear Programming. To speed up the optimisation process, cutting planes are added to the original formulation to reduce the search space. The problem is formulated in this paper as a combinatorial problem using set points corresponding to data representing the source behaviours subject to constraints of power and energy limits and consumption minimisation. This approach is new and very di↵erent from classical studies because there is no need of derivative functions nor polynomial approximations. (Mixed-)Integer Linear Programming can be used to solve approximate linearized problem, however the proposed formulation overcomes some drawbacks, provides the optimum and is less time consuming to be implemented in real time on-board.

The optimal solution is the series of optimal set points to follow the mission with the minimum consumption cost defined. To measure the sensitivity of the problem against input data disruptions, a robustness study is performed to achieve a worst-case solution to be valid regardless of the scenario. Simulations based on several realistic mission profiles illustrate the improvement using the novel modelling.

The paper is organised as follows: First, Section 2 presents the di↵erent sources and components that constitute the HEV energy chain. Then Section 3 provides a survey of the most used approaches in the literature that address this problem. This section provides basis results from which it will be possible to draw comparisons with the new proposed approach. Section 4 is devoted to the proposed contribution using new mathematical modelling and approaches in order to reach better power references to optimally manage HEV energy distribution. Results of simulations on realistic mission profiles to illustrate the performance are presented in Section 5, followed by a robustness study in Section 6.

Hybrid vehicle structure

The HEV energy chain under study consists of two energy sources with a series hybrid configuration, which means that two contributions are added onto an electrical node before feeding the electrical moto-propulsion group, as shown in Figure 1.

INSERT FIGURE 1 ABOUT HERE

A Fuel Cell Stack (FCS) represents the main source producing energy via the chemical reaction of hydrogen and oxygen. It is characterised by its high e ciency, which exceeds 40% (mainly limited to compressor and ancillary losses) [START_REF] Ahluwalia | Fuel economy of hydrogen fuel cell vehicles[END_REF], generating electrical energy with little fuel, unlike the performance of ICE, which varies between 25% and 30% [START_REF] Chau | Emerging energy-e cient technologies for hybrid electric vehicles[END_REF]. It should be noted that the energy converted by FCS also emits water steam and heat, which can be used as a secondary need. This aspect of cogeneration potential is not treated in this paper.

The FCS e ciency curve shown in Figure 2 is based on experimental measurements. It is expressed under a fixed cathodic pressure and a fixed temperature and measurements establishing a unique polarisation curve. This quantity, denoted by ⌘ fcs , corresponds to the entire stack, thus is computed using the static fuel cell core e ciency ⌘ fc , which can be given by the manufacturer or by measurements [START_REF] Caux | On-line fuzzy energy management for hybrid fuel cell systems[END_REF], the e ciency of their ancillaries such as an air compressor 1⌘ compressor , and the e ciency of the embedded in the stack buck-boost converter2 ⌘ cvs , which connects it to the distribution bus.

It yields: (2)

⌘ fcs = ⌘ fc .⌘ compressor .⌘ cvs (1) 

Mathematical modelling

The objective is to minimise hydrogen consumption used by the FCS throughout the mission, while satisfying system constraints. Many studies have been realised on non-linear modelling due to source characteristics (FCS e ciency and SE power losses), using the following modelling:

min T X t=1 P h (t) t ⌘ min T X t=1 P fcs (t) ⌘ fcs P fcs (t) t (3) 
P fcs (t) + P se (t) P req (t) 8t 2 T (4) 0  P fcs (t)  P max fcs 8t 2 T (5) 
P min se  P se (t)  P max se 8t 2 T ( 6 
)
SoE min  SoE(t)  SoE max 8t 2 T (7) SoE(t) = SoE(t 1) P s (t) t 8t 2 T (8) 
P s (t) = P se (t) + Loss se P se (t) 8t 2 T (9) 
SoE(T ) = SoE(0) (10) 
T is the time horizon (mission duration). The decision variables of the problem are: P fcs (t) the power provided by the FCS at time t, P se (t) the power provided/recovered (positive/negative) by the SE at time t, and SoE(t) the state of energy of the SE at time t. Input data of the problem are defined in Table 1. Consequently, the meaning of the mathematical model is as follows:

• (3): The objective function is to minimise the hydrogen consumption used by the FCS; it also can be written using the FCS e ciency and the power it provides. Hydrogen quantities P h are calculated using the operating points of the fuel cell e ciency (experimental data sheet),

P h = P fcs /⌘ fcs .
Then, the numerical equation of the objective function is achieved using a 15-degree polynomial taking into account the minimisation of the approximation errors.

• (4): Demand satisfaction of the powertrain when the vehicle is accelerating. The vehicle also recovers energy during braking phases via the transformation of the kinetic energy into electrical energy. However, recovering all braking energy can force the FCS to operate at poor eciency: for example, when the mission profile begins with a descent and the driver brakes, this leads to the recovery of braking energy, or the saturation of the storage element, hence the importance of relaxation of P fcs (t) + P se (t) = P req (t) using inequalities (4).

• (5) and ( 6): Power limits related to the design of the energy sources.

• (7): Storage capacity of the storage element. Generally, SE only can be used between 25% and 100% of its energy capacity.

• (8): State of energy computation using previous state of energy and recovered energy.

• (9): Energy losses of the storage element used to identify the real power P s (t) supplied/recovered by the storage element.

• (10): This constraint can be optionally added, meaning that the final state of energy of the storage system should be reloaded to its original level at the end of the mission. This constraint makes it possible to go from mission to mission without charging the storage system.

INSERT TABLE 1 ABOUT HERE

To find the solution of the present problem, which corresponds to the consumption of hydrogen minimisation, mission profiles are proposed by the French Institute of Science and Technology for Transport, Development and Networks (http://www.ifsttar.fr/en/welcome/). The INRETS mission profile corresponds to the instantaneous HEV power demand in urban areas shown in Figure 3a, the ESKISEHIR mission profile associated with a tramway power demand in Turkey (Figure 3b), and three other mission profiles, Figures 3c,3d, 3e, that correspond to urban, road and highway power measurements. Each mission is characterised by its duration T , its sampling step t and the di↵erent operation modes such as traction (resp. braking or stop mode) when the demand is positive (resp. negative or zero).

INSERT FIGURE 3 ABOUT HERE

All figures describe di↵erent missions followed by a HEV. These data are not only used to feed the study with actual trips but also highlight various types of requests. Thus, figures show missions with partial part repetition, the presence or absence of stop phases, high dynamics (power variation / time) or low/high positive and/or negative magnitude.

To solve the non-linear programming problem, many approaches and methods have been implemented for purposes of comparison: dynamic programming (DP), quasi-Newton method (QN), fuzzy logic (FL), etc., which make it possible to find a suboptimal solution as shown in Table 2 due to the polynomial approximation used in a QN approach or by the setting of parameters for a DP and FL approach (FL membership functions are optimally placed by o✏ine supervision using genetic algorithms, while the form and number of chosen membership functions allow the problem to be defined accurately) [START_REF] Ne↵ati | Energy management strategies for multi source systems[END_REF].

INSERT TABLE 2 ABOUT HERE

The solution provided by a QN method is better in terms of solution quality and computation time, while respecting the constraint of the final state of energy. The DP approach is an exact method, but it depends on the choice of the step discretisation, which significantly impacts solution performance and computation time. It also should be noted that while the solution provided by an FL approach is good, the solution is calculated without taking into account the final state of energy constraint. This approach is e cient in a real-time strategy, but the setting of the fuzzy parameters in order to obtain a good solution requires o✏ine optimisation, which itself requires long computation times.

The new combinatorial model will overcome these drawbacks because the combinatorial optimisation only selects one point among a set of points and returns the best sequence of points to follow to reach the minimum consumption.

Table 2 compares optimal consumptions obtained with the three "classical" methods on five mission profiles we compare here after to the new results obtained on the same missions.

In order to compare the performance of the solutions obtained with the new approach developed (see Section 5), the best solution provided by the QN method is used when the constraint of the final state of energy is taken into account, and FL is used for real-time computation when this constraint is deactivated. CPU times indicated depend on the processor, memory and programming environment used, but is interesting for relative comparison to discriminate among the di↵erent methods.

FL is a real-time optimisation approach (instantaneous optimisation, each time step) while the QN method is a global optimisation approach, which explains the consumption gap and the advantage of the QN method. To improve FL modelling, di↵erent fuzzy membership functions (more non-linear) can be used thereby increasing the time-setting procedure and badly impacting on-line implementation. Now that the results and drawbacks of such previous models and methods have been highlighted, the new combinatorial approach can be proposed. All derivative, approximation and sampling drawbacks are cancelled in this new combinatorial modelling driven by experimental data set-points to be optimally chosen.

New combinatorial approach

In this section, an original model for a HEV energy management is proposed.

Modelling the problem as a linear program enables us to obtain an optimal solution using exact methods of operations research such as Branch-and-Bound or Branch-and-Cut procedures [START_REF] Rardin | Optimization in operations research[END_REF].

The principle of this new modelling is to work with the original data without using either SE energy space discretisation or polynomial approximations. For this purpose, a set of FCS operating points K fcs is defined from the input data sheet (|K fcs | = 601) that allows plotting the FCS efficiency curve. Each point i 2 K fcs is characterised by its e ciency ⌘ fcs (i) and the power it provides P fcs (i). In the non-linear modelling, the power losses curve Loss se (P se (t)) is identified by a polynomial approximation, using a data sheet of |J| = 121 points that correspond to the power losses for each power provided by the SE.

In a combinatorial approach, the power losses function is decomposed into |J 1| linear functions, and J se denotes the set of linear functions, which forms the power losses function. Instead of polynomial approximation classically used in methods presented in Section 3 for the HEV field, this innovative modelling is data driven and provides a combinatorial formulation. There is no use of Hessian, derivative and so on. In this framework, the new decision variables of the combinatorial modelling are:

• X i (t) 2 {0, 1} the activation or not of the FCS operating point i 2 K fcs at time t,
• Y j (t) 2 {0, 1} the activation or not of the linear function j 2 J se to calculate the power lost at time t,

• P se (t) the power provided or recovered by the SE at time t,

• SoE(t) the state of energy of the SE at time t,

• Eloss se (t) the power lost by the SE at time t.

Using the new decision variables, the objective function and some constraints defined in the previous modelling change and allow the definition of a novel formulation. The objective function that minimises hydrogen consumption becomes as follows:

min T X t=1 K fcs X i=1 X i (t) P fcs (i) ⌘ fcs (i) t (11) 
The above objective function is optimised under the following constraints.

To satisfy the vehicle powertrain demand expressed in [START_REF] Musardo | A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management[END_REF], constraint [START_REF] Schouten | Energy management strategies for parallel hybrid vehicles using fuzzy logic[END_REF] is imposed, which means one FCS operating point is activated at each time:

P se (t) + K fcs X i=1 X i (t)P fcs (i) P req (t), 8t 2 T, 8i 2 K fcs (12) K fcs X i=1 X i (t) = 1, 8t 2 T, 8i 2 K fcs ( 13 
)
The second issue is how to linearise the SE power losses function. Knowing that the power losses curve (Figure 2b) is a piecewise linear convex function, it can be modelled as follows:

Eloss se (t) = ↵ j P se (t) + j , 8P se (t) 2 [ j , 0 j ] (14) 
with (↵ j , j ) the characteristics of line j over interval [ j , 0 j ]. To find the quantity of power losses corresponding to the power provided/recovered by the SE (Figure 4), a new formulation is proposed using the Max function (Eq. 15):

Eloss se (t) = |Jse| max j=1 ↵ j P se (t) + j , 8t 2 T ( 15 
)
where |J se | is the number of linear functions and j 2 J se its index.

INSERT FIGURE 4 ABOUT HERE

Knowing that Max function is also non-linear, it can be modelled as a system of linear equations using binary variables and a big-M constant. It should be noted that M should be a high value; a too-high value would not change the quality of the solution but it would uselessly increase computation time. So, M must be chosen carefully, in terms of the scope of the data. 

Eloss se (t)  ↵ j P se (t) + j + M (1 Y j (t)), 8t 2 
SoE(T ) = SoE(0) (29) 
X i (t) 2 {0, 1} 8t 2 T, 8i 2 K fcs (30) Y j (t) 2 {0, 1} 8t 2 T, 8j 2 J se (31) 
The transition to a linear modelling allows solving the problem e ciently.
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The discretisation of the FCS energy space and the linearisation of the SE power losses function led us to remove some constraints and introduce others by adding new decision variables. The new model contains T (K fcs + J se + 3) variables of which T (K fcs + J se ) binaries. The formulation is therefore noncompact since the number of variables is pseudo-polynomial (which may cause a loss of e ciency for large horizons).

Results and simulations

Branch-and-Cut method refers to a hybrid method of combinatorial optimisation. It is generally employed to solve NP-hard mixed integer linear programming (MILP) problems, such as:

8 > > > > > > < > > > > > > : min f (x) g(x)  b x  x max x 2 Z n
The Branch-and-Cut method integrates cutting planes to accelerate the optimisation process and Branch-and-Bound methods [START_REF] Winston | Operations research: applications and algorithms[END_REF]. The principle is to solve the relaxation of the integer linear problem using the Simplex algorithm, by relaxing the integrity constraints x 2 Z n ) x 2 R n . If the solution found is feasible for the integer problem, it means that this solution is optimal; otherwise, a cutting plane method is applied in order to reduce the search space by iteratively adding cuts that violate the relaxed solution.

This method also allows finding the optimal solution or accelerating the optimisation process of Branch-and-Bound method.

The Branch-and-Bound method allows solving an integer linear problem using a tree search. The principle is to separate the relaxed problem into two sub-problems (nodes) according to the fractional solution, which is integer in the master problem, and evaluate their solutions using Simplex algorithm. This process is repeated until the optimal solution is found.

To solve the combinatorial model, a decision tool is developed in C++ language. This tool uses the Concert application that calls the IBM ILOG CPLEX mathematical optimisation solver 3 . Hydrogen consumption by the fuel cell is summarised in the table below according to the mission profiles, taking into account the optional constraint that recovers the state of energy of the storage element at the end of the mission.

The results of the combinatorial approach are better and less CPU time consuming. With regards to previous results (Table 2), it is clear than for each profile the combinatorial optimization provides a lower consumption (e.g., ESKISEHIR uses DP = 31826 kW s, QN = 27542 kW s, and combinatorial solution with the same constraint at the final state of charge is 27414 kW s). Moreover, even if the final state of charge is not fixed FL = 29802 kW s and combinatorial solution is 26924 kW s. DP and QN solutions are found after few hours instead of only 20 to 40 seconds for the combinatorial problem solving.

INSERT TABLE 3 ABOUT HERE

Solving the novel combinatorial formulation allows reaching an optimal decision to manage the energy distribution of the HEV sources with a reduced computation time, in comparison with the previously mentioned energy strategies, as shown in Table 2. In order to explain the results obtained using the combinatorial modelling, simulations performed on INRETS and ESKISEHIR mission profiles show that the fuel cell system generally operates in the maximum e ciency range to reduce the consumption of hydrogen, as shown in Figure 5. The displacement of some used set-points obtained with the new proposed combinatorial approach is su cient to decrease the hydrogen consumption and explain the better results presented in Table 3.

This optimal decision corresponds to a lower (or greater) decision at some instant k 2 [1, |T |] contributing to a lower overall consumption.

INSERT FIGURE 5 ABOUT HERE

When the electric motor's power demand is very small, the storage element itself provides traction to the vehicle thereby minimising the consumption of hydrogen by the fuel cell. Related to power split shown in Figure 6, as soon as the demand of the electric motor reaches fairly high values, the fuel cell provides more power than the one requested by the electric motor by choosing a maximum operating e ciency point in order to minimise hydrogen consumption; surplus generated power is stored in the storage element for future use. When demand reaches high peaks, the storage element provides part of the power required, while the rest of this power is supplied by the fuel cell using an e ciency operation point that belongs to the interval where the FC is known as e cient.

INSERT FIGURE 6 ABOUT HERE

In Figure 6, the red curve represents the power of the fuel cell system.

The continuous green curve represents the power of the storage element.

The blue curve is the sum of the two previous curves and represents the total requested charge to deliver. In the figure, each point with an asterisk (⇤) corresponds to a time t; all pairs of points (P fcs (t), P se (t)) over the interval [1, |T |] constitute the result of the proposed combinatorial optimisation.

The inclusion of the optional constraint on the final state of energy impacts the consumption of hydrogen by the fuel cell in a meaningful way:

when this constraint is activated, the fuel cell must ensure vehicle traction, maintaining the state of energy between its limits and re-establishing it to its original level at the end of the mission, with the e↵ect of a hydrogen overconsumption to charge the storage element. When this constraint is deactivated, the fuel cell is involved only in vehicle traction and in maintaining the state of energy between its limits, which explains the complete discharge of the storage element at the end of the mission. This has the e↵ect of reducing requests from the fuel cell, to retain the maximum amount of hydrogen in the tank and extending vehicle autonomy.

It is noted that the security constraints on power limitation recovered/supplied, P se 2 [ 60, 60] kW , by the storage element are respected even in braking (see the red curve in Figure 6). It is possible that the power generated by the electric motor during braking phases is greater than the limit imposed by the safety device. In this case, the storage element recovers possible maximum energy and the rest is dissipated as heat in a resistor, thereby maintaining the good functioning of the sources. Moreover, the state of energy of the storage element varies, depending on the charge and discharge mode. Charging mode corresponds to the energy recovery in braking phases or when the fuel cell provides more power due to the low demands of the electric motor, and this in order to minimise the consumption of hydrogen by choosing an e cient operating point. The decrease in the state of energy (discharge mode) is recognised when the power required by the motor is high, consecutive to the participation of the storage element for vehicle traction or when demand reaches fairly low thresholds. In this case, the storage element itself provides the power required by the motor.

In addition, at the end of the mission, the final charge state is re-established to the same level as at the beginning of the mission, in consideration of the optional state of energy constraint, as shown in Figure 7. This is reflected in the braking energy recovery before stopping the vehicle in order to reload the storage element, and if the braking energy is insu cient to recover the final state of energy, the FC is enabled for charging.

INSERT FIGURE 7 ABOUT HERE

To validate the linearisation of the power losses curve, Figure 8 depicts the power losses according to the power supplied or recovered by the storage element. It should be noted that the power losses curve used, defined by the technical specification, matches with the power losses obtained with the proposed modelling using all points on the overall SE plane of the storage element more intensively to obtain the minimum hydrogen consumption.

INSERT FIGURE 8 ABOUT HERE

In reality, the fuel cell cannot instantaneously deliver high power (e.g., 30 kW in one second) due to the functioning of its ancillaries. For this reason, a new representative constraint (32) of the fuel cell's dynamic behaviour is introduced, since the instantaneous power supplied between two successive moments is limited by a boundary defined by the FC compressor type.

| X i2K fcs X i (t + 1)P fcs (i) X i2K fcs X i (t)P fcs (i)|  P lim fcs 8t 2 T (32) 
which can also be expressed in the following form:

P lim fcs  X i2K fcs X i (t + 1)P fcs (i) X i2K fcs X i (t)P fcs (i|  P lim fcs 8t 2 T (33)
The addition of this constraint in the combinatorial model necessarily will impact hydrogen consumption. When the limited power between two successive moments P lim fcs corresponds to the operating point that has an FCS e cient performance, previously found hydrogen consumption remains optimal. Imposing a low power limitation forces the fuel cell to use a poorer operating point, however, in order to meet the demand of the motor and of the limitation constraint (33), thus leading to overconsumption of hydrogen, as shown in Table 4.

INSERT TABLE 4 ABOUT HERE

Between two successive moments, the FCS limitation constraint added has small e↵ects, as observed on the HIGHWAY mission profile. This is due to the motor demand, which is relatively constant and does not solicit large power variation. This is also true for the ESKISEHIR mission profile, which is a Tramway profile, in order to not agitate passengers.

It should be noted that, taking into account constraint (33) o↵ers the possibility for fuel cell to charge the supercapacitor in the stopping phases, using an operating point that depends on the fixed power P lim fcs ; this may be observed, for example, in Figure 7(b) over the range [820,870]. This choice makes it possible to satisfy future demand of the electric motor P req when P req > P lim fcs . However, this constraint forces the fuel cell to use non-optimal operating points (Figure 9), which leads to a higher hydrogen consumption noted in Table 4.

INSERT FIGURE 9 ABOUT HERE

The combinatorial model was used to achieve optimal power management decisions with a very low computation time compared with the di↵erent strategies previously mentioned. In addition, the integration of several optional constraints on fuel cell operations or on the final state of energy of the storage element allows a degree of freedom in the selection of the management strategy.

The performance of the combinatorial model in terms of solution quality and computation time can be exploited to reconfigure the pre-calculated optimal solution whenever the data change on-line due to the disruption of a part of the mission profile. This situation may occur if there is a poor estimate or a detour of the mission profile that the vehicle is to achieve for any reason. In accordance with the decisions already made online by the vehicle, however, the quality of the new adjusted solution depends on the magnitude of these disturbances. Thus, one only has to re-optimise the sequence where the disruption occurs by constraining the final state of energy of the new sequence so that it is the same as the state of energy of the sequence before the reconfiguration process. This condition is used to maintain the validity of the new global sequence.

Robustness study

The quality of the solutions obtained depends on the reliability of input data. Therefore, it is conceivable that the mission profile of the vehicle is obtained from an approximate calculation including some tolerance for error. In this case, it is interesting to carry out a robustness study to provide a correct and optimal solution taking into account the disrupted parameters [START_REF] Bertsimas | Theory and applications of robust optimization[END_REF].

In this section, uncertainties related to the mission profile of the vehicle that may be derived from an estimated calculation are considered. These uncertainties inevitably will impact the validity of the pre-calculated optimal solution found above. To deal with any eventuality that may occur, a robust linear modelling was developed to provide a worst-case robust solution [START_REF] Soyster | Inexact linear programming with generalized resource sets[END_REF], achievable regardless of the degree of disturbance.

In order to circumvent this problem, real-time adjustment and heuristics can be implemented, using the optimal power solution obtained for the storage element P se (t), 8t 2 T , the obtained power provided by the optimisation as reference for a bidirectional converter, and the demand of the electric motor thus ensured by the fuel cell. If at time t, engine demand is not perturbed, the power supplied by the fuel cell is the same as that found by the optimisation. If not, power is deduced automatically, P fcs (t) = P req (t) P se (t). Disruption therefore impacts the estimation of the quantity of hydrogen required to achieve the mission, which causes the vehicle to stop before the end of the mission. Using robust optimisation, however, leads to a better estimation of the hydrogen quantity required for the worst-case scenario.

Assume that the demand of the electric motor is uncertain and varies in view of the information of its estimated nominal value P nom req and its margin of error P err req . However, the actual demand of the electric motor at time t belongs to the interval [P nom req (t) P err req (t), P nom req (t) + P err req (t)], which can be expressed as:

P req (t) = P nom req (t) + ✏ t P err req (t) 8✏ t 2 [ 1, 1], t 2 T ( 34 
)
Taking into account the uncertainties represented in (34) provides optimal worst-case solution using the Soyster's approach [START_REF] Soyster | Convex programming with set-inclusive constraints and applications to inexact linear programming[END_REF]. This can be done by replacing the demand satisfaction constraint with the robust constraint (35)

in the previous combinatorial model:

P se (t) + X i2K fcs X i (t)P fcs (i) max 1✏t1 {P nom req (t) + ✏ t P err req (t)} 8t 2 T (35)
It can be seen that the optimal worst-case solution is reached by fixing uncertainty values to ✏ t = 1 when electric motor demand is positive, and to ✏ t = 1 when it is negative. This implies that the mission profile is characterized by high (resp. low) power demands during the traction (resp. braking) phases: solution obtained using the robust formulation is expressed in Table 5.

P se (t) + X i2K fcs X i ( 

INSERT TABLE 5 ABOUT HERE

The worst-case solution obtained is valid regardless of the realisation of scenarios belonging to the set {✏

t 2 R | 1  ✏ t  1, 8t 2 
T } defined above. The hydrogen consumption of the robust solution is greater than that calculated using the nominal mission profile. When the perturbation applied the demand of the electric motor is higher than its nominal demand, the fuel cell is prompted to provide more power. Or, in the braking phases, the storage element recovers less power than before, forcing the fuel cell to provide the necessary power in order to avoid violating storage capacity constraints and recovering the final state of energy of the storage element at the end of the mission, if it is taken into account.

Conclusions

The interest of the approaches outlined in this paper is to manage the power distribution of a hybrid electric vehicle. When the mission profile of the vehicle is known, o✏ine decision strategies are relevant despite their level of criticality for real-time applications. A novel approach has been proposed to improve the quality of decisions for the Energy Management System (EMS), by modelling the energy management problem as a combinatorial optimisation problem after a piecewise linearisation of the curve of the power losses of the storage element (SE) and discretisation of the space of the main energy source (Fuel Cell). This transformation of the problem allowed using exact methods of operations research such as Mixed Integer Linear Programming to solve the problem to optimality, with greatly reduced computation times. Other constraints were introduced and simulated in order to closely reproduce the real functioning of the primary source, i.e., power limiting constraints per time step.

To measure the sensitivity of the issue against disturbances related to the demand of the electric motor, a robust study is conducted based on the Soyster's robust approach to guarantee that a worst-case solution will be valid regardless of the scenario.

A novel combinatorial approach is proposed for the first time in the field of this electric hybrid structure. Compared to other methods, the propositions turn out to be very e cient, in terms of low energy consumption, time needed to optimally compute power split and overall energy management. A real-time application is possible when the time step is large (few seconds) to control the energy distribution of the vehicle.

The robustness study presented in this paper concerns disruption of the demand. Analysis of the sensitivity of the combinational model by disrupting the energy sources characteristics (FC e ciency and power losses of the storage element) is suggested thus. Application of the parametric approach of Bertsimas and Sim is interesting in this case, because it gives the di↵erent worst-case consumption according to the disruption level, which is controlled by a disruption factor. 
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 8 Figure 8: Energy losses by the storage element.
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 9 Figure 9: Selected operating points by the fuel cell when the limitation constraint, P lim fcs = 10 kW , is activated.

  

  

  

  

Table 1 :

 1 Input data.

	Notation Value	Definition
	SoE max 100% (E	
	SoE(0)	56.25% (900 kW s)	I n i t i a le n e r g ys t o r a b l ei nS E
	P min se	60 kW	Minimum power injected to SE
	P max se	60 kW	Maximum power extractable from SE
	P max	70 kW	Maximum power extractable from FCS
	fcs		
	t	1 s	Time stepsize
	T		Mission duration

nom = 1600 kW s) Maximum energy storable in SE SoE min 25% (400 kW s) M i n i m u me n e r g ys t o r a b l ei nS E

Table 2 :

 2 Non-linear programming problem solution.

			Hydrogen		
	Mission profile Approach	consump-	CPU Time SoE(T ) = SoE(0)?
			tion		
		QN	8750 kW s	23 mn	Yes
	INRETS	FL	8359 kW s	Real Time	No
		DP	9189.7 kW s	48 h	Yes
		QN	27542 kW s	2.4 h	Yes
	ESKISEHIR	FL	29802 kW s	Real Time	No
		DP	31826 kW s	52 h	Yes
		QN	2954 kW s	78 min	Yes
	URBAN	FL	3390.2 kW s Real Time	No
		DP	5986 kW s	44 h	Yes
		QN	10467 kW s	80 min	Yes
	ROAD	FL	11031 kW s	Real Time	No
		DP	12669 kW s	44 h	Yes
		QN	19016 kW s	84 min	Yes
	HIGHWAY	FL	19710 kW s	Real Time	No
		DP	20099 kW s	48 h	Yes

Air compressor represents 80% of the energy consumed by all the FCS ancillaries (air compressor, temperature and humidification regulating pumps, converter, etc.).

The converter is an electronic module delivering a current to maintain with intern control loops the bus voltage to its reference despite voltage variations of the FCS and the storage system. It is characterised by its high e ciency, ranging from 93% to 97%.

CPLEX uses Branch-and-Cut algorithm to solve integer linear problems. It is applied to reformulate the feasible set of solutions using a pre-processing step and a cutting plane algorithm.