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We analyze the response of a type II superconducting wire to an external magnetic field parallel to
it in the framework of Ginzburg-Landau theory. We focus on the surface superconductivity regime of
applied field between the second and third critical values, where the superconducting state survives
only close to the sample’s boundary. Our first finding is that, in first approximation, the shape
of the boundary plays no role in determining the density of superconducting electrons. A second
order term is however isolated, directly proportional to the mean curvature of the boundary. This
demonstrates that points of higher boundary curvature (counted inwards) attract superconducting
electrons.

The response of a superconductor to an applied mag-
netic field is well-known to be both very rich physi-
cally and very important practically [17, 31, 45, 46]. In
between the Meissner state, where the superconductor
totally expels a weak magnetic field, and the normal
state at very strong field, where superconductivity is de-
stroyed, different types of mixed states may occur.

For a type-II superconductor in an external magnetic
field, there are three critical values of the field mark-
ing phase transitions in the state of the material. In
increasing order, one should distinguish the first critical
field Hc1, where bulk superconductivity starts being chal-
lenged by the emergence of quantized vortices, from the
second and third critical fields, Hc2 and Hc3. Between
these latter values, bulk superconductivity is lost alto-
gether, but Cooper pairs of superconducting electrons
can still survive close to the boundary. It is a natural
question to wonder how this surface superconductivity
phenomenon depends on the shape of the sample.

For a type-I superconductor however the transition
from the superconducting to the normal state is more
abrupt (first order transition) and only one critical value
of the applied field is expected to be relevant. In fact, the
behavior of a type-I superconductor can be much richer
and show some connections with that of type-II super-
conductors [35]. In spite of some recent progress [33], the
understanding of superconductivity exactly at threshold
between type-I and type-II materials, i.e., for κ = 1/

√
2

is yet to be understood.

In this note we consider an infinitely long supercon-
ducting wire of smooth cross-section Ω ⊂ R2, modeled
by a 2D Ginzburg-Landau (GL) theory set in Ω, with
a perpendicular external magnetic field (thus parallel to
the axis of the wire). We consider values of the magnetic
field between Hc2 and Hc3, so that all the physics hap-
pens close to the boundary (denoted by ∂Ω) of Ω. We
present results in two complementary directions:

• Universality: to leading order in the limit of large GL
parameter, the physics does not depend on any detail of
the surface’s shape. The order parameter’s amplitude is
roughly constant in the direction tangential to ∂Ω.

• Shape-dependence: the next-to-leading order of the
energy density is directly proportional to the bound-
ary’s local curvature. Regions of larger boundary cur-
vature (counted inwards) attract more superconducting
electrons.

Universality-type results date as far back as Saint
James and de Gennes’ seminal papers [17, 41]. They
argued that, at the onset of surface superconductivity,
the problem can be mapped to a one-dimensional one in
the direction normal to the boundary. Essentially, we
extend this view to the full surface superconductivity
regime (where linearization of the model is not valid).
Such theoretical predictions (as well as more elaborated
models of surface superconductivity) have been verified
experimentally several times in the past, for different su-
perconducting materials [11, 34, 36, 39, 40, 44, 47, 48].

As for shape-dependent results, the influence of bound-
ary curvature on the value of the third critical field has
been known for some time: when increasing the mag-
netic field, superconductivity survives longer where the
boundary’s curvature is maximal. This has been demon-
strated [18, 19, 30, 42, 43] first in the case of domains with
corners (i.e. points where boundary curvature jumps)
that we do not discuss in detail here[49]. The mathemat-
ical analysis of the third critical field for domains with
corners may be found in [9, 10] (see [22, Chapter 15]
for review and more references). As for smooth domains,
the influence of boundary curvature was derived in [7, 29]
(see also [22, Chapters 8 and 13]).

In this note, we summarize rigorous mathematical
results obtained in [14–16], discuss their physical in-
terpretation, and complement them with numerical es-
timates of the shape-dependent contributions to sur-
face superconductivity. The universality-type results
we obtained had precursors in the mathematics litera-
ture [2, 3, 20, 21, 23, 24, 32, 38] (see [22, Chapter 14] for
a review). The shape-dependent results however seem to
be the first of their kind to be valid in the full regime
of surface superconductivity. In view of experimental re-
sults [36] on the imaging of the surface superconductivity
layer, it would be particularly interesting to measure the
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influence of the boundary’s curvature on the concentra-
tion of Cooper pairs that we predict here.

I. SETTING AND MODEL

Let Ω ⊂ R2 be a bounded 2D domain with smooth
boundary. Our starting point is the GL energy functional
for an infinite wire of cross-section Ω,

GGL
κ,hex

[Ψ,A] =

∫
Ω

dr

{
|(∇+ ihexA) Ψ|2 − κ2|Ψ|2

+ 1
2κ

2|Ψ|4 + (hex)
2 |curlA− 1|2

}
. (I.1)

Here κ, hex are the GL parameter and the strength of the
applied magnetic field (parallel to the wire), respectively.
The order parameter is denoted Ψ and hexA is the vector
potential of the induced magnetic field.

It is well-known that surface superconductivity occurs
in the regime hex ∝ κ2. To study this regime it will be
convenient to change units, setting

hex = bκ2 = ε−2 (I.2)

for two new parameters b, ε. In these units we get

GGL
ε [Ψ,A] =

∫
Ω

{∣∣∣∣(− i∇+
A

ε2

)
Ψ

∣∣∣∣2 − 1

bε2
|Ψ|2

+
1

2bε2
|Ψ|4 +

1

ε4
|curlA− 1|2

}
. (I.3)

We consider the associated ground state problem

EGL
ε := min

(Ψ,A)
GGL
ε [Ψ,A], (I.4)

and study the limit ε→ 0 with

1 < b < Θ−1
0 ≈ 1.69 (I.5)

where de Gennes’ constant

Θ0 := min
α∈R

min∫
|u|2=1

∫ +∞

0

dt
{
|∂tu|2 + (t+ α)2|u|2

}
(I.6)

is the minimal ground state energy of the shifted har-
monic oscillator on the half-line. In terms of the GL
parameter κ the limit ε→ 0 corresponds to the extreme
type II case κ → ∞. In view of (I.2) the condition (I.5)
corresponds to asking that the external magnetic field lies
strictly between Hc2 and Hc3. The numerical range for
b in (I.5) is set by the lowest eigenvalues for Schrödinger
operators with constant magnetic field equal to 1, in the
plane and the half-plane respectively. Note that ε is
the only small parameter at our disposal (stressing this
point is the main reason for changing units). Only when
b→ Θ−1

0 (i.e. at the upper limit of the surface supercon-
ductivity regime) does the problem become linear.

In all the sequel we take the above model as our start-
ing point. Clearly this demands that the full BCS the-
ory that would be appropriate reduces to the simpler GL
model. The main condition is that one be sufficiently
close to the critical temperature (see [17, 28] for standard
references and [26, 27] for a more recent and mathemat-
ical treatment). Reduction from a 3D to a 2D model is
valid in two situations:

• a very long wire with magnetic field parallel to the wire;

• a very thin film with perpendicular magnetic field.

In the latter case, one should directly impose that the
induced magnetic field coincides with the external one,
curlA = 1 (see e.g. [1] and references therein), which
only simplifies the following arguments.

II. SHAPE INDEPENDENCE OF THE
GINZBURG-LANDAU ENERGY

The first result we discuss is a two-term expansion for
the GL ground state energy. All its parameters can be
calculated by minimizing the reduced 1D energy func-
tional

E1D
0,α[f ] :=

∫ +∞

0

dt
{
|∂tf |2 + (t+ α)2f2 − 1

2b

(
2f2 − f4

)}
(II.1)

both with respect to the normal density profile f : R+ 7→
R and the total phase circulation α ∈ R. This is a gener-
alization of the linear problem (I.6), introduced in [38].
We denote the minimal value of the 1D effective energy by
E1D

0 and by f0, α0 a minimizing pair. The above problem
relates to the original one via scaling lengths by a factor
of ε (typical thickness of the superconducting layer) in
the direction normal to the boundary and assuming a
particular ansatz for the GL minimizer, discussed below.

Concerning the ground state energy, our results in [14–
16] can be summarized as follows:

Theorem II.1 (GL energy expansion).
For any 1 < b < Θ−1

0 , in the limit ε→ 0,

EGL
ε = − 1

2b

(
C1(b)

|∂Ω|
ε

+ C2(b)

∫
∂Ω

k(s)ds

)
+ o(1), (II.2)

where

C1(b) = −2bE1D
0 =

∫ +∞

0

dt f4
0 > 0 (II.3)

C2(b) = 2
3bf

2
0 (0)− 2bα0E

1D
0 . (II.4)

Sketch of proof. The methods of [22, Chapters 11 and 12]
allow to prove that the order parameter and energy den-
sity are very small at distances larger than O(ε) from the
boundary. Also, the induced magnetic field does not dif-
fer significantly from the applied one. Changing to scaled
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boundary coordinates (s, t) =(tangential, ε−1× normal),
one is then lead to consider a scaled energy functional

G[ψ] :=

∫ |∂Ω|

0

ds

∫ c0| log ε|

0

dt (1− εk(s)t){
|∂tψ|2 +

1

(1− εk(s)t)2

∣∣(ε∂s − it+ 1
2 iεk(s)t2

)
ψ
∣∣2

− 1

2b

[
2|ψ|2 − |ψ|4

]}
, (II.5)

where c0 is a fixed, essentially arbitrary, constant. The
local curvature (counted inwards) s 7→ k(s) of the bound-
ary arises from the change of variables. The upshot is
that, in first approximation (setting ε = 0 in (II.5)), the
curvature of the sample’s boundary can be neglected.
The whole sample is then mapped to a half-plane. To
proceed further and get more precise results, one may
instead approximate the boundary at each point by the
auscultating circle of radius k(s)−1.

The particular case |k| = R−1 = const. for the above
functional corresponds to the surface energy in a disk of
radius R (or the exterior thereof if k < 0). Since all
terms involving the s-coordinate in (II.5) come with ε
pre-factors, it makes sense to guess an ansatz of the form
f(t)e−i

α
ε s with a constant α to solve the disk problem.

This leads to considering the reduced functional

E1D
k,α[f ] :=

∫ c0| log ε|

0

dt(1− εkt)
{
|∂tf |2 + Vk,α(t)f2

− 1
2b

(
2f2 − f4

) }
, (II.6)

where

Vk,α(t) :=
(t+ α− 1

2εkt
2)2

(1− εkt)2
. (II.7)

This is a generalization of (II.1) to the case of non-zero
curvature. The main step of the proof is to vindicate the
exactness of the ansatz ψ(s, t) = f(t)e−i

α
ε s for the disk

problem (k = const.) in (II.5).
For simplicity we explain this in the case k = 0, corre-

sponding to the degenerate case of a half-plane sample.
The method is to write a tentative minimizer in the form

ψ(s, t) = f0(t)e−i
α0s
ε v(s, t)

and bound from below the excess energy due to a possibly
non constant v in the manner

E0[v] ≥
∫ |∂Ω|

0

ds

∫ +∞

0

dt
(
f2

0 (t) + F0(t)
)
|∇v|2 ,

with a potential function

F0(t) = 2

∫ t

0

dη (η + α0)f2
0 (η).

The “cost function” f2
0 (t) +F0(t) can be interpreted as a

lower bound to the kinetic energy density generated by

a vortex located at distance t from the boundary. In [14]
we prove that f2

0 (t) + F0(t) ≥ 0 for any t, provided
1 ≤ b ≤ Θ−1

0 , thus concluding that a vortex, or more
generally any non constant v, would increase the energy.
The ground state energy of the half-plane problem is thus
simply given by |∂Ω|E1D

0 . The disk case follows similar
considerations, with significant but technical additional
difficulties.

Relying on the previous observations, we get a kind of
“adiabatic” decoupling where the order parameter is for
any s in the ground state of the problem in the direction
perpendicular to the boundary. This reduces matters
to looking for the energy E1D

? (k) obtained by minimiz-
ing (II.6) with respect to both α ∈ R and f : R+ 7→ R.
The rationale is that a true GL minimizer can, in a suit-
able gauge, be approximated in the manner

ΨGL(r) = ΨGL(s, τ) ≈ fk(s)

(
τ
ε

)
exp

(
−iα(k(s)) sε

)
exp (iφε(s, τ)) (II.8)

with fk(s), α(k(s)) a minimizing pair for the energy func-
tional (II.6) at curvature k = k(s) and (s, τ) = (tangen-
tial coordinate, unscaled normal coordinate). Here φε is
a phase factor accounting for a uniform vortex density
proportional to ε−2 in the bulk of the sample, which is
required to compensate the huge magnetic field inside the
sample. Such a large circulation gets corrected by a rel-
atively small amount −α(k(s))ε−1 in order to optimize
the boundary energy. This form includes subleading or-
der corrections, and its main feature is the decoupling of
scales/coordinates.

The final expression (II.2) follows from first order per-
turbation theory applied to the 1D functional (II.6).
Since we work in the regime ε → 0, one can expand
E1D
? (k(s)) in powers of ε. The leading order is given by

the k = 0 functional and the first correction by −εk times

Ecorr
α0

[f0] :=

∫ c0| log ε|

0

dt t

{
|∂tf0|2

+ f2
0

(
−α0(t+ α0)− 1

b
+

1

2b
f2

0

)}
. (II.9)

That C1(b) is equal to the expression in the right-hand
side of (II.3) is a simple consequence of the variational
equation satisfied by f0, while showing that (II.9) coin-
cides with (II.4) divided by 2b requires a few non trivial
computations that we skip for brevity.

For b→ Θ−1
0 , the half-plane problem can be linearized,

and the proof is much simpler. Indeed, for the linear
problem, the ansatz f0(t)e−i

α0
ε s is clearly optimal (as

used first in [41] and further justified in the mathematics
literature [22, Chapter 13]). This is because the Hamil-
tonian of the linear problem commutes with translations
in the tangential coordinate, so that one can perform a
Fourier series decomposition in this direction. This nice
structure is broken by the nonlinear term. In this re-
spect, one may see Theorem II.1 as an extension to the
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nonlinear regime b < Θ−1
0 of the linear analysis pioneered

in [41].
The energy asymptotics (II.8) also implies estimates

of the amplitude of the order parameter and the phase
circulation around the boundary. Indeed, |ΨGL|2 can be
shown to be close to |f0

(
τ
ε

)
|2 pointwise in the surface

superconductivity layer. This indicates that no defect
can be present therein, in particular no vortex.

As we have anticipated, the curvature effects emerge in
the next-to-leading order corrections to the density of su-
perconductivity. However, in the energy expansion (II.2),
the second term is universal and independent of the sam-
ple’s shape: by the Gauss-Bonnet theorem, we have that

EGL
ε =

|∂Ω|E1D
0

ε
− π

b
C2(b) + o(1),

for the integral of the curvature in (II.2) is just 2π times
the Euler characteristic of the domain Ω, equal to 1. In
the next section we turn to describing the most explicit
form of curvature dependence we are able to derive.

III. SHAPE DEPENDENCE IN THE
DISTRIBUTION OF SUPERCONDUCTIVITY

The main result we obtained in [16] is stated in terms
of the distribution of |ΨGL|4, the square of the Cooper
pairs’ (normalized) density. For obvious physical reasons
it would be desirable to obtain instead an estimate of
|ΨGL|2, but this does not follow straightforwardly from
our methods.

Theorem III.1 (Curvature dependence of ΨGL).
Let ΨGL be a GL minimizer and D ⊂ Ω be a measurable
set intersecting ∂Ω with right angles. For any 1 < b <
Θ−1

0 , in the limit ε→ 0,∫
D

dr |ΨGL|4 = εC1(b)|∂Ω ∩ ∂D|

+ ε2C2(b)

∫
∂D∩∂Ω

k(s)ds+ o(ε2), (III.1)

using the notation of Theorem II.1.

Sketch of proof. Theorem II.1 is actually proved in a lo-
cal fashion. Denoting eGL

ε (r) the Ginzburg-Landau en-
ergy density of a ground state, we in fact obtain, for any
domain D ⊂ Ω, a version of (II.2) for the energy density
integrated over D. The main idea is then that, neglect-
ing the magnetic kinetic energy (last term in (I.3)), we
essentially have

eGL
ε ≈ − 1

2bε2
|ΨGL|4 (III.2)

and thus the result. The above (approximate) identity
follows by multiplying the GL equation by ΨGL and in-
tegrating the result over a domain D ⊂ Ω. Boundary
terms however arise due to integrating the kinetic energy

FIG. 1. Energy correction C2(b) from (II.3) as a function of
magnetic field, measured by the parameter b, cf (I.2).

by parts, involving the derivative of ΨGL in the direction
normal to ∂D. They are negligible for domains intersect-
ing ∂Ω with π/2 angles because, for such domains, this
direction is tangential to the boundary ∂Ω of the sample.
The variations of |ΨGL| in this direction are very slow,
as can be guessed from (II.8).

Theorem III.1 is almost as far as we can get with an
analytic approach. It is however not quite obvious to
determine the sign of C2(b) from the expression we ob-
tained, i.e. to conclude whether larger curvature favors
superconductivity, or the other way around. The expres-
sion (II.4) can however be evaluated by numerically solv-
ing a rather simple variational problem. We next report
on the conclusions of such an investigation:

Claim III.1 (Curvature favors superconductivity).
For any 1 < b < Θ−1

0 , we find that C2(b) > 0. Con-
sequently, the distribution of surface superconductivity
along the boundary is an increasing function of the lo-
cal curvature (counted inwards).

Argument. Everything boils down to solving the 1D mini-
mization problem (II.1) and inserting the results in (II.4).
We proceed as follows:

• Starting from an initial value for α, we minimize E1D
0,α[f ]

as a function of the normal profile f . We find it simpler to
consider a problem on the full real line, which is equiv-
alent and avoids boundary conditions issues. We thus
reflect the harmonic potential and minimize∫ +∞

−∞
dt
{
|∂tf |2 + min

(
(t+ α)2, (t− α)2

)
f2

− 1
2b

(
2f2 − f4

) }
.

Up to the fact that f should not be normalized, this can
be seen as the computation of the ground state profile
of a Bose-Einstein condensate in the double-well poten-
tial min

(
(t+ α)2, (t− α)2

)
− b−1. We rely on the freely

available Matlab toolbox GPELab [4–6], removing the
normalization step imposed therein.

• Having computed the minimizing profile f0,α at fixed
α, the minimization in α at fixed f is very easy: the
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Feynman-Hellmann principle yields∫ ∞
0

(t+ α)f2
0,α(t)dt = 0

and we use this to update the value of α.

• We again minimize the energy with respect to f , us-
ing the updated value of α, and iteratively continue the
procedure until convergence is reached.

• A few benchmarks can be used to ascertain the va-
lidity of the calculation. The second identity in (II.3)
should always hold for the converged quantities. Next,
the two expressions (II.4) and C2(b) = 2bEcorr

α0
[f0] should

always coincide. Finally, we checked that the cost func-
tion f2

0 (t) + F0(t) is always positive for 1 < b < Θ−1
0 .

For b very close to Θ−1
0 , the numerics become rather

unstable, for then f0 takes very small values. This regime
would be better analyzed by solving the lowest eigen-
value problem for the linearized equation. We have not
pursued this beyond the available studies (e.g. [8]), for
the result we aim at in this regime is already included
in [16, Lemma 2.3]. Here, perturbation theory in |b−Θ−1

0 |
proves that there exists δ > 0 such that C2(b) > 0 for
any b satisfying Θ−1

0 − δ ≤ b ≤ Θ−1
0 . This does not settle

the question analytically for the full parameter regime
of interest but allows to bypass the numerical instability
issue for b→ Θ−1

0 .
The values of the energy corrections C2(b) we found

are plotted in Figure 1. The result is clearly positive
for 1 < b < Θ−1

0 , as claimed in the statement. The
numerical problem can also be tackled for b < 1, but this
is less relevant physically, for then bulk superconductivity
starts challenging surface superconductivity, which is not
taken into account in the reduced model we solve.

IV. REMARKS ON THE DENSITY PROFILE

As an illustration, we provide plots of the optimal den-
sity profile at b = 1 and b = 1.5 in Figure 2. According
to the discussion in Section II, they give a very good ap-
proximation for the dependence of the (amplitude of the)
order parameter in the direction normal to the boundary.
In this respect, it is interesting to note that the density
is not monotonously decreasing as a function of the dis-
tance to the boundary. This can be seen analytically
because

f ′0(0) = 0, f ′′0 (0) = f0(0)
(
b−1 − α2

0

)
≥ 0

where the first equation is the Neumann boundary condi-
tion and the second uses the variational equation for f0

(Euler-Lagrange equation associated to (II.1)) together
with the known fact [14, Proof of Lemma 3.3] that
f2

0 (0) = 2 − 2bα2
0 ≥ 0. Thus, f0 increases close to the

origin, whereas it must ultimately decay, so that it has
to reach at least one global maximum outside the origin.
Since superconductivity is due to boundary effects in this

regime, it is rather counter-intuitive that the maximum
density of Cooper pairs is not attained exactly at the
boundary.

In our simulations, this drop of density at the boundary
is hardly visible for values of b close to the third critical
field (see the curve for b = 1.5 in Figure 2) but becomes
more pronounced for b close to 1, i.e. close to the second
critical field (as per (I.2)). It might thus be a precursor of
the emergence of bulk superconductivity in the sample,
when the second critical field is crossed from above.

Note that the maximum density not occuring at the
boundary is a nonlinear effect: the linearized model valid
close to Hc3 leads to a monotonously decreasing density.
Indeed, close to Hc3 the density is found by minimiz-
ing (II.1) without nonlinear term, under a mass unit mass
constraint [22, 41]. This leads to the variational equation

−f ′′ + (t+ α)2f = λf

and it is known [22, Chapter 3] that the value of α giving

the minimal energy is such that α = −
√
λ = −

√
Θ0, so

that one gets

f ′′(t) = tf(t)
(
t− 2

√
Θ0

)
.

Since the minimizing f must be positive, the above
changes sign only once on the positive half-axis, and this
is incompatible with a global maximum occurring away
from the origin.

Since for b → Θ−1
0 the minimizer of (II.1) gets closer

and closer to a multiple of the linear solution, it is natural
that the density maximum away from the origin is less
visible in that limit.

V. CONCLUSIONS

We studied the surface superconducting regime of the
usual two-dimensional GL theory for a very elongated
cylinder in a magnetic field perpendicular to its cross-
section (also valid for a thin film with perpendicular
field). Our results hold in the limit of a large GL pa-
rameter, in the full regime of applied field between the
second and third critical values Hc2 and Hc3. In partic-
ular, we showed that:

1. To leading order, the distribution of superconducting
electrons along the sample’s boundary is independent of
its shape. The boundary can in first approximation be
treated as a single straight line, and the density of Cooper
pairs has significant variations only in the direction per-
pendicular to it.

2. The subleading correction to the distribution is di-
rectly proportional to the local value of the boundary’s
curvature. A larger curvature (counted inwards) corre-
sponds to a larger density of Cooper pairs. This follows
by locally approximating the boundary by an auscultat-
ing circle.
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FIG. 2. Optimal density profile f2
0 (t) for the 1D reduced

problem (II.1) as a function of the scaled normal coordinate,
counted inwards. Orange solid curve for b = 1 and blue solid
curve with dots b = 1.5. The corresponding values of α0 are
respectively 0.153 and 0.786.

These results are in accord with what was previously
obtained from a linearized analysis close to the upper
critical field Hc3 (see [22] for review). They however con-
stitute, as far as we know, the first complete results of

their kind valid for all the relevant values of the applied
field, where a fully nonlinear analysis is required.

We remark that our approach requires the boundary
curvature to be smooth, i.e. that its variations happen
on a scale much larger than the coherence length (pro-
portional to κ−1 ∝ ε). If this assumption is violated
at some points of the boundary, it would be appropri-
ate to treat these as corners (where the curvature makes
sharp jumps). Such an analysis will be provided else-
where [12, 13].

As directions for future investigations we mention the
case where the magnetic field is not strictly perpendicular
to the cross-section (or the film), and a more complete 3D
treatment in case the wire is bent for example. In the lat-
ter case, it is known that superconductivity appears first,
when decreasing the external field below Hc3, in regions
where the magnetic field is tangent to the boundary [22].
In the regime of our interest, superconductivity should
however be present along the whole surface. The first
question to tackle then is certainly the influence of the
angle between the magnetic field and the cross-section.
Results in this direction may be found in [25]. In a full
3D treatment, whether the local (Gaussian) curvature of
the boundary rather than the 2D cross-sectional curva-
ture influences the Cooper pairs’ distribution remains an
open question.
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M.V. Milošević, U. Welp, M. Zach, Z.L. Xiao,
G.W. Crabtree, S.J. Bending, F.M. Peeters, W.
K. Kwok, Rayleigh instability of confined vortex droplets

in critical superconductors, Nature Physics, 11 (2015),
pp. 21–25.

[34] V. V. Moshchakov, L. Gielen, C. Strunk, R. Jon-
ckheere, and E. al, Effect of sample topology on the
critical fields of mesoscopic superconductors, Nature, 373
(1995), p. 319.

[35] A. Müller, M.V. Milošević, S.E.C. Dale, M.A. En-
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