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KOSZUL DUALITY FOR KAC–MOODY GROUPS AND

CHARACTERS OF TILTING MODULES

PRAMOD N. ACHAR, SHOTARO MAKISUMI, SIMON RICHE,
AND GEORDIE WILLIAMSON

Abstract. We establish a character formula for indecomposable tilting mod-
ules for connected reductive groups in characteristic ` in terms of `-Kazhdan–

Lusztig polynomials, for ` > h the Coxeter number. Using results of Andersen,

one may deduce a character formula for simple modules if ` ≥ 2h − 2. Our
results are a consequence of an extension to modular coefficients of a monoidal

Koszul duality equivalence established by Bezrukavnikov and Yun.

1. Introduction

1.1. Overview. Let G denote a connected reductive group defined over an alge-
braically closed field k of positive characteristic ` bigger than the Coxeter number
h of G, and let Rep(G) denote its category of algebraic representations. In this
paper we establish a character formula for the indecomposable tilting modules in
the principal block Rep0(G) of Rep(G) (which, by classical work, implies in theory
a character formula for any tilting module in Rep(G)). The answer is given in
terms of the `-Kazhdan–Lusztig polynomials of the affine Hecke algebra of the dual
root system, and confirms a conjecture of the last two authors [RW]. Thanks to an
observation of Andersen, our results also imply a formula for the characters of the
simple modules of G if ` ≥ 2h− 2.

The problem of determining the simple characters of G has a rich history. Fol-
lowing important early calculations of Jantzen in ranks ≤ 3, Lusztig proposed a
conjecture under the assumption that ` is larger than the Coxeter number [Lu1].
Lusztig’s conjecture was established for sufficiently large ` [AJS, KL2, Lu2, KT] and
subsequently for ` larger than an explicit enormous bound [Fi]. On the other hand,
ideas of Soergel, Elias, He, and the fourth author led to a uniform construction of
many counterexamples [S5, EW, HW, W3]. These counterexamples involve primes
` which grow exponentially in the Coxeter number.

The question of tilting characters is even more mysterious. Despite the central
importance of tilting modules in the modular representation theory of G and re-
lated groups (e.g. symmetric groups), their characters appear extremely difficult
to determine: at present there is a complete understanding only for tori (where
the problem is trivial) and G = SL2. The case of a quantum group at a root of
unity was settled in work of Soergel [S2, S3], and a conjecture of Andersen would
imply that these characters determine the modular tilting characters for weights in
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the lowest `2-alcove. However, for tilting modules (in contrast to simple modules),
there is no finite set of weights which determines the answer in general.

Until the present series of works, all known or conjectured character formulas for
algebraic groups or quantum groups involved some sort of Kazhdan–Lusztig poly-
nomials. These polynomials admit a combinatorial definition (involving only the
affine Weyl group, viewed as a Coxeter group), but also have a geometric meaning
as the graded dimensions of the stalks of intersection cohomology complexes. The
character formula proved in the current work instead involves `-Kazhdan–Lusztig
polynomials. These polynomials may be computed algorithmically via diagram-
matic algebra, and also have a geometric meaning as the graded dimensions of
the stalks of the `-parity sheaves. It is important to note, however, that the al-
gorithm to calculate the `-Kazhdan–Lusztig polynomials is much more involved
than the original Kazhdan–Lusztig algorithm. On the other hand, the formulas
involving `-Kazhdan–Lusztig polynomials hold as soon as ` is larger than the Cox-
eter number.1 Thus “independence of `” and the Lusztig conjecture hold as soon
as one has agreement between `-Kazhdan–Lusztig polynomials and their classical
counterparts. (When this agreement occurs remains, however, an important open
question.)

The proof of our main result relies on a body of recent work [AR4, ARd2, MR,
RW] establishing links between representations of reductive groups and the ge-
ometry of affine flag varieties. This earlier work, summarized in Figure 1.1 and
discussed in §1.5 below, had suggested that the character formula for tilting mod-
ules would follow from a suitable kind of “monoidal modular Koszul duality” for
Hecke categories of parity sheaves associated to affine flag varieties. (An important
antecedent for these ideas is work of Bezrukavnikov–Yun [BY], which establishes
such an equivalence with coefficients of characteristic 0.) The authors’ previous pa-
per [AMRW] made it possible to formulate the monoidal Koszul duality conjecture
precisely. In the present paper, we prove the monoidal Koszul duality theorem, and
we deduce our tilting character formula as a consequence.

A striking aspect of monoidal Koszul duality is that the Hecke category attached
to a Kac–Moody group and to its Langlands dual are (in a sense made precise by
Theorem 1.1 below) formal consequences of one another. In other words, the Hecke
category already “knows” the Hecke category of its Langlands dual group. One
can view this result as analogous to the geometric Satake equivalence: any complex
reductive group already “knows” the category of representations of its dual group.
We expect this Langlands duality for Hecke categories to have other applications
in modular representation theory.

In the remainder of the introduction, we review what Koszul duality means for
flag varieties, and what role it has played in representation theory. We will give a
precise statement of monoidal Koszul duality, and we will discuss characteristic-0
antecedents to our results.

1.2. Koszul duality for flag varieties of reductive groups. Let G be a com-
plex semisimple algebraic group, let B ⊂ G be a Borel subgroup, and let T ⊂ B
be a maximal torus. Let Db

(B)(G/B,C) be the derived category of complexes of

1In fact, we expect a form of these formulas to hold for all `. See [RW, Conjecture 1.7] and
[EL] where this conjecture is proved for the general linear group.
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DbPervmix
(Iw)(Gr,k) Tilt(U )G( U ,k)

DbRep0(G) DbCohG×Gm(Ñ )

DbPervmix
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graded Finkelberg–
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Figure 1.1. Reductive groups and Koszul duality

C-sheaves on G/B which are constructible with respect to the stratification by B-
orbits (called the Bruhat stratification), and let Perv(B)(G/B,C) be the heart of
the perverse t-structure on this category. Let G∨ be the Langlands dual group. In
general, we use a superscript “∨” to indicate objects attached to G∨: for example,
T∨, Perv(B∨)(G

∨/B∨,C), etc.
Koszul duality for G/B was first introduced by Bĕılinson–Ginzburg–Soergel

in [BGS], motivated by two related ideas:

(1) the desire to explain the Kazhdan–Lusztig inversion formula for Kazhdan–
Lusztig polynomials in categorical terms;

(2) the desire to relate two different geometric approaches to the study of the
category O of the Lie algebra of G: one which originates in the Bĕılinson–
Bernstein localization theory [BB] and leads to an equivalence of categories
between a regular block of O and Perv(B)(G/B,C), as in [BGS, Propo-
sition 3.5.2]; and one due to Soergel which relates projective objects in a
regular block of O with semisimple complexes (i.e. direct sums of shifted
simple perverse sheaves) in Db

(B∨)(G
∨/B∨,C), as in [S1].

The statement of Koszul duality in [BGS] involves a new category, denoted by

Pervmix
(B)(G/B,C), that serves as a “graded version” of Perv(B)(G/B,C). (It is

defined in terms of Deligne’s mixed sheaves on an Fp-version of the flag variety;
see [AMRW, §1.2] for a more precise discussion.) For each w ∈ W , there are four
notable objects supported on the closure of BwB/B: denote by

ICmix
w , ∆mix

w , ∇mix
w , Tmix

w

the simple, standard, costandard, and indecomposable tilting objects, respectively,
normalized so that their restrictions to BwB/B have weight 0.

Let us set Dmix
(B) (G/B,C) := DbPervmix

(B)(G/B,C). The construction of [BGS]

provides an equivalence of categories2

(1.1) κ : Dmix
(B) (G/B,C)

∼→ Dmix
(B∨)(G

∨/B∨,C)

2To be precise, the functor we call κ is actually the composition of the functor constructed
in [BGS] with the Radon transform of [BBM, Yu] (see also [BG]). For a discussion of various

versions of Koszul duality, see [AMRW, Chapter 1].
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that satisfies κ ◦ 〈1〉 ∼= [1]〈−1〉 ◦ κ, where 〈1〉 is the inverse of a square root of the
Tate twist. It also satisfies

κ(ICmix
w ) ∼= T∨,mix

w−1 , κ(∆mix
w ) ∼= ∆∨,mix

w−1

κ(Tmix
w ) ∼= IC∨,mix

w−1 , κ(∇mix
w ) ∼= ∇∨,mix

w−1 .

The Kazhdan–Lusztig inversion formula can be understood as a “combinatorial
shadow” of this equivalence.

1.3. The Kac–Moody case and quantum groups. These ideas were later gen-
eralized by Bezrukavnikov–Yun [BY] to the case where G is replaced by a general
Kac–Moody group G . Let B ⊂ G be a Borel subgroup, and let U ⊂ B be its
unipotent radical. An important new idea in [BY] (also suggested in [BG]) is that
a richer version of Koszul duality can be obtained if one “deforms” the categories
of semisimple complexes on G /B and tilting perverse sheaves on G ∨/B∨ along
a polynomial ring. The B-constructible semisimple complexes are thus replaced
by the B-equivariant semisimple complexes, and the tilting perverse sheaves are
replaced by the so-called “free-monodromic” objects constructed (via a very techni-
cal procedure) by Yun using certain pro-objects in the derived category of G ∨/U ∨,
see [BY, Appendix A]. These deformed categories each have a monoidal structure,
given by an appropriate kind of convolution product. The main result of [BY] is
an equivalence of monoidal categories

(1.2) κ̃ : Semis(B\G /B,C)
∼→ Tilt(U ∨

999G ∨ 99
9U ∨,C)

relating B-equivariant semisimple complexes on G /B and free-monodromic tilting
perverse sheaves attached to G ∨. From this, Bezrukavnikov–Yun then deduce a
Kac–Moody analogue of (1.1).

As in §1.2, this result has a combinatorial motivation in terms of Kazhdan–
Lusztig polynomials [Yu], and a representation-theoretic motivation in terms of
analogues of the category O for Kac–Moody Lie algebras.

But a third motivation for the work in [BY], specifically in the case of affine
Kac–Moody groups, came from the hope of uniting two geometric approaches to
the study of representations of Lusztig’s quantum groups at a root of unity (see
e.g. [Be, §1.2]), which we review below. Let Rep0(Uζ) denote the principal block of
the category of finite-dimensional representations of Lusztig’s quantum group Uζ
associated with an adjoint semisimple complex algebraic group G, specialized at a
root of unity ζ.

The first approach comes from [ABG]. The main result of [ABG, Part I] relates3

Rep0(Uζ) to the derived category of equivariant coherent sheaves on the Springer

resolution Ñ of G, denoted by DbCohG×Gm(Ñ ). Then the main result of [ABG,

Part II] states thatDbCohG×Gm(Ñ ) is equivalent to the derived category of Iwahori-
constructible perverse sheaves on the affine Grassmannian Gr of the Langlands
dual semisimple group G∨. Together, these results give a new proof of Lusztig’s
character formula for simple modules in Rep0(Uζ). (This character formula was al-
ready known when [ABG] appeared, by combining work of Kazhdan–Lusztig [KL2],
Lusztig [Lu2] and Kashiwara–Tanisaki [KT].)

3We will not try to make the meaning of “relates” precise; this involves technical difficulties
which are irrelevant for our present purposes.
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DbPervmix
(Iw)(Gr,C) Tilt(U

999G 99
9U ,C)

DbRep0(Uζ) DbCohG×Gm(Ñ )

DbPervmix
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Lusztig character
formula [KL2, Lu2, KT]
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duality
[BY]

monoidal
Koszul
duality
[BY]
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[AB]

Soergel character
formula [S3, S2]

Figure 1.2. Quantum groups and Koszul duality

The second approach comes from [AB], whose main result gives an equivalence

between DbCohG×Gm(Ñ ) and a certain category of Iwahori–Whittaker4 sheaves on
the affine flag variety Fl of G∨. The composition of this equivalence with [ABG,
Part I] matches simple Iwahori–Whittaker perverse sheaves on Fl with tilting (rather
than simple) modules in Rep0(Uζ). This leads to a new proof of a character for-
mula for tilting modules, previously obtained by Soergel [S3, S2]. (See [Ja] for more
details on these questions.)

The two approaches to Rep0(Uζ) described above are summarized in (the left
half of) Figure 1.2. From this diagram, one might speculate that there is an equiv-

alence relating DbPervmix
(Iw)(Gr,C) to DbPervmix

IW(Fl,C) that sends tilting perverse

sheaves to simple ones, and vice versa. This is achieved in [BY], where the desired
equivalence, a form of “parabolic Koszul duality,” is deduced from (1.2) in the case
where G is the affine Kac–Moody group associated to G∨. (In this case, one can
use the same group G on both sides of (1.2) because of symmetrizability.)

1.4. The modular case. The main geometric result of the present paper is an
analogue of (1.2) in the case when the sheaves under consideration have coefficients
in a field of arbitrary characteristic. We return to the setting where G is an arbitrary
complex Kac–Moody group, and B ⊂ G is a Borel subgroup. Let k be a field. The
first difficulty when trying to generalize the constructions of §§1.2–1.3 to the setting
of Bruhat-constructible k-sheaves on G /B is to understand the appropriate defi-

nition of the category Pervmix
(B)(G /B,k) of “mixed” perverse sheaves, as Deligne’s

notion of mixed perverse sheaves has no obvious analogue in this setting. This
difficulty was overcome in [AR3], where this category was defined in terms of chain
complexes over the additive category Parity(B)(G /B,k) of Bruhat-constructible

parity complexes on G /B (in the sense of Juteau–Mautner–Williamson [JMW]).
As explained in §1.3, the starting point of the Bezrukavnikov–Yun approach is

the consideration of two “deformations” of the category of Bruhat-constructible
sheaves along a polynomial ring. The replacement of constructible sheaves by equi-
variant sheaves has a straightforward analogue in our setting, and leads to the
monoidal category (Parity(B\G /B,k), ?) of B-equivariant parity complexes on
G /B. The second deformation uses “free-monodromic” sheaves; the adaptation of
this construction to our setting is much more difficult. A major hurdle is that the
“log of monodromy” construction (central to [BY]) is problematic in characteristic

4See [AB] or §7.2 below for the meaning of this term.
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p because of denominators. This problem was circumvented in [AMRW], where
we constructed the monoidal category (Tilt(U )G( U ,k), ?̂) of free-monodromic
mixed tilting perverse sheaves on G /B. With this notation introduced, we can
state our main geometric results.

Theorem 1.1. There is an equivalence of monoidal categories

κ̃ : Parity(B\G /B,k)→ Tilt(U ∨)G ∨( U ∨,k).

By “killing” the deformations and passing to bounded homotopy categories, we
obtain the following consequence (where we denote by ∆w, ∇w, Ew, Tw the standard
object, costandard object, indecomposable parity complex and indecomposable tilt-
ing perverse sheaves attached to w respectively).

Theorem 1.2. There is an equivalence of triangulated categories

κ : Dmix
(B)(G /B,k)

∼→ Dmix
(B∨)(B

∨\G ∨,k)

which satisfies κ ◦ 〈−1〉[1] ∼= 〈1〉 ◦ κ and

κ(∆w) ∼= ∆∨w, κ(∇w) ∼= ∇∨w, κ(Ew) ∼= T ∨w , κ(Tw) ∼= E∨w .

The proofs of Theorems 1.1 and 1.2 make use of the Elias–Williamson diagram-
matic category [EW] as an intermediary between the two sides. In [BY], this
intermediary role was instead played by Soergel bimodules, and the proof involved
the study of two functors called H and V, as in the following diagram:{

equivariant parity
complexes on G /B

} {
Soergel

bimodules

} {
free-monodromic tilting

sheaves on G ∨/B∨

}
.H V

In our setting, since the Elias–Williamson category is defined by generators and
relations, we rather reverse these arrows and consider the diagram{

equivariant parity
complexes on G /B

} {
E.–W.

category

} {
free-monodromic tilting

sheaves on G ∨/B∨

}
.

The left arrow has already been constructed by the last two authors in [RW]; what
we do here is to construct the right arrow. As in [RW], to do this, one must
say where to send generating objects and morphisms, and then one must check
relations. It is straightforward to deal with the generators. To check relations, we
reduce the question to the case where G is a (finite-dimensional) reductive group
and k has characteristic 0. This case can be studied using known properties of
Soergel bimodules, along with an analogue of the functor V.

As in [BY], there is a further generalization of Theorem 1.2 to the setting where
on the left-hand side the flag variety G /B is replaced by G /P for P a parabolic
subgroup of finite type. The right-hand side must then be replaced by an appro-
priate category of Whittaker-type sheaves on G ∨/B∨; see Section 6 for details.

1.5. Application to representation theory. The main motivation for us to
construct the modular Koszul duality equivalence in the Kac–Moody setting rather
than only for reductive groups (as already obtained by the first and third authors
in [AR3]) comes from the hope of completing Figure 1.1, with inspiration from
Figure 1.2.

Let G be an adjoint semisimple group over an algebraically closed field k of
characteristic ` bigger than the Coxeter number h of G, and let Rep0(G) be the
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principal block of the category of finite-dimensional algebraic representations of G.
As in §1.3, there should be two geometric approaches to Rep0(G).

The first approach was developed in [ARd2, MR, AR4]. In [AR4], the first and

third authors constructed a functor relating Rep0(G) to DbCohG×Gm(Ñ ), analo-
gous to that in [ABG, Part I]. When combined with earlier work with Rider [ARd2]
and with Mautner [MR], this leads to a functor

Pervmix
(Iw)(Gr,k)→ Rep0(G),

which realizes Pervmix
(Iw)(Gr,k) as a “graded version” of Rep0(G). In particular,

this result reduces the problem of computing the characters of indecomposable
tilting modules in Rep0(G) to that of describing the indecomposable tilting perverse

sheaves in Pervmix
(Iw)(Gr,k)—but it does not solve the problem, since no description

of the latter was known at the time. (The approach developed in [Yu] does not
apply in the modular setting, since Yun’s crucial “condition (W)” does not hold in
this case.)

The second approach conjecturally aims to relate Rep0(G) to Iwahori–Whittaker
sheaves on Fl, which provide a categorification of the antispherical module of the
affine Hecke algebra. In [RW], the third and fourth authors, inspired by [AB],
conjectured that characters of tilting modules in Rep0(G) can be expressed in
terms of the `-canonical basis of the antispherical module. This conjecture was
proved in [RW] in the case G = GLn(k), but by methods specific to the type-A
situation. The conjecture would hold in general if a modular analogue of [AB] were
known, but this was not available when [RW] was written.

Recall that in Figure 1.2, Koszul duality provided a link between two known
geometric approaches to Rep0(Uζ). In Figure 1.1, we turn this idea around: by
combining the results of [ARd2, MR, AR4] with the special case of Theorem 1.2
where G is an affine Kac–Moody group, we prove the conjecture of [RW] in general.
The precise statement appears in Theorem 7.6.

1.6. Some perspectives. The tilting character formula that we have obtained is
an important result in itself, but we also believe it will lead to a better understand-
ing of the category Rep(G), as illustrated by the following further results.

The fourth author has obtained and implemented an algorithm for explicit com-
putations with the character formula from Theorem 7.6; see [JW]. This algorithm
has made it possible to compute tilting characters far beyond what was previously
known. It seems likely that this formula can be made more explicit, at least in
certain cases; see [LW] for first results and conjectures in this direction.

In a different direction, this formula allows one to generalize Ostrik’s description
of tensor ideals in categories of representations of quantum groups at a root of
unity [Os] to the setting of modular representations of reductive groups; here the
proof is essentially identical, replacing the Kazhdan–Lusztig combinatorics by the
p-Kazhdan–Lusztig combinatorics. This result provides a new tool to attack the
Humphreys conjecture on support varieties of tilting G-modules [Hu]; see [AHR]
for some progress in this direction.

1.7. Contents. We begin in §2 with background related to the Elias–Williamson
diagrammatic category, mixed perverse sheaves, and results from [AMRW]. In §3,
we define and study the functor V in the finite type case. Next, §4 contains the
construction of the functor from the Elias–Williamson category to free-monodromic
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tilting sheaves. In §5, we further study this functor, and we prove Theorems 1.1
and 1.2. The parabolic–Whittaker variant of Koszul duality is deduced in §6. Lastly,
in §7, we complete the program described in §1.5 to determine the tilting character
formula.

2. Preliminaries

In this section we review the main constructions of [AMRW], and quote the
results we will need in the subsequent sections.

2.1. The Elias–Williamson diagrammatic category. Let (W,S) be a Coxeter
system with S finite, and let k be an integral domain. A finite sequence of ele-
ments of S will be called an expression. A realization of (W,S) over k is a triple
h = (V, {α∨s }s∈S , {αs}s∈S) where V is a finitely generated free k-module, and the
subsets {α∨s }s∈S ⊂ V , {αs}s∈S ⊂ V ∗ := Homk(V,k) of “simple coroots” and “sim-
ple roots” satisfy certain conditions recalled in [AMRW, §2.1]. If the realization h
satisfies further technical conditions (it is balanced and satisfies Demazure surjec-
tivity), then, following Elias–Williamson [EW], one can associate to (W,S) and h
a k-linear strict monoidal category DBS(h,W ) defined by generators and relations;
see [AMRW, §2.2–2.3]. This category carries a “shift-of-grading” autoequivalence,
denoted by (1). For any expression w, there is a corresponding object Bw, and every
object of DBS(h,W ) is of the form Bw(n) for some expression w and some integer
n. For any X,Y in DBS(h,W ), the graded k-module

⊕
n∈Z HomDBS(h,W )(X,Y (n))

admits a natural structure of graded bimodule over the ring R := Sym(V ∗), where
V ∗ is in degree 2. (This structure is obtained by adding “polynomial boxes” to the
left or to the right of a given diagram.)

The category DBS(h,W ) is not additive, and it is sometimes convenient to take
its additive envelope (i.e., to formally adjoin direct sums). The resulting category is
denoted by D⊕BS(h,W ). If k is a field or a complete local ring, we may also work with

the Karoubian envelope of D⊕BS(h,W ), denoted simply by D(h,W ). Up to shift,
the isomorphism classes of indecomposable objects in D(h,W ) are in bijection with
W [EW]. In particular, for each w ∈ W , there is a corresponding indecomposable
object denoted by Bw.

In this paper we will only consider a certain family of Coxeter groups and re-
alizations that we call Cartan realizations of crystallographic Coxeter groups, and
which arise in the following way. Let A be a generalized Cartan matrix with rows
and columns parametrized by a finite set I, and let (I,X, {αi}i∈I , {α∨i }i∈I) be an
associated Kac–Moody root datum in the sense of [Ti, §1.2]; in other words X
is a finitely generated free abelian group, {αi}i∈I ⊂ X, {α∨i }i∈I ⊂ HomZ(X,Z)
are subsets, and α∨i (αj) = aij for any i, j ∈ I. To A one associates in a stan-
dard way a (crystallographic) Coxeter system (W,S) with S in bijection with
I; see [AMRW, §10.1]. Then for any integral domain k one can define a re-
alization hk = (V, {α∨s }s∈S , {αs}s∈S) of (W,S) over k as follows. We set V =
k ⊗Z HomZ(X,Z). Then for s ∈ S we let αs, resp. α∨s , denote the image of the
corresponding simple root, resp. coroot, in V ∗, resp. V . The realizations obtained
in this way are always balanced, but they might not satisfy Demazure surjectivity.
We remedy this in the following way. If all the maps αs : HomZ(X,Z) → Z and
α∨s : X→ Z are surjective we set Z′ = Z, and otherwise we set Z′ = Z[ 1

2 ]. Then hk
satisfies Demazure surjectivity provided there exists a ring morphism Z′ → k.
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2.2. Kac–Moody groups and their flag varieties. From now on we assume
that k is a Noetherian integral domain of finite global dimension, and that there
exists a ring morphism Z′ → k.

The Cartan realizations of crystallographic Coxeter groups are related to geom-
etry in the following way. Following [Mt1, Mt2], one can associate to A and the
root datum an integral Kac–Moody group GZ (a group ind-scheme over Z), together
with a Borel subgroup BZ (see [AMRW, §10.2] for further remarks, and [RW, §9.1]
for an overview of the construction). Let UZ be the pro-unipotent radical of BZ.
Denote by G , B, and U the base change to C of GZ, BZ, and UZ, respectively. Let
X := G /B be the flag variety, and recall that we have a Bruhat decomposition

X =
⊔
w∈W

Xw,

where each Xw is a B-orbit isomorphic to an affine space of dimension `(w). As
in [AMRW], we denote the B-equivariant derived category of k-sheaves on X by
Db(B\G /B,k). (By definition, the objects in this category are supported on a
finite union of B-orbits.) As in [AR3, AMRW], the shift functor on this category
will be denoted by {1}.

To each expression w, one can associate an object Ew of Db(B\G /B,k), called
the Bott–Samelson parity complex associated to w . The strictly full subcategory of
Db(B\G /B,k) consisting of objects that are isomorphic to shifts of Bott–Samelson
parity complexes is denoted by ParityBS(B\G /B,k), and its additive envelope is
denoted by Parity⊕BS(B\G /B,k). These are monoidal categories with respect to
the convolution product ?.

If k is a field or a complete local ring, we may also work with the Karoubian
envelope of Parity⊕BS(B\G /B,k), denoted by Parity(B\G /B,k). Up to shift, the
isomorphism classes of indecomposable objects in Parity(B\G /B,k) are in bijec-
tion with W [JMW]. In particular, for each w ∈ W , there is a corresponding
indecomposable object denoted by Ew.

By [RW, Theorem 10.6], there exists a canonical equivalence of monoidal cate-
gories

(2.1) Ψ : DBS(hk,W )
∼→ ParityBS(B\G /B,k)

that intertwines (1) with {1} and sends Bw to Ew. This equivalence induces an
equivalence

D⊕BS(hk,W ) ∼= Parity⊕BS(B\G /B,k)

and, if k is a field or a complete local ring, an equivalence

D(hk,W ) ∼= Parity(B\G /B,k).

2.3. Free-monodromic tilting sheaves. In [AMRW, Chap. 10], we have defined
the category of Bott–Samelson free-monodromic tilting sheaves on X , denoted by
TiltBS(U )G( U ,k). This category is equipped with an autoequivalence 〈1〉, called

the Tate twist. For every expression w, there is a corresponding object T̃ k
w , and

every object is isomorphic to T̃ k
w〈n〉 for some expression w and some integer n.

(Below, the superscript “k” will be omitted when no confusion is likely.) The
explicit construction of this category (and of the convolution bifunctor considered
below) is long and quite technical, but its details will not be needed in the present
paper.
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By construction, the category TiltBS(U )G( U ,k) is a full subcategory in a
category Dmix(U )G( U ,k), whose objects are pairs consisting of a sequence of
objects of Parity⊕BS(B\G /B,k) and a certain “differential.” If F ,G are objects
of Dmix(U )G( U ,k), then HomDmix(U )G( U ,k)(F ,G) is the degree-(0, 0) coho-
mology of a complex of graded k-modules denoted by HomFM(F ,G), whose total
cohomology (a Z2-graded k-module) is denoted by HomFM(F ,G). The Tate twist
autoequivalence 〈1〉 extends to Dmix(U )G( U ,k), and for any j ∈ Z we have
HomDmix(U )G( U ,k)(F ,G〈j〉) = HomFM(F ,G)0

−j .

Again by construction, for F ,G in Dmix(U )G( U ,k), the Z2-graded k-module
HomFM(F ,G) admits a natural right action of R∨ = Sym(V ), where V is in bide-
gree (0,−2). This action, called the right monodromy action, is compatible with
composition: for any f ∈ HomFM(F ,G), g ∈ HomFM(G,H), and x ∈ R∨, we have

(2.2) (g ◦ f) · x = (g · x) ◦ f = g ◦ (f · x).

On the other hand, by [AMRW, Theorem 5.2.2], we also have a Z2-graded algebra
morphism

µF : R∨ → HomFM(F ,F),

called the left monodromy map. It has the property that for any f ∈ HomFM(F ,G)
and any x ∈ R∨, we have

(2.3) µG(x) ◦ f = f ◦ µF (x).

For any Noetherian integral domain k′ of finite global dimension and any ring
morphism k→ k′, there exists a natural functor

k′ : Dmix(U )G( U ,k)→ Dmix(U )G( U ,k′)

that commutes with Tate twists and sends T̃ k
w to T̃ k′

w for any expression w.

The additive envelope of TiltBS(U )G( U ,k) is denoted by Tilt⊕BS(U )G( U ,k).
If k is a field,5 we may also work with the Karoubian envelope of the category
Tilt⊕BS(U )G( U ,k), denoted by Tilt(U )G( U ,k). This category is Krull–Sch-
midt, and its indecomposable objects were classified in [AMRW, Theorem 10.7.1]:
up to Tate twist, they are in bijection with W . In particular, for each w ∈W , there

is a corresponding indecomposable object, denoted by T̃ k
w .

The main result of [AMRW] asserts that TiltBS(U )G( U ,k) is a monoidal cate-
gory with respect to monodromic convolution, denoted by ?̂. Of course, the category
Tilt⊕BS(U )G( U ,k) (and, when appropriate, the category Tilt(U )G( U ,k)) in-
herit a monoidal structure as well. In fact, for F ,F ′,G,G′ in TiltBS(U )G( U ,k),
the action of ?̂ on morphisms is induced by a morphism of complexes

HomFM(F ,G)⊗HomFM(F ′,G′)→ HomFM(F ?̂ F ′,G ?̂ G′);
see [AMRW, §6.2]. It therefore induces a morphism

HomFM(F ,G)⊗HomFM(F ′,G′)→ HomFM(F ?̂ F ′,G ?̂ G′).
By construction, for f ∈ HomFM(F ,G), g ∈ HomFM(F ′,G′), and x ∈ R∨, we have

(2.4) (f · x) ?̂ g = f ?̂ (µG′(x) ◦ g).

Finally, by construction again, for any expressions v, w we have

(2.5) T̃v ?̂ T̃w ∼= T̃vw,

5The same results hold if k is a complete local ring, but this case was not treated explicitly
in [AMRW].
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where vw means the concatenation of v and w.

2.4. The constructible derived category. In [AMRW], in addition to the cat-
egories defined above, we considered two other categories of sheaves on X : the
left-monodromic category, denoted by Dmix(U )G /B,k), and the right-equivariant
category, denoted by Dmix(U \G /B,k). These categories are related by various
functors as shown below:

Tilt⊕BS(U )G( U ,k), ?̂ Parity⊕BS(B\G /B,k), ?

Dmix(U )G /B,k) Dmix(U \G /B,k)

ForFMLM ForBERE

∼
ForLMRE

Here Dmix(U )G /B,k) and Dmix(U \G /B,k) admit natural structures of triangu-

lated categories, and the functor ForLMRE is an equivalence of triangulated categories
by [AMRW, Theorem 4.6.2]. By construction, the category Dmix(U \G /B,k) is
canonically equivalent (as a triangulated category) to KbParity⊕BS(U \G /B,k),

where Parity⊕BS(U \G /B,k) is defined as for Parity⊕BS(B\G /B,k), but using the
U -equivariant derived category of X instead of its B-equivariant derived cate-
gory. Therefore, if k is a field or a complete local ring, this category is equiva-
lent to KbParity(U \G /B,k), i.e. to the category denoted Dmix

(B)(X ,k) in [AR3]

(see [AMRW, §4.9 and §10.4]); in particular any object of Parity(U \G /B,k) can
be naturally considered as an object of Dmix(U \G /B,k).

As in the category Dmix(U )G( U ,k), for F ,G in Dmix(U )G /B,k), the k-
module HomDmix(U )G/B,k)(F ,G) is defined as the degree-(0, 0) cohomology of a
complex of graded k-modules denoted HomLM(F ,G). The total cohomology of this
complex is denoted HomLM(F ,G); then for i, j ∈ Z we have

(2.6) HomLM(F ,G)ij
∼= HomDmix(U )G/B,k)(F ,G[i]〈−j〉),

see [AMRW, Remark 4.5.2]. For F ,G in Dmix(U )G( U ,k), the action of the

functor ForFMLM is induced by a morphism of complexes

HomFM(F ,G)→ HomLM(ForFMLM(F),ForFMLM(G)),

see [AMRW, §5.1].
The Tate twist and extension-of-scalars functors are also defined for the cate-

gories Dmix(U )G /B,k) and Dmix(U \G /B,k), and commute with the forgetful
functors. For any expression w we set

T k
w := ForFMLM(T̃ k

w).

(In this setting also, the superscript “k” will be omitted when no confusion is likely.)
For the following result, see [AMRW, Corollary 10.6.2].

Proposition 2.1. For any expressions v, w and any i, j ∈ Z, we have

HomFM(T̃ k
v , T̃ k

w)ij = 0 unless i = 0.

Moreover, HomFM(T̃ k
v , T̃ k

w)0
• is graded free as a right R∨-module, and the morphism

HomFM(T̃ k
v , T̃ k

w)0
• ⊗R∨ k→ HomLM(T k

v , T k
w)0
•
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induced by the functor ForFMLM is an isomorphism. Finally, for any Noetherian in-
tegral domain k′ of finite global dimension and any ring morphism k → k′, the
functor k′ induces an isomorphism

k′ ⊗k HomDmix(U )G( U ,k)(T̃ k
v , T̃ k

w〈j〉)
∼→ HomDmix(U )G( U ,k′)(T̃ k′

v , T̃ k′
w 〈j〉)

for any j ∈ Z.

In the case when k is a field, we have also defined a subcategory

Tilt(U )G /B,k) ⊂ Dmix(U )G /B,k)

in [AMRW, §10.5]. By [AMRW, Theorem 11.4.2], this category admits a natural
action of the monoidal category Tilt(U )G( U ,k); the corresponding bifunctor
will also be denoted ?̂. By [AMRW, (6.18)], for F ,G in Tilt(U )G( U ,k), we have

(2.7) ForFMLM(F ?̂ G) ∼= F ?̂ ForFMLM(G).

The indecomposable objects in this category were classified in [AMRW, Corol-
lary 10.5.5]: up to Tate twist, they are in bijection with W . In particular, for each
w ∈W , there is a corresponding indecomposable object, denoted by T k

w . Moreover

we have T k
w
∼= ForFMLM(T̃ k

w).

2.5. Realization functors. In this subsection, we review a (variant of a) con-
struction due to Bĕılinson [Be, Appendix]. A triangulated category T is said to

admit a filtered version if there exists a filtered triangulated category T̃ over T , in
the sense of [Be, Definition A.1]. An additive subcategory A ⊂ T is said to have
no negative self-Exts if HomT (M,N [n]) = 0 for all M,N ∈ A and all n < 0.

The following is a variant of the main result of [Be, Appendix].

Proposition 2.2. Let T be a triangulated category that admits a filtered version,
and let A ⊂ T be a full additive category with no negative self-Exts. There is a
functor of triangulated categories

real : KbA → T

whose restriction to A is the inclusion functor. In addition, if A is the heart of a
t-structure (and hence an abelian category), this functor factors through a functor

real : DbA → T .

In [Be], this result is only stated in the case where A is the heart of a t-structure.
For details in a more general setting, see [Rd, §3].

Sketch of proof. The filtered category T̃ comes with functors gri : T̃ → T for each

i. Let Ã ⊂ T̃ be the full subcategory consisting of objects M such that griM = 0
for all but finitely many i, and such that griM ∈ A [−i] for all i ∈ Z. An argument

similar to [Be, Proposition A.5] shows that Ã ∼= CbA . The forgetful functor

T̃ → T induces an additive functor CbA → T , which then factors through KbA
or, if A is the heart of a t-structure, through DbA . �

The following statement is a variant of [Be, Lemma A.7.1]. We omit its proof.

Proposition 2.3. Let T1 and T2 be two triangulated categories admitting a filtered
version, and let A1 ⊂ T1, A2 ⊂ T2 be two additive categories with no negative self-
Exts. Let F : T1 → T2 be a triangulated functor that restricts to an additive functor
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F0 : A1 → A2. If F lifts to a functor of filtered triangulated categories F̃ : T̃1 → T̃2,
then the following diagram commutes up to natural isomorphism:

KbA1 T1

KbA2 T2.

real

Kb(F0) F

real

In this paper, we will mainly use these constructions in the case where T =
Dmix(U )G /B,k) or Dmix(U \G /B,k). These two are equivalent (via ForLMRE ), and
the latter, as the homotopy category of an additive category, admits a filtered
version by the construction of [AR1, §2.5]. Here is an application of this theory.

Lemma 2.4. There is an equivalence of triangulated categories

real : KbTilt⊕BS(U )G /B,k)→ Dmix(U )G /B,k).

Proof. By [AMRW, Proposition 10.6.1], for all F ,G ∈ Tilt⊕BS(U )G /B,k), we have
HomDmix(U )G/B,k)(F ,G[n]) = 0 for all n 6= 0. It follows from this that the real-
ization functor exists and is fully faithful. A routine support argument shows that
the image of this functor generates Dmix(U )G /B,k), so it is essentially surjective
as well. �

2.6. The perverse t-structure. In this subsection we assume that k is a field.
As recalled in [AMRW, §10.5], the category Dmix(U \G /B,k) admits a natural

“perverse” t-structure, constructed in [AR3]. We will denote by

Perv(U )G /B,k) ⊂ Dmix(U )G /B,k)

the inverse image under the equivalence ForLMRE of the heart of this t-structure.
This category is stable under the Tate twist, and has a natural structure of graded
highest weight category with weight poset W (for the Bruhat order). We will denote
by ∆∆w and ∇∇w the corresponding standard and costandard objects. By [AMRW,
Proposition 10.5.1], the category of tilting objects in Perv(U )G /B,k) identifies
with the subcategory Tilt(U )G /B,k) considered above. From this it follows that
the natural functors

(2.8) KbTilt(U )G /B,k)→ DbPerv(U )G /B,k)→ Dmix(U )G /B,k)

are equivalences of triangulated categories, using, say, [AR3, Lemma A.5].
As a special case of [AMRW, Proposition 7.6.3], for any s ∈ S there exists a

triangulated functor

Cs : Dmix(U )G /B,k)→ Dmix(U )G /B,k)

whose restriction to Tilt(U )G /B,k) is isomorphic to the functor T̃s ?̂ (−).

Lemma 2.5. The functor Cs is exact for the perverse t-structure.

Proof. By [AR3, Proposition 3.4] the nonnegative part, resp. the nonpositive part,
of the perverse t-structure is generated under extensions by the objects of the form
∇∇w〈n〉[m] with w ∈ W , n ∈ Z and m ∈ Z≤0, resp. by the objects of the form
∆∆w〈n〉[m] with w ∈ W , n ∈ Z and m ∈ Z≥0. With this in mind, the claim follows
from [AMRW, Lemma 10.5.3]. �
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Following [AR3, §3.1], we denote by ICmix
w the image of the natural map ∆∆w →

∇∇w. Every simple object in Perv(U )G /B,k) is isomorphic to ICmix
w 〈n〉 for some

w ∈W and some n ∈ Z. In the special case w = 1, we have ICmix
1 = T1 = ∆∆1 = ∇∇1.

Lemma 2.6. If w 6= 1, then [Cs(IC
mix
w ) : T1〈n〉] = 0 for all n ∈ Z.

Proof. For F ∈ Perv(U )G /B,k), let q(F) :=
∑
n∈Z[F : T1〈n〉]. The lemma

amounts to saying that q(Cs(IC
mix
w )) = 0 if w 6= 1. By [AR3, Lemma 4.9], there is

a short exact sequence

(2.9) 0→ T1〈−`(w)〉 → ∆∆w → G → 0

where q(G) = 0. We deduce that q(∆∆w) = 1. Then, using [AMRW, Proposi-
tion 10.5.3], we find that q(Cs(∆∆w)) = 2 for all w ∈W . (This holds even if w = 1.)
Now apply Cs to (2.9) to obtain

0→ Cs(∆∆1〈−`(w)〉)→ Cs(∆∆w)→ Cs(G)→ 0.

Since q(Cs(∆∆1〈−`(w)〉)) = q(Cs(∆∆w)) = 2, and since q is additive on short exact

sequences, we find that q(Cs(G)) = 0. If w 6= 1, then ICmix
w is a quotient of G, so

Cs(IC
mix
w ) is a quotient of Cs(G). It follows that q(Cs(IC

mix
w )) = 0, as desired. �

2.7. Tilting Hom formula. The Hecke algebra HW is the algebra with free
Z[v, v−1]-basis {Hw | w ∈ W}, with multiplicative unit H1, and multiplication
determined by the rule

HwHs =

{
Hws if ws > w;

(v−1 − v)Hw +Hws if ws < w.

Similar formulas describe HsHw depending on whether sw < w or sw > w. Next,
for any expression w = (s1, . . . , sk), set

Hw := (Hs1 + v) · · · (Hsk + v) ∈ HW .
Observe that

(2.10) HsHw = (Hs + v)Hw =

{
Hsw + vHw if sw > w;

Hsw + v−1Hw if sw < w.

Define a symmetric Z[v, v−1]-bilinear pairing

〈−,−〉 : HW ×HW → Z[v, v−1]

by 〈Hx, Hy〉 = δxy for x, y ∈W .

Lemma 2.7. Assume that k is a field, and let w be an expression. We have

Hw =
∑
y∈W
n∈Z

(Tw : ∆∆y〈n〉)vnHy =
∑
y∈W
n∈Z

(Tw : ∇∇y〈−n〉)vnHy.

Sketch of proof. According to [AMRW, Lemma 10.5.3], for any w ∈W , the perverse
sheaf Cs(∆∆w) has a filtration by standard objects, and the multiplicities are given
by (Cs(∆∆w) : ∆∆sw) = 1,

(Cs(∆∆w) : ∆∆w〈n〉) =

{
1 if n = 1 and sw > w, or if n = −1 and sw < w,

0 otherwise,

and (Cs(∆∆w) : ∆∆y〈n〉) = 0 in all other cases. Comparing this with (2.10), one can
show by induction on the length of w that (Tw : ∆∆y〈n〉) is equal to the coefficient
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of vnHy in Hw. Similar reasoning shows that this same integer is also equal to

(Tw : ∇∇y〈−n〉). �

Lemma 2.8. For any expressions v, w, we have∑
n∈Z

(
rkk HomDmix(U )G/B,k)(Tv, Tw〈n〉)

)
vn = 〈Hv, Hw〉.

Proof. By the last statement of Proposition 2.1, we may check this after extension
of scalars to any field. Over a field, we have∑

n∈Z

(
dim Hom(Tv, Tw〈n〉)

)
vn =

∑
y∈W
n,m∈Z

(Tv : ∆∆y〈m〉)(Tw〈n〉 : ∇∇y〈m〉)vn.

On the other hand, using Lemma 2.7, we have

〈Hv, Hw〉 =
∑
y∈W
m,k∈Z

(Tv : ∆∆y〈m〉)(Tw : ∇∇y〈−k〉)vm+k.

The result follows by setting k = n−m. �

3. Constructing a functor V

In this section we assume that A is of finite type, i.e. that G is a connected
complex reductive group. We also assume that k is a field of characteristic 0.6

3.1. The big tilting perverse sheaf. Let w0 be the longest element in W , and
consider the indecomposable object Tw0

in Tilt(U )G /B,k). We set

P := Tw0〈−`(w0)〉.

The same arguments as in [AR2, §5.11], using the results of [AR3, §4.4], show
that P is the projective cover of the simple object T1 in the abelian category
Perv(U )G /B,k). In particular, using (2.6) and (2.8) we deduce that we have

(3.1) HomLM(P, T1)nm =

{
k if n = m = 0;

0 otherwise.

Using [AR3, Lemma 4.9] we also deduce that for w ∈W and m ∈ Z we have

(3.2) dim
(
HomDmix(U )G/B,k)(P,∇∇w〈m〉)

)
=

{
1 if m = −`(w);

0 otherwise.

Lemma 3.1. In the abelian category Perv(U )G /B,k) we have

[P : T1〈m〉] = 0 unless m ≤ 0,

and moreover [P : T1] = 1. In particular, we have

EndDmix(U )G/B,k)(P) = k · id.

6We restrict to characteristic 0 since this is the setting we will need. But more generally the

results of this section hold if there exists a ring morphism Z′ → k and if the natural morphism

R∨ → H•(B∨\G∨; k) introduced in the proof of Lemma 3.10 is surjective. This is satisfied e.g. if
G is isomorphic to a product of groups GLn(k) and of quasi-simple groups not of type A, and if

char(k) is good for G; see [AR2, Proposition 4.1].
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Proof. Since P is a projective object in Perv(U )G /B,k), it admits a filtration by
standard objects. Moreover, (3.2) shows that the subquotients in such a filtration
are the objects ∆∆w〈−`(w)〉 for w ∈ W , each appearing once. Combining this
with [AR3, Lemma 4.9] we deduce that

[P : T1〈m〉] = #{w ∈W | m = −2`(w)},

which implies the desired statement. �

Lemma 3.2. For any s ∈ S we have T̃s ?̂ P ∼= P〈−1〉 ⊕ P〈1〉.

Proof. The object T̃s ?̂ P belongs to Tilt(U )G /B,k). Since such an object is
uniquely characterized by the multiplicities of standard objects in a standard fil-
tration, to conclude it suffices to prove that for any i ∈ Z and w ∈W we have

(T̃s ?̂ P : ∆∆w〈i〉) = (P〈−1〉 ⊕ P〈1〉 : ∆∆w〈i〉),

i.e. that

(T̃s ?̂ P : ∆∆w〈i〉) =

{
1 if i = −`(w)± 1;

0 otherwise.

This easily follows from [AMRW, Lemma 10.5.3] (see also [AMRW, Proof of Lem-
ma 10.5.4]). �

3.2. A free-monodromic analogue of P. From now on we fix (once and for

all) an object T̃w0 as in §2.3; then T̃w0 belongs to Tilt(U )G( U ,k) and satisfies

ForFMLM(T̃w0
) ∼= Tw0

. We set

P̃ := T̃w0
〈−`(w0)〉,

so that ForFMLM(P̃) ∼= P.
Using Proposition 2.1 and (3.1) we see that there exists an isomorphism of bi-

graded vector spaces

HomFM(P̃, T̃1) ∼= R∨.

In particular, we deduce that

dimk
(
HomTilt(U )G( U ,k)(P̃, T̃1)

)
= 1.

We also fix a nonzero morphism ξ : P̃ → T̃1 (which is unique up to nonzero scalar),

and set ξ′ := ForFMLM(ξ), a generator of HomDmix(U )G/B,k)(P, T1).

Lemma 3.3. The objects P̃ ?̂ P and P̃ ?̂ P̃ ?̂ P are direct sums of copies of P〈i〉
with i ∈ Z≤0, with P appearing once.

Proof. It is enough to prove the claim for P̃ ?̂ P; the case of P̃ ?̂ P̃ ?̂ P follows.

Let w be a reduced expression for w0. Then, by [AMRW, Theorem 10.7.1], P̃ is a

direct summand in T̃w〈−`(w0)〉, so P̃ ?̂P is a direct summand in (T̃w〈−`(w0)〉) ?̂P.
The first claim is then a direct consequence of Lemma 3.2. We also deduce that

the multiplicity of P in P̃ ?̂ P is at most 1.
To prove the claim about the multiplicity of P, we observe that the morphism

id?̂ξ′ : P̃ ?̂P → P̃ ?̂T1
∼= P is surjective. (Since P̃ is a direct summand in T̃w〈−`(w0)〉,

this follows from Lemma 2.5.) Since the image of any morphism P〈i〉 → P with
i < 0 is contained in the radical of P, we deduce that P does indeed occur as a

direct summand of P̃ ?̂ P. �
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Corollary 3.4. We have

dimk
(
HomDmix(U )G/B,k)(P, P̃ ?̂ P〈i〉)

)
=

{
1 if i = 0;

0 if i < 0.

We also have

dimk
(
HomDmix(U )G/B,k)(P, P̃ ?̂ P̃ ?̂ P〈i〉)

)
=

{
1 if i = 0;

0 if i < 0.

Proof. The claims follow from Lemma 3.1 and Lemma 3.3. �

3.3. Morphisms from P̃ to T̃s. Let us fix s ∈ S. Consider the morphism

ForFMLM(ε̂s)〈−1〉 : Ts〈−1〉 → T1,

where ε̂s is defined in [AMRW, §5.3.4]. Since P is projective, and since [Ts〈−1〉 :
T1] = 1 (see [AMRW, Example 4.6.4]), there exists a unique morphism ζ ′s : P →
Ts〈−1〉 such that (ForFMLM(ε̂s)〈−1〉) ◦ ζ ′s = ξ′.

Lemma 3.5. There exists a unique morphism

ζs : P̃ → T̃s〈−1〉

in Dmix(U )G( U ,k) such that ForFMLM(ζs) = ζ ′s. Moreover we have (ε̂s〈−1〉) ◦ ζs =
ξ, and there exists a unique Z2-graded R∨-bimodule isomorphism

R∨ ⊗(R∨)s R
∨ ∼→ HomFM(P̃, T̃s〈−1〉)

sending 1⊗ 1 to ζs.

Proof. Since [Ts〈−1〉 : T1] = [Ts〈−1〉 : T1〈−2〉] = 1 and [Ts〈−1〉 : T1〈m〉] = 0
if m /∈ {0,−2}, the Z2-graded k-vector space HomLM(P, Ts〈−1〉) has dimension 2,
and is nonzero in degrees 0 and −2. By Proposition 2.1 this implies that the graded

(right) R∨-module HomFM(P̃, T̃s〈−1〉) is free of rank 2, and generated in degrees 0

and −2, and that the functor ForFMLM induces an isomorphism

HomDmix(U )G( U ,k)(P̃, T̃s〈−1〉) ∼→ HomDmix(U )G/B,k)(P, Ts〈−1〉).
This proves the existence and uniqueness of ζs. The fact that (ε̂s〈−1〉) ◦ ζs = ξ
follows from similar arguments.

Now, we consider the morphism

R∨ ⊗k R
∨ → HomFM(P̃, T̃s〈−1〉)

defined by x⊗ y 7→ (µT̃s(x) ◦ ζs) · y. By (2.2), for x, y ∈ R∨, we have

(µT̃s(x) ◦ ζs) · y = (µT̃s(x) · y) ◦ ζs.

In view of [AMRW, Proposition 5.3.1 and its proof], this implies that our morphism
factors through a (Z2-graded) bimodule morphism

R∨ ⊗(R∨)s R
∨ → HomLM(P̃, T̃s〈−1〉).

The right R∨-modules under consideration are both free of rank 2, and generated
in degrees 0 and −2 (see again [AMRW, Proposition 5.3.1 and its proof] for the
left-hand side). Hence to prove that our morphism is an isomorphism, it suffices to
show that the induced morphism

R∨ ⊗(R∨)s k→ HomFM(P̃, T̃s〈−1〉)⊗R∨ k ∼= HomLM(P, Ts〈−1〉)
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is an isomorphism. The latter fact is clear from the discussion in [AMRW, Exam-
ple 4.7.4]. �

3.4. Coalgebra structure.

Proposition 3.6. The object P̃ admits a canonical coalgebra structure in the
monoidal category Tilt(U )G( U ,k) with counit ξ.

Proof. Our proof is very close to that in [BY, Proposition 4.6.4]. We need to define

a counit morphism P̃ → T̃1 (which should be ξ) and a comultiplication morphism

δ : P̃ → P̃ ?̂ P̃, and check that these data satisfy the counit and coassociativity
axioms.

To define the comultiplication, we first observe that there exists a unique mor-

phism δ′ : P → P̃ ?̂ P such that (ξ ?̂ ξ′) ◦ δ′ = ξ′. In fact, the morphism
ξ ?̂ ξ′ = (ξ ?̂ idT1) ◦ (idP̃ ?̂ ξ

′) is surjective by the proof of Lemma 3.3. Since its
restriction to any summand of the form P〈i〉 with i < 0 must vanish, this proves the
existence of δ′ in view of Lemma 3.3 and (3.1). Uniqueness is also clear from this
lemma since EndDmix(U )G/B,k)(P) = k · id and HomDmix(U )G/B,k)(P,P〈i〉) = 0 if
i < 0.

Now, combining Corollary 3.4 and Proposition 2.1 (see also (2.7)) we see that

HomFM(P̃, P̃ ?̂ P̃) is a direct sum of copies of R∨〈i〉 with i ≤ 0, in which R∨ itself

occurs with multiplicity 1. Moreover, the functor ForFMLM induces an isomorphism

HomDmix(U )G( U ,k)(P̃, P̃ ?̂ P̃)
∼→ HomDmix(U )G/B,k)(P, P̃ ?̂ P).

From the previous paragraph we then deduce that there exists a unique morphism

δ : P̃ → P̃ ?̂ P̃ such that (ξ ?̂ ξ) ◦ δ = ξ. This defines our comultiplication.
It remains to show that ξ and δ satisfy the required axioms. We observe that as

above the vector space HomDmix(U )G( U ,k)(P̃, P̃ ?̂ P̃ ?̂ P̃) is 1-dimensional. Hence
(δ ?̂ id) ◦ δ and (id ?̂ δ) ◦ δ are proportional. Moreover, we have

(ξ ?̂ ξ ?̂ ξ) ◦ ((δ ?̂ id) ◦ δ) = (ξ ?̂ ξ ?̂ ξ) ◦ ((id ?̂ δ) ◦ δ) = ξ.

Hence (δ ?̂ id) ◦ δ = (id ?̂ δ) ◦ δ, proving coassociativity. The counit axiom can be
checked similarly, and the proof is complete. �

3.5. The functor V. The Z2-graded algebra R∨ is concentrated in degrees in
{0}×Z, so it makes sense to regard it as just a Z-graded algebra. Similarly, if F ,G
belong to Tilt(U )G( U ,k), then by Proposition 2.1, HomFM(F ,G) can (and will)
be regarded as a Z-graded k-module.

Consider the Z-graded algebra morphism

R∨ ⊗R∨ → EndFM(P̃)

sending x⊗ y to µP̃(x) · y. This morphism allows us to define a functor

V := HomFM(P̃,−) : Tilt(U )G( U ,k)→ R∨-ModZ-R∨,

where R∨-ModZ-R∨ is the category of graded R∨-bimodules. This functor inter-
twines Tate twist with the shift-of-grading functor 〈1〉 on R∨-ModZ-R∨, where the
latter is normalized as in [AMRW, §3.1].

The arguments below will sometimes make use of the functor

V′ := HomLM(P,−) : Tilt(U )G /B,k)→ R∨-ModZ,
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where R∨-ModZ is the category of graded left R∨-modules, and the morphism R∨ →
EndLM(P) is µP . Proposition 2.1 implies that the following diagram commutes up
to natural isomorphism:

(3.3)

Tilt(U )G( U ,k) R∨-ModZ-R∨

Tilt(U )G /B,k) R∨-ModZ.

V

ForFMLM
(−)⊗R∨k

V′

Proposition 3.7. The functor V admits a canonical monoidal structure which
intertwines the convolution ?̂ on Tilt(U )G( U ,k) and the natural tensor product
of graded R∨-bimodules.

Proof. Let γ : R∨
∼→ V(T̃1) be the isomorphism determined by γ(1) = ξ, where

ξ : P̃ → T̃1 is the morphism fixed in §3.2. We need to define a natural isomorphism
of bifunctors

β : V(−)⊗R∨ V(−)→ V(− ?̂−)

so that the data (V, β, γ) satisfies the associativity and unitality axioms of a monoi-
dal functor.

We begin by defining a morphism of bifunctors

V(−)⊗k V(−)→ V(− ?̂−)

as follows. If F ,G belong to Tilt(U )G( U ,k) and f ∈ V(F)m, g ∈ V(G)m′ , then
we can consider

f ?̂ g : P̃ ?̂ P̃ → F ?̂ G〈−m−m′〉.
Composing this morphism with the comultiplication from Proposition 3.6, we obtain
an element of V(F ?̂ G)m+m′ . This defines the desired morphism, and by (2.4) this
morphism factors through a morphism

β : V(−)⊗R∨ V(−)→ V(− ?̂−).

For later use, note that a very similar construction, using the map δ′ : P → P̃ ?̂ P
from the proof of Proposition 3.6 in place of the comultiplication, yields a natural
transformation

β′ : V(−)⊗R∨ V′(−)→ V′(− ?̂−).

The associativity axiom for (V, β, γ) follows from the bifunctoriality of ?̂, the
compatibility of the associator isomorphism in Tilt(U )G( U ,k) with morphisms
(see [AMRW, Proposition 7.2.2]), and the coassociativity axiom for the coalge-

bra structure of P̃ (see Proposition 3.6). The unitality axioms for (V, β, γ) follow
from the naturality of the unitor isomorphisms in Tilt(U )G( U ,k) (see [AMRW,

Lemma 7.1.1]) and the counit axioms for the coalgebra structure of P̃ (see Propo-
sition 3.6).

To conclude, it remains only to prove that β is an isomorphism. By Proposi-
tion 2.1, V takes values in the subcategory consisting of bimodules which are free
as graded right R∨-modules. It is therefore enough to prove that β remains an iso-
morphism after applying (−) ⊗R∨ k : R∨-ModZ-R∨ → R∨-ModZ. In other words,
it is enough to prove that β′ is an isomorphism. Using (2.5), we can further reduce
the problem to showing that for any s ∈ S, the morphism of functors

β′(T̃s,−) : V(T̃s)⊗R∨ V′(−)→ V′(T̃s ?̂−)
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is an isomorphism.

For this we will “extend” the functors V(T̃s)⊗R∨ V′(−) and V′(T̃s ?̂−) to exact

functors Perv(U )G /B,k) → R∨-ModZ as follows. First, as explained at the be-
ginning of the section, the category Tilt(U )G /B,k) identifies naturally with an

additive subcategory of Perv(U )G /B,k). We can extend V(T̃s) ⊗R∨ V′(−) to a
functor

Ws
1 : Perv(U )G /B,k)→ R∨-ModZ

by setting Ws
1(F) := V(T̃s) ⊗R∨ HomLM(P,F). Since V(T̃s) is free as a right R∨-

module and since P is a projective object in Perv(U )G /B,k), this functor is exact.

For the functor V′(T̃s ?̂−), we define an exact functor

Ws
2 : Perv(U )G /B,k)→ R∨-ModZ

by setting Ws
2(F) := HomLM(P, Cs(F)). In this case, exactness follows from

Lemma 2.5.
We claim that the morphism β′(T̃s,−) is induced by a morphism of functors

γs : Ws
1 → Ws

2. To see this we need a different construction of the functor Ws
2.

Consider the functor

Kb(V′(T̃s ?̂−)) : Kb(Tilt(U )G /B,k))→ Kb(R∨-ModZ).

As seen in §2.6, the natural functor

Kb(Tilt(U )G /B,k))→ Db(Perv(U )G /B,k))

is an equivalence. Moreover, it is clear by construction that the following diagram
commutes:

KbTilt(U )G /B,k) Kb(R∨-ModZ)

DbPerv(U )G /B,k) Db(R∨-ModZ).

o

Kb(V′(T̃s?̂−))

Db(Ws
2)

Similarly we have a commutative diagram

KbTilt(U )G /B,k) Kb(R∨-ModZ)

DbPerv(U )G /B,k) Db(R∨-ModZ).

o

Kb(V(T̃s)⊗R∨V
′(−))

Db(Ws
1)

Hence the morphism of functors β′(T̃s,−) induces a morphism Db(Ws
1)→ Db(Ws

2),
which restricts to the desired morphism γs.

We will now prove that γs is an isomorphism, thereby finishing the proof. By
the 5-lemma, it is enough to prove that γs(F) is an isomorphism for any simple

object F in Perv(U )G /B,k). After a Tate twist, we may assume that F = ICmix
w

for some w ∈W . If w 6= 1, then it is clear that Ws
1(ICmix

w ) = 0, and it follows from

Lemma 2.6 that Ws
2(ICmix

w ) = 0, so there is nothing to prove in this case. It remains
to consider the case w = 1. In other words, we must prove that the morphism

γs(T1) : Ws
1(T1)→Ws

2(T1)
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is an isomorphism. By construction this morphism identifies with β′(T̃s, T1). Recall
now that

V(T̃s) ∼= R∨ ⊗(R∨)s R
∨〈1〉, V′(T1) ∼= k, V′(T̃s ?̂ T1) ∼= V′(Ts) ∼= R∨ ⊗(R∨)s+

k〈1〉.

In particular, both Ws
1(T1) and Ws

2(T1) are cyclic as left R∨-modules, and generated
in degree 1. Hence to conclude, it remains only to prove that

β′(T̃s, T1)(ζs ⊗ ξ′) = ζ ′s,

i.e. that

(3.4) (ζs ?̂ ξ
′) ◦ δ′ = ζ ′s.

(Here we identify T̃s ?̂ T1 and Ts in the canonical way; see (2.7).) However we have

(ForFMLM(ε̂s)〈−1〉) ◦ (ζs ?̂ ξ
′) ◦ δ′ = ((ε̂s〈−1〉) ?̂ idT1) ◦ (ζs ?̂ ξ

′) ◦ δ′

= ((ε̂s〈−1〉 ◦ ζs) ?̂ ξ′) ◦ δ′ = (ξ ?̂ ξ′) ◦ δ′ = ξ′.

By construction of ζ ′s (see §3.3), this proves (3.4), as desired. �

3.6. Full faithfulness. The goal of this subsection is to prove the following claim.

Theorem 3.8. The functor

V : Tilt(U )G( U ,k)→ R∨-ModZ-R∨

is fully faithful.

Before proving this result we need some preliminary lemmas.

Lemma 3.9. The functor

V′ : Tilt(U )G /B,k)→ R∨-ModZ

introduced in the proof of Proposition 3.7 is faithful.

Proof. The argument for this proof is taken from [BBM]. By construction of the
functor V′, to prove the lemma it suffices to prove that the image of any nonzero
morphism between objects of Tilt(U )G /B,k) admits a Tate twist of T1 as a com-
position factor. In fact this follows from the observation that the only possible
simple quotients of objects of Tilt(U )G /B,k) are Tate twists of T1, since such
objects admit costandard filtrations, and since the head of any costandard object
in Perv(U )G /B,k) is a Tate twist of T1, by [AR3, Lemma 4.9]. �

Lemma 3.10. For any F ,G in Tilt⊕BS(U )G /B,k), the k-vector spaces⊕
m∈Z

HomDmix(U )G/B,k)(F ,G〈m〉) and HomR∨(V′(F),V′(G))

have the same dimension.

Sketch of proof. By construction of the category Tilt⊕BS(U )G /B,k), we can as-
sume that F = Tv and G = Tw for some expressions v, w. In this case, the dimension
of
⊕

n∈Z HomDmix(U )G/B,k)(Tv, Tw〈n〉) is determined in Lemma 2.8.
On the other hand, let T ∨ be the torus which is Langlands dual to T , and let

G ∨ be a complex connected reductive group containing T ∨ as a maximal torus and
whose root system (with respect to T ∨) is dual to that of (G ,T ). Let also B∨ be
the Borel subgroup of G ∨ containing T ∨ whose roots are the coroots of B. Then the
Borel construction shows that there exists a natural surjective algebra morphism
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R∨ → H−•(B∨\G ∨;k). For any s ∈ S we let P∨
s be the minimal parabolic

subgroup of G ∨ containing B∨, and set E∨s := kB∨\P∨s {1} ∈ D
b(B∨\G ∨/B∨,k).

Then for any expression u = (s1, . . . , sr), we set

E∨u := E∨s1 ?
B∨ · · · ?B∨ E∨sr ,

where ?B∨ is the natural convolution product on Db(B∨\G ∨/B∨,k). (In the
present proof these objects will be considered as objects in the ordinary derived
category Db(B∨\G ∨,k).)

If v = (s1, . . . , si) and w = (t1, . . . , tj), then it is well known from the theory of
Soergel bimodules that we have canonical isomorphisms of R∨-modules

H−•(B∨\G ∨, E∨v ) ∼= R∨ ⊗(R∨)s1 · · · ⊗(R∨)si−1 R∨ ⊗(R∨)si k〈i〉,
H−•(B∨\G ∨, E∨w) ∼= R∨ ⊗(R∨)t1 · · · ⊗(R∨)tj−1 R

∨ ⊗(R∨)tj k〈j〉;

see e.g. [S1, Korollar 2]. Comparing with Lemma 3.5 and using Proposition 3.7 and
its proof, we deduce isomorphisms of R∨-modules

H−•(B∨\G ∨, E∨v ) ∼= V′(Tv), H−•(B∨\G ∨, E∨w) ∼= V′(Tw).

It is also well known that the functor H−•(B∨\G ∨,−) induces an isomorphism⊕
m∈Z

HomDb(B∨\G∨,k)(Ev, Ew{m})
∼→

HomH−•(B∨\G∨;k)

(
H−•(B∨\G ∨, E∨v ),H−•(B∨\G ∨, E∨w)

)
,

by [S1, Erweiterungssatz 17]. (See also [Gi] and [ARd1, Theorem 4.1] for alterna-
tive proofs, in more general contexts.) Using [JMW, Proposition 2.6] to compute
the dimension of the left-hand side, we finally obtain a formula for the dimen-
sion of HomR∨(V′(Tv),V′(Tw)) which coincides with the one for the vector space⊕

n∈Z HomDmix(U )G/B,k)(Tv, Tw〈n〉) considered above. �

Proof of Theorem 3.8. We have to prove that for any expressions v, w and any
m ∈ Z, the functor V induces an isomorphism

HomDmix(U )G( U ,k)(T̃v, T̃w〈m〉)
∼→ HomR∨-ModZ-R∨(V(T̃v),V(T̃w)〈m〉).

In fact we will prove that this functor induces an isomorphism

(3.5) HomFM(T̃v, T̃w)
∼→ HomR∨-Mod-R∨(V(T̃v),V(T̃w)),

where the right-hand side means morphisms of (ungraded) bimodules.
For this we note that by Proposition 2.1 the left-hand side is graded free as a

right R∨-module, of finite rank, and that there exists a canonical isomorphism

HomFM(T̃v, T̃w)⊗R∨ k
∼→ HomLM(Tv, Tw).

Now, recall the notation introduced in the proof of Lemma 3.10. Then we have a
natural surjective algebra morphism R∨ ⊗k R

∨ → H−•(B∨\G ∨/B∨;k), canonical
isomorphisms

H−•(B∨\G ∨/B∨, E∨v ) ∼= V(Tv), H−•(B∨\G ∨/B∨, E∨w) ∼= V(Tw),
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and the functor H•(B∨\G ∨/B∨,−) induces an isomorphism⊕
m∈Z

HomDb(B∨\G∨/B∨,k)(Ev, Ew[m])
∼→

HomH−•(B∨\G∨/B∨;k)

(
H−•(B∨\G ∨/B∨, E∨v ),H−•(B∨\G ∨/B∨, E∨w)

)
,

by [S4, Proposition 2]. (See also [BY, Proposition 3.1.5] and [MR, Remark 3.19]
for alternative proofs, in more general contexts.) It is well known that the left-
hand side is graded free as a right R∨-module, of finite rank, and that the natural
morphism(⊕
m∈Z

HomDb(B∨\G∨/B∨,k)(Ev, Ew[m])

)
⊗R∨ k→

⊕
m∈Z

HomDb(B∨\G∨,k)(Ev, Ew[m])

is an isomorphism: see e.g. [MR, Lemma 2.2]. Combining this with the results used

in the proof of Lemma 3.10, we deduce that HomR∨-Mod-R∨(V(T̃v),V(T̃w)) is free
over R∨, of finite rank, and that the natural morphism(

HomR∨-Mod-R∨(V(T̃v),V(T̃w))
)
⊗R∨ k→ HomR∨-Mod(V′(Tv),V′(Tw))

is an isomorphism.
Finally, the isomorphism (3.5) follows from the fact that V′ is fully faithful, as

follows from Lemma 3.9 and Lemma 3.10. �

4. From diagrams to tilting perverse sheaves

In this section we come back to the general assumption that k is a Noetherian
integral domain of finite global dimension such that there exists a ring morphism
Z′ → k.

4.1. Statement. We now consider the realization h∗k of W over k which is dual
to hk, i.e. given by the triple (V ∗, {αs}s∈S , {α∨s }s∈S) where V ∗ := Homk(V,k) =
k ⊗Z X. This realization satisfies Demazure surjectivity, so that we can consider
the corresponding Elias–Williamson diagrammatic category DBS(h∗k,W ).

The goal of this section is to prove the following result.

Theorem 4.1. There exists a canonical k-linear monoidal functor

Φ : DBS(h∗k,W )→ TiltBS(U )G( U ,k)

sending Bs to T̃s, and such that Φ ◦ (1) = 〈1〉 ◦ Φ.

The construction of Φ is similar to the construction of the functor Ψ appearing

in (2.1) (see [RW, §10.4–10.5]). Namely, we define Φ on objects by Φ(Bw) = T̃w. To
define Φ on morphisms, we need to specify the images of the generating morphisms,
and check that these images satisfy the appropriate relations. These images will be
described in a rather explicit way; then to check the relations we will reduce to the
case k is a field of characteristic 0 and A is of finite type, in which case we can use
the functor V of Section 3 to deduce this claim from the corresponding (known)
fact for Soergel bimodules.

We need only consider the case when k = Z′: by the last statement of Proposi-
tion 2.1, we deduce from this case the definition of Φ for any k, and the fact that
the relations hold over Z′ implies that they also hold over k.
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4.2. Construction of the functor Φ. In this subsection, we define the image of
Φ on each generating morphism.

4.2.1. Polynomials. Consider the morphism B∅ → B∅(2m) given by a region la-
belled by x ∈ (R∨)0

−2m. We define

Φ

(
x

)
:= µT̃∅(x) : T̃∅ → T̃∅〈2m〉.

4.2.2. Dot morphisms. Fix a simple reflection s ∈ S. We define

Φ

(
•
s
)

:= η̂s : T̃∅〈−1〉 → T̃s and Φ

(
•
s

)
:= ε̂s : T̃s → T̃∅〈1〉,

where η̂s and ε̂s are the morphisms defined in [AMRW, §5.3.4].

4.2.3. Trivalent vertices. Fix a simple reflection s ∈ S. The definition of the image
of the trivalent vertices will rely on the following lemma.

Lemma 4.2. The following maps are isomorphisms:

HomDmix(U )G( U ,Z′)(T̃s〈1〉, T̃s ?̂ T̃s)
∼→ HomDmix(U )G( U ,Z′)(T̃s〈1〉, T̃s〈1〉)

f 7→ (idT̃s ?̂ ε̂s) ◦ f,

HomDmix(U )G( U ,Z′)(T̃s ?̂ T̃s, T̃s〈−1〉) ∼→ HomDmix(U )G( U ,Z′)(T̃s〈−1〉, T̃s〈−1〉)
f 7→ f ◦ (idT̃s ?̂ η̂s).

Before proving this lemma, we require some preparatory work in the right equi-
variant category

Dmix(U \G /B,k) = KbParity⊕BS(U \G /B,k).

For simplicity, write ForFMRE = ForLMRE ◦ For
FM
LM, and set

Fs := ForFMRE (T̃s ?̂ T̃s).

Recall the right equivariant complex T ′s = ForLMRE (Ts) from [AMRW, Example 4.3.4].
We define morphisms

φs : Fs → T ′s 〈1〉 ⊕ T ′s 〈−1〉 and ψs : T ′s 〈1〉 ⊕ T ′s 〈−1〉 → Fs
in Dmix(U \G /B,k) as follows. From the definitions we see that Fs is given by
the following complex in degrees −2 to 2, where we omit direct sum signs, and we
silently pass through the equivalence (2.1):

E∅{−2} Es{−1}
Es{−1}

E∅
Ess
E∅

Es{1}
Es{1}

E∅{2}.

[
•

•

]

• 0

− • •

0 •

  • • 0

−2• − • •


[ • • ]

We also depict T ′s 〈1〉 ⊕ T ′s 〈−1〉 as the following complex in degrees −2 to 2:

E∅{−2} Es{−1} E∅
E∅ Es{1} E∅{2}.

[ • ]

[
0
•

]
[ • 0 ] [ • ]
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Now, let φs and ψs be the morphisms represented by the following chain maps:

E∅{−2} Es{−1}
Es{−1}

E∅
Ess
E∅

Es{1}
Es{1} E∅{2}

E∅{−2} Es{−1} E∅
E∅ Es{1} E∅{2},

[ 1 ] [ 0 ]
[
−1 − 1
1 0 0

]
[ ] [ 1 ]

E∅{−2} Es{−1}
Es{−1}

E∅
Ess
E∅

Es{1}
Es{1} E∅{2}

E∅{−2} Es{−1} E∅
E∅ Es{1} E∅{2}.

[ 1 ]
[ ] [

0 1
0 −
1 1

] [
0
]

[ 1 ]

Of course, one needs to check that these are indeed chain maps. In this calculation,
for the component Ess  Es{1}, resp. Es{−1} Ess, one uses the equality

− • − • + • = 0, resp. − • + • + • = 0,

in Parity⊕BS(U \G /B,Z′).
Then we choose some lifts

φ̂s : T̃s ?̂ T̃s
∼→ T̃s〈1〉 ⊕ T̃s〈−1〉 and ψ̂s : T̃s〈1〉 ⊕ T̃s〈−1〉 ∼→ T̃s ?̂ T̃s

of φs and ψs to Dmix(U )G( U ,k). (The existence of such lifts is guaranteed by
Proposition 2.1. One can check that φs and ψs are mutually inverse isomorphisms,

and deduce that φ̂s and ψ̂s can be chosen to be mutually inverse isomorphisms; but
we will not need these facts.)

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. It follows from Proposition 2.1, Lemma 2.8, and an easy Hecke
algebra calculation that all four Z′-modules in the statement of the lemma are free
of rank 1. Hence to prove that our maps are isomorphisms it suffices to prove that
they are surjective, and for this it suffices to prove that the compositions

T̃s〈−1〉
idT̃s ?̂η̂s−−−−−→ T̃s ?̂ T̃s

φ̂s−→ T̃s〈1〉 ⊕ T̃s〈−1〉 p̂−→ T̃s〈−1〉,

T̃s〈1〉
ı̂−→ T̃s〈1〉 ⊕ T̃s〈−1〉 ψ̂s−→ T̃s ?̂ T̃s

idT̃s ?̂ε̂s−−−−−→ T̃s〈1〉,

where ı̂ (resp. p̂) is the inclusion (resp. projection), are the identity maps.

For this, note that by Proposition 2.1 and Lemma 2.8, ForFMLM induces an isomor-
phism

EndDmix(U )G( U ,Z′)(T̃s)
∼→ EndDmix(U )G/B,Z′)(Ts).

Hence one may check the claim after applying ForFMRE , i.e. show that the compositions

T ′s 〈−1〉
ForFMRE (idT̃s ?̂η̂s)
−−−−−−−−−→ Fs

φs−→
∼
T ′s 〈1〉 ⊕ T ′s 〈−1〉 p−→ T ′s 〈−1〉,

T ′s 〈1〉
i−→ T ′s 〈1〉 ⊕ T ′s 〈−1〉 ψs−→

∼
Fs

ForFMRE (idT̃s ?̂ε̂s)
−−−−−−−−−→ T ′s 〈1〉,
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where i (resp. p) is the inclusion (resp. projection), are the identity maps. Depicting
Fs and T ′s 〈1〉 ⊕ T ′s 〈−1〉 as for the definition of φs and ψs, the morphisms

ForFMRE (idT̃s ?̂ η̂s) : T ′s 〈−1〉 → Fs and ForFMRE (idT̃s ?̂ ε̂s) : Fs → T ′s 〈1〉

are represented by the following chain maps:

E∅ Es{1} E∅{2}

E∅{−2} Es{−1}
Es{−1}

E∅
Ess
E∅

Es{1}
Es{1} E∅{2},

[
0
0
1

] [
0
]

[ 1 ]

E∅{−2} Es{−1}
Es{−1}

E∅
Ess
E∅

Es{1}
Es{1} E∅{2}

E∅{−2} Es{−1} E∅.

[ 1 ] [ 0 ] [ 1 0 0 ]

Then the desired claim follows from the explicit description of the chain maps
representing φs and ψs. �

By Lemma 4.2, we may define

b̂1 : T̃s → T̃s ?̂ T̃s〈−1〉 and b̂2 : T̃s ?̂ T̃s → T̃s〈−1〉

to be the unique morphisms satisfying

(4.1) (idT̃s ?̂ ε̂s) ◦ b̂1 = idT̃s and b̂2 ◦ (idT̃s ?̂ η̂s) = idT̃s .

We now define

Φ


s

s s
 := b̂1 and Φ

 s

ss

 := b̂2.

4.2.4. 2mst-valent vertices. Fix s, t ∈ S such that st ∈W has finite order. Let mst

be this order, and let ŝ = (s, t, . . .) and t̂ = (t, s, . . .), where both sequences have
mst elements. Finally, let w := st . . . = ts . . . (with mst elements in both products).

Instead of using as a starting point the category Db(B\G /B,Z′), one can con-
sider the same categories as those constructed in [AMRW] but starting with the B-

equivariant derived category of Z′-sheaves on X r∂Xw, where ∂Xw := XwrXw.
In this way one obtains a “free-monodromic” category Dmix

w (U )G( U ,Z′) and a
functor

qw : Dmix(U )G( U ,Z′)→ Dmix
w (U )G( U ,Z′)

induced by pullback along the open embedding X r ∂Xw ↪→X . Note that every

term except Eŝ (resp. Et̂) in the underlying sequence of parity complexes of T̃ŝ
(resp. T̃t̂) restricts to 0 on X r ∂Xw, and that the differential of T̃ŝ (resp. T̃t̂) has
component Eŝ  Eŝ, resp. Et̂  Et̂, given by

∑
w(ei) ⊗ id ⊗ ěi in the notation

of [AMRW]. (Here, (e1, . . . , er) is a basis of V ∗, and (ě1, . . . , ěr) is the dual basis
of V .) Since the restrictions of both Eŝ and Et̂ to Xw are canonically isomorphic to

the constant sheaf, we deduce that the functor qw sends T̃ŝ and T̃t̂ to canonically
isomorphic objects.



KOSZUL DUALITY AND CHARACTERS OF TILTING MODULES 27

Lemma 4.3. The functor qw induces isomorphisms

HomDmix(U )G( U ,Z′)(T̃ŝ, T̃t̂)
∼→ HomDmix

w (U )G( U ,Z′)(q
w(T̃ŝ), qw(T̃t̂)),

HomDmix(U )G( U ,Z′)(T̃t̂, T̃ŝ)
∼→ HomDmix

w (U )G( U ,Z′)(q
w(T̃t̂), q

w(T̃ŝ)).

Moreover, all of these spaces are free Z′-modules of rank 1.

Proof. By symmetry, we only need to consider the first map. Let us first show that
both sides are free Z′-modules of rank 1. For the left-hand side, this follows from
Lemma 2.8 and a standard computation in the Hecke algebra. For the right-hand

side, this follows from the description of qw(T̃ŝ) ∼= qw(T̃t̂) above and the definition of
morphisms in Dmix

w (U )G( U ,Z′) (see [AMRW, §5.3.1] for a similar computation).
To show that the first map is an isomorphism, it therefore suffices to show that it
is nonzero after extension of scalars from Z′ to any field k. The map so obtained
may be identified with the map

HomDmix(U )G( U ,k)(T̃ŝ, T̃t̂)→ HomDmix
w (U )G( U ,k)(q

w(T̃ŝ), qw(T̃t̂))

defined in the same way, using coefficients k instead of Z′.
For field coefficients, by [AMRW, Theorem 10.7.1] there are direct sum decom-

positions

T̃ŝ ∼= T̃w ⊕ (lower terms) and T̃t̂ ∼= T̃w ⊕ (lower terms),

where the lower terms restrict to 0 on X r ∂Xw. Fixing these decompositions,

the composition T̃ŝ � T̃w ↪→ T̃t̂ (projection to T̃w followed by inclusion) defines

a morphism T̃ŝ → T̃t̂ that remains nonzero (in fact, an isomorphism) on X r
∂Xw. �

We now define

ĝs,t : T̃ŝ → T̃t̂ and ĝt,s : T̃t̂ → T̃ŝ

to be the unique morphisms that are sent to the canonical isomorphism qw(T̃ŝ) ∼=
qw(T̃t̂) considered above under the isomorphisms of Lemma 4.3.

To define the morphisms f̂s,t, f̂t,s that will be the image of the 2mst-valent
vertices, we need another lemma. For any expression w = (s1, . . . , s`(w)), define

ε̂w := ε̂s1 ?̂ · · · ?̂ ε̂s`(w)
: T̃w → T̃∅〈`(w)〉,

where the maps ε̂si are defined in [AMRW, §5.3.4].

Lemma 4.4. For u ∈ {s, t}, we have

HomDmix(U )G/B,Z′)(Tû, T∅〈mst〉) = Z′ · ForFMLM(ε̂û).

Proof. The space in question is free of rank 1 over Z′ by Lemma 2.8 and a straight-
forward calculation in the Hecke algebra, so it is enough to show that ForFMLM(ε̂û)
remains nonzero after extension of scalars to any field. This may be checked af-
ter applying ForLMRE , i.e. in the right equivariant category Dmix(U \G /B,k). We

see from the definitions that the morphism ForFMRE (ε̂û) may be represented by the
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following chain map, where v is the simple reflection different from u:

...

Eu{1−mst} ⊕ Ev{1−mst} ⊕ · · ·

E∅{−mst} E∅{−mst}
(−1)mst ·id

Here, the left-hand column depicts the complex ForFMRE (T̃û) in chain degrees−mst, 1−
mst, . . . (the lowest chain degrees where it is nonzero); the right-hand column de-

picts ForFMRE (T̃∅〈mst〉), which is E∅{−mst} concentrated in chain degree −mst; and
the chain map has a single nonzero component

(T̃û)−mst = E∅{−mst}
(−1)mst ·id−−−−−−−→ E∅{−mst} = (T̃∅〈mst〉)−mst .

There is no nonzero homotopy (dashed arrow) for degree reasons, so ForFMRE (ε̂û) is
nonzero. �

By Lemma 4.4, we have

(4.2) ForFMLM(ε̂t̂ ◦ ĝs,t) = cs,tFor
FM
LM(ε̂ŝ) and ForFMLM(ε̂ŝ ◦ ĝt,s) = ct,sFor

FM
LM(ε̂t̂)

for some cs,t, ct,s ∈ Z′. We now set

(4.3) f̂s,t := ct,sĝs,t : T̃ŝ → T̃t̂ and f̂t,s := cs,tĝt,s : T̃t̂ → T̃ŝ,
and define these to be the image of the 2mst-valent vertices under Φ:

Φ


s

s

· · ·t

t · · ·
 := f̂s,t and Φ


t

t

· · ·s

s · · ·
 := f̂t,s.

4.3. Verification of the relations. In this subsection, we verify that the mor-
phisms defined in §4.2 satisfy the relations from [EW, §§1.4.1–1.4.3].

Each relation only involves a subset S′ of S (of cardinality at most 3) that
generates a finite subgroup W ′ of W . Fix a relation and the corresponding subset
S′. Consider the realization

h∗S′,Z′ = (V ∗, {αs}s∈S′ , {α∨s }s∈S′)

of (W ′, S′) over Z′, and let LS′ be the Levi subgroup of G associated with S′ (a
connected reductive group with Weyl group W ′). Set also US′ := U ∩LS′ ; then
we can consider the category TiltBS(US′)LS′( US′ ,Z′). There are obvious fully
faithful monoidal functors

DBS(h∗S′,Z′ ,W
′)→ DBS(h∗Z′ ,W ) and

TiltBS(US′)LS′( US′ ,Z′)→ TiltBS(U )G( U ,Z′),

and the definitions of all our morphisms are identical whether considered in the
category TiltBS(US′)LS′( US′ ,Z′) or TiltBS(U )G( U ,Z′) (in particular, the
constants cs,t are unchanged by this replacement), so that it suffices to verify the
relation for the group LS′ . We may therefore assume from the start that A is a
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finite type Cartan matrix. Moreover, by the last statement of Proposition 2.1, we
may check the relation after extension of scalars along the map Z′ → Q.

As a further reduction, we may check the relation after passing to the Karoubian
envelope of the additive closure. From now on, we work in Tilt(U )G( U ,Q),

where the results of §3.2 are available: fix an object P̃ and a nonzero morphism

ξ : P̃ → T̃1, and use these to define a functor V and the various other structures from
Section 3. We may then check the relation in the category of graded R∨-bimodules,
after applying the fully faithful functor V.

To do this, we compute the image of the generating morphisms under V. For
s ∈ S, define Bbim

s := R∨ ⊗(R∨)s R
∨〈1〉. For any expression w = (s1, s2, . . . , s`(w))

in S, define

Bbim
w := Bbim

s1 ⊗R∨ · · · ⊗R∨ B
bim
s`(w)

= R∨ ⊗(R∨)s1 · · · ⊗(R∨)
s`(w) R∨〈`(w)〉.

We identify Bbim
w with V(T̃w) via an isomorphism

γw : Bbim
w

∼→ V(T̃w)

defined as follows. For w = ∅, we set γ∅ = γ, the isomorphism from the proof of
Proposition 3.7. Otherwise, define γw to be the composition

Bbim
s1 ⊗R∨ · · · ⊗R∨ B

bim
s`(w)

γs1⊗···⊗γs`(w)−−−−−−−−−−→
∼

V(T̃s1)⊗R∨ · · · ⊗R∨ V(T̃s`(w)
)

β−→
∼

V(T̃s1 ?̂ · · · ?̂ T̃s`(w)
),

where for s ∈ S, γs is the isomorphism of Lemma 3.5, and β is defined as in the
proof of Proposition 3.7. Let

ζw = γw(1⊗ · · · ⊗ 1) : P̃ → T̃w〈`(w)〉.

Note that ζ∅ = ξ and ζ(s) = ζs (with the notation of Lemma 3.5). It also follows
from Lemma 3.5 and the coalgebra axioms (see Proposition 3.6) that

(4.4) ε̂w〈−`(w)〉 ◦ ζw = ξ.

Remark 4.5. Note that the grading on our bimodules is opposite to the “traditional”
one from [S6]; for instance, our Bbim

s is concentrated in degrees in 1 + Z≤0.

We now compute the image of our morphisms under V, under the identifications
γw.

(1) Polynomials: For x ∈ R∨, we have

V(µT̃∅(x)) = µT̃∅(x) ◦ (−)
(2.3)
= (−) ◦ µP̃(x).

This by definition is the left action of x on V(T̃∅). Under the identification

γ : R∨
∼→ V(T̃∅), this becomes multiplication by x on R∨.

(2) The upper dot: The space of graded R∨-bimodule homomorphisms Bbim
s →

R∨〈1〉 is of dimension 1, with generator

ms : Bbim
s → R∨〈1〉 given by ms(f ⊗ g) = fg.

Under the identifications above, the equation (ε̂s〈−1〉) ◦ ζs = ξ becomes
V(ε̂s)(1⊗ 1) = 1. Hence V(ε̂s) = ms.
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(3) The lower dot: The space of graded R∨-bimodule homomorphisms R∨ →
Bbim
s 〈1〉 is of dimension 1, with generator

δs : R∨ → Bbim
s 〈1〉 given by δs(1) = 1

2 (α∨s ⊗ 1 + 1⊗ α∨s ).

The map δs is characterized uniquely by the fact that ms ◦ δs = α∨s · idR∨ .
We computed in [AMRW, Proposition 5.3.2(1)] that ε̂s ◦ η̂s = µT̃∅(α∨s ).

Applying V and using the computations above, we get ms◦V(η̂s) = α∨s ·idR∨ .
Hence V(η̂s) = δs.

(4) The trivalent vertices: The space of graded R∨-bimodule homomorphisms

Bbim
s → Bbim

s ⊗R∨ Bbim
s 〈−1〉, resp. Bbim

s ⊗Bbim
s → Bbim

s 〈−1〉,
is of dimension 1, with generator

t1 : f ⊗ g 7→ f ⊗ 1⊗ g, resp. t2 : f ⊗ g ⊗ h 7→ f(∂sg)⊗ h,
where we have identified Bbim

s ⊗R∨ Bbim
s = R∨ ⊗(R∨)s R

∨ ⊗(R∨)s R
∨〈2〉.

This generator is characterized uniquely by the identity

(ms〈−1〉 ⊗R∨ idBbim
s

) ◦ t1 = idBbim
s

resp. t2〈1〉 ◦ (δs ⊗R∨ idBbim
s

) = idBbim
s
.

Hence
V(̂b1) = t1 and V(̂b2) = t2,

as follows by applying V to the defining identities (4.1) of b̂1, b̂2 and using
the fact that V(ε̂s) = ms, V(η̂s) = δs.

Before computing the image of the 2mst-valent vertices, some preparatory work
is required. For any expression w = (s1, . . . , s`(w)), define

mw := ms1 ⊗R∨ · · · ⊗R∨ ms`(w)
: Bbim

w → R∨〈`(w)〉.

Next, recall from [Li, Proposition 4.3] that HomR∨-ModZ-R∨(Bbim
ŝ , Bbim

t̂
) has dimen-

sion 1. An analogue of [Li, Lemma 4.7] shows that there is a unique morphism

(4.5) js,t : Bbim
ŝ → Bbim

t̂

that acts as the identity map in degree mst. Since mst is the largest degree in
which the bimodules Bbim

ŝ and Bbim
t̂

have nonzero components, this condition can
be rephrased as follows: js,t is the unique morphism such that there is an equality
of maps

(4.6) (mt̂ ◦ js,t)⊗R∨ idk = mŝ ⊗R∨ idk : Bbim
ŝ ⊗R∨ k→ R∨〈mst〉 ⊗R∨ k = k〈mst〉.

Lemma 4.6. The constants cs,t, ct,s ∈ Z′ defined by (4.2) satisfy

(4.7) cs,tct,s = 1.

Proof. It follows from the definition of ĝs,t, ĝt,s that

ĝs,t ◦ ĝt,s ◦ ĝs,t = ĝs,t.

Applying ForFMLM(ε̂t̂ ◦ −) to both sides and using (4.2) repeatedly, we deduce that
cs,tct,scs,t = cs,t, or in other words that cs,t(ct,scs,t − 1) = 0.

To conclude, it is therefore enough to show that cs,t 6= 0. Since ĝs,t is a generator

for the space HomDmix(U )G( U ,Z′)(T̃ŝ, T̃t̂), this would follow if the map

HomDmix(U )G( U ,Z′)(T̃ŝ, T̃t̂)→ HomDmix(U )G/B,Z′)(Tŝ, T∅〈mst〉)

f 7→ ForFMLM(ε̂t̂ ◦ f)
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were known to be nonzero.
For this, we use the functors V,V′ constructed in Section 3. Under these identi-

fications, our map becomes

HomR∨-ModZ-R∨(Bbim
ŝ , Bbim

t̂
)→ HomR∨-ModZ(Bbim

ŝ ⊗R∨ k, (R∨〈mst〉)⊗R∨ k)

f 7→ (mt̂ ◦ f)⊗R∨ idk,

This map is clearly nonzero, since it sends js,t (from (4.5)) to a nonzero element. �

Now we compute the image of the 2mst-valent vertices.

(5) 2mst-valent vertices: By (4.2), (4.3), and Lemma 4.6, we have ForFMLM(ε̂t̂ ◦
f̂s,t) = ForFMLM(ε̂ŝ). Now apply the functor V′, and use the commutative
square (3.3) to deduce that

(V(ε̂t̂) ◦ V(f̂s,t))⊗R∨ k = V(ε̂ŝ)⊗R∨ k.

Since V(ε̂w) = mw, we conclude from (4.6) that V(f̂s,t) = js,t.

We have thus reduced the verification of the (fixed) relation to the same verifi-
cation for the appropriate morphisms of graded R∨-bimodules found above. The
argument in the final paragraph of [RW, §10.5] reduces this to the same verifica-
tion for a standard Cartan realization of (W ′, S′). In this case, all the relations
are known to hold, as explained in [EW, Claim 5.14]. This concludes the proof of
Theorem 4.1.

5. Koszul duality

As in Section 4 we assume that k is a Noetherian integral domain of finite global
dimension such that there exists a ring morphism Z′ → k.

5.1. Statement and construction of the functors. We begin by fixing nota-
tion related to the Langlands dual Kac–Moody group to G . Namely, consider the
generalized Cartan matrix tA, and let X∗ = HomZ(X,Z). The Kac–Moody root
datum (I,X∗, {α∨i : i ∈ I}, {αi : i ∈ I}) determines a Kac–Moody group G ∨ as
in §2.2, with maximal torus T ∨, Borel subgroup B∨ and pro-unipotent radical
U ∨.

Compared to the set-up of §§2.2–2.4, it will be convenient for us to swap the
roles of constructions on the left and right when working with G ∨. For instance, we
define its flag variety by X ∨ := B∨\G ∨. We will work with the monoidal category
ParityBS(B∨\G ∨/B∨,k) of equivariant Bott–Samelson parity complexes on X ∨

(and its variants). But we also work with the left-equivariant derived category,
denoted by Dmix(B∨\G ∨/U ∨,k). To emphasize the parallel with §2.4, we denote
the forgetful functor by

ForFMRE∨ := Parity⊕BS(B∨\G ∨/B∨,k)→ Dmix(B∨\G ∨/U ∨,k)

rather than by ForBELE . This functor is compatible with the monoidal action of the
former on the latter:

ForFMRE∨(F ? G) ∼= F ? ForFMRE∨(G).

Objects in these categories will typically be denoted with a superscript “∨”: for
instance, E∨w or ∆∨w.

Our goal in this section is to prove the following theorem.
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Theorem 5.1 (Monoidal Koszul duality). There is an equivalence of monoidal
categories

κ̃ : (ParityBS(B∨\G ∨/B∨,k), ?)
∼→ (TiltBS(U )G( U ,k), ?̂)

satisfying κ̃ ◦ {1} ∼= 〈1〉 ◦ κ̃, and such that κ̃(E∨w) ∼= T̃w.

In the course of the proof, we will simultaneously establish the following result.

Theorem 5.2. There is an equivalence of triangulated categories

κ : Dmix(B∨\G ∨/U ∨,k)
∼→ Dmix(U )G /B,k)

satisfying κ ◦ {1} ∼= 〈1〉 ◦ κ, and such that κ(E∨w) ∼= Tw. This functor is monoidal,

in the sense that for F ∈ ParityBS(B∨\G ∨/B∨,k) and G ∈ Dmix(B∨\G ∨/U ∨,k),
there is a natural isomorphism κ(F ? G) ∼= κ̃(F) ?̂ κ(G).

Note that when G is the skyscraper sheaf E∨1 , the monoidal property of κ implies

that κ(ForFMRE∨(F)) ∼= ForFMRE∨(κ̃(F)).
The proofs of Theorems 5.1 and 5.2 will be completed in §5.3. For now, let us

explain how to define the functors κ̃ and κ. As in (2.1), by [RW, Theorem 10.6],
there exists a natural equivalence of monoidal categories

(5.1) Ψ∨ : DBS(h∗k,W )
∼→ ParityBS(B∨\G ∨/B∨,k)

intertwining the shifts (1) and {1}, and sending B∨w to E∨w . We define

κ̃ := Φ ◦ (Ψ∨)−1 : ParityBS(B∨\G ∨/B∨,k)→ TiltBS(U )G( U ,k).

Next, let D⊕BS(h∗k,W ) be the additive category with shift (1) whose objects are

the same as those of D⊕BS(h∗k,W ), and whose morphism spaces are defined by

⊕
n∈Z

HomD⊕BS(h∗k ,W )(M,N(n)) :=

(⊕
n∈Z

HomD⊕BS(h∗k ,W )(M,N(n))

)
⊗R∨ k.

(This notation should not be confused with the notation D⊕BS used in [AMRW],
where the left action of polynomials is killed.) Then (5.1) induces an equivalence
of additive categories

(5.2) Ψ∨ : D⊕BS(h∗k,W )
∼→ Parity⊕BS(B∨\G ∨/U ∨,k),

Similarly, by Proposition 2.1 the composition ForFMLM ◦Φ factors through a functor

Φ : D⊕BS(h∗k,W )→ Tilt⊕BS(U )G /B,k),

so that we can consider the functor

κ̃′ := Φ ◦ (Ψ∨)−1 : Parity⊕BS(B∨\G ∨/U ∨,k)→ Tilt⊕BS(U )G /B,k).

Finally, we define κ to be the composition

(5.3) κ : Dmix(B∨\G ∨/U ∨,k) = KbParity⊕BS(B∨\G ∨/U ∨,k)

Kb(κ̃′)−−−−−→ KbTilt⊕BS(U )G /B,k)
Lemma 2.4−−−−−−−→

∼
Dmix(U )G /B,k).
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5.2. Images of standard and costandard objects. In this subsection we as-
sume that k is a field. Let s ∈ S, and consider the functor

T̃s ?̂ (−) : Tilt⊕BS(U )G /B,k)→ Tilt⊕BS(U )G /B,k).

Conjugating the functor Kb(T̃s ?̂ (−)) by the equivalence of Lemma 2.4 we obtain
a triangulated functor

C ′s : Dmix(U )G /B,k)→ Dmix(U )G /B,k).

Of course the same construction can be done for the functor T̃1 ?̂ (−) (which is
isomorphic to the identity functor). These constructions are functorial in the sense

that any morphism from T̃s to any shift of T̃1 induces a morphism of functor from C ′s
to the corresponding shift of the identity functor. In particular, using the morphism
ε̂s defined in [AMRW, §5.3.4] we obtain a morphism of functors ε̃s : C ′s → id〈1〉.

As in Section 3, for v ∈ W we denote by ∆∆v ∈ Dmix(U )G /B,k), resp. ∇∇v ∈
Dmix(U )G /B,k) the standard, resp. costandard, perverse sheaf associated to v.

Lemma 5.3. For any v ∈W , the morphism ε̃s(∆∆v) : C ′s(∆∆v)→ ∆∆v〈1〉 is nonzero.

Proof. By [AR3, Lemma 4.9], there exists an embedding fv : T1〈−`(v)〉 ↪→ ∆∆v. We
deduce a commutative diagram

C ′s(T1〈−`(v)〉) T1〈−`(v) + 1〉

C ′s(∆∆v) ∆∆v〈1〉,

C′s(fv)

ε̃s(T1〈−`(v)〉)

fv

where the lower arrow is ε̃s(∆∆v). By construction we have C ′s(T1) = T̃s ?̂ T1
∼=

ForFMLM(T̃s) = Ts, and it is easy to see that ε̃s(T1) identifies with the surjective
morphism Ts → T1〈1〉. From this we deduce that the composition of the upper
horizontal arrow with the right vertical arrow is nonzero, proving that ε̃s(∆∆v) is
also nonzero. �

Now, recall the functor Cs of §2.6.

Lemma 5.4. There exists an isomorphism of functors Cs
∼→ C ′s.

Proof. Since Cs and C ′s have isomorphic restrictions to Tilt⊕BS(U )G /B,k), this
follows from Proposition 2.3. �

For any w ∈ W we can consider the standard and costandard (mixed) perverse
sheaves ∆∨w, ∇∨w in Dmix(B∨\G ∨/U ∨,k) (constructed in [AR3]), and also the
objects ∆∆w, ∇∇w in Dmix(U )G /B,k) considered above.

Proposition 5.5. For any w ∈W we have

κ(∆∨w) ∼= ∆∆w, κ(∇∨w) ∼= ∇∇w.

Proof. We only prove the first isomorphism; the proof of the second one is similar.
We proceed by induction on w, the case w = 1 being clear by construction.

Let w ∈ W , and choose s ∈ S such that sw < w. By the explicit description of
∆∨s (see in particular [AMRW, §10.4]), there exists a distinguished triangle

∆∨s → E∨s → ∆∨1 {1}
[1]−→,
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where the second morphism is the image of the “upper dot” morphism under (5.2).
Convolving with ∆∨sw on the right and using [AR3, Proposition 4.4] we deduce a
distinguished triangle

(5.4) ∆∨w → E∨s ?∆∨sw → ∆∨sw{1}
[1]−→,

where the second morphism is the convolution of id∆∨sw
with the image of the upper

dot morphism. Since κ̃ is a monoidal functor, and by construction of the functor
E∨s ? (−) : Dmix(B∨\G ∨/U ∨,k)→ Dmix(B∨\G ∨/U ∨,k), there exists a canonical
isomorphism

κ ◦ (E∨s ? (−)) ∼= C ′s ◦ κ.
Using Lemma 5.4, taking the image of (5.4) we obtain a distinguished triangle

κ(∆∨w)→ Cs ◦ κ(∆∨sw)→ κ(∆∨sw)〈1〉 [1]−→,

where the second morphism is induced by the composition Cs
∼→ C ′s

ε̃s−→ id〈1〉.
Using induction, we can rewrite this triangle in the following form:

(5.5) κ(∆∨w)→ Cs(∆∆sw)→ ∆∆sw〈1〉
[1]−→ .

It follows from Lemma 5.3 that the morphism Cs(∆∆sw) → ∆∆sw〈1〉 appearing
in (5.5) is nonzero. Since by adjunction we have

HomDmix(U )G/B,k)(∆∆w,∆∆sw〈1〉) = HomDmix(U )G/B,k)(∆∆w[1],∆∆sw〈1〉) = 0,

the first distinguished triangle in [AMRW, Lemma 10.5.3(1)] shows that the k-
vector space HomDmix(U )G/B)(Cs(∆∆sw),∆∆sw〈1〉) is 1-dimensional. Hence the sec-
ond morphism in (5.5) coincides (up to scalar) with the similar morphism in the first
distinguished triangle in [AMRW, Lemma 10.5.3(1)]. Comparing these triangles we
deduce an isomorphism κ(∆∨w) ∼= ∆∆w, as desired. �

5.3. Proof of Theorems 5.1 and 5.2. We need only show that κ̃ and κ are
equivalences of categories, as all the other assertions in these theorems are imme-
diate from the definitions of these functors.

Proof of Theorem 5.2. It is enough to show that κ is fully faithful, as it is easy to
see that full faithfulness implies that it is also essentially surjective.

Let us first treat the case where k is a field. Observe that

HomDmix(B∨\G∨/U ∨,k)(∆
∨
w,∇∨v 〈m〉[n]) ∼=

{
k if v = w and n = m = 0

0 otherwise

and

HomDmix(U )G/B,k)(∆∆w,∇∇v〈m〉[n]) ∼=

{
k if v = w and n = m = 0

0 otherwise.

In view of this, combining Proposition 5.5 with a classical result sometimes called
“Bĕılinson’s lemma” (see e.g. [ABG, Lemma 3.9.3]), to conclude it suffices to prove
that the image under κ of any nonzero morphism f : ∆∨w → ∇∨w is nonzero. However
the cone of f is supported on X ∨

w rX ∨
w , and then Proposition 5.5 implies that the

cone of κ(f) is supported on Xw r Xw. Therefore, κ(f) 6= 0.
We next consider the case k = Z′. Let v and w be expressions, let m ∈ Z, and

consider the morphism

(5.6) HomParity⊕BS(B∨\G∨/U ∨,Z′)(Ev, Ew{m})→ HomTilt⊕BS(U )G/B,Z′)(Tv, Tw〈m〉)
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induced by κ. Both sides are free Z′-modules of finite rank, by [MR, Lemma 2.2]
and Proposition 2.1, respectively. To prove that (5.6) is an isomorphism, it is
enough to show that it becomes an isomorphism after extension of scalars to any
field k admitting a ring homomorphism Z′ → k. That is, we must show that the
left-hand vertical map in the commutative diagram below is an isomorphism.

(5.7)

k⊗Z′ Hom(EZ′v , EZ
′

w (m)) Hom(Ekv , Ekw(m))

k⊗Z′ Hom(T Z′
v , T Z′

w 〈m〉) Hom(T k
v , T k

w〈m〉)

k⊗κZ′ κk

Here, the horizontal maps are isomorphisms, by [MR, Lemma 2.2] and by Proposi-
tion 2.1, respectively. The right-hand vertical map is an isomorphism by the case
of field coefficients considered above. This completes the proof for Z′.

Finally, the case of general k can be deduced from the case of Z′ using another
diagram like (5.7). �

Proof of Theorem 5.1. From the definition of κ̃, we see that to show that it is an
equivalence, we must show that Φ is an equivalence. This latter functor is essentially
surjective by construction, so it remains to show that it is fully faithful.

Let M,N ∈ DBS(h∗k,W ), and consider the map

(5.8)
⊕
m∈Z

HomDBS(h∗k ,W )(M,N(m))

→
⊕
m∈Z

HomTiltBS(U )G( U ,k)(Φ(M),Φ(N)〈m〉).

As right R∨-modules, both sides are free of finite rank, by [EW, Corollary 6.13] and
Proposition 2.1, respectively. By the graded Nakayama lemma, to prove that (5.8)
is an isomorphism, it is enough show that the induced map

(5.9)

(⊕
m∈Z

HomDBS(h∗k ,W )(M,N(m))

)
⊗R∨ k

→

(⊕
m∈Z

HomTiltBS(U )G( U )(Φ(M),Φ(N)〈m〉)

)
⊗R∨ k

is an isomorphism. This new map is the one that arises when we apply Φ to M
and N , regarded as objects of D⊕BS(h∗k,W ). Now, Theorem 5.2 tells us that κ is
an equivalence. It follows that κ̃′ is also an equivalence, as is Φ ∼= κ̃′ ◦ Ψ∨. We
conclude that (5.9) and (5.8) are isomorphisms. �

5.4. Another formulation of Koszul duality. In this subsection we assume
that k is a field or a complete local ring. We will study a variant of Theorem 5.2
involving Dmix(U \G /B,k) and Dmix(B∨\G ∨/U ∨,k). Both of these categories
admit perverse t-structures as in [AR3]. As usual, we denote the standard and
costandard objects by ∆w, ∇w, ∆∨w, ∇∨w, and the indecomposable parity complexes
by Ew, E∨w . To distinguish the indecomposable tilting perverse sheaves from the
corresponding objects in Tilt⊕BS(U )G /B,k), we denote them instead by the new
symbols Sw and S∨w .

The following theorem generalizes [AR3, Theorem 5.4] to the Kac–Moody case.
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Theorem 5.6 (Self-duality). Assume that k is a field or a complete local ring.
There is an equivalence of triangulated categories

κ : Dmix(U \G /B,k)
∼→ Dmix(B∨\G ∨/U ∨,k)

satisfying κ ◦ 〈1〉 ∼= 〈−1〉[1] ◦ κ, and such that

κ(∆w) ∼= ∆∨w, κ(∇w) ∼= ∇∨w, κ(Sw) ∼= E∨w , κ(Ew) ∼= S∨w

for any w ∈W .

Proof. We define κ to be the inverse of the composition of equivalences

Dmix(B∨\G ∨/U ∨,k)
κ−→
∼
Dmix(U )G /B,k)

ForLMRE−−−→
∼

Dmix(U \G /B,k).

It is immediate from the definition and Theorem 5.2 that κ ◦ 〈1〉 ∼= 〈−1〉[1] ◦ κ, and
that κ(Sw) ∼= E∨w . The calculation of κ(∆w) and κ(∇w) is identical to that in [AR3,
Lemma 5.2]. (In the case of fields, this also follows directly from Proposition 5.5.)

It remains to show that κ(Ew) ∼= S∨w . For m,n ∈ Z and y, w ∈W we have

HomDmix(B∨\G∨/U ∨,k)(∆
∨
y , κ(Ew)〈n〉[m])

∼= HomDmix(B∨\G∨/U ∨,k)(κ(∆y), κ(Ew)〈n〉[m])

∼= HomDmix(U \G/B,k)(∆y, Ew{n}[m]),

so this space vanishes unless m = 0 (by adjunction and [AR3, Remark 2.7]). Similar
arguments show that

HomDmix(B∨\G∨/U ∨,k)(κ(Ew),∇∨y 〈n〉[m]) = 0

unless m = 0. Together, these results imply that κ(Ew) belongs to the heart of the
perverse t-structure on Dmix(B∨\G ∨/U ∨,k), and is a tilting object therein. Since
κ is an equivalence, this object is indecomposable, and then it is easy to see that it
is isomorphic to S∨w . �

Remark 5.7. Using Theorem 5.6 and the results of [RW, Part III], one can express
the ranks of the free k-modules HomDmix(U \G/B,k)(∆y,Sw〈n〉) in terms of the `-
canonical basis of a certain Hecke algebra in the sense of [JW]. (See Corollary 7.5
below for a more precise formulation of this property in a particular case.) This
can be considered as a “modular analogue” of the results of [Yu].

6. Parabolic–Whittaker Koszul duality

In this section we fix a subset J ⊂ S of finite type. We denote by WJ the
subgroup of W generated by J (which is finite by assumption), by wJ0 the longest
element in WJ , and by JW ⊂ W the subset consisting of elements w which are
minimal in WJ · w. Our goal is to prove a “parabolic–Whittaker” version of the
equivalence of §5.4 in the sense considered in [BY], with respect to the parabolic
subgroups associated with J .
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6.1. Whittaker-type derived category. In this section we change our setting
slightly, and consider the “étale context” of [RW, §9.3], as opposed to the “classical
context” considered until now (and in [AMRW]).

More precisely, we let F be an algebraically closed field of characteristic p > 0. We
redefine G to be the base change to F of the ind-group scheme GZ associated with
our Kac–Moody root datum (I,X, {αi}i∈I , {α∨i }i∈I). We similarly now assume
that B and T are defined over F. We denote by U the pro-unipotent radical of
B, so that B = T n U . Then G is an ind-group scheme over F, and U and B
are F-group schemes (of infinite type).

We fix a prime number ` 6= p, and assume that k is either an algebraic closure of
Q`, or a finite extension of Q`, or the ring of integers of such an extension, or a finite
field of characteristic `. We also assume that there exists a ring morphism Z′ → k.
Then we can consider the étale B-equivariant derived category Db(B\G /B,k).
(For a detailed treatment of the Bernstein–Lunts construction in the étale setting,
see [We].) All the categories constructed out of this in [AMRW] make sense in this
new setting, and for simplicity we will use the same notation.

To J we can associate a subgroup scheme PJ of G , as in [RW, §9.1]. Follow-
ing [RW, §11.1] we denote by U J the pro-unipotent radical of PJ , and by LJ its
Levi factor, which is a connected reductive F-group. Finally, let U −J be the unipo-
tent radical of the Borel subgroup of LJ which is opposite to B∩LJ (with respect
to T ). Then the U JU −J -orbits on G /B are parametrized by W (in the obvious
way). We will denote the orbit parametrized by w by X Wh,J

w , and its dimension
by dJw.

For any s ∈ J we have a root subgroup U −s ⊂ U −J . Moreover, the natural
embedding induces an isomorphism of algebraic groups∏

s∈J
U −s

∼→ U −J /[U
−
J ,U

−
J ].

For each s ∈ J , choose, once and for all, an isomorphism Ga
∼→ U −s . We then

obtain a morphism of algebraic groups

U JU −J → U −J → U −J /[U
−
J ,U

−
J ]

∼→
∏
s∈J

U −s
∼→ (Ga)J

+−→ Ga,

which we will denote χJ .
Let us also fix a nontrivial additive character ψ : Z/pZ→ k×. (We assume that

such a character exists.) This determines a rank-one local system Lψ on Ga, defined
as the ψ-isotypic component in the direct image of the constant sheaf under the
Artin–Schreier map Ga → Ga defined by x 7→ xp − x. Then Lψ is a multiplicative
local system in the sense of [AR2, Appendix A], and hence so is (χJ)∗Lψ. We will
denote by

Db
Wh,J(G /B,k)

the triangulated category of (U JU −J , χ
∗
JLψ)-equivariant complexes on the ind-

variety G /B (see [AR2, Definition A.1]). Note that if w ∈W , then X Wh,J
w supports

a (U JU −J , χ
∗
JLψ)-equivariant local system if and only if w ∈ JW . In this case there

exists a unique such local system of rank one (up to isomorphism), which we will
denote by LJw. We also have dJw = `(w) + `(wJ0 ).
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6.2. Whittaker-type parity complexes and mixed derived categories. As
observed in particular in [RW, §11.1], the notion of parity complexes from [JMW]
makes sense in Db

Wh,J(G /B,k); we will denote by ParityWh,J(G /B,k) the corre-

sponding full subcategory of Db
Wh,J(G /B,k). The indecomposable objects in this

category are parametrized by JW×Z in the standard way (see [RW, Remark 11.6]);
the object corresponding to (w, 0) will be denoted EJw.

Since we have the category ParityWh,J(G /B,k), we can define the mixed derived
category

Dmix
Wh,J(G /B,k) := KbParityWh,J(G /B,k).

The recollement formalism developed in [AR3, §2.4] also works in this setting (for
the closed subvarieties consisting of a union of a finite number of U JU −J -orbits and
their open complements). Hence, for w ∈ JW , if we denote by iJw the embedding
of the U JU −J -orbit parametrized by w in G /B, we can define the standard and
costandard objects

∆Wh
w,J := (iJw)!LJw{dJw}, ∇Wh

w,J := (iJw)∗LJw{dJw},

as in [AR3, §2.5]. By [AR3, Lemma 3.2], these objects satisfy

HomDmix
Wh,J (G/B,k)

(
∆Wh
v,J ,∇Wh

w,J〈m〉[n]
) ∼= {k if v = w and n = m = 0;

0 otherwise.

There exists a natural “averaging” triangulated functor from Db(B\G /B,k) to
Db

Wh,J(G /B,k), defined as convolution on the left with the object ∆Wh
1,J . By [RW,

Corollary 11.5], this functor sends parity complexes to parity complexes, and hence
defines a functor

Aveq
J : Parity(B\G /B,k)→ ParityWh,J(G /B,k).

It is not difficult to check that for any f ∈ HiB(pt,k) = HomDb(B\G/B,k)(E1, E1{i}),
if i > 0 we have Aveq

J (f) = 0. From this it follows that Aveq
J factors through a functor

AvJ : Parity(U \G /B,k)→ ParityWh,J(G /B,k),

where Parity(U \G /B,k) is the category of U -equivariant parity complexes on
G /B.

Lemma 6.1. For any w ∈ JW , we have

AvJ(∆w) ∼= ∆Wh
w,J , AvJ(∇w) ∼= ∇Wh

w,J .

Proof. We only prove the first isomorphism; the proof of the second one is similar.
The category ParityWh,J(G /B,k) admits a natural convolution action on the

right by Parity(B\G /B,k) (see in particular [RW, Lemma 11.4]). We deduce an
action of Dmix(B\G /B,k) on Dmix

Wh,J(G /B), which will be denoted ?. By con-

struction, the functor AvJ commutes with convolution on the right (see e.g. [RW,
(11.1)]); therefore we have

AvJ(∆w) ∼= AvJ(∆1 ?∆w) ∼= AvJ(∆1) ?∆w.

Now, by definition, we have AvJ(∆1) ∼= ∆Wh
1,J . Hence to conclude it suffices to prove

that if v ∈ JW and s ∈ S are such that vs ∈ JW and `(vs) = `(v) + 1, we have

∆Wh
v,J ?∆s

∼= ∆Wh
vs,J .
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As in the proof of Proposition 5.5 there exists a distinguished triangle

∆s → Es → E1{1}
[1]−→,

where the second map is induced by restriction along the closed embedding B/B ↪→
Ps/B, where Ps is the minimal standard parabolic subgroup of G associated with
s. Convolving on the left with ∆Wh

v,J we obtain a distinguished triangle

(6.1) ∆Wh
v,J ?∆s → ∆Wh

v,J ? Es → ∆Wh
v,J {1}

[1]−→ .

Now it is not difficult to check that ∆Wh
v,J ? Es is isomorphic to the !-pushforward of

the shift by `(v) + 1 of the unique rank-1 (U JU −J , χ
∗
JLψ)-equivariant local system

on X Wh,J
v tX Wh,J

vs , in such a way that the second map in (6.1) is induced by the
∗-adjunction morphism associated with the closed embedding X Wh,J

v ↪→X Wh,J
v t

X Wh,J
vs . The recollement formalism implies that the cocone of this morphism is

∆Wh
vs,J , and the desired isomorphism follows. �

Let now 〈Ew : w /∈ JW 〉⊕,{1} be the full additive subcategory of the category
Parity(U \G /B,k) whose objects are the direct sums of objects of the form Ew{n}
with w ∈W r JW and n ∈ Z. By [RW, Lemma 11.7], the functor AvJ vanishes on
〈Ew : w /∈ JW 〉⊕,{1}, so it induces a functor

Parity(U \G /B,k)/〈Ew : w /∈ JW 〉⊕,{1} → ParityWh,J(G /B,k).

(Here the quotient we consider is the “naive” quotient of additive categories, i.e. the
category whose Hom-groups are the quotients of those in Parity(U \G /B,k) by the
subgroup of morphisms which factor through an object of 〈Ew : w /∈ JW 〉⊕,{1}.)

The following is a restatement of [RW, Theorem 11.11].

Proposition 6.2. The functor

Parity(U \G /B,k)/〈Ew : w /∈ JW 〉⊕,{1} → ParityWh,J(G /B,k)

induced by AvJ is an equivalence of categories.

6.3. Mixed tilting perverse sheaves on parabolic flag varieties. In this sub-
section, k is an arbitrary complete local ring.

We consider the Langlands dual Kac–Moody group G ∨ (still defined over C),
and its subgroups T ∨, B∨ and U ∨ as in §5.1. The choice of J determines a
parabolic subgroup P∨

J in G ∨, so that we can consider the B∨-equivariant derived
category of sheaves on the parabolic flag variety P∨

J \G ∨, which we will denote
Db(P∨

J \G ∨/B∨,k), and then the mixed derived category Dmix(P∨
J \G ∨/U ∨,k)

constructed as the bounded homotopy category of the category of parity complexes.
In this category we have standard and costandard objects parametrized by JW
(see [AR3]), which will be denoted by ∆∨w,J and ∇∨w,J respectively.

We denote by

πJ : B∨\G ∨ →P∨
J \G ∨

the quotient map. The functor

(πJ)∗ : Db(B∨\G ∨/U ∨,k)→ Db(P∨
J \G ∨/U ∨,k)

sends parity complexes to parity complexes (see [RW, §9.4]), so it induces a tri-
angulated functor from Dmix(B∨\G ∨/U ∨,k) to Dmix(P∨

J \G ∨/U ∨,k), which will
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also be denoted (πJ)∗. If w ∈ W and if v is the minimal element in WJ · w, then
by [AR3, Lemma 3.8] we have

(6.2) (πJ)∗∆
∨
w
∼= ∆∨v,J{`(v)− `(w)}, (πJ)∗∇∨w ∼= ∇∨v,J{−`(v) + `(w)}.

Recall from §5.4 that we have the subcategory

Tiltmix(B∨\G ∨/U ∨,k) ⊂ Dmix(B∨\G ∨/U ∨,k)

of tilting objects in the heart of the perverse t-structure, whose indecomposable
objects are parametrized by W × Z, and that we denote by S∨w the object cor-

responding to (w, 0). Similarly we have the category Tiltmix(P∨
J \G ∨/U ∨,k) of

tilting objects in the heart of the perverse t-structure on Dmix(P∨
J \G ∨/U ∨,k),

whose indecomposable objects are parametrized by JW ×Z; we will denote by S∨w,J
the object corresponding to (w, 0).

Lemma 6.3. (1) The functor (πJ)∗ restricts to a functor

Tiltmix(B∨\G ∨/U ∨,k)→ Tiltmix(P∨
J \G ∨/U ∨,k).

(2) If w ∈W r JW , we have (πJ)∗S∨w = 0.

Proof. The proof is copied from [Yu]. For any v ∈ JW , we denote by i∨v,J the

embedding of the B∨-orbit on P∨
J \G ∨ parametrized by v.

(1) Let F be in Tiltmix(B∨\G ∨/U ∨,k). Then F belongs to the subcategory
of Dmix(B∨\G ∨/U ∨,k) generated under extensions by objects of the form ∆∨w〈n〉
with w ∈ W and n ∈ Z. In view of (6.2), we deduce that (πJ)∗F belongs to
the subcategory of Dmix(P∨

J \G ∨/U ∨,k) generated under extensions by objects
of the form ∆∨v,J〈n〉[m] with v ∈ JW , n ∈ Z and m ∈ Z≤0. This implies that

(i∨v,J)∗(πJ)∗F belongs to the subcategory generated under extensions by objects of

the form
(
k{`(v)}

)
〈n〉[m] with m ≤ 0.

On the other hand, F belongs to the subcategory of Dmix(B∨\G ∨/U ∨,k) gen-
erated under extensions by objects of the form ∇∨w〈n〉 with w ∈ W and n ∈ Z.
Using (6.2) and the fact that the objects ∇∨v,J are perverse (see [AR3, Theo-

rem 4.7]), this implies that (πJ)∗F lives in nonpositive perverse degrees, i.e. that
(i∨v,J)∗(πJ)∗F is in nonpositive perverse degrees for any v.

Combining these two properties, we obtain that for any v ∈ W the object
(i∨v,J)∗(πJ)∗F is a direct sum of objects of the form

(
k{`(v)}

)
〈n〉. Using Verdier

duality we obtain the same property for (i∨v,J)!(πJ)∗F , which finally implies that

(πJ)∗F is a tilting perverse sheaf.
(2) First we assume that k = Q. In this setting the indecomposable parity

complex Ew on G /B coincides with the intersection cohomology complex ICw
(see [KL1, Sp]). Using Theorem 5.6 and [AR3, Remark 2.7], we deduce that if
u, v ∈W and v < u we have

(S∨u : ∆∨v 〈n〉) = 0 unless n > 0.

Then using (6.2) we obtain that if w ∈W r JW then(
(πJ)∗S∨w : ∆∨v,J〈n〉

)
= 0 unless n > 0.

If (πJ)∗S∨w 6= 0 and v is maximal such that this multiplicity is nonzero, then this
property contradicts the Verdier self-duality of (πJ)∗S∨w .

Now, for any expression w, and for any choice of coefficients k′, we denote by
S∨,k′w the image of the Bott–Samelson type tilting mixed perverse sheaf on B∨\G ∨
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(constructed as in §2.4, but for the Langlands dual group, and with the roles of

left and right multiplication swapped) under the forgetful functor ForLMRE . We claim

that if w starts with a simple reflection in J , we have (πJ)∗S∨,Z
′

w = 0. In fact we
have

Q
(
(πJ)∗S∨,Z

′

w

) ∼= (πJ)∗S∨,Qw ,

where Q is the natural extension-of-scalars functor. Now it is not difficult to see that
S∨,Qw is a direct sum of objects of the form S∨,Qv 〈m〉 with m ∈ Z and v ∈W r JW .

(One can e.g. use Koszul duality to translate the question to the setting of parity
complexes, where it follows from equivariance considerations.) Hence, by the case

of Q treated above, we have Q
(
(πJ)∗S∨,Z

′

w

)
= 0. On the other hand it is not difficult

to see that (πJ)∗S∨,Z
′

w has stalks that are free over Z′. Hence these stalks are 0,

which implies that (πJ)∗S∨,Z
′

w = 0.
Finally we prove the claim in general. For this we choose a reduced expression

w for w starting with a simple reflection in J . Then S∨,kw is a direct summand of
S∨,kw . But

(πJ)∗S∨,kw
∼= k

(
(πJ)∗S∨,Z

′

w

)
= 0,

which proves the desired vanishing. �

Now let 〈S∨w : w /∈ JW 〉⊕,〈1〉 be the full additive subcategory of the category

Tiltmix(B∨\G ∨/U ∨,k) consisting of direct sums of objects of the form S∨w〈m〉
with w ∈W r JW and m ∈ Z. Lemma 6.3 tells us that the functor (πJ)∗ restricts
to a functor

(πJ)Tilt
∗ : Tiltmix(B∨\G ∨/U ∨,k)→ Tiltmix(P∨

J \G ∨/U ∨,k)

that then factors through a functor

(6.3) ΠJ : Tiltmix(B∨\G ∨/U ∨,k)/〈S∨w : w /∈ JW 〉⊕,〈1〉 →

Tiltmix(P∨
J \G ∨/U ∨,k).

We denote by Pervmix(B∨\G ∨/U ∨,k) and Pervmix(P∨
J \G ∨/U ∨,k) the hearts

of the perverse t-structures on Dmix(B∨\G ∨/U ∨,k) and Dmix(P∨
J \G ∨/U ∨,k) re-

spectively. The following statement uses the theory of realization functors from §2.5.

Lemma 6.4. The following diagram commutes up to isomorphism:

KbTiltmix(B∨\G ∨/U ∨,k) Dmix(B∨\G ∨/U ∨,k)

KbTiltmix(P∨
J \G ∨/U ∨,k) Dmix(P∨

J \G ∨/U ∨,k).

Kb((πJ )Tilt
∗ )

real

(πJ )∗

real

Proof. Since the functor (πJ)∗ is induced by a functor from Parity(B∨\G ∨/U ∨,k)
to Parity(P∨

J \G ∨/U ∨,k), it lifts to a functor between the filtered versions of the
categories on the right-hand side. The lemma then follows from Proposition 2.3. �

6.4. Parabolic–Whittaker Koszul duality. We come back to the assumptions
of §6.1. Recall the equivalence of categories κ constructed in §5.4.
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Theorem 6.5. There exists an equivalence of triangulated categories κJ which fits
into the following commutative diagram:

Dmix(U \G /B,k) Dmix(B∨\G ∨/U ∨,k)

Dmix
Wh,J(G /B,k) Dmix(P∨

J \G ∨/U ∨,k).

AvJ

κ

(πJ )∗

κJ

Moreover, κJ satisfies

(6.4) κJ(∆Wh
w,J) ∼= ∆∨w,J , κJ(∆Wh

w,J) ∼= ∆∨w,J , κJ(EJw) ∼= S∨w,J

for any w ∈ JW .

Proof. The equivalence of categories

Parity(U \G /B,k)
∼→ Tiltmix(B∨\G ∨/U ∨,k)

obtained by restricting κ induces an equivalence of categories

Parity(U \G /B,k)/〈Ew : w /∈ JW 〉⊕,{1}
∼→ Tiltmix(B∨\G ∨/U ∨,k)/〈S∨w : w /∈ JW 〉⊕,〈1〉.

Using Proposition 6.2 we deduce an equivalence of categories

ParityWh,J(G /B,k)
∼→ Tiltmix(B∨\G ∨/U ∨,k)/〈S∨w : w /∈ JW 〉⊕,〈1〉.

We denote by

κJ : Dmix
Wh,J(G/B, k)→ Dmix(P∨

J \G ∨/U ∨,k)

the functor obtained by composing this equivalence with the functor ΠJ from (6.3),
and then passing to bounded homotopy categories. With this definition the diagram
of the statement clearly commutes.

Now we prove that κJ is an equivalence of categories. Using the commutativity
of our diagram and comparing Lemma 6.1 and (6.2) we see that for any w ∈ JW
we have

κJ(∆Wh
w,J) ∼= ∆∨w,J , κJ(∇Wh

w,J) ∼= ∇∨w,J .

Moreover, since the functor (πJ)∗ induces an isomorphism

HomDmix(B∨\G∨/U ∨,k)(∆
∨
w,∇∨w)

∼→ HomDmix(P∨J \G∨/U ∨,k)(∆
∨
w,J ,∇∨w,J),

we see that κJ induces an isomorphism

HomDmix
Wh,J (G/B,k)(∆

Wh
w,J ,∇Wh

w,J)
∼→ HomDmix(P∨J \G∨/U ∨,k)(∆

∨
w,J ,∇∨w,J).

Then standard arguments (see e.g. the proof of Theorem 5.2) imply that κJ is an
equivalence of categories.

Finally we prove the isomorphisms (6.4). The first two isomorphisms have al-
ready been observed above. For the third isomorphism, recall that EJw ∼= AvJ(Ew),
see [RW, Corollary 11.10]. It follows that κJ(EJw) ∼= (πJ)∗κ(Ew) ∼= (πJ)∗S∨w , hence
that this object is a tilting perverse sheaf by Lemma 6.3. Since κJ is an equivalence
this object is indecomposable, and then it is easy to see that it is isomorphic to
S∨w,J . �
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Remark 6.6. (1) The proof of Theorem 6.5 shows that the equivalence Φ in-
duces an equivalence

Dasph,k
J (G )

∼→ Tiltmix(P∨
J \G ∨/U ∨,k)

(where the left-hand side is defined in [RW, §11.5]), and that for any w ∈
JW we have (πJ)∗(S∨w) ∼= S∨w,J . (In the case of characteristic-0 coefficients,

such an isomorphism follows from [Yu, Proposition 3.4.1].)
(2) Using the same constructions as in [AR3] one can endow the category

Dmix
Wh,J(G /B,k) with a perverse t-structure, whose heart is a graded highest

weight category with standard, resp. costandard, objects {∆Wh
w,J : w ∈ JW},

resp. {∇Wh
w,J : w ∈ JW}. Then one can easily check that the images under κJ

of the indecomposable tilting objects in this heart are the indecomposable
parity complexes on P∨

J \G ∨, seen as objects in Dmix(P∨
J \G ∨/U ∨,k).

7. Application to the tilting character formula

In this section we apply our preceding results together with those of [AR4] to
prove the character formula for tilting representations of reductive algebraic groups
over fields of positive characteristic conjectured in [RW].

7.1. Koszul duality for affine flag varieties. Let G be a semisimple, simply
connected complex algebraic group, let B be a Borel subgroup, and let T ⊂ B
be a maximal torus. We denote by Wf the Weyl group of (G,T ), and by R its
root system. Let also R+ ⊂ R be the system of positive roots consisting of the
T -weights in Lie(G)/Lie(B), and let Sf ⊂Wf be the corresponding subset of simple
reflections.

We set K := C((z)), O := C[[z]], and consider the group ind-scheme G(K ). We
denote by Iw the Iwahori subgroup of G(K ) determined by B, i.e. the inverse image
of B under the morphism G(O) → G induced by the ring map O → C sending z
to 0. Let also Iwu be the pro-unipotent radical of Iw, i.e. the inverse image of the
unipotent radical of B under the map G(O)→ G considered above. We define the
affine flag variety Fl and its “left variant” Fl′ as the quotients

Fl := G(K )/Iw, Fl′ := Iw\G(K ).

The ind-varieties Fl and Fl′ have Bruhat decompositions (with respect to the
natural action of Iw) parametrized by the affine Weyl group

W := Wf nX∗(T ),

and for any integral complete local ring k, we can consider the Bruhat-construc-
tible (or equivalently Iwu-equivariant) mixed derived categories Dmix

(Iw)(Fl,k) and

Dmix
(Iw)(Fl′,k), cf. [RW, §10.7].

For w ∈W , we have standard objects ∆w in Dmix
(Iw)(Fl,k) and ∆′w in Dmix

(Iw)(Fl′,k),

costandard objects ∇w in Dmix
(Iw)(Fl,k) and ∇′w in Dmix

(Iw)(Fl′,k), indecomposable

parity complexes Ew in Dmix
(Iw)(Fl,k) and E ′w in Dmix

(Iw)(Fl′,k), and indecomposable

mixed tilting perverse sheaves Sw in Dmix
(Iw)(Fl,k) and S ′w in Dmix

(Iw)(Fl′,k).

Let S ⊂ W be the set of simple reflections (chosen as the reflections along the
walls of the fundamental alcove {λ ∈ R ⊗Z X∗(T ) | ∀α ∈ R, 0 ≤ 〈λ, α〉 ≤ 1}). We
consider the realization h = (V, {α∨s }, {αs}) of (W,S) over k defined as follows:

(1) the underlying free k-module is V = k⊗Z X∗(T );
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(2) if s ∈ Sf , αs is the image in V ∗ ∼= k⊗ZX
∗(T ) of the simple root associated

with s, and α∨s is the image in V of the simple coroot associated with s;
(3) if s ∈ S r Sf , let γ be the unique positive root such that the image of s

in Wf
∼= W/X∗(T ) is sγ ; then αs is the image of −γ in V ∗ and α∨s is the

image of −γ∨ in V .

Lemma 7.1. Assume that 2 and all the prime numbers which are not very good
for G are invertible in k. Then there is a Wf-equivariant isomorphism ϕ : V → V ∗

such that for each s ∈ S, there is a scalar bs ∈ k× such that ϕ(α∨s ) = bsαs.

Proof. Write α1, . . . , αr for the simple roots of G, and α∨1 , . . . , α
∨
r for its simple

coroots. Let Af = (αj(α
∨
i )〉)i,j=1,...,r be the Cartan matrix for G. Our assumptions

imply that Af is invertible over k. Let D = diag(ε1, . . . , εr) be the minimal matrix
such that D−1A is symmetric, in the sense of [Ku, Definition 1.5.1]. Then ε1, . . . , εr
are invertible in k. The images of the simple coroots span V , so that we can define
a symmetric perfect pairing on V by setting

〈1⊗ α∨i , 1⊗ α∨j 〉 = αi(α
∨
j )εi = αj(α

∨
i )εj .

The proof of [Ku, Proposition 1.5.2] shows that this pairing is Wf -equivariant, so

that the induced isomorphism V
∼→ V ∗ is Wf -equivariant as well. The fact that

ϕ(α∨s ) ∈ k× · αs follows from the Wf -equivariance. �

Theorem 7.2. Assume that 2 and all the prime numbers which are not very good
for G are invertible in k. Then there exists an equivalence of triangulated categories

κ : Dmix
(Iw)(Fl,k)

∼→ Dmix
(Iw)(Fl′,k)

which satisfies κ ◦ 〈1〉 ∼= 〈−1〉[1] and, for any w ∈W ,

κ(∆w) ∼= ∆′w, κ(∇w) ∼= ∇′w,
κ(Ew) ∼= S ′w, κ(Sw) ∼= E ′w.

Proof. For brevity, we write D⊕BS instead of D⊕BS(h,W ) for the additive envelope of
the Elias–Williamson diagrammatic category associated to the realization h of W .
By [RW, Theorem 10.16], there exists a canonical equivalence of additive monoidal
categories

(7.1) D⊕BS
∼→ Parity⊕BS(Iw\G(K )/Iw,k),

where the right-hand side denotes the category of direct sums of Bott–Samelson
type Iw-equivariant parity complexes on Fl. Using this as a starting point, one can
run the same constructions as in [AMRW] to construct a category

Tilt⊕BS(Iwu)G(K )( Iwu,k)

of Bott–Samelson type free-monodromic tilting perverse sheaves, and then the same
constructions as in Section 5 provide an equivalence of categories

(7.2) ′D⊕BS
∼→ Tilt⊕BS(Iwu)G(K )( Iwu,k),

where ′D⊕BS is the additive envelope of the Elias–Williamson diagrammatic category
associated to the realization of (W,S) with underlying free k-module V ∗, roots
{α∨s : s ∈ S} and coroots {α∨s : s ∈ S}.

Let D⊕BS, resp. ′D⊕BS, denote the category obtained from D⊕BS, resp. ′D⊕BS, by
taking quotients of morphism spaces by the morphisms of the form f ·λ for λ ∈ V ∗,
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resp. of the form f ·h for h ∈ V . Then the equivalence (7.1) induces an equivalence
of categories

(7.3) D⊕BS
∼→ Parity⊕BS(Iw\G(K )/Iwu,k),

and the equivalence (7.2) induces an equivalence

(7.4) ′D⊕BS
∼→ Tilt⊕BS(Iwu)G(K )/Iw,k).

As usual, let R = Sym(V ∗) and R∨ = Sym(V ), and then let ı : R
∼→ R∨ be

the isomorphism induced by the isomorphism ϕ of Lemma 7.1. We can define an
equivalence of categories D⊕BS

∼→ ′D⊕BS which is the identity on objects, and which
is induced on morphisms by the assignment

f 7→ ı(f)

•
s
7→ •

s

•
s

7→ 1

bs
· •

s

s

s s

7→
s

s s

s

ss

7→ bs ·
s

ss

s

s

· · ·t

t · · ·

7→

s

s

· · ·t

t · · ·

.

(In fact, the only thing one has to check is that this assignment defines a functor,
which can be checked by hand using the defining relations.)

Composing the induced equivalence D⊕BS
∼→ ′D⊕BS with (7.4) we obtain an equiv-

alence of categories

D⊕BS
∼→ Tilt⊕BS(Iwu)G(K )/Iw,k).

Comparing with (7.3), passing to bounded homotopy categories to then compos-
ing with the appropriate forgetful functor we deduce the desired equivalence κ.
The fact that κ has the stated properties follows from the same arguments as for
Theorem 5.6. �

Remark 7.3. (1) It should be clear from the proof of Theorem 7.2 that a sim-
ilar claim holds in the equivariant/free-monodromic setting. We leave this
variant to the reader.

(2) The same arguments as in the proof of Theorem 7.2 show that, in the setting
of Section 5, if G is symmetrizable then the equivalence of Theorem 5.6 can
be seen as an equivalence

Dmix(B\G /U ,k)
∼→ Dmix(U \G /B,k)

provided a certain finite set of prime numbers depending on G is invertible
in k. (We leave it to the interested reader to make this statement precise.)



46 P. N. ACHAR, S. MAKISUMI, S. RICHE, AND G. WILLIAMSON

7.2. Koszul duality for affine Grassmannians. The parabolic–Whittaker du-
ality of §6.4 can also be stated in the present “affine” setting. For simplicity we
restrict to the case of the (left variant of the) affine Grassmannian

Gr′ := G(O)\G(K ).

The Iw-orbits on this ind-variety are parametrized in a natural way by the subset
fW ⊂ W consisting of elements w which are minimal in Wf · w. If k is an integral
complete local ring, we denote by Dmix

(Iw)(Gr′,k) the corresponding mixed derived

category. For w ∈ fW , we have a corresponding standard object ∆Gr′

w , costan-

dard object ∇Gr′

w , indecomposable parity complex EGr′

w , and indecomposable tilting

perverse sheaf SGr′

w in Dmix
(Iw)(Gr′,k).

Now we assume that F and k are as in §6.1. We denote by TF the F-torus whose
lattice of characters is X∗(T ), and let GF be the semisimple, simply-connected
algebraic F-group with maximal torus TF and root system R. Then we can define the
Iwahori subgroups IwF and Iw◦F of GF(F((z))) associated with the Borel subgroups
of GF containing TF with roots −R+ and R+ respectively.

We redefine the affine flag variety Fl as the quotient GF(F((z)))/IwF, an ind-
variety over F. Choosing identifications between F and each root subgroup of GF
associated with a simple root, as in §6.1 we obtain an algebraic group morphism

χ : Iw◦F → Ga.

Choosing also a nontrivial additive character ψ : Z/pZ → k× (assumed to exist),
with corresponding Artin–Schreier local system Lψ, we can consider the category

Dmix
IW(Fl,k)

of (Iw◦F, χ
∗(Lψ))-equivariant mixed complexes. (Here “IW” stands for “Iwahori–

Whittaker”; this terminology is taken from [AB].) The Iw◦F-orbits supporting an
equivariant local system are labelled in a natural way by fW . For w ∈ fW , we have a
corresponding standard object ∆IWw , costandard object ∇IWw , and indecomposable
parity complex EIWw in Dmix

IW(Fl,k).
The proof of the following theorem is identical to that of Theorem 6.5.

Theorem 7.4. Assume that 2 and the prime numbers which are not very good for
G are invertible in k. Then there exists an equivalence of triangulated categories

κGr′ : Dmix
IW(Fl,k)

∼→ Dmix
(Iw)(Gr′,k)

which satisfies κ ◦ 〈1〉 ∼= 〈−1〉[1] and, for any w ∈ fW ,

κ(∆IWw ) ∼= ∆Gr′

w , κ(∇IWw ) ∼= ∇Gr′

w , κ(EIWw ) ∼= SGr′

w .

7.3. Character formula for tilting mixed perverse sheaves on Gr′. We now
assume that k is a field (which does not necessarily satisfy the conditions of §6.1).
We denote its characteristic by `, and assume that ` is odd and very good for G.
We let

{`ny,w : y, w ∈ fW}
be the antispherical `-Kazhdan–Lusztig polynomials as considered in [RW, §1.4].
The following corollary was our main motivation to develop the “parabolic–Whitta-
ker” formalism of Section 6.
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Corollary 7.5. For any w, y ∈ fW we have

`ny,w(v) =
∑
i∈Z

(
SGr′

w : ∇Gr′

y 〈−i〉
)
· vi.

Proof. The same arguments as in [W1, Lemma 3.8] show that if k→ k′ is a field ex-
tension, then the extension-of-scalars functor Dmix

(Iw)(Gr′,k) → Dmix
(Iw)(Gr′,k′) sends

the indecomposable tilting perverse sheaf labelled by w with coefficients k to its
counterpart for coefficients k′. Therefore, we can assume that k satisfies the con-
ditions of §6.1. Then by definition and [RW, Theorem 11.11], if F is as above, we
have

`ny,w(v) =
∑
i∈Z

dim HomDmix
IW(Fl,k)(∆

IW
y , EIWw {i}) · vi.

Using the equivalence κGr′ we deduce that

`ny,w(v) =
∑
i∈Z

dim HomDmix
(Iw)

(Gr′,k)(∆
Gr′

y ,SGr′

w 〈i〉) · vi.

The claim follows. �

7.4. Tilting character formula. From now on we assume that k is an alge-
braically closed field of characteristic ` > 0, and let G be a connected reductive
group over k with simply-connected derived subgroup. We let h be the Coxeter
number of G, and assume that ` > h.

We choose a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. We let S be
the root system of (G,T), and S+ ⊂ S be the system of positive roots consisting of
the T-weights in Lie(G)/Lie(B). We also set X := X∗(T), and denote by X+ ⊂ X
the subset of dominant weights.

For any λ ∈ X+, we denote by ∇(λ), resp. ∆(λ), resp. T(λ), the induced,
resp. Weyl, resp. indecomposable tilting, G-module of highest weight λ.

We also denote by T the complex torus with weights HomZ(ZS,Z), and let G be
the semisimple, simply-connected complex algebraic group with maximal torus T
and coroot system S. We have an associated affine Weyl group W as in §7.1 (which
identifies with the semi-direct product Wf n ZS), and antispherical `-Kazhdan–
Lusztig polynomials `ny,w as in §7.2.

Let ρ = 1
2

∑
α∈S+ α; then we can consider the “dot-action” of W on X defined

by

(wtλ) ·p µ = w(µ+ pλ+ ρ)− ρ
for w ∈ Wf and λ ∈ ZS. The following result proves the “combinatorial” part of
the main conjecture from [RW].

Theorem 7.6. For any w, y ∈ fW we have(
T(w ·p 0) : ∇(y ·p 0)

)
= `ny,w(1).

Proof. It follows from [AR4, Theorem 11.7] that we have(
T(w ·p 0) : ∇(y ·p 0)

)
=
∑
i∈Z

(
SGr′

w : ∇Gr′

y 〈i〉
)
.

(See [AR4, Remark 11.3(2)] for the comparison between our present conventions
and those of [AR4].) Then the desired formula follows from Corollary 7.5. �
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[Be] A. Bĕılinson, On the derived category of perverse sheaves, in K-theory, arithmetic and

geometry (Moscow, 1984–1986), 27–41, Lecture Notes in Math. 1289, Springer-Verlag,
1987.
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[Rd] L. Rider, Formality for the nilpotent cone and a derived Springer correspondence, Adv.
Math. 235 (2013), 208–236.

[S1] W. Soergel, Kategorie O, perverse Garben und Moduln über den Koinvarianten zur
Weylgruppe, J. Amer. Math. Soc. 3 (1990), 421–445.

[S2] W. Soergel, Character formulas for tilting modules over quantum groups at roots of

one, in Current developments in mathematics, 1997 (Cambridge, MA), 161–172, Int.
Press, 1999.

[S3] W. Soergel, Character formulas for tilting modules over Kac–Moody algebras, Repre-
sent. Theory 2 (1998), 432–448.

[S4] W. Soergel, Langlands’ philosophy and Koszul duality, in Algebra—representation the-

ory (Constanta, 2000), 379–414, NATO Sci. Ser. II Math. Phys. Chem., 28, Kluwer

Acad. Publ., 2001.
[S5] W. Soergel, On the relation between intersection cohomology and representation theory

in positive characteristic, J. Pure Appl. Algebra 152 (2000), 311–335.
[S6] W. Soergel, Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduln über Polynomrin-

gen, J. Inst. Math. Jussieu 6 (2007), 501–525.

[Sp] T. A. Springer, Quelques applications de la cohomologie d’intersection, Séminaire Bour-
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