Thierry E Huillet 
  
Thierry Huillet Variations 
  
Luria-Delbruck Model 2017 Hal 
  
Variations on the Luria-Delbruck model

Keywords: Yule-Simon distribution, Luria-Delbrück process, random covering set, compound-Poisson models, discrete probability, criticality, discrete self-decomposability

   

Introduction and outline

A very popular model for quantitatively understanding the emergence of virus resistance both in bacterial colonies and in malignant tumors was introduced in 1943 by Luria and Delbrück, [START_REF] Lea | The distribution of the numbers of mutants in bacterial populations[END_REF], [START_REF] Luria | Mutations of bacteria: from virus sensitivity to virus resistance[END_REF]. In this setup, individual resistant mutants emerge randomly at birth events embedded in an exponentially growing sensitive population. The Luria-Delbrück experiment (known as the Fluctuation Test) demonstrates that genetic mutations of bacteria arise permanently, even in the absence of selection, rather than being a response to selection, thereby justifying the latter scenario. It was thus confirmed that mutations do not occur out of necessity (a Lamarckian approach), but instead can occur many generations before the selection strikes (the Darwinian point of view).

It is tacitly assumed in such Luria-Delbrück inspired models that the sensitive population (with deterministic size x t at time t) is immune as soon as coexists some mutant in the population (the event N t > 0, where N t denotes the total number of mutants as a superposition of individual mutants born before and still alive at time t). The understanding of the fraction of time spent in a mutant-free state appears desirable because at those local extinction moments, immunity of the sensitive is lost. A second, perhaps more realistic, model would be to assume that the population is immune as soon as N t > ax t for some a ∈ (0, 1).

Let us first briefly sketch the Lamarckian scheme. Would time t be an instant of viral attack and assuming that each of the x t sensitive individuals has a probability p to switch instantaneously to a mutant state in response, the number N t of mutants would be: N t ∼bin(x t , p) with mean EN t = x t p and variance σ 2 (N t ) = x t p (1 -p) (of the same order of magnitude as the mean for large x t ). If x t is increasing with t, we have P (N t > 0) = 1 -(1 -p) xt → t→∞ 1 and the population will become increasingly immune, as time passes by, and based on the first criterion. We also have N t /x t a.s. → t→∞ p and p > a entails that the population is asymptotically immune, based on the second criterion. If x t → ∞ and p → 0 while x t p = θ (the so-called large population-small mutation * -limit) then N t * → t→∞ N ∞ ∼Poi θ . Poisson random variables (rvs) enjoy the property mean=variance. In the Luria-Delbrück model the variance exceeds the mean which will be demonstrated later.

In the sequel, we shall introduce and develop the Darwin-Luria-Delbrück version of this model which involves a much more complicated intertwining of the processes (x t ; N t ). In such processes, as we shall see, a fundamental probability distribution arises: the Yule and Simon distribution and one of its extension.

Let us now summarize the content of this manuscript with emphasis on what is believed to be new:

-Section 2 consists of a short introduction to the Yule-Simon distribution which is a central issue of the standard Luria-Delbrück construction. The appearance of the Yule-Simon distribution is natural in this context, since this is the universal statistics of clone sizes in an exponentially growing population without death. A mention of the Yule-Simon distribution in Luria-Delbrück models appears, for example, in [START_REF] Bozic | Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers[END_REF]. The Yule-Simon distribution is heavy-tailed with tail parameter α > 0. The origin of its heavy-tailedness is due to a reinforcement property in a sampling process discussed in [START_REF] Simon | On a Class of Skew Distribution Functions[END_REF] when α < 1 only (recalled in Subsection 2.1). We supply an alternative Pólya-Eggenberger urn model sampling process, also with a reinforcement property, allowing to generate Yule-Simon distributions in the full range α > 0 (Subsection 2.2, Proposition 2). Finally, we show (Proposition 1) that a shifted version of the Yule-Simon distribution is discrete-self-decomposable, a notion that we will make use of in the sequel. The Yule-Simon distribution in itself has a deep statistical structure.

-In Section 3, we revisit the Luria-Delbrück theory with exponential sensitive population growth. The mutant sub-populations are allowed to grow, upon appearance, each according to independent binary branching processes, either super-, sub-or critical.

The strictly supercritical or pure birth case with no death allowed (extinction probability ρ = 0) is classical. The clone size of N t has the standard Yule-Simon distribution, with parameter α being the ratio between the Malthusian growth parameters of both sensitive and mutant sub-populations.

The supercritical case including death (extinction probability 0 < ρ < 1) was first considered in [START_REF] Iwasa | Evolution of resistance during clonal expansion[END_REF] and further studied in [START_REF] Komarova | The fixed-size LuriaDelbruck model with a nonzero death rate[END_REF], [START_REF] Ycart | Fluctuation analysis with cell deaths[END_REF] and [START_REF] Antal | Exact solution of a two-type branching process: models of tumor progression[END_REF]. The opportunity of death was discussed therein as an important issue in the Luria-Delbrück context. It is a non-trivial extension of the strictly supercritical case. It leads to a generalized clone-size Simon distribution characterized in Lemma 3 and related to the classical Simon distribution by [START_REF] Keller | Mutant number distribution in an exponentially growing population[END_REF] in [START_REF] Iwasa | Evolution of resistance during clonal expansion[END_REF], or equivalently by [START_REF] Luria | Mutations of bacteria: from virus sensitivity to virus resistance[END_REF]. In this latter setup, focus is on the large time behavior of the global mutant population size, including the large-population, small-mutation probability (so-called) * -limit. In the * -limit, we obtain a five-term recurrence for the probability that there are N ∞ = n mutants and P = p mutations ultimately explaining the number of mutants at equilibrium (Proposition 4). Further, we show (Proposition 5) that the distribution of N ∞ is discrete-self-decomposable, thus unimodal; an open issue raised in [START_REF] Antal | Exact solution of a two-type branching process: models of tumor progression[END_REF] page 11, with numerical evidence of this fact. The obtained formulas generalize the well-known ones obtained in the strictly supercritical case (Propositions 6 and 7), in the spirit of [START_REF] Lea | The distribution of the numbers of mutants in bacterial populations[END_REF] covering the neutral or balanced case α = 1 only, and with a three-term recursion involved.

In Subsection 3.4, we proceed with similar considerations but when the growth of the contributing mutants is subcritical. Our main results are summarized in Lemma 8 characterizing the clone-size in this setup and the compound Poissonian * -limit for the total number of mutants, with clone size distribution having all its moments (Proposition 9). Subsection 3.4 is devoted to similar results but in the critical case.

Finally, in all the super-, sub-or critical cases, we introduce the question of the time I t spent, before time t, by the Luria-Delbrück process in a mutant-free state (with gaps potentially arising from local extinctions of the sub-families). At those instants, the sensitive population is exposed to viral attack in a dangerous way. We supply an explicit expression of the expected value of I t in terms of the generalized Yule-Simon probability generating function. Due to massive rate of creation of mutants sustained by the exponentially growing sensitive population, we show that only a finite segment of the whole positive real line is asymptotically left uncovered by mutants, even in the worst subcritical growth case for the sub-families. The vulnerability window of the sensitive population is thus very small in all cases, mostly concentrated near time t = 0 before a first mutant comes to birth.

-In Section 4, we study a linear growth model version for the sensitive population and see how it affects in depth the Luria-Delbrück theory with exponential growth.

In particular, the structure of the random subset of times left uncovered by the mutants has a much richer structure in this context.

In Proposition 10 covering the supercritical case for mutant sub-families growth, we compute the expected value of the time spent I t in a mutant-free state; it goes to a finite limit and the sensitive population is safe again. There is a well-defined negative-binomial * -limit regime.

Proposition 13 covering the subcritical case shows that the expected value of I t grows linearly with time t, suggesting an alternating renewal structure of the zeroset of {N t } which is subsequently made explicit. Proposition 11 shows that N t has a large time t weak limit and that, as a negative-binomial distribution, it is discreteself-decomposable and thus unimodal with Fisher log-series distributed clone size, [START_REF] Kendall | On some modes of population growth leading to R.A. Fisher's logarithmic distribution[END_REF].

The critical case is studied as well and the results are summarized in Proposition 14. Depending on the scaled mutation probability range, the expected value of I t can grow either algebraically with time or logarithmically or have a finite limit.

Propositions 15 and 16 supply information on the growth of the variance of I t with time t. We subsequently show that the covariance of the vacancy process {1 (N t = 0)} is long-ranged.

-Section 5 is an Appendix focused around compound Poisson and discrete-selfdecomposable random variables. It is designed to supply some proofs of the announced statements; the intrusion of self-decomposability ideas in the Luria-Delbrück context seems to be new and useful. Special attention is thus paid to compound Poisson random variables with clone size either classical/generalized Simon or logseries distributed, appearing in the course of our analysis. For compound-Poisson distributions of this kind, we show that, owing to some recursivity property of the clone size distribution, the joint distribution of N ∞ and P can be recursively generated, therefore avoiding the inextricable combinatorics of Bell polynomials normally at stake. This was an open issue raised in [START_REF] Antal | Exact solution of a two-type branching process: models of tumor progression[END_REF], page 7. We finally give some insight on the number of mutations P ultimately contributing to the total mutant population size N ∞ at equilibrium and for large values of N ∞ = n (Proposition 6 (iii) and Proposition 12).

2. Simon discrete model with tail index α, [START_REF] Simon | On a Class of Skew Distribution Functions[END_REF] Before we run into the Luria-Delbrück construction and its extensions, we shall therefore first recall the Simon construction of the standard Simon distribution with parameter α > 1 before switching to the Yule-Simon construction involving Simon distributions with any parameter α > 0. The critical value α = 1 plays a key-role in the classical Luria-Delbrück theory.

2.1. Simon discrete model with tail index α > 1. Every day a naturalist is dispatched from his lab to sample species in Nature. Once he meets a species, either new or already sampled, he returns back to his lab before proceeding to a new sampling campaign the next day. He records the sampled species together with their occurrences.

After n campaigns, let N n (k) be the number of species sampled k times, with n = n k=1 kN n (k) and P n = n k=1 N n (k), the number of distinct species discovered in the process. Let x n (k) := EN n (k) and p n := k x n (k) , the expected number of distinct species. How can N n (k) be built up? Fix the N n (k)s and consider the (n + 1)

th campaign. Suppose the following process is at stake when moving from step n to n + 1 :

-there is a probability ρ to sample a new species so in this case,

N n (1) → N n+1 (1) = N n (1) + 1. And P n ∼bin(n, ρ) with EP n = p n = nρ.
-With probability (w.p.) 1 -ρ, the outcome of the (n + 1)

th campaign is a species already visited, and it will be species k with probability kN n (k) /n (a reinforcement property enhancing species visited often). If k = 1 therefore, N n (k) grows by one unit w.p. (1 -ρ) (k -1) N n (k -1) /n, decreases by one unit w.p.

(1 -ρ) kN n (k) /n or stays alike if a new species is sampled or if it is not new but one different from species {k -1, k}. Taking the average,

x n+1 (k) = x n (k) + (1 -ρ) (k -1) x n (k -1) /n -(1 -ρ) kx n (k) /n if k = 1 x n+1 (1) = x n (1) + ρ -(1 -ρ) x n (1) /n. Putting α = 1/ (1 -ρ) > 1, the solutions are of the form x n (k) = nx (k) with x (k) = k -1 k + α x (k -1) , k = 2, ..., n, and 
x (1) = ρα 1+α , entailing x (k) = ραB (k, α + 1) , where B (a, b) = Γ(a)Γ(b) Γ(a+b)
is the beta function. The sequence (1)

q k := x n (k) k x n (k) = nx (k) p n = x (k) ρ = αB (k, α + 1) , k ≥ 1
is a probability distribution on the integers {1, 2, ...} known as Simon distribution.

Due to the reinforcement property, q k is heavy-tailed with

q k ∼ k→∞ αΓ (α + 1) k -(α+1) .
It obeys q k+1 /q k = k/ (k + α + 1), q 1 = α/ (α + 1). Its pgf (denoted by F S (z) in the sequel) is seen to be (2)

k≥1 q k z k = αz α + 1 F (1, 1; 2 + α; z) =: F S (z) ,
involving a special Gauss hypergeometric function 1 . By Tauberian theorem, owing to the monotonicity of the q k s,

F S (z) ∼ z→1 1 -Γ (1 + α) Γ (1 -α) (1 -z) α .
It is well-known that the Simon pgf F S (z) may be written as an exponential(α) mixture of a geometric distribution with success parameter e -τ , viz:

(3)

F S (z) = α ∞ 0 dτ • e -ατ e -τ z 1-(1-e -τ )z or q k = α ∞ 0 dτ • e -ατ e -τ (1 -e -τ ) k-1 .
The Simon distribution cannot be infinitely divisible (compound Poisson) because q 0 = 0. But considering q k = q k+1 , k ≥ 0,

q k = α 1 0 u k (1 -u)
α du admits a Hausdorff representation (insuring the complete monotonicity of q k ), showing that upon shifting the Simon variable by -1, the new variable is infinitely divisible, (see Theorem 10.4 of [START_REF] Steutel | Infinite Divisibility of Probability Distributions on the Real Line[END_REF]). In fact, the shifted Simon(α) rv is even discreteself-decomposable (see Appendix 5.5 for a reminder on self-decomposability).

The pgf of the shifted Simon(α) rv is F S (z) /z. It is in the class of hypergeometric pgfs studied in [START_REF] Dacey | A Hypergeometric Family of Discrete Probability Distributions: Properties and Applications to Location Models[END_REF]. As a result, with G (α) ∼gamma(α, 1), and G (1), G (1), G (α) mutually independent Gamma rvs (two of which are exponentially distributed), we have the Poisson mixture representation ( [START_REF] Sibuya | Generalized hypergeometric, digamma and trigamma distributions[END_REF], [START_REF] Devroye | A triptych of discrete distributions related to stable law[END_REF]) of the Simon rv, say C, with E z C = F S (z) , as

C d = 1 + Poi G (1) G (1) G (α) . 
Therefore:

Proposition 1. The shifted Simon(α) rv C := C -1 is discrete-self-decomposable.
1 By F (a, b; c; z), we mean 2 F 1 (a, b; c; z), the Gauss hypergeometric function.

Proof: With a > 0, consider the rv G (a) 1/β , the 1/β-power of G (a) ∼gamma(a, 1). This rv is hyperbolically completely monotone (HCM) if and only if |β| ≤ 1 (ex. 12.8 of [START_REF] Steutel | Infinite Divisibility of Probability Distributions on the Real Line[END_REF]). Thus G (1), G (1) and 1/G (α) are HCM. The product of HCM rvs is HCM (Proposition 4 of [START_REF] Bondesson | A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables[END_REF]). So the mixing rv R := (G (1) G (1)) /G (α) is HCM. HCM rvs form a subclass of Generalized-Gamma-Convolution (GGC) rvs (Proposition 2 of [START_REF] Bondesson | A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables[END_REF]) and GGC rvs are self-decomposable (Theorem 1 of [START_REF] Bondesson | A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables[END_REF]). So R is self-decomposable. And C := C -1, as a Poisson-mixture with respect to a self-decomposable mixing distribution, is discrete-self-decomposable (Corollary 1 of [START_REF] Sapatinas | Characterizations of probability distributions based on discrete p-monotonicity[END_REF]). 2

Coming back to the Simon random process N n (k), it can also be shown [START_REF] Polito | Random Graphs Associated to Some Discrete and Continuous Time Preferential Attachment Models[END_REF] that (4)

N n (k)

k≥1 N n (k) = N n (k) P n → n→∞ q k
for each k, in probability (and thus in distribution). The latter construction does not exhibit a distribution q k for which α ∈ (0, 1] which clearly exists (and has infinite mean). We now come to this point.

2.2.

Simon discrete model with rational tail index α. The N 0 -valued rv C, with pgf (α > 0),

E z C = α α + 1 • F (1, 1; α + 2; z) = F S (z) z ,
is in the class of three-parameters hypergeometric family of pgfs studied in [START_REF] Dacey | A Hypergeometric Family of Discrete Probability Distributions: Properties and Applications to Location Models[END_REF]. When α > 0 and α is a rational number, C has a Pólya-Eggenberger urn model interpretation: Take an urn with initially b black balls and w white balls. Balls are drawn at random one at a time from the urn and each selected ball is returned to the urn along with r -1 additional balls of the same color, r ≥ 2. Repeat the sampling procedure. Suppose the number of balls which are returned is r = w and put α := b/r > 0. Then:

Proposition 2. C represents the number of white balls that are drawn till the first black ball is selected in the sampling process.

Proof: With q k := P C = k , k ≥ 0, it can be checked, following [START_REF] Dacey | A Hypergeometric Family of Discrete Probability Distributions: Properties and Applications to Location Models[END_REF] page 290, that q k+1 /q k = (k + 1) / (k + α + 2), q 0 = α/ (α + 1). Thus,

q k = αB (k + 1, α + 1) , k ≥ 0.
The sequence q k = P (C = k) = αB (k, α + 1), k ≥ 1, is the Yule-Simon probability mass function on N, (1). The distribution of C = C -1 is thus the distribution of a shifted Yule-Simon distribution with q k = q k+1 . It is heavy-tailed with index α and α > 0 is any rational.

The heavy-tailed character of the distribution of C results from the fact that if a black ball is not drawn in the very first steps, there are many white balls in the urn due to previous white ball returns, lowering the chance to subsequently draw a black ball in the future steps. This reinforcement property is responsible for C to take on very large values.

Remark: In the latter Pólya-Eggenberger urn model, a continuum for the set of values of α can of course be achieved if the initial proportions of black and white balls both tend to ∞ with proper prescribed ratio: b, w → ∞ while b = [wα] .

3. Yule-Simon rvs and related ones arising in mutant distribution in an exponentially growing sensitive population: the Luria-Delbrück model and some extensions 3.1. Generalities. Luria-Delbrück [START_REF] Luria | Mutations of bacteria: from virus sensitivity to virus resistance[END_REF] formulated a simple mathematical model in which both wild-type and mutant cells grow deterministically, but with the mutants appearing randomly, proportional to the wild-type population size. Here we adopt, as many authors justify it, a semi-stochastic approach, assuming a deterministic growth model for the wild-type cells and a stochastic one for the mutants.

Let then a population of wild-type cells grow deterministically at rate λ t > 0, with Λ t = t 0 ds • λ s < ∞, for all t > 0. The wild population size at t is x t = x 0 + Λ t , x 0 ≥ 0. Each wild-type cell is possibly subject to mutation and the rate at which new mutants are being created, one at a time, is νλ t , where ν ∈ (0, 1) is the mutation probability of each wild-type cell. The mutant population is assumed to be resistant to a viral attack in contrast with the wild-type population which is assumed sensitive. Fix a time interval [0, t] . Assume mutations occur at independent and identically distributed (iid) times S (k) t with common law P (S t ∈ ds) = λ s ds/Λ t ; there are P (νΛ t ) such mutation events where P (νΛ t ) ∼Poi(νΛ t ) an inhomogeneous Poisson process with intensity νΛ t .

Once a mutant is created, it grows and forms a clone. Let M t be the mutant sub-population size at t given a founder mutant came to birth at time 0. We will assume that M t grows according to a binary branching birth and death process, so with M 0 = 1. M t goes extinct at time τ e with distribution given by P (M t > 0) = P (τ e > t) .

Let N t be the size at t of the whole mutant population, summing up all the contributions. With M (k) t

iid copies of M t and S (k) t iid copies of S t , we obtain N t as a random superposition of birth and death processes initiated at the mutation events (5)

N t = P (νΛt) k=1 M (k) t-S (k) t .
And therefore, the probability generating function (pgf) of N t reads (6)

   Φ t (z) = E z Nt = exp -ν t 0 ds • λ s 1 -φ t-s (z) = exp -νΛ t 1 - t 0 ds • λs Λt φ t-s (z)
, where φ t (z) = E z Mt . The last expression shows that, for each t,

N t d = P (νΛt) p=1 C (k) t , (7) 
where C

(k) t are iid copies of C t , the typical clone size at t. The common law of the

C (k) t s is characterized by its pgf (8) E z Ct = 1 Λ t t 0 ds • λ s φ t-s (z) ,
a probability mixture of the φ s (z)s and therefore a pgf. Note that P (C t = 0) = 0 if and only if φ t (0) = P (M t = 0) = 0 for all t (the pure birth case). So, if C t = 0 has a positive probability (death is admissible in the binary branching process), N t is a compound Poisson rv with iid clone sizes possibly zero. This could be adjusted as usual while considering a modified intensity νΛ t → νΛ t (1 -P (C t = 0)) and a new clone size with modified conditional pgf

E z Ct → E z C + t = E z Ct -P (C t = 0) / (1 -P (C t = 0)) ,
where

C + t := C t | C t > 0.
We shall study two different models for the sensitive population growth: one for which λ t = λe λt and the other with λ t = λ (for some rate λ > 0). In the first case,

•

x t = λe λt gives x t = x 0 -1 + e λt while in the second case,

•

x t = λ gives x t = x 0 + λt. Note x t ∼ t→∞ e λt and x t ∼ t→∞ λt, respectively, whatever the fixed initial condition. The exponential Malthusian growth model is justified when resources and space are unlimited in a multiplicative process. The linear one corresponds to a slow critical growth process with • x t independent of the current population size x t , avoiding multiplicative or positive feedback effects. The controversy between proponents of linear growth as a possible issue during the cell cycle and the ones in favor of the exponential one is discussed in [START_REF] Cooper | Distinguishing between linear and exponential cell growth during the division cycle: Single-cell studies, cell-culture studies, and the object of cell-cycle research[END_REF]. Organisms can grow in spurts, dependent on both environment and genetics and under controlled laboratory conditions, a constant rate of growth can be observed, with such periods often referred to as the linear portions of the growth curve. More technically, exponential growth for the sensitive population occurs if x t interprets as the mean number of individuals in a stochastically growing population according to a new supercritical birth and death process. Linear growth for the sensitive population occurs if x t interprets as the mean number of individuals in a stochastically growing population, but now according to a critical birth and death process conditioned to stay positive. This suggests that x t could be thought of as being itself random but we shall not run into such considerations, rather focusing on the semi-stochastic approach as emphasized earlier; see [START_REF] Angerer | An explicit representation of the Luria-Delbrück distribution[END_REF], [START_REF] Antal | Exact solution of a two-type branching process: models of tumor progression[END_REF], [START_REF] Kendall | Birth-and-death processes, and the theory of carcinogenesis[END_REF], [START_REF] Kessler | Scaling Solution in the Large Population Limit of the General Asymmetric Stochastic Luria-Delbrück Evolution Process[END_REF], for works in the fully-stochastic direction. Other deterministic growth models for x t have recently been investigated in [START_REF] Nicholson | Universal asymptotic clone size distribution for general population growth[END_REF].

3.2.

Exponentially growing wild-type population: the supercritical mutant sub-population case (r > 0) [START_REF] Keller | Mutant number distribution in an exponentially growing population[END_REF]. Upon its appearance, each mutant duplicates according to a birth (2 offspring with probability π 2 ), dies according to a death (0 offspring with probability π 0 ) process, or stays alike with probability π 1 , π 0 + π 1 + π 2 = 1. The global birth and death rate is r e > 0, the rate at which some event, either birth, death or stay alike, occurs. With r b := r e π 2 , r s := r e π 1 and r d := r e π 0 , then r e = r b + r s + r d . The mutant birth and death net rate is r = r b -r d . Each descendant of the original mutant branches in the same way, independently of one another.

In the sequel, we shall let ρ := π 0 /π 2 = r d /r b , α := λ/r and µ := νλ (1 -ρ) /r = νλ/r b , the scaled mutation probability.

For (noncritical) birth and death binary branching processes with r = 0, the subfamilies pgf φ t (z

) := E z Mt then obeys ∂ t φ t (z) = r e f (φ t (z)), φ 0 (z) = z, where f (z) = π 0 + π 1 z + π 2 z 2 -z. The solution is, [10], (9) 1 -φ t (z) = e rt (1-z) 1+ r b r (e rt -1)(1-z) = 1-ρ 1-e -rt ζ , if ζ := (z -ρ) / (z -1)
. Depending on r > 0, r < 0 or r = 0, the binary branching process M t is supercritical, subcritical or critical. In the supercritical case (r > 0), extinction occurs with positive probability at time τ e . We have [START_REF] Harris | The theory of branching processes[END_REF] 1

-φ t (0) = P (τ e > t) = e rt 1 + r b
r (e rt -1) and

P (τ e < ∞) = 1 - r r b = ρ if r > 0.
So, in the supercritical birth and death case, ρ is the probability of extinction of M t , the smallest solution in [0, 1] of f (z) = 0. And, given extinction will occur, the tail of the distribution of τ e is exponential with mean 1/r.

Clone size.

Assume exponential growth rate λ s = λe λs (λ > 0) of the wild-type population. Then x t = x 0 -1 + e λt and if r > 0 (supercritical mutant growth):

E z Ct = t 0 ds • λs Λt φ t-s (z) = λ e λt -1 t 0 ds • e λs φ t-s (z) = λ e λt -1 t 0 ds • e λs ρ-e -r(t-s) ζ 1-e -r(t-s) ζ = α 1-e -λt rt 0 dτ • e -ατ ρ-ζe -τ 1-ζe -τ → t→∞ α ∞ 0 dτ • e -ατ ρ-ζe -τ 1-ζe -τ = E z C∞ . Lemma 3. With B ∼Bernoulli(a 0 ) distributed with success probability a 0 = (1 -ρ) / (1 -ρe -τ ), independent of G ∼ geometric(a) distributed with success probability a = e -τ (1 -ρ) / (1 -ρe -τ ), C ∞ is an exponential(α) mixture (with respect to τ ) of C d = G • B. Proof: It holds that 1 -φ t (z) = e rt (1 -z) 1 + r b r (e rt -1) (1 -z) = 1 at 1-z + b t with a t = e -rt , b t = r b r 1 -e -rt , (11) 
leading to the equivalent classical form of the simple linear fractional (or homographic) model:

φ t (z) = b 0 (t) + a 0 (t) a (t) z 1 -b (t) z = ρ -e -rt ζ 1 -e -rt ζ ,
where

a 0 (t) = 1/ (a t + b t ) = 1 -ρ 1 -ρe -rt , b 0 (t) = 1 -a 0 (t) a (t) = a t / (a t + b t ) = (1 -ρ) e -rt 1 -ρe -rt , b (t) = 1 -a (t) .
Therefore,

(12) ρ -ζe -τ 1 -ζe -τ = ρ (1 -e -τ ) + z (e -τ -ρ) 1 -(e -τ ρ + z (1 -e -τ )) = b 0 + a 0 az 1 -bz ,
while defining the probabilities

a 0 = (1 -ρ) / (1 -ρe -τ ), a = e -τ (1 -ρ) / (1 -ρe -τ ) and b 0 = 1 -a 0 , b = 1 -a.
This pgf is the one of a random variable C obtained as

C d = G • B (equality in law)
, where B is Bernoulli(a 0 ) distributed, P (B = 1) = a 0 , independent of G, a geometric distributed random variable with success probability a. And C ∞ is an exponential(α) mixture of C, with respect to τ . This generalizes (3) obtained when ρ = 0 (no extinction possible). Note that

P (C ∞ = 0) = αρ ∞ 0 dτ • e -ατ 1 -e -τ 1 -ρe -τ = ρ α + 1 F (1, α; α + 2; ρ) ,
using the integral representation of the Gauss hypergeometric function. The 'effective' clone size is

C + ∞ = C ∞ | C ∞ > 0.
Remarks:

(i) it is shown in ( 16) of [START_REF] Iwasa | Evolution of resistance during clonal expansion[END_REF] (after a use of the integral representation of a Gauss hypergeometric function), that: (13)

q k = P (C + ∞ = k) = αB (k, α + 1) (1 -ρ) F (k + 1, α; k + α + 1; ρ) /Z, k ≥ 1 and Z = 1 0 1 -ρz 1/α
dz, with a multiplicative slowly-varying correcting term to the Simon distribution αB (k, α + 1), but still with power-law tails of index α. We shall prove in the Appendix that q k obeys a simple three-term recurrence, see (40).

(ii) the fractional linear rv C is infinitely divisible if and only if R (z) defined by E z C =: exp -1 z R (x) dx is absolutely monotone ( [START_REF] Steutel | Infinite Divisibility of Probability Distributions on the Real Line[END_REF], Theorem 4.2) which holds if and only a 0 + a < 1, which is also e -τ < ρ, not satisfied for the whole range of τ . C ∞ being a complicate exponential(α) mixture of C, with respect to τ , it is not clear if and under what conditions C ∞ would be infinitely divisible.

Pgf of the current global number of mutants.

Going back to the expression of the pgf of N t in the general birth and death case,

Φ t (z) = exp -νλ (1 -ρ) t 0 ds • e λs 1-e -r(t-s) ζ = exp -νλ (1 -ρ) e λt t 0 ds • e -λs 1-e -rs ζ = exp -νλ (1 -ρ) e λt k≥0 ζ k t 0 ds • e -s(λ+rk) = exp -νλ (1 -ρ) k≥0 ζ k λ+rk e λt -e -rkt .
With α = λ/r > 0, ( 14)

F (ζ) := F (1, α; 1 + α; ζ) = 1 + α k≥1 ζ k α + k ,
and recalling µ = νλ (1 -ρ) /r, this is also

(15) Φ t (z) = exp -µ k≥0 ζ k α+k e λt -e -λkt/α = exp -µ α e λt F (ζ) -F ζe -λt/α
.

If α = 1 (a case of neutrality where the Malthusian growth parameters of both sensitive and mutant sub-populations coincide), using the identity

F (ζ) = 1 - F s (η) = -1-η η log (1 -η) with η = ζ/ (ζ -1) = (z -ρ) / (1 -ρ), Φ t (z) takes for instance the simple form Φ t (z) = 1 -1 -e -λt z -ρ 1 -ρ µe λt 1-z z-ρ . 3.2.3.
The mean and variance of N t . Fixing the (large) wild-type population size to x = x t ∼ e λt , using the recurrence (see Lemma page 145 of [START_REF] Dewanji | A generalized Luria-Delbrück model[END_REF])

Φ (k) t (z) = k l=0 k -1 l Φ (l) t (z) ω (k-l) t (z)
where ω

(k) t (z) = ν t 0 e λs φ (k) 
t-s (z) ds, and recalling Φ (k)

t (1) = E (N t ) k the k-th falling factorial moment of N t , we get (see [START_REF] Dewanji | A generalized Luria-Delbrück model[END_REF] (13) -( 14) and [START_REF] Keller | Mutant number distribution in an exponentially growing population[END_REF], ( 8) -(9)): ( 16) And in all cases α ≤ 2, the variance exceeds the mean (an overdispersed situation for N t ) with special logarithmic effects when α ∈ {1, 2}. For limiting (stable) laws of properly scaled versions of N t using these informations, see [START_REF] Keller | Mutant number distribution in an exponentially growing population[END_REF].

E (N t ) = µx t 1 -ρ • log x t if α = 1 1 1-α x 1/α-1 t -1 if α = 1 , ( 17 
) σ 2 (N t ) = µx t (1 -ρ) 2 •      2 (x t -1) -(1 + ρ) log x t if α = 1 (1 + ρ) x -1/2 t -1 + log x t if α = 2 2 2-α x 2/α-1 t + 1+ρ α-1 x 1/α-1 t + ρ(2-α)+α (2-α)(1-α) if α = {1, 2} . If α < 1,
If α = 1 EN t ∼ µ 1 -ρ x t log x t and σ 2 (N t ) ∼ 2µ (1 -ρ) 2 x 2 t .
If in addition (pure birth case): ρ = 0 and µ = να = ν, we get the Luria-Delbrück relations:

EN t ∼ νx t log x t and σ 2 (N t ) ∼ 2νx 2 t , or σ 2 (N t ) /EN t ∼ 2x t / log x t 1 and σ (N t ) /EN t ∼ 1/ ν/2 log x t ,
contrasting with N t ∼bin(x t , p) .

3.2.4.

The large population, small mutation * -limit. When t → ∞, ν → 0 while µe λt ∼ µx t = θ > 0 (the large population, small mutation * -limit), from ( 15),

(18) Φ t (z) ∼ Φ ∞ (z) := E z N∞ = exp -θ α F (ζ) = exp -θ α F (ρ) (1 -(1 -F (ζ) /F (ρ))
) , the pgf of a compound Poisson distribution with mean θ := θF (ρ) /α. The pgf of the clone size

C + ∞ is ϕ (z) := 1 -F (ζ) /F (ρ) .
Noting the identities (using the Kummer identity (C10) of [START_REF] Keller | Mutant number distribution in an exponentially growing population[END_REF] for the first identity, the second one being by straightforward identification of both series expansion coefficients) ( 19)

F (ζ) := F (1, α; 1 + α; ζ) = (1 -η) F (1, 1; 1 + α; η) = 1 -αη α+1 F (1, 1; 2 + α; η) =: 1 -F S (η) , where η = ζ/ (ζ -1) = (z -ρ) / (1 -ρ), the pgf of the clone size ϕ (z) can be expressed in terms of F S (η) (noting F (ρ) = 1 -F S (ρ/ (ρ -1))), namely: (20) ϕ (z) = E z C + ∞ = F S (η) -F S (ρ/ (ρ -1)) 1 -F S (ρ/ (ρ -1)) . Note that the pgf ϕ (z) of C + ∞ is at η = 1 and therefore at z = 1, with F S (η) ∼ z→1 1 -Γ (1 + α) Γ (1 -α) (1 -η) α = 1 - Γ (1 + α) Γ (1 -α) (1 -ρ) α (1 -z) α .
Thus ϕ (z) displays an algebraic singularity at z = 1 and, as already observed, the distribution of C + ∞ is heavy-tailed with index α just like the simple shifted Simon rv (ρ = 0). We call it the pgf of the generalized Simon distribution.

We thus have N ∞ = P (θ) p=1 C + ∞,p where P = P θ is the Poissonian count of the number of mutations explaining N ∞ . In a compound Poisson rv, the full distribution p n = P (N ∞ = n) obeys in general a complicate and inextricable combinatorial recursion in terms of q k = P (C + ∞ = k), see its Bell expression in (34), Appendix 5.1. We prove in the Appendix that for the particular compound Poisson rv under study here Proposition 4. (see Appendix 5.3) (i) The joint probability P n,p := P (N ∞ = n, P = p) obeys the more suitable fiveterm recurrence (39):

F (ρ) ρ (n + 1) P n+1,p = (pαF (ρ) ρ + n (ρ + 1) F (ρ)) P n,p +αθ [1 -F (ρ) ρ] P n,p-1 -(n -1) F (ρ) P n-1,p -αθP n-1,p-1 .
(ii) And q k obeys the three-term recurrence (q 0 = 0), (40):

ρ (k + 1) q k+1 = (αρ + k (ρ + 1)) q k -(k -1) q k-1 , k ≥ 1.
The mean and variance of this limiting compound Poisson distribution are found to be [START_REF] Keller | Mutant number distribution in an exponentially growing population[END_REF] (21)

E (N ∞ ) = ∞ if 0 < α ≤ 1 θ (1-ρ)(α-1) if α > 1 , (22) σ 2 (N ∞ ) = ∞ if 0 < α ≤ 2 θ (1-ρ) 2 ρ(2-α)+α (α-2)(α-1) if α > 2 . Note that if α > 2, σ 2 (N ∞ ) = E (N ∞ ) ρ(2-α)+α (1-ρ)(α-2) > E (N ∞ ),
showing that N ∞ is overdispersed in this case. This overdispersion also holds true in the range 1 < α ≤ 2 where σ 2 (N ∞ ) = ∞ but E (N ∞ ) < ∞ and this is contrast with the Poissonian behavior for N ∞ in the Lamarckian approach of the problem in the * -limit.

If 0 < α ≤ 1, both σ 2 (N ∞ ) = E (N ∞ ) = ∞.
There is some question raised in [START_REF] Keller | Mutant number distribution in an exponentially growing population[END_REF] on whether N ∞ would be unimodal. In this direction, we state Proposition 5. (see Appendix 5.5)

N ∞ is discrete-self-decomposable and thus unimodal. With θ max := α (1 -ρ) /F S (-ρ/ (1 -ρ))
, it has its mode at the origin if θ < θ max and two modes at n = 0, 1 if θ = θ max .

Thus θ ≤ θ max entails discrete-self-decomposability and unimodality near the origin. If θ > θ max N ∞ is still discrete-self-decomposable therefore unimodal but with mode away from the origin. This is confirmed by numerical simulations in [START_REF] Keller | Mutant number distribution in an exponentially growing population[END_REF].

When inspecting ( 16) and ( 17) closer, we conclude that in the large population, small mutation * -limit

(23) E (N t ) ∼ * θ 1 -ρ •    1 1-α x 1/α-1 t if 0 < α < 1 log x t if α = 1 1 α-1 if α > 1 , (24) σ 2 (N t ) ∼ * θ (1 -ρ) 2 •      2 2-α x 2/α-1 t if 0 < α < 2 log x t if α = 2 ρ(2-α)+α (2-α)(1-α) if α > 2 .
3.2.5. The time spent in a mutant-free state: local extinctions. Let I t = t 0 1 (N s = 0) ds the fraction of the time interval [0, t] free of mutants (the length of the random set I t uncovered by the mutant sub-populations). We have

I c t = t 0 1 (N s > 0) ds = t -I t , the length of the covered set I c t , with (25) 
I t = [0, t] ∩ I c t ; I c t = P (νΛt) ∪ k=1 S (k) t , S (k) t + τ (k) e ∩ [0, t] ,
where τ

(k) e are iid copies of τ e . We have

E (I t ) = t 0 Φ s (0) ds and putting z = 0, ζ = ρ in (15) Φ t (0) = exp -µ k≥0 ρ k α+k e λt -e -rkt = exp -µ α e λt F (ρ) -F ρe -λt/α .
Thus,

E (I t ) = t 0 Φ s (0) ds = t 0 exp - µ α F (ρ) e λs -F ρe -λs/α ds = 1 λ e λt 1 du u exp - µ α F (ρ) u -F ρu -λ/α → t→∞ I := 1 λ ∞ 1 du u exp - µ α F (ρ) u -F ρu -λ/α , a finite integral: when u ∈ (1, ∞), u -λ/α < 1 leading to I < e µ/αF (ρ) λ ∞ 1 du u exp -µ α u = e µ/αF (ρ) λ E 1 µ α < ∞, where E 1 (x)
is the exponential integral. Only a finite segment of the positive real line is left uncovered by the mutants. This is a very safe situation based on the principle that the population is immune as soon as some mutants are present.

If ρ = 0, F (ρ = 0) = 1 and all mutant processes survive for ever. Here,

E (I t ) = t 0 Φ s (0) ds → t→∞ e µ/α λ ∞ 1 du u exp - µ α u = e µ/α λ E 1 µ α .
It reduces to the finite expected time till the first mutation: only a finite segment of the real line is left uncovered by the mutants. The latter value is smaller than the one obtained in the previous situation with F (ρ) > 1. 

E z Ct = t 0 ds • λ s Λ t φ t-s (z) = λ e λt -1 t 0 ds • e λs z (1 -z) e r b (t-s) + z = λ 1 -e -λt t 0 dτ • e -λτ z (1 -z) e r b τ + z = α 1 -e -λt r b t 0 dτ • e -ατ ze -τ 1 -z + ze -τ . Thus t 0 ds • λ s Λ t φ t-s (z) → t→∞ α ∞ 0 dτ • e -ατ ze -τ 1 -z + ze -τ = αz α + 1 F (1, 1; 2 + α; z) ,
the pgf of an exponential(α) mixture of a geometric distribution with parameter e -τ (the classical pgf of a Yule-Simon distribution (2) with parameter α = λ/r > 0). Note that ρ = 0 indeed entails a 0 = 1 and a = e -τ in [START_REF] Iwasa | Evolution of resistance during clonal expansion[END_REF].

The pgf of the clone size coincides, if ρ = 0 (ζ = z/ (z -1), η = z and F (ρ) = 1), with the Yule-Simon pgf, in view of the identities (26)

1 -F (z/ (z -1)) = 1 -(1 -z) F (1, 1; 1 + α; z) = αz α + 1 F (1, 1; 2 + α; z) = F S (z) .
From [START_REF] Kendall | Birth-and-death processes, and the theory of carcinogenesis[END_REF], we also get in the pure birth case,

Φ t (z) = exp -µ α e λt F (z/ (z -1)) -F z/ (z -1) e -λt/α = exp -µ α e λt (1 -F S (z)) -1 -F S e -λt/α z 1-z(1-e -λt/α )
.

Taking the * -limit

Φ t (z) → Φ ∞ (z) = e -θ α (1-F S (z))
, the pgf of a compound Poisson(θ/α) rv with clone size pgf F S (z). We shall prove in the Appendix that for the particular compound Poisson rv under study here Proposition 6. (Appendix 5.2) (i) The joint probability P (N ∞ = n, P = p) obeys the three-term recurrence [START_REF] Ycart | Fluctuation analysis with cell deaths[END_REF]:

p + n α P (N ∞ = n, P = p) = θ α P (N = n -1, P = p -1)+ n -1 α P (N = n -1, P = p) (ii) And q k = P (C + ∞ = k) obeys the two-term recurrence (q 1 = α/ (α + 1)) (k + α + 1) q k+1 = kq k , k ≥ 1.
(iii) Asymptotics: Let P n := (P | N ∞ = n) be the number of mutations which ultimately contribute to the equilibrium event N ∞ = n.

Then P n d → 1+Poi θ at rate n -α∧1 .
We also have Proposition 7. (see the Appendix 5.2) N ∞ is discrete-self-decomposable and thus unimodal. And it has its mode at the origin if θ < 1 + α and two modes at n = 0, 1

if θ = 1 + α.
It is further assumed in the work [START_REF] Lea | The distribution of the numbers of mutants in bacterial populations[END_REF] that r e = r = λ (the growth rate of each mutant sub-population coincides with the growth rate of the sensitive cells). Then α = 1 and, based on (26) with z 2 F (1, 1; 3; z) = 1 + 1-z z log (1 -z), Φ t (z) admits the simple form

Φ t (z) = 1 -1 -e -λt z µe λt (1-z)/z .
The pgf of the clone size C + ∞ in the * -limit is thus

ϕ (z) = 1 -F (z/ (z -1)) = F S (z) = 1 + 1 -z z log (1 -z) = k≥1 1 k (k + 1) z k , showing that q k = P (C + ∞ = k) = 1/ (k (k + 1)) with E (C + ∞ ) = ∞. The compound Poisson pgf of the global number of mutants in the * -limit is Φ ∞ (z) = e -θ(1-ϕ(z)) = (1 -z) θ(1-z)/z .
For additional statistical properties of this particular case, in particular questions related to the estimation of θ from empirical data, see [START_REF] Lea | The distribution of the numbers of mutants in bacterial populations[END_REF], [START_REF] Angerer | An explicit representation of the Luria-Delbrück distribution[END_REF].

When looking at [START_REF] Parzen | Stochastic processes[END_REF] and ( 24) with ρ = 0 and α = 1, we conclude that in the large population, small mutation * -limit (see also [START_REF] Lea | The distribution of the numbers of mutants in bacterial populations[END_REF] pages 275 -276)

E (N t ) ∼ * θ log x t and σ 2 (N t ) ∼ * 2θx t ,
with the variance exceeding the mean. This is what predicts the Luria-Delbrück model, in sharp contrast with the binomial model bin(x t , p) akin to the Lamarckian approach.

3.4. The subcritical case (r < 0). Assume λ > 0 (wild-type exponential growth) and r < 0 (subcritical sub-population mutant growth). We have

1 -φ t (z) = e rt (1 -z) 1 + r b r (e rt -1) (1 -z) , and 
P (τ e > t) = 1 -φ t (0) = e rt 1 + r b r (e rt -1) ∼ e -rt
with exponential tails. Extinction is almost sure. With κ = -r b r > 0,

E z Ct = t 0 ds • λs Λt φ t-s (z) = λ e λt -1 t 0 ds • e λs φ t-s (z) = λ 1-e -λt t 0 ds • e -λs 1-κ(e rs -1)(1-z)-e rs (1-z) 1-κ(e rs -1)(1-z) = α 1-e -λt -rt 0 dτ • e -ατ (1-e -τ )(1+κ)+z(e -τ (1+κ)-κ) 1-κ(e -τ -1+z(1-e -τ )) =: α 1-e -λt -rt 0 dτ • e -ατ h (e -τ , z) → t→∞ α ∞ 0 dτ • e -ατ h (e -τ , z) = E z C∞ . Observing the homographic identity h e -τ , z := (1 -e -τ ) (1 + κ) + z (e -τ (1 + κ) -κ) 1 -κ (e -τ -1 + z (1 -e -τ )) = b 0 + a 0 az 1 -bz , while defining the probabilities a 0 = e -τ / (1 + κ (1 -e -τ )), a = 1/ (1 + κ (1 -e -τ )) and b 0 = 1 -a 0 , b = 1 -a, we conclude that h (e -τ , z) is the pgf of a random vari- able C obtained as C d = G • B,
where B is Bernoulli(a 0 ) distributed, independent of G, a geometric distributed random variable with success probability a. And C ∞ is an exponential(α) mixture of C, with respect to τ : Lemma 8. In the subcritical case, with B ∼Bernoulli(a 0 ) distributed with success probability a 0 = e -τ / (1 + κ (1 -e -τ )), independent of G ∼ geometric(a) distributed with success probability a = 1/ (1 + κ (1 -e -τ )), C ∞ is an exponential(α) mixture (with respect to τ ) of The two terms contribute.

C d = G • B. With ρ = π 0 /π 2 = 1 -r/r b > 1 (no longer the extinction probability), ρ * = 1/ρ = 1/ (1 + κ) and ξ := r b (z -1) / (r -r b (1 -z)) = ρ * (z -1) ρ * z -1 = (z -1) / (z -ρ) = 1/ζ, it holds that, with α = -λ/r > 0, Φ t (z) = exp -νλ (1 -z) t 0 ds • e λs e r(t-s) 1+ r b r (e r(t-s) -1)(1-z) = exp -νλ (1 -z) e λt t 0 ds • e -λs e rs 1+ r b r (e rs -1)(1-z) = exp -νλ(1-z)
3.4.1. The * -limit. As t gets large, in the limit ν → 0 and µe λt ∼ µx t = θ, this is the pgf of a compound Poisson process with intensity θ := θF (ρ * ) /α and clone size with pgf

ϕ (z) = E z C + ∞ = 1 - F (ξ) F (ρ * ) , with ϕ (0) = 0.
In view of

F (ξ) = F (1, α; 1 + α; ξ) = (1 -η) F (1, 1; 1 + α; η) = 1 - αη α + 1 F (1, 1; 2 + α; η) = 1 -F S (η)
where

η = ξ/ (ξ -1) = ρ * (z -1) / (1 -ρ * ), we conclude that ϕ (z) = E z C + ∞ is
a pgf with all its falling factorial moments (and therefore moments) finite, with

E [(C + ∞ ) k ] = k! F (ρ * ) (z -1) k αη α+1 F (1, 1; 2 + α; η) = k! F (ρ * ) ρ * 1-ρ * k αB (k, α + 1) . (27) 
In particular

E C + ∞ = 1 F (ρ * ) ρ * 1 -ρ * α α + 1 .
Proposition 9. In the subcritical regime r < 0, the global number of mutants in the * -limit is a compound-Poisson(θF (ρ * ) /α) rv, with clone size C + ∞ having all its moments given by [START_REF] Sibuya | Generalized hypergeometric, digamma and trigamma distributions[END_REF].

In contrast with the supercritical case where the clone size C + ∞ has no moments of order larger than α (the heavy-tailedness of C + ∞ ), the subcritical case exhibits clones of smaller size with all its moments.

In the subcritical case, we have

E (I t ) = t 0 Φ s (0) ds = t 0 exp - µ α F (ρ * ) e λs -F ρ * e -λs/α ds
and, following the arguments of the supercritical case, this quantity goes to a finite limit as t → ∞. Again, only a finite segment of the positive real line is left uncovered by the mutants asymptotically.

3.4.2.

The pure-death case. Assume λ > 0 and π 2 = 0 ⇒ r b = 0 (a pure death subcritical mutant process). Then 1

-φ t (z) = e rt (1 -z) with r = -r d < 0. Φ t (z) = exp -νλ (1 -z) t 0 ds • e λs e -r d (t-s) = exp - νλ (1 -z) λ + r d e λt -e -r d t ,
the pgf of a Poisson process with intensity ν λ λ+r d e λt -e -r d t . As t gets large, Φ t (z) approaches the pgf of a Poisson process with intensity νλ λ+r d e λt . Taking the * -limit, ν → 0, t → ∞ while νe λt = θ

Φ ∞ (z) = exp - θλ (1 -z) λ + r d ,
the pgf of a Poisson rv with intensity θ := θλ/ (λ + r d ) .

Mean of I t . Here, with α = λ/r = λ/ (-r d ) < 0,

E (I t ) → t→∞ 1 λ ∞ 1 du u e -νλ λ+r d (u-u 1/α ) < - 1 r d e -νλ λ+r d E 1 - νλ λ + r d < ∞
and again, only a finite segment of the positive real line is left uncovered by the mutants asymptotically.

3.5. The critical case (r = 0). Here, the mutant sub-population pgf is u .

(28) 1 -φ t (z) = 1 -z 1 + r b t (1 -z) , and (29) 
P (τ e > t) = φ t (0) = 1 1 + r b t ,
Taking the * -limit, ν → 0, t → ∞ with νe λt = θ

Φ t (z) * → t→∞ Φ ∞ (z) = exp -θλ (1 -z) e λ/(r b (1-z)) ∞ 1 du • e -λu/(r b (1-z)) u = exp -θλ (1 -z) e λ/(r b (1-z)) E 1 (λ/ (r b (1 -z))) . a compound Poisson θλe λ/r b E 1 (λ/r b ) pgf with clone size pgf ϕ (z) = 1-F (z) /F (0), F (z) = (1 -z) e λ/(r b (1-z)) E 1 (λ/ (r b (1 -z))) involving an exponential-integral E 1 . When z → 1, it can be checked that ϕ (z) → z→1 1 using E 1 (x) ∼ x→∞ 2e -x log (1 + 1/x).
We find a compound-Poisson regime.

Linearly growing sensitive population

The theory is highly sensitive to the growth model of x t . To illustrate this, let us see what happens when the wild-type population grows linearly with time. Paralleling the exponential growth model, we shall develop the supercritical, subcritical and critical cases for the individual mutant sub-population growth. As we shall see, the structure of the random time set uncovered by the mutants has a much richer structure in this context. See [START_REF] Kendall | On some modes of population growth leading to R.A. Fisher's logarithmic distribution[END_REF] and [START_REF] Tavaré | The birth process with immigration, and the genealogical structure of large populations[END_REF].

4.1. The supercritical case. For birth and death processes, φ t (z) = E z Mt is given by (9) and λ s = λ, constant.

4.1.1. Clone size. If r > 0 (subcritical mutant growth) the clone size pgf at t is

E z Ct = t 0 ds • λ s Λ t φ t-s (z) = 1 t t 0 ds • φ t-s (z) = 1 - 1 -z t t 0 ds • e rs 1 + r b r (e rs -1) (1 -z) = 1 - 1 r b t log 1 + r b r e rt -1 (1 -z) → t→∞ 1 - r r b = E z C∞ and C t → 0 w.p. 1 - r r b , → ∞ w.p. r r b Moreover, with µ := νλ/r b Φ t (z) = exp -νλ (1 -z) t 0 ds • e rs 1 + r b r (e rs -1) (1 -z) = 1 + r b r e rt -1 (1 -z) -µ = 1 -p t 1 -p t z µ with p t 1 -p t = r b r e rt -1
Summing up infinitely many (Poi(r e t)) typical clones of size tending to 0 or ∞ gives rises to a negative binomial (or Pólya) distribution with mean E (N t ) = µ pt 1-pt = νλ (e rt -1) /r ∼ νλe rt /r and variance σ 2 (N t ) = µ pt (1-pt) 2 ∼ νλr b e 2rt /r 2 . The mean and the standard deviation are of the same order of magnitude and fluctuations are very large. 4.1.2. Mean of I t . Considering I t = t 0 1 (N s = 0) ds the fraction of the time interval [0, t] free of mutants

E (I t ) = t 0 Φ s (0) ds = t 0 1 - r b r (1 -e rs ) -µ ds = 1 r r b r -1 -νλ/r b r b r d e rt r b r d du u (u -1) -µ ∼ if r b =νλ 1 r r d r -µ 1 -µ r b r d e rt -µ - r b r d -µ
(the latter equivalence is justified by the fact that the main contribution of the du-integral is near u large with:

r b r d e rt r b r d du u (u -1) -µ ∼ r b r d e rt r b r d u -(1+µ) du = -1 µ r b r d e rt -µ - r b r d -µ
).

We get: Remark : The * -limit (ν → 0, x t ∼ λt → ∞ while νx t = θ). Suppose r b , r d → 0, (r → 0 + ), t → ∞ in such a way that r b t = κ > 0 and

r d t = κ (1 -o (1)) → κ, so that rt → 0. Suppose in addition ν → 0 while ν/r b = θ/ (λκ) . Then Φ t (z) = 1 + r b r e rt -1 (1 -z) -νλ/r b → Φ ∞ (z) = (1 + κ (1 -z)) -θ/κ ,
the pgf of a negative distribution with parameters κ and θ := θ/κ. Note νx t ∼ νλt → θ.

4.2.

The subcritical case. Let us consider the subcritical case. If r < 0 (subcritical mutant growth) the clone size pgf at t is

E z Ct = t 0 ds • λs Λt φ t-s (z) = 1 t t 0 ds • φ t-s (z) = 1 -1 r b t log 1 + r b r (e rt -1) (1 -z) → t→∞ 1 = E z C∞ , so with C t d → C ∞ = 0.
Moreover, the global mutant population size at t has pgf

Φ t (z) = exp -νλ (1 -z) t 0 ds • e rs 1+ r b r (e rs -1)(1-z) = 1 -r b r (1 -e rt ) (1 -z) -µ → t→∞ 1 -r b r (1 -z) -µ =: Φ ∞ (z) ,
the pgf of a negative binomial distribution with mean E (N ∞ ) = µ = -νλ/r and variance σ 2 (N ∞ ) = -νλ/r (1 -r b /r). Only finitely many mutants are present in the population for large time. Summing up infinitely many (Poi(r e t)) clones of size tending to 0 gives rises to a finite non-degenerate random limit. With κ := -r b r > 0, we have Proposition 11. (see the Appendix 5.5) N ∞ is discrete-self-decomposable, so unimodal. And it has its mode at the origin if µ < (1 + κ) /κ and two modes at n = 0, 1

if µ = (1 + κ) /κ.
We will also show, in the Appendix 5.5, that P (P n = p)

:= P (P = p | N ∞ = n) = µ p |sn,p| [µ] n
, where |s n,p | are the absolute first-kind Stirling numbers. This is also the probability that p distinct species are being visited when taking an uniform n-sample from the Poisson-Dirichlet(µ) partition of the unit interval representing species abundances with infinitely many species. This matches with the Ewens sampling formula arising in population genetics, (see [START_REF] Tavaré | The Ewens sampling formula[END_REF], [START_REF] Tavaré | The birth process with immigration, and the genealogical structure of large populations[END_REF], and specifically formula [START_REF] Harris | The theory of branching processes[END_REF] in [START_REF] Huillet | Sampling from Dirichlet partitions: estimating the number of species[END_REF] for example). P n is the number of mutations explaining a terminal mutant population size N ∞ = n. Using the above analogy with the Ewens sampling formula, it follows that: Proposition 12. (Appendix 5.4) (i)

P (P n+1 = p + 1 | P n = p) = µ µ + n and P (P n+1 = p | P n = p) = n µ + n ,
gives the probability that a new mutation occurred (the transition p → p + 1) or not (the transition p → p) when observing one more terminal mutant (the transition n → n + 1), and

(ii) (Asymptotics): the number P n of mutations ultimately contributing to the equilibrium event N ∞ = n, obeys

P n log n a.s. → n→∞ µ. 4.2.1. Mean of I t . Considering I t = t 0 1 (N s = 0) ds the fraction of the time interval [0, t] free of mutants E (I t ) = t 0 Φ s (0) ds = t 0 1 - r b r (1 -e rs ) -µ ds = - 1 r 1 - r b r -µ r b r d r b r d e rt du u (1 -u) -µ ∼ t→∞ 1 - r b r -µ t
(the latter equivalence is justified by the fact that the main contribution of the integral is near u = 0 : We get:

Proposition 13. If r < 0, E (I t ) ∼ t→∞ 1 -r b r -µ t. With 1 -r b r -µ = r d -r -µ
∈ (0, 1), a whole constant fraction of the real line is now left uncovered by the mutants.

Remark : In fact, in this subcritical case, the process {1 (N t = 0)} is ergodic and by strong law of large numbers, more generally,

1 t I t a.s. → t→∞ E (1 (N ∞ = 0)) = P (N ∞ = 0) .

4.2.2.

The zeroset of {N t } as an alternating renewal process in the subcritical case. In the subcritical case, the system alternates between time periods for which N t > 0 (the covered zones) and those for which N t = 0 (the uncovered zones). We wish to understand some of the features of this alternating renewal process, akin to the one of an M/G/∞ queue in Kendall's notations, [START_REF] Takács | An Introduction to queueing theory[END_REF].

Consider the set {t ≥ 0 : N t = 0 and N t+dt > 0} and assume t = 0 belongs to this set, with N dt = 1. Let

G (t) := P (τ e ≤ t) = φ t (0) = 1 -r b r (1 -e rt ) 1 -r b
r (1 -e rt ) be the extinction time of this individual.

With N t := # {0 ≤ s ≤ t : N s = 0 and N s+ds > 0} and U (t) := E (N t ) its renewal function,

U (t) = P (N t = 0) + νλ t 0 dsP (N s = 0) , where P (N t = 0) = e -νλ t 0 (1-G(s))ds . U (t) is differentiable with renewal rate func- tion . U (t) =: u (t) = -νλ (1 -G (t)) P (N t = 0) + νλP (N t = 0) = νλG (t) P (N t = 0) .
Let T be the random time separating two consecutive points of the renewal set N ∞ and φ T (p) := E e -pT the Laplace transform of its distribution, p ≥ 0. Then, by renewal arguments [START_REF] Ross | Introduction to Probability Models[END_REF] φ

T (p) = 1 - 1 p U (p) = u (p) 1 + u (p)
,

where

U (p) = ∞ 0 dte -pt U (t) and u (p) = ∞ 0 dte -pt u (t). Letting A (p) := ∞ 0 dte -pt P (N t = 0)
, after an integration by parts, we get

U (p) = A (p) + νλ ∞ 0 dte -pt t 0 dsP (N s = 0) = A (p) 1 + νλ p . Therefore φ T (p) = 1 - 1 A (p) (p + νλ) .
We have P (N t = 0) → showing that E (T ) = e νλa / (νλ).

Clearly, T = T + E where T is the time interval over which N t > 0 (the covered zones) and E the time interval over which N t = 0 (the uncovered zones). Besides, T and E are independent and E ∼exp(νλ). Therefore

φ T (p) = p + νλ νλ φ T (p) = 1 - 1 νλ 1 A (p) -p , with E T = e νλa -1 / (νλ).
Let us compute the second moments of T and T and check their finiteness. With B (p) := 1 -pA (p), we have 1 -φ T (p) (1 -B (p)) = (νλ) -1 pB (p). Differentiating twice with respect to p, using the Leibniz rule and evaluating the result at p = 0,

E T 2 = 2e 2νλa νλ ∞ 0 (P (N t = 0) -P (N ∞ = 0)) dt = 2e 2νλa νλ ∞ 0 e -νλ t 0 (1-G(s))ds -e -νλa dt = 2e νλa νλ ∞ 0 e νλ ∞ t (1-G(s))ds -1 dt = 2e νλa νλ ∞ 0 1 - r b e rt r d -µ -1 dt = 2e νλa νλ (-r) k≥1 [µ] k kk! r b r d k < ∞.
And

E T 2 = E T 2 + 2 νλ E T + 2 (νλ) 2 = E T 2 + 2 e νλa (νλ) 2 < ∞.
We note that in both cases, consistently with ( [START_REF] Ross | Introduction to Probability Models[END_REF], page 450)

P (N ∞ = 0) = E (E) E (E) + E T = e -νλa = (1 -r b /r) -µ .
4.3. The critical case. For critical birth and death processes, with

φ t (z) = E z Mt , 1 -φ t (z) = 1 -z 1 + r b t (1 -z) .
Then the clone size pgf reads

E z Ct = t 0 ds • λ s Λ t φ t-s (z) = 1 t t 0 ds • φ t-s (z) = 1 - 1 -z t t 0 ds • 1 1 + r b s (1 -z) = 1 - 1 r b t log (1 + r b t (1 -z)) → t→∞ 1 = E z C∞ , with C t d → 0.
Moreover, the global mutant population size at t pgf is

Φ t (z) = exp -νλ (1 -z) t 0 1 1 + r b s (1 -z) ds = (1 + r b t (1 -z)) -µ ,
the pgf of a (discrete-self-decomposable) negative binomial distribution with mean E (N t ) = νλt and variance σ 2 (N t ) = νλt (1 + r b t) ∼ νλr b t 2 . Summing up infinitely many (Poi(r e t)) clones of size tending to 0 gives rise to a time-dependent random limit for N t . We also have, while considering a Laplace-Stieltjes transform:

E e -pNt/(νλt) = 1 + r b t 1 -e -p/(νλt) -µ ∼ t→∞ 1 + p r b νλ -µ ,
showing that N t / (νλt) converges in law to a gamma(µ, µ) distribution with mean 1.

Remarks:

-In the critical case under study here, N t no longer converges to some limiting rv N ∞ as in the subcritical case, even though here-also the subfamilies go extinct with probability 1: ergodicity is broken by the long time it takes in the critical case to reach extinction.

-If r b → 0, Φ t (z) → e -νλt(1-z) , a Poisson(νλt) distribution.

-The * -limit:

If r b → 0, t → ∞ (or x t → ∞) while r b t ∼ r b x t /λ = κ > 0, then Φ t (z) → (1 + κ (1 -z))
-µ , a negative binomial distribution again.

4.3.1. Mean of I t . Letting I t = t 0 1 (N s = 0) ds the fraction of the time interval [0, t] free of mutants. E (I t ) = t 0 Φ s (0) ds = t 0 (1 + r b s) -µ ds = 1 r b (1 -µ) (1 + r b t) 1-µ -1 if µ = 1 = 1 r b log (1 + r b t) if µ = 1.
Three cases arises: 1) : only this constant portion of the positive real line is left uncovered by the mutants.

Proposition 14. • if r b > νλ (µ < 1): E (I t ) ∼ t→∞ 1 r µ b (1-µ) t 1-µ , a sub-linear power-law growth regime. • if r b = νλ (µ = 1): E (I t ) = 1 r b log (1 + r b t) ∼ t→∞ 1 r b log t, a logarithmic growth regime. • if r b < νλ (µ > 1): E (I t ) ∼ t→∞ 1 r b (µ-
In all cases, E (I t ) /t → t→∞ 0, quite good as well for viral attack protection.

4.3.2. Variance of I t . Putting t 2 > t 1 , with φ t1,t2 (z 1 , z 2 ) = E z Mt 1 1 z Mt 2 2 = φ t1 z 1 φ t2-t1 (z 2 ) ,
we have (see [START_REF] Parzen | Stochastic processes[END_REF], Theorem 5A, page 146)

Φ t1,t2 (z 1 , z 2 ) = E z Nt 1 1 z Nt 2 2 = exp -νλ t1 0 ds 1 -φ t1-s,t2-s (z 1 , z 2 ) + t2 t1 ds 1 -φ t2-s (z 2 ) = exp -νλ t1 0 ds 1 -φ t1-s z 1 φ t2-t1 (z 2 ) + t2 t1 ds 1 -φ t2-s (z 2 ) . Thus, if t 2 > t 1 P (N t1 = 0, N t2 = 0) = Φ t1,t2 (0, 0) = = exp -νλ t1 0 ds 1 -φ t1-s (0) + t2 t1 ds 1 -φ t2-s (0) = (1 + r b t 1 ) -µ (1 + r b (t 2 -t 1 )) -µ .
-If µ = 1, we get

E t 0 1 (N s = 0) 2 = E I 2 t = t 0 t 0 P (N t1 = 0, N t2 = 0) dt 1 dt 2 = 2 t 0 dt 1 (1 + r b t 1 ) -µ t t1 dt 2 (1 + r b (t 2 -t 1 )) -µ = 2 r b (1-µ) t 0 dt 1 (1 + r b t 1 ) -µ (1 + r b (t -t 1 )) 1-µ -1 = 2 r b (1-µ) h 1 * h 2 (t) - t 0 dt 1 h 1 (t 1 ) , the first term of which is of convolution type, defining h 1 (t) = (1 + r b t) -µ and h 2 (t) = (1 + r b t) 1-µ . If µ = 1, observing h 1 (p) = ∞ 0 e -pt h 1 (t) dt = e p/r b r b ∞ 1 dse -ps/r b s -µ = e p/r b r b Ei (µ, p/r b ) h 2 (p) = e p/r b r b Ei (µ -1, p/r b ) ,
and Ei (x, p)

∼ p→0 Γ (1 -x) p x-1 , we conclude h 1 (p) h 2 (p) ∼ p→0 Γ(1-µ)Γ(2-µ) r 2µ-1 b p 2µ-3 h 1 * h 2 (t) ∼ t→∞ Γ(1-µ)Γ(2-µ) r 2µ-1 b Γ(3-2µ) t 2-2µ . Putting B := Γ(1-µ)Γ(2-µ) Γ(3-2µ) = B (1 -µ, 2 -µ)
, a beta function, three cases arise:

Proposition 15. It holds • if r b > νλ (µ < 1): σ 2 (I t ) = E I 2 t -E (I t ) 2 ∼ t→∞ 1 r 2µ b (1-µ) 2 (2 (1 -µ) B -1) t 2(1-µ) .
The standard deviation is of the same order as the mean

E (I t ) ∼ 1 r µ b (1-µ) t 1-µ . • if r b < νλ (µ > 1, non-integer): σ 2 (I t ) ∼ t→∞ 1 r 2 b (µ-1) 2 : in this regime, I t d → t→∞ finite non-degenerate rv.
Let us finally consider the case µ = 1.

-if r b = νλ (µ = 1):

E I 2 t = 2 r b t 0 dt 1 (1 + r b t 1 ) -1 log (1 + r b (t -t 1 )) = 2 r b h 1 * h 2 (t)
which is of convolution type, defining h 1 (t) = (1 + r b t) -1 and h 2 (t) = log (1 + r b t).

We have h 1 (p) = 

σ 2 (I t ) ∼ t→∞ 2 log t r b 2 - log t r b 2 = log t r b 2 .
The standard deviation is of the same order as the mean E (I t ) ∼ 

B t2 := 1 (N t2 = 0), t 2 > t 1 > 0. With τ = t 2 -t 1 > 0, we have Cov (B t1 , B t1+τ ) = P (N t1 = 0, N t2 = 0) -P (N t1 = 0) P (N t2 = 0) = (1 + r b t 1 ) -µ (1 + r b τ ) -µ -(1 + r b (t 1 + τ )) -µ > 0.
(B t1 , B t1+τ ) are positively correlated and owing to (for each fixed t 1 )

Cov (B t1 , B t1+τ ) ∼ τ large µr -µ b t 1 (1 + r b t 1 ) -µ τ -(1+µ) ,
there is algebraic power-law decay of the covariances in the shift variable τ , which is integrable near τ = ∞. The covariances are long-ranged.

Appendix

We give here some additional details, chiefly dealing with compound Poisson rvs.

They are useful to illustrate some of the claims in the body of the text.

5.1. Generalities on compound Poisson random variables. Suppose the clone size C pgf is (q 0 = 0):

ϕ (z) = E z C = k≥1 q k z k .
We let q • = (q k ) k≥1 , q k = P (C = k). There are P θ ∼Poi θ mutations. In the large population-small mutation * -limit, the mutant population size N is q n-m σ m θ , n ≥ 1, σ 0 θ = 1.

N = P (θ)
We will show how this general setting simplifies in three situations where compound Poisson distributions arise: the Luria-Delbrück case without (and then with) mutant growth death allowed, assuming an exponentially growing sensitive population (in the * -limit) and the subcritical mutant growth case with linearly growing sensitive population. We show that in the three models, some recursive construction of the joint probability distribution for the global number of mutants and the number of mutation events is available, thereby bypassing the inextricable Bell polynomials combinatorics normally at stake and allowing to compute in a simple recursive way P (N = n, P = p).

5.2.

The Luria-Delbrück case with mutant growth avoiding death ( * -limit).

In the * -limit we saw that the asymptotic number of mutants is in the compound-Poisson class with θ = θ/α and ϕ (z) the Simon pgf. Because the classical Simon pgf for clone size ϕ (z) = αz α+1 F (1, 1; α + 1; z) =: F S (z) obeys the non-autonomous first-order linear differential equation with a source term (see (6.1) of [START_REF] Oshima | An Elementary Approach to the Gauss Hypergeometric Function[END_REF])

ϕ (z) = α 1 1 -z - ϕ (z) z (1 -z) ,
we get

Ψ (z) = αθ 1-z -αθϕ(z) z(1-z) Ψ (z) = αθ 1-z Ψ (z) -αθ z(1-z) Ψ θ (z) , or: z (1 -z) Ψ (z) = αθzΨ (z) -αθΨ θ (z) .
This leads to the nested system of non-autonomous first-order linear differential equations allowing to compute σ n θ with σ n-1 θ serving as a source term:

θσ n θ + n α σ n θ = σ n-1 θ θ + n-1 α or σ n θ = -n θα σ n θ + σ n-1 θ 1 + n-1 αθ ,
with boundary conditions: σ 0 θ = 1 and σ n (0) = 0 for each n ≥ 1. This also leads to the three-term recurrence:

(36) p + n α B n,p = B n-1,p-1 + n-1 α B n-1,p or p + n α P (N = n, P = p) = θP (N = n -1, P = p -1) + n-1 α P (N = n -1, P = p)
with appropriate boundary conditions following from the ones of the lower-triangular array B n,p . Because of the specificity of ϕ, the three-term recurrence for B n,p is a much simpler recursive way to compute B n,p than its full intricate combinatorial expression [START_REF] Takács | An Introduction to queueing theory[END_REF] in the general case. When α = 1, the recurrence for B n,p (in fact for the 'exponential' Bell numbers B n,p = p! B n,p ) was first observed in (9) of [START_REF] Lea | The distribution of the numbers of mutants in bacterial populations[END_REF].

As consequences of ( 36) and (33):

-Putting p = n in the recurrence [START_REF] Ycart | Fluctuation analysis with cell deaths[END_REF] for B n,n , n + n α B n,n = B n,n-1 , leading to

B n,n = 1 n! α α + 1 n = 1 n! q n
where q 1 = [z] αz α+1 F (1, 1; α + 1; z) = α/ (α + 1). -Putting p = 1, B n,1 = q n = αB (n, α + 1) where q n obeys, as required, the Simon two-term recurrence:

1 + n α q n = n -1 α q n-1 , q 1 = α α + 1 .
-Large n asymptotics of P n = (P | N = n): In the present situation, we have σ n θ = e θ p n , with

p n = [z n ]e -θ(1-F S (z)) = αΓ (1 + α) θn -(α+1) -θ 2 O n -(2α+1) if α < 1 = αΓ (1 + α) θn -(α+1) -θ 2 O n -(α+2) if α ≥ 1.
The Poisson pgf e -θ(1-z) being entire, the compound pgf e -θ(1-z) α has the same algebraic singularity than F S (z) at z = 1 with corresponding leading order terms. If α < 1, using [START_REF] Tavaré | The Ewens sampling formula[END_REF], this leads to

E u Pn = uθe θu n -(α+1) -θu 2 e θu O n -(2α+1) θe θ n -(α+1) -θ 2 e θ O n -(2α+2) = ue -θ(1-u) -θu 2 e -θ(1-u) O (n -α ) 1 -θO (n -α ) = ue -θ(1-u) + θ u -u 2 e -θ(1-u) O n -α ,
showing that P n d → n→∞ 1+Poi θ at rate n -α . As n gets large, only a finite (shifted) Poissonian number of mutations explains the n observed mutants. If α ≥ 1, the same result holds but, proceeding similarly, the rate at which P n approaches its limit 1+Poi θ is n -1 , so faster than n -α obtained when α < 1. This proves (iii) of Proposition 6.

5.3.

The supercritical Luria-Delbrück case with mutant growth including death ( * -limit). Here, we obtained

ϕ (z) = 1 -F (ζ) /F (ρ) , ζ = (z -ρ) / (z -1) , F (ζ) = 1 -F S (η) , η = ζ/ (ζ -1) = (z -ρ) / (1 -ρ) ,
and θ = F (ρ) θ/α. We have

ϕ (z) = F S (η) (1-ρ)F (ρ) , where F S (η) = α 1 1-η -F S (η) η(1-η) . Thus, ϕ (z) = α (1-ρ)F (ρ) 1 1-η -1-F (ρ)(1-ϕ(z)) η(1-η) or, with ρ = 1 -ρ (37) F (ρ) (1 -z) (z -ρ) ϕ (z) = -αF (ρ) ρϕ (z) + αz + α [F (ρ) ρ -1]
leading to

F (ρ) (1 -z) (z -ρ) Ψ (z) = -αF (ρ) ρθΨ θ (z) + θ (αz + α [F (ρ) ρ -1]) Ψ (z) .
This leads to the relationship between σ n θ , σ n+1 θ , σ n θ and σ n-1 θ :

αθF (ρ) ρσ n θ = F (ρ) ρ (n + 1) σ n+1 θ + αθ [F (ρ) ρ -1] -n (ρ + 1) F (ρ) σ n θ + (n -1) F (ρ) + αθ σ n-1 θ .
with boundary conditions: σ 0 θ = 1 and σ n (0) = 0 for each n ≥ 1. This leads to the five-term recurrence for B n,p (and thus for P (N = n, P = p) = e -θ θ p B n,p ):

(38) F (ρ) ρ (n + 1) B n+1,p = (pαF (ρ) ρ + n (ρ + 1) F (ρ)) B n,p +α [1 -F (ρ) ρ] B n,p-1 -(n -1) F (ρ) B n-1,p -α B n-1,p-1 ,
showing how to recursively compute B n+1,p from the four previous terms B n,p , B n,p-1 , B n-1,p and B n-1,p-1 . Recalling P (N = n, P = p) = e -θ θ p B n,p , (38) gives a five-term recurrence for P n,p := P (N = n, P = p) itself:

(39)

F (ρ) ρ (n + 1) P n+1,p = (pαF (ρ) ρ + n (ρ + 1) F (ρ)) P n,p +αθ [1 -F (ρ) ρ] P n,p-1 -(n -1) F (ρ) P n-1,p -αθP n-1,p-1 .
Remarks:

-Putting p = n+1 in the last recurrence, F (ρ) ρ (n + 1) B n+1,n+1 = α [1 -F (ρ) ρ] B n,n , leading to B n,n = 1 n! α [1 -F (ρ) ρ] F (ρ) ρ n = 1 n! q n 1
where q 1 = [z] ϕ (z) = ϕ (0), as can be checked from the differential equation ( 37) which ϕ satisfies.

-Putting p = 1, B n,1 = q n and q n obeys the three-term recurrence (q 0 = 0):

(40) ρ (n + 1) q n+1 = (αρ + n (ρ + 1)) q n -(n -1) q n-1 , n ≥ 1
whose solution is (see [START_REF] Kessler | Scaling Solution in the Large Population Limit of the General Asymmetric Stochastic Luria-Delbrück Evolution Process[END_REF] of [START_REF] Iwasa | Evolution of resistance during clonal expansion[END_REF] after a use of the integral representation of a Gauss hypergeometric function):

q n = αB (n, α + 1) ρF (n + 1, α; n + α + 1; ρ) /Z, n ≥ 1 and Z = 1 0 1 -ρz 1/α dz. There is a multiplicative slowly-varying correcting term to the Simon probability αB (n, α + 1) (obtained when ρ = 0) and it can be checked that as n gets large, q n = O n -(1+α) , still with the Simon heavy tails feature. What is new and useful here is that q n can be recursively computed from q 1 . 5.4. The subcritical case (r < 0) of the linearly growing sensitive population ( * -limit). In this case, it was found that (with κ = -r b r > 0, µ := νλ/r b ), in the * -limit, the global mutant population size pgf is

Φ ∞ (z) =: Φ (z) = 1 - r b r (1 -z) -νλ/r b = (1 + κ (1 -z)) -µ ,
the one of a negative binomial distribution. We have

Φ (z) = e -µ log(1+κ(1-z)) = e -µ log(1+κ)(1-(1-log(1+κ(1-z)) log(1+κ)
))

which is of the compound Poisson form e -θ(1-ϕ(z)) = e -θ Ψ (z) provided (putting

a := κ 1+κ ∈ (0, 1)) θ = µ log (1 + κ) > 0 ϕ (z) = log 1-a (1 -az) and Ψ (z) = (1 -az) -θ/(-log(1-a)) .
ϕ (z) is the pgf of a logarithmic-series distribution with q m = 1 m(-log(1-a)) a m , m ≥ 1, [START_REF] Kendall | On some modes of population growth leading to R.A. Fisher's logarithmic distribution[END_REF].

Owing to q m+1 /q m = (am) / (m + 1), from [START_REF] Van Harn | Self-decomposable discrete distributions and branching processes[END_REF] (n + 1)

σ n+1 θ = θ n m=0 (n -m + 1) q n-m+1 σ m θ = θ q 1 σ n θ + a n-1 m=0 (n -m) q n-m σ m θ = an + q 1 θ σ n θ , leading to a three-term recurrence (n + 1) B n+1,p (q • ) = an B n,p (q • ) + q 1 B n,p-1 (q • ) .
In this case, with [α] n := α (α + 1) ... (α + n -1) 

p n = e -θ θ/ (-log (1 -a)) n n! a n σ n θ = [z n ] Ψ (z) = θ/ (-log (1 -a)) n n! a n B n,p (q • ) = θ p σ n θ = 1 p! [z n ] ϕ (z) p .

It is known that

P (P = p, N = n) = e -θ θ p a n n! |s n,p | (-log (1 -a)) p P (P = p | N = n) = θ/ (-log (1 -a)) p |s n,p | (-log (1 -a)) p θ/ (-log (1 -a)) n P (N = n | P = p) = p!a n n! |s n,p | (-log (1 -a))
p , independent of θ.

Observing µ := θ/ (-log (1 -a)) > 0, P (P = p | N = n) = µ p |sn,p| [µ] n
. This is also the probability that p distinct species are being visited when taking an uniform n-sample from the Poisson-Dirichlet(µ) partition of the unit interval representing species abundances with infinitely many species. This matches with the Ewens sampling formula arising in population genetics, (see [START_REF] Tavaré | The Ewens sampling formula[END_REF] and specifically formula [START_REF] Harris | The theory of branching processes[END_REF] in [START_REF] Huillet | Sampling from Dirichlet partitions: estimating the number of species[END_REF] for example). Let P n be the number of mutations explaining a terminal mutant population size N = n. Using the above analogy with the Ewens sampling formula, it follows that:

P (P n+1 = p + 1 | P n = p) = µ µ + n and P (P n+1 = p | P n = p) = n µ + n ,
giving the probability that a new mutation occurred (the transition p → p + 1) or not (the transition p → p) when observing one more terminal mutant (the transition n → n + 1), see [START_REF] Huillet | Sampling from Dirichlet partitions: estimating the number of species[END_REF], and P n log n a.s. → n→∞ µ, see [START_REF] Korwar | Contributions to the theory of Dirichlet processes[END_REF]. P n has a time-inhomogeneous random walk structure with independent Bernoulli(µ/ (µ + n)) increments. As a result, both E (P n ) , σ 2 (P n ) ∼ n→∞ µ log n and (P n -µ log n) /σ (P n ) has a limiting Gaussian distribution.

Remark : Similar conclusions hold when dealing with the linearly growing sensitive population with either supercritical or critical mutant growth (r ≥ 0) but in the * -limit with limiting negative-binomial distributions. 5.5. Discrete self-decomposability and unimodality. We here briefly address the notions of discrete self-decomposability which have been met previously. 5.5.1. Discrete additive self-decomposability. Let now N ≥ 0 be an integervalued random variable. There exists a discrete version of the notion of selfdecomposability [START_REF] Steutel | Discrete analogues of self-decomposability and stability[END_REF].

The pgf Φ (z) := Ez N is the one of a discrete self-decomposable variable N if for any c ∈ (0, 1), there is a pgf Φ c (z) (depending on c) such that

Φ (z) = Φ (1 -c (1 -z)) • Φ c (z)
This is the standard (discrete) version of self-decomposability of probability distributions on the integers, through a functional equation. We then have the characterization property:

It follows from the definition of self-decomposable distributions that if Φ (z) is the pgf of the random variable N , then N can be additively decomposed as

N d = c • N + N c
where the c-thinned random variable c • N , for c ∈ (0, 1] , is defined above. N and N have the same distribution and c • N is independent of the remaining random variable N c whose pgf is Φ c (z) .

Observing that for any two real numbers c 1 and c 2 of (0 

, 1], c 1 •(c 2 • N ) = (c 1 • c 2 )• N ,
(z) = Φ Nc (1 -c m (1 -z)) .
Discrete self-decomposable random variables are thus obtained as limits in law for sums of independent scaled discrete random variables.

A slightly different way to see this is as follows. Consider the discrete-time integralvalued Ornstein-Uhlenbeck process N (n + 1) = c • N (n) + N c (n + 1) , N (0) random, where (N c (n) ; n ≥ 1) is an iid driving sequence, each distributed like N c . Then N (n) is a discrete perpetuity [START_REF] Vervaat | On a stochastic difference equation and a representation of non-negative infinitely divisible random variables[END_REF], clearly with

N (n) = c n • N (0) + n m=1 c n-m • N c (m) d → N d = ∞ m=0 N m as n → ∞.
In such models typically, a population whose fate is to die out predictably at shrinking rate c is regenerated by the incoming of immigrants in random number. The following representation result is also known to hold true ( [START_REF] Steutel | Discrete analogues of self-decomposability and stability[END_REF], Theorem 4.8):

The random variable N is discrete self-decomposable if and only if, with R (z) the canonical function, defined through Φ (z) = e where R 0 (z) = h (z) absolutely monotone. This also means that the coefficients r k := z k R (z), k ≥ 0, constitute a non-increasing sequence of k, ( [START_REF] Steutel | Discrete analogues of self-decomposability and stability[END_REF], Theorem 4.13). As a result, the associated probability system P (N = n) := p n , n ≥ 0 is nonincreasing and unimodal with mode at the origin if and only if r 0 = z 0 R (z) = p1 p0 ≤ 1, (see [START_REF] Steutel | Discrete analogues of self-decomposability and stability[END_REF], Theorem 4.20). The self-decomposable (SD) subclass of infinitely divisible distributions therefore focuses on unimodal distributions, with mode possibly at the origin, possibly non-unique if r 0 = 1.

Let us see some of the consequences of these facts in our problems.

5.5.2. The Luria-Delbrück case without mutant death. With θ = θ/α, considering Φ (z) = e -θ(1-ϕ(z)) where ϕ (z) = F S (z) = αz α+1 F (1, 1; α + 2; z), and recalling ϕ (z) = α 1 1-z -ϕ(z) z(1-z) , with q k = αB (k, α + 1), we have R (z) = θϕ (z) leading to h (z) = 1 -(1 -z) R (z) = 1 -αθ + αθF (1, 1; α + 2; z) = 1 -αθ + αθ k≥0 q k+1 z k , with h 0 = 1 -αθ (1 -q 1 ) = 1 -θ/ (α + 1) and h k = z k h (z) = αθq k+1 if k ≥ 1 and h (1) = 1. The sequence r 0,k := z k R 0 (z) = (k + 1) h k+1 , k ≥ 0, is always non-negative; R 0 (z) is thus absolutely monotone and N is self-decomposable and thus unimodal. We have p 0 = e -θ , p 1 = e -θ θ α α+1 and thus r 0 = θ/ (α + 1) ≤ 1. So N is always self-decomposable and it has at most two contiguous modes, one of which at the origin if and only if θ ≤ α + 1. 5.5.3. The Luria-Delbrück case with mutant death. With θ = θ/α, considering Φ (z) = e -θ(1-ϕ(z)) with ϕ (z) = F S (η), η = (z -ρ) / (1 -ρ), we can proceed similarly now using [START_REF] Yule | A Mathematical Theory of Evolution, Based on the Conclusions of Dr[END_REF]. We have p 0 = e -θ(1-F S (-ρ/(1-ρ))) = e -θF (ρ) , p 1 = p 0 θF S (-ρ/ (1 -ρ)) / (1 -ρ) and thus r 0 = θF S (-ρ/ (1 -ρ)) / (1 -ρ) . The rv N is self-decomposable and it has at most two contiguous modes, one of which at the origin if and only if θ ≤ α (1 -ρ) /F S (-ρ/ (1 -ρ)). The previous case is recovered if ρ = 0 (F S (0) = α/ (α + 1)). 5.5.4. The negative binomial case. Considering Φ (z) = (1 + κ (1 -z))

-µ , we have

R (z) = κµ 1 + κ (1 -z)
, and h (z) = 1 -(1 -z) R (z)

obeys h 0 = 1 -κµ 1+κ , h 1 = κµ (1+κ) 2 and h k = z k h (z) = µ 1+κ κ 1+κ k if k ≥ 2
with h (1) = 1. The sequence r 0,k := z k R 0 (z) = (k + 1) h k+1 , k ≥ 0, is always non-negative and R 0 (z) is absolutely monotone and N is self-decomposable and thus unimodal. We have p 0 = (1 + κ)

-µ , p 1 = κµ (1 + κ) -(µ+1) and thus r 0 = κµ/ (1 + κ) ≤ 1. So N is self-decomposable and it has at most two contiguous modes, one of which at the origin, if and only if µ ≤ (1 + κ) /κ. Remark : In the three cases just discussed, when N has its mode(s) by the origin, not only R 0 (z) = h (z) is absolutely monotone but also h (z) is absolutely monotone and it is a pgf. 5.5.5. Self-decomposable rvs and pure-death branching processes with immigration. We now show that the three self-decomposable models just discussed (when they have mode(s) by the origin) have an equivalent interpretation in terms of a continuous-time branching process with immigration producing special selfdecomposable rvs as time goes to ∞, [START_REF] Van Harn | Self-decomposable discrete distributions and branching processes[END_REF].

Consider a continuous-time homogeneous compound Poisson process P θ (t) , t ≥ 0, P θ (0) = 0, so with pgf E 0 z P θ (t) = exp -θt (1 -h (z)) , where h (z) (with h (0) = 0) is the pgf of the sizes of the batches arriving at the jump times of P θ (t) having rate θ > 0. Let now φ t (z) = 1 -e -t (1 -z) , be the pgf of a pure-death branching process started with one particle at t = 0. The lifetime of the initial particle is thus larger (smaller) than t with probability e -t (respectively 1-e -t ). Let N t with N 0 = 0 be a random process counting the current size of some population for which a random number of individuals (determined by h (z)) immigrate at the jump times of P θ (t) , each of which being independently and immediately subject to the latter pure death process. We thus have Φ t (z) := E z Nt = exp -θ t 0 (1 -h (φ s (z))) ds, Φ 0 (z) = 1, with Φ t (0) = P (N t = 0) = exp -θ t 0 (1 -h (1 -e -s )) ds, the probability that the population is extinct at t. As t → ∞, Φ t (z) → Φ ∞ (z) = e -θ ∞ 0 (1-h(1-e -s (1-z)))ds = e -θ 1 z 1-h(x)

1-x dx .

So, N := N ∞ , as the limiting population size of this pure-death process with immigration, is a self-decomposable rv because R 0 (z) = h (z) is absolutely monotone, [START_REF] Van Harn | Self-decomposable discrete distributions and branching processes[END_REF]. With N d = c • N + N c defining the rv N c , we have that

Φ Nc (z) = Φ ∞ (z) Φ ∞ (1 -c (1 -z)) = e -θ 1-c(1-z) z 1-h(u)
1-u du is a pgf.

Note also that in this construction, h (z) is itself absolutely monotone as a pgf (the one of the immigrants): N has its mode(s) at the origin.

In such models typically, a subcritical population whose fate is to die out (along the stochastic pure-death process striking each individual alive) is regenerated by the incoming of immigrants at random times and in random number. Both in discrete or continuous time, the occurrence of a self-decomposable limit law (with mode(s) at the origin) is related to a competition between a pure-death mechanism which tends to shrink the population size at a constant rate, against another input immigration mechanism which tends to have it increased.

3. 3 .

 3 The pure birth case. If π 0 = 0 (pure birth Yule-Furry process with r = r b ) then ρ = 0 (no extinction possible), ζ = z/ (z -1) and

  z) e λt t 0 ds • e -s(λ-r)1-ξe rs = exp νλ r r b e λt k≥0 ξ k+1 t 0 ds • e -s(λ-r(k+1)) = exp νλ r r b e λt k≥1 ξ k t 0 ds • e -s(λ-rk) = exp νλ rr b k≥1 ξ k λ-rk e λt -e rkt = exp -νλ r b k≥1 ξ k α+k e λt -e rkt . Letting F (ξ) = F (1, α; 1 + α; ξ) = 1 + α k≥1 ξ k α+k , recalling µ = ν λ r b and r < 0 and observing ξ (z = 0) = ρ * , Φ t (z) = exp -µ α e λt F (ξ) -F ξe tr .

  with long Pareto tails and almost sure extinction as well (ρ = 1). The pgf of the global number of mutants is (30) Φ t (z) = exp -νλ (1 -z) t 0 ds • e λs 1+r b (t-s)(1-z) = exp -νλ (1 -z) e λt t 0 ds • e -λs 1+r b s(1-z) = exp -νλ (1 -z) e λ/(r b (1-z)) e λt 1+r b t(1-z) 1 du • e -λu/(r b (1-z))

Proposition 10 . 1 r

 101 • if r b = νλ (µ = 1): E (I t ) ∼ t→∞ 1 µr r b r -µ : only this constant portion of the positive real line is left uncovered by the mutants. • if r b = νλ (µ = 1): E (I t ) = 1 r d log u-d log r r b : only this constant portion of the positive real line is left uncovered by the mutants as well.

t→∞ e -νλa where a := ∞ 0 ( 1 -

 01 G (s)) ds = log (1 -r b /r) /r b and by Tauberian theorem pA (p) → p→0 e -νλa = (1 -r b /r) -µ . Thus φ T (p) ∼ p→0 1 -p e νλa νλ ,

t→∞ 1 r b log t as well. 4 . 3 . 3 .

 1433 Covariance of the vacancy process. Consider the vacancy process {B t } := {1 (N t = 0) ; t ≥ 0} . The rvs B t1 := 1 (N t1 = 0) and

  random variable. Then,Φ (z) = E z N = e -θ(1-ϕ(z)) = e -θ Ψ (z) . And Ψ (z) = e θϕ(z) = 1 + n≥1 σ n θ z n obeysshowing how to compute p n+1 in terms of p m , m = 0, .., n. Similarly, since Ψ θ (z) = ϕ (z) Ψ (z), we also find:

  [α] n = n p=1 |s n,p | α p where |s n,p | = (-1) n+p s n,p are the absolute (unsigned) Stirling numbers of the first kind Stirling numbers s n,p (obeying a threeterm recurrence). We obtain B n,p = a n n! |sn,p| (-log(1-a)) p and:

=

  and that the following convergence in law to zero holds c n • N c m • N c are independent random variables with pgfs: Φ Nm

1 z 1

 11 -1 z R(x)dx , the derivative h (z) =: R 0 (z) of the function h (z) := 1 -(1 -z) R (z) is absolutely monotone. R 0 (z) is called the second canonical function. As a consequence, N is discrete self-decomposable if and only if its pgf is of the form Φ (z) = e -

  1 r b e p/r b Ei (p/r b ) and h 2 (p) = 1 p e p/r b Ei (p/r b ). Using Ei (p) ∼

			p→0 +
	γ + log p where γ is the Euler constant, h 1 (p) h 2 (p) ∼ p→0 +	1 pr b (log p)	2 , leading, by
	Laplace inversion, to		
	Proposition 16. If µ = 1,		
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Ψ (z) =: ∂ z Ψ (z) = θϕ (z) Ψ (z) and Ψ θ (z) =: ∂ θ Ψ (z) = ϕ (z) Ψ (z) .

In the development of Ψ (z), σ n θ is a degree-n polynomial in θ whose θ p coefficient is B n,p (q • ) which is known as the 'ordinary' Bell polynomial in the variables q • (see [START_REF] Comtet | Analyse combinatoire. Tomes 1 et 2[END_REF]). Then,

q mr ≥ 0.

In the latter sum, summation runs over m p := (m 1 , ..., m p ) ∈ N p , with |m p | := p r=1 m r = n and N := {1, 2, ...}; there are n-1 p-1 terms in such sums, p ≤ n. Recalling the boundary conditions

We also have

and therefore, the joint probability of the number of mutations and the number of mutants reads P (N = n, P = p) = e -θ θ p B n,p .

It can be checked that: Concerning the conditional rvs P n := (P | N = n) and N p := (N | P = p)

Therefore, from the definition of σ n θ and from ( 31), [START_REF] Tavaré | The Ewens sampling formula[END_REF] E u Pn = σ n uθ σ n θ and E z Np = ϕ (z) p are the pgfs of P n and N p , respectively. In particular N p is obtained as the sum of p iid rvs with common pgf ϕ (z).

Since Ψ (z) = θϕ (z) Ψ (z), we get in general the recurrence:

(34) σ n+1 θ = θ n+1 n m=0 (n -m + 1) q n-m+1 σ m θ , n ≥ 0, σ 0 θ ≡ 1 or p n+1 = θ n+1 n m=0 (n -m + 1) q n-m+1 p m , n ≥ 0, p 0 θ = e -θ ,