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Abstract. This work deals with the development and calibration of an epidemic model to
describe the 2016 outbreak of Zika virus in Brazil. A mathematical model with 8 differential
equations and 7 parameters is employed. Nominal values for the model parameters are
estimated from the literature. An inverse problem associated to the model identification
is formulated and solved. The calibrated model obtained presents realistic parameters and
returns reasonable predictions, with the curve shape similar to the outbreak evolution and
peak value close to the maximum number of new cases of infected people during 2016.
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1 Introduction

The Zika fever is an infectious disease caused by a homonymous flavivirus that has
surged in the last two decades as multiple epidemics around the world. The widespread
outbreaks of this vector-borne malady have been an international concern specially due
to a suggested association with newborn microcephaly and Guillain-Barré syndrome. The
Brazilian Ministry of Health confirmed 130,701 cases in Brazil by the end of 2016 [14].

The development of control and prevention strategies for the mass infection is a critical
issue. A mathematical model able to predict the number of infected people during the
virus outbreak is an useful tool, which can be employed to identify effective and vulnerable
aspects on disease control programs. This work is one of the results in a rigorous ongoing
process of identification and validation of representative models to describe Zika virus
outbreaks in a Brazilian context [3,4], and aims to calibrate a SEIR (susceptible - exposed
- infected - recovered) epidemic model with real data of the 2016 outbreak.
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2 Epidemic model for Zika virus dynamics

2.1 Model description

This work utilizes a variant of the Ross-Macdonald model for epidemic predictions,
separating the populations into a SEIR framework: susceptible S(t), those who are un-
contaminated and are able to become infected; exposed E(t), anyone that is carrying the
pathogen but is still incapable of transmitting the disease; infectious I(t), can spread the
pathogen and may display symptoms; and the recovered group R(t), which contains who-
ever is no longer infected. The following nonlinear system of ordinary differential equations
governs the evolution of individuals through the SEIR groups.

dSh/dt = −βh Sh Iv , (1)

dEh/dt = βh Sh Iv − αhEh , (2)

dIh/dt = αhEh − γ Ih , (3)

dRh/dt = γ Ih , (4)

dSv/dt = δ − βv Sv Ih/N − δ Sv , (5)

dEv/dt = βv Sv Ih/N − (αv + δ)Ev , (6)

dIv/dt = αv Ev − δ Iv , (7)

dC/dt = αhEh , (8)

where the h-groups amass the number of humans at each stage of the model and the v-
groups signifies proportion of vectors; N is the total human population; 1/γ, the time that
a human is infectious; 1/δ, the vector lifespan; βh, the vector-to-human transmission rate
and βv the human-to-vector; 1/α is the time interval an individual spends on Eh (adopted
hereafter as equivalent to the time between being infected and exhibiting symptoms), h
for human’s and v for vector’s; and C(t) is the cumulative number of infectious people.

Additionally, one defines a set of 52 points to represent the number of new infectious
cases of Zika fever at each week as follows:

NewCases(1) = C1 , NewCases(w) = Cw − Cw−1 , w = 2 , 3 , 4 , . . . , 52 , (9)

where Cw refers to the cumulative number of infectious for the w week.

All susceptible individuals are treated as equally capable of being infected and the
recovered ones as completely immunized. Human demographical changes are not consid-
ered, and the vector population is maintained constant although variations on each vector
SEIR compartment are introduced via the δ rate. The vector is regarded as a hypotheti-
cal mosquito apt to being infected or infectious throughout all its lifetime and unable to
recover.
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2.2 Nominal system response

The nominal values for the parameters of Eqs. (1)–(8) come from the related literature
concerning the infection, the Aedes aegypti mosquito, and vector-borne epidemic models.
Brazil had around N = 206 × 106 people by July, 2016 [8]. The 1/αv is 15 days [1]; this
value agrees with statistical confidence intervals (CI) presented in other works (95% CI:
4.4–17) [7]. A systematic review of the literature [10] suggests that 95% of people infected
by the Zika virus who develop symptoms will do so within 11.2 days of infection (95%
CI: 7.6–18.0) and will have no detectable virus in the blood by 18.9 days after infection
(95% CI: 13.6–79.4). The value 1/αh = 11.2 is compatible with the range of 3–12 days
recommended in multiple sources [9,15], and thus the chosen 1/γ is 18.9−11.2 = 7.7 days.
As for 1/δ, “the adult stage of the mosquito is considered to last an average of 11 days in
the urban environment” [12], also consistent with biological studies about the species [11]
and usual life expectancy for the vector in Rio de Janeiro [6]. Finally, 1/βh and 1/βv have
been estimated in the literature [5] as an average of 11.3 days (95% CI: 8.0–16.3) and 8.6
days (95% CI: 6.2-11.6), respectively.

Proper evaluation of the dynamic system underlying the SEIR epidemic model requires
setting the initial conditions (IC). The initial time of the analysis was established as the
first epidemiological week (EW) of 2016. The following are the preliminary assumptions
considered in this analysis. Sh,i = N −Eh,i− Ih,i−Rh,i , Sv,i = 1 , Eh,i = Ih,i , Ev,i = Iv,i ,
Ci = Ih,i , and Rh,i = 0 . The value of Ih,i is taken as 8,201, corresponding to the
number of Zika fever new probable cases in Brazil on the first EW of 2016 [13]. As for
Iv,i, repetitive manual estimations were tried until the resulted time series of NewCases
presented reasonable values compared to the real data. It became clear that the system
response is very sensible to Iv,i , as slight variations in its value are required to achieve
feasible results. In the process of choosing Iv,i , the matching of the NewCases top value
to the amplitude of infection is also a priority, since this is the main interest region for
evaluation of the outbreak.
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Figure 1: Model-predicted NewCases(w) and number of new probable cases in each EW [13].

Viable NewCases time series with the nominal parameters were possible around Iv,i =
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3.5 × 10−4. Figure 1 presents such configuration on an epidemiological week temporal
domain, compared with real data of the outbreak [13] depicted by the red dots.

The given NewCases model prediction clearly does not fit the infection numbers at
their right time. Nevertheless, the general shape of NewCases do provide qualitative
information about the evolution of the infection, as well as predictions for the peak value
in the same order of magnitude than that of the empirical data and its time of occurrence
with a four weeks error. This qualitative agreement suggests that the model predictions
may be closer to the reference values if more accurate parameter values were used.

3 Calibration of the epidemic model

3.1 Calibration method and numerical experiments

Given initial conditions and a set of parameters, represented by the pair α = (x0,p),
it is possible to compute by means of numerical integration the model response x(t) of
the continuous-time dynamical system of section 2, from which a scalar observable φ(α, t)
is obtained. In this manner, the calibration of the model consists in finding a set of
parameters and initial conditions α∗ such that

α∗ = arg min
α

f(α) = arg min
α


M∑
n=1

∣∣∣yn − φ (α, tn)
∣∣∣2
 , (10)

where y1, y2, . . . , yM are M system observations (reference data) assigned to the {tn}Mn=1

time instants. This is the associated inverse problem.
The Trust-Region-Reflective method (TTR) is employed here to numerically approxi-

mate a solution for the inverse problem. Constraining α by a lower and upper bound, i.e.
lb ≤ α ≤ ub, the main idea of the method is to minimize a simpler function ϕ that reflects
the behavior of f(α) in a neighborhood (trust-region) around α. The simpler function is
defined as dependent on the trial step s, characterizing the Trust-Region subproblem, and
its computation is optimized by restricting the subproblem to a two-dimensional subspace.
The subspace is linear spanned by a multiple of the gradient g and (in the bounded case)
a vector obtained in a scaled modified Newton step, used for the convergence condition
D(α)−2 g(α) = 0, where D is a diagonal matrix that depends on α, g, lb, and ub [2].
Finally, the trial step is found through the subproblem as

s = arg min
s

ϕ(s) = arg min
s

{
1

2
sTQs + gTs | ||D s||2 ≤ ∆

}
, (11)

where Q is a matrix involving a approximation of the Hessian matrix, D and a jacobian
matrix that also depends on α, g, lb, and ub; ∆ is a scalar associated with the trust
region size [2].

After optimize (11), if f(α + s) < f(α) then α is updated to α + s and the process
iterates, otherwise ∆ is decreased. In addition, a reflection step also occurs if a given step
intersects a bound: the reflected step is equal to the original step except in the intersecting
dimension, where it assumes the opposite value after reflection.
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The adopted α for the SEIR model calibration in this work includes all system param-
eters and IC, excepting N , Rh,i and Ci, which were kept fixed in their values of section 2.2.

3.2 Calibration results

Figure 2 presents the best result for the NewCases system response fitting problem
using the nominal parameters and IC from section 2.2 as initial guesses for the TRR. The
upper and lower bounds used for the parameters were set compatible with the literature
suggested intervals. The minimum for Sh,i and Sv,i were 0.9N and 0.9, to establish a high
number of susceptible individuals, as is expected for the beginning of a outbreak. Ev,i and
Iv,i were restricted between zero and one, while Eh,i and Ih,i were bounded to a maximum
of 100Ci. The resulting values that generate the time series are displayed in Table 1.
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Figure 2: Calibrated NewCases(w) from Table 1 and new probable cases in each EW.

It is clear in Figure 2 that the NewCases system response is a reasonable prediction
of the outbreak: the general shape of the infection evolution is attained, the peak value
differs from the empirical data maximum only by 6.9% and are in the same week, and all
parameters are within realistic possibilities. However, improvements can be made on the
simulation perspective of the analysis, since Ih,i = 324,753 individuals is a high estimation.

Another result to the inverse problem is presented in Figure 3, considering again
the fitting of the NewCases. This time, after defining Sumh = Sh,i + Eh,i + Ih,i and
Sumv = Sv,i + Ev,i + Iv,i, another two data points are provided for the TRR algorithm:
Sumh = N − Rh,i and Sumv = 1. Thus, this setup of the method tries to ensure the
compartmentalization hypothesis stays true through the TRR choosing of α. The upper
bound of Ih,i was diminished to 20, 000 individuals and the Sv,i lower limit set to 0.99.
The resulting values that generate this second calibrated time series are in Table 2.

The NewCases system response in Figure 3 is still a reasonable prediction of the gen-
eral shape and numbers of the outbreak, even though it is less accurate than Figure 2 on
a fitting criteria (for comparison, the peak and data maximum differ by 10.6%). Never-
theless, significance of this result resides on a completely reasonable set of parameters and
initial conditions: 99.98% of the human population and 99.94% of the vectors are withing
the compartmentalization hypothesis of the model, and the value of Ih,i is close to Ci.
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Table 1: TRR results for Figure 2. Parameters: days. Human IC: individuals.

β−1
h = 16.3 α−1

h = 12.0 γ−1 = 12.0 β−1
v = 11.6 α−1

v = 15.0 δ−1 = 15.27

Sh,i Eh,i Ih,i Sv,i Ev,i Iv,i
185.4× 106 16,664 324,753 0.9 2.22× 10−14 2.22× 10−14

10 20 30 40 50
 0.0

 0.6

 1.3

 1.9

 2.5

epidemiological week

n
e

w
 c

a
s
e

s

 

 
×10

4

data
model

Figure 3: Calibrated NewCases(w) from Table 2 and new probable cases in each EW.

Table 2: TRR results for Figure 2. Parameters: days. Human IC: individuals.

β−1
h = 9.9 α−1

h = 12.0 γ−1 = 4.0 β−1
v = 11.6 α−1

v = 12.0 δ−1 = 22.0

Sh,i Eh,i Ih,i Sv,i Ev,i Iv,i
205.9× 106 7,859 20,000 0.998 4.05× 10−4 2.49× 10−14

4 Final remarks

A SEIR epidemic model to describe the dynamics of the 2016 Zika virus outbreak in
Brazil is developed and calibrated in this work. Nominal parameter quantities are selected
from the related literature. The calibration is done through the solution of an inverse
problem with a Trust-Region-Reflective method, used to pick the best parameter and IC
values that would fit the model prediction for the number of “new infectious cases per
week” into the disease’s empirical data. Results within realistic values for the parameters
are presented, stating reasonable predictions with the curve shape similar to the outbreak
evolution and proximity between the estimated peak value and data for maximum number.
A second result also including suitable IC is achieved with a less accurate fitting.
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