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Abstract This work deals with the solution of a non-

convex optimization problem to enhance the perfor-

mance of an energy harvesting device, which involves

a nonlinear objective function and a discontinuous con-

straint. This optimization problem, which seeks to find

a suitable configuration of parameters that maximize

the electrical power recovered by a bistable energy har-

vesting system, is formulated in terms of the dynamical

system response and a binary classifier obtained from

0-1 test for chaos. A stochastic solution strategy that

combines penalization and the cross-entropy method is

proposed and numerically tested. Computational ex-

periments are conducted to address the performance

of the proposed optimization approach by comparison

with a reference solution, obtained via an exhaustive

search in a refined numerical mesh. The obtained re-
sults illustrate the effectiveness and robustness of the

cross-entropy optimization strategy, showing that the

proposed framework may be a very useful and powerful

tool to solve optimization problems involving nonlinear

energy harvesting dynamical systems.

Keywords energy harvesting · nonlinear dynamics ·
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1 Introduction

Energy harvesting is a process of energy conversion

in which a certain amount of energy is pumped from
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an abundant source (e.g. the sun, wind, ocean, envi-

ronmental vibrations, electromagnetic radiation, etc.)

into another system that stores and/or use this en-

ergy for its self-operation [24, 47, 57]. This type of

technology has a broad field of applicability, that in-

cludes: (i) large-scale devices such as ocean thermal en-

ergy converters [38], magnetic levitators [51], etc.; (ii)

middle size applications like electromechanical systems

[26, 37], sensors/actuators [5, 23, 58], living trees [63]

etc.; (iii) small or very small systems, namely medical

implants [46], micro/nano electro-mechanical systems

(MEMS/NENS) [43, 56], graphene structures [41], bio

cells [8], etc.

Enhance the amount of energy collected by an en-

ergy harvester is a key problem in the operation of

these kind of devices, being the object of interest of sev-

eral research works among the last decade, with efforts

divided essentially in two fronts: (i) approaches with

great physical appeal, which seek to explore complex

geometric arrangements and nonlinearities in a smart

way to improve the performance of the system[1, 3,

18, 21, 32, 33, 49, 59, 65]; (ii) works that look at this

task from a more mathematical perspective, conducting

theoretical analysis in mathematical models [50], us-

ing control theory to optimize the underlying dynamics

[2, 20, 62] or formulating and solving non-convex op-

timization problems to find the optimal system design

[27, 39, 40, 45, 64].

The approaches that seek to optimize energy har-

vesters exploring their physics, in general, try to take

advantage of a key (and very particular) characteristic

of the dynamics, often neglected in a naive look, in favor

of better performance. Although they can produce very

efficient solutions for certain types of systems, they lack

generality, which makes them, in a sense, an “art”, as
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it requires a high level of knowledge about the system

behavior by the designer’s part.

On the other hand, approaches based on numerical

optimization have a good level of generality, however,

they come up against theoretical and computational

difficulties inherent to the solution of non-convex op-

timization problems, these being defined by objective

functions that are constructed from observations of the

nonlinear dynamical systems.

These difficulties are faced not only when dealing

with energy harvesters, but they can also be seen in

the optimization of several types of nonlinear dynami-

cal systems, generally being circumvented with the use

of computational intelligence-based algorithms [42, 48],

since traditional gradient-based methods have no guar-

antee of finding global extremes in the absence of con-

vexity [6, 7, 44].

Among the computational intelligence algorithms

available in the literature, the most frequently used for

optimization in nonlinear dynamics include genetic al-

gorithms (and their variants), particle swarm optimiza-

tion, differential evolution, artificial neural networks (and

other machine learning methods), etc [48]. As they are

global search methods, they are often successful in over-

coming the (local) difficulties faced by gradient-based

methods, at the price of losing computational efficiency.

But the loss of efficiency is not the only weakness of

these global methods, most of then need to have the

underlying control parameters tuned for proper func-

tioning. This task is usually done manually, in a trial

and error fashion, which is not at all practical, as the

meaning of many of these parameters is often not in-

tuitive. This peculiarity practically “condemns” these

tools to be used in the black-box format, without much

control by the user, which may induce significant losses

in performance and accuracy.

However, the computational intelligence literature

has at least one global search algorithm that is robust

and simple, for which the control parameters are very

intuitive, it is known as the cross-entropy (CE) method,

proposed by R. Rubinstein in 1997 [52, 53, 54] for rare

events simulation. Soon after it was realized that it

could be a very appealing global search technique for

challenging combinatorial and continuous optimization

problems [36, 55]. It is a sampling technique, from the

family of Monte Carlo methods, which iteratively at-

tacks the problem, refining the candidates to be the

solution according to a certain optimality criterion.

Surprisingly, the nonlinear dynamics literature has

been neglecting the CE method, although it is a rela-

tively known technique in the combinatorial optimiza-

tion community. To the best of the author’s knowledge,

there are few studies in the open literature applying

the CE method for numerical optimization problems

involving nonlinear mechanical systems [15, 16, 17, 25,

34, 60], which leaves space for new contributions in

this line. In particular, the development of a simplis-

tic and robust optimization framework, easily customiz-

able, which can be used by naive users without major

performance losses.

In this context, this work deals with the numerical

optimization of nonlinear energy harvesting systems,

trying to find a strategy to increase the performance

of a bistable energy harvesting device subjected to a

periodic excitation. For this purpose, a non-convex op-

timization problem, with a nonlinear objective func-

tion and discontinuous constraint, is formulated and a

stochastic strategy of solution that combines penaliza-

tion and the CE method is proposed and numerically

tested. As this method has a theoretical guarantee of

convergence and evidence in the literature proving its

effectiveness [36, 55], the proposed cross-entropy frame-

work for optimization of dynamical systems has the

potential to be a very general and robust numerical

methodology.

The rest of this manuscript is organized as follows.

Section 2 presents the energy harvesting device of inter-

est and the underlying dynamical system. An optimiza-

tion problem associated with this nonlinear system is

defined in section 3, and the CE method strategy of so-

lution is presented in section 4. Numerical experiments,

conducted to test the effectiveness and robustness of the

stochastic solution strategy, are shown in section 5. Fi-

nally, in section 6, final remarks are set out.

2 Nonlinear dynamical system

2.1 Physical system

The energy harvesting system of interest in this work

is the (sinusoidal excited) piezo-magneto-elastic beam

presented by Erturk et al. [22], which is based on the

(stochastically excited) inverted pendulum energy har-

vester proposed by Cottone et al. [9]. An illustration of

this bistable energy harvesting system can be seen in

Figure 1, where it is possible to see that it consists of

a vertical fixed-free beam made of ferromagnetic mate-

rial, a rigid base and a pair of magnets. In the beam

upper part, there is a pair of piezoelectric laminae cou-

pled to a resistive circuit. The rigid base is periodi-

cally excited by a harmonic force, which, together with

the magnetic force generated by magnets, induces large

amplitude vibrations. The piezoelectric laminae convert

the energy of movement into electrical power, which is

dissipated in the resistor.
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Figure 1 Illustration of the bistable piezo-magneto-elastic
energy harvesting system.

Although this system dissipates energy, instead of

using it to supply some secondary system, it is a typical

prototype of a piezoelectric energy harvesting system.

In an application of interest, the resistor is replaced

by a more complex electrical circuit, which stores (and

possibly manipulates) the voltage delivered by the me-

chanical system.

2.2 Initial value problem

The dynamic behavior of the system of interest is de-

scribed by the following initial value problem

ẍ+ 2 ξ ẋ− 1

2
x
(

1− x2
)
− χ v = f cos (Ω t), (1)

v̇ + λ v + κ ẋ = 0, (2)

x(0) = x0, ẋ(0) = ẋ0, v(0) = v0, (3)

where ξ is the damping ratio; χ is the piezoelectric cou-

pling term in mechanical equation; λ is a reciprocal time

constant; κ is the piezoelectric coupling term in electri-

cal equation; f is the external excitation amplitude; Ω

is the external excitation frequency. The initial condi-

tions are x0, ẋ0 and v0, which respectively represent,

the beam edge initial position, initial velocity and the

initial voltage over the resistor. Also, t denotes the time,

so that the beam edge displacement at time t is given by

x(t), and the resistor voltage at t is represented by v(t).

The upper dot is an abbreviation for time-derivative,

and all of these parameters are dimensionless.

2.3 Mean output power

Since the objective in this work is to maximize the

amount of energy recovered by an energy harvesting

process, the main quantity of interest (QoI) associated

with the nonlinear dynamical system under analysis is

the mean output power

P =
1

Tf − T0

∫ Tf

τ=T0

λ v2(τ) dτ, (4)

which is defined as the temporal average of the instan-

taneous power λ v2 over a given time interval [T0, Tf ].

This QoI plays the role of objective function in the op-

timization problem defined in section 3.

2.4 Dynamic classifier

Due to dynamical system nonlinearity, the steady-state

dynamical response (over a given time interval) of the

energy harvesting device may be chaotic or regular (non-

chaotic), such as illustrated in Figure 2, which shows

typical voltage time-series for this kind of bistable os-

cillator.
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(a) regular dynamics
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(b) chaotic dynamics

Figure 2 Two typical voltage time-series for the bistable
energy harvesting system. The time-series in (a) has a regu-
lar steady-state dynamics, while in (b) a chaotic steady-state
dynamics is observed.

To distinguish between the chaotic and regular dy-

namic regimes, the 0-1 test for chaos by Gottwald and
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Melbourne [28, 29, 30, 31] is employed. This test, which

is based on an extension of the dynamical system to

a two-dimensional Euclidean group [4], uses a binary

classifier K to identify the dynamic regime of oper-

ation underlying the system of interest. This classi-

fier is constructed from a dynamical system observa-

tion (time-series) φ(t). In fact, it is sufficient to use

Φ =
(
φ(t1), φ(t2), · · · , φ(tN )

)
, a discrete version of the

observable φ(t) that is obtained through a numerical

integration (sampling) process.

Receiving the discrete observation (time-series) as

an input, the analytical procedure of the 0-1 test con-

sists of the following steps:

1. A real parameter c ∈ [0, 2π) is chosen and, for n =

1, 2, · · · , N , the discrete version of φ(t) is used to

define the translation variables

pn(c) =

n∑
j=1

φ(tj) cos (j c), (5)

qn(c) =

n∑
j=1

φ(tj) sin (j c). (6)

2. Then, for n = 1, 2, · · · , N , the time-averaged mean

square displacement of the dynamics trajectory in

(pc, qc) space is computed by

Mn(c) = lim
N→∞

1

N

N∑
j=1

M̃n(c), (7)

where

M̃n(c) =
(
pj+n(c)− pj(c)

)2
+
(
qj+n(c)− qj(c)

)2
.

(8)

3. Finally, defining the mean-square vector

Mn = (M1,M2, · · · ,Mn) , (9)

and the temporal mesh vector

tn = (t1, t2, · · · , tn) , (10)

the dynamic classifier is constructed through the

correlation

Kc = lim
n→∞

cov (tn,Mn)√
var (tn) var (Mn)

, (11)

where cov (·, ·) and var (·) respectively denote the

covariance and variance statistical operators.

It can be proved that Kc ∈ {0, 1}, being Kc = 0

for regular dynamics and Kc = 1 for chaotic dynam-

ics [30, 4]. For numerical implementation purposes, the

above procedure is performed several times, for several

randomly chosen values of c ∈ [0, 2π), and considering

the voltage time-series as the system observation, i.e.,

φ(t) = v(t). The discrete version of φ(t) is constructed

through temporal integration via the standard 4th or-

der Runge-Kuta method. The limit processes in Eqs.(7)

and (11) are replaced by the condition n� N , and the

classifier K is calculated as the median of Kc realiza-

tions, i.e., K = median (Kc). Indeed, for a careful done

numerical simulation one has K ≈ 0 or K ≈ 1. See

[4, 31] for further details.

3 Non-convex optimization problem

3.1 Problem definition

The objective of this work is to find a set of parameters

that maximize the mean output power dissipated in the

resistor. For this purpose, the electromechanical system

properties (ξ, χ, λ and κ) sound as natural choices for

the design variables, once they are intrinsic to the en-

ergy harvester embedded physical characteristics, some-

thing a designer might want to modify for better perfor-

mance. However, the present work uses the dynamical

system excitation parameters, namely the amplitude f

and the frequency Ω, as design variables. Although this

choice sounds quite artificial at first since, in general,

the designer does not have control of the level (or fre-

quency) of vibration in which the energy harvester is op-

erating, it is also of interest in the optimization of these

systems to know in which vibration settings the device

can recover more energy. As the numerical methodol-

ogy developed here is completely general, it can be eas-

ily applied in the cases where the other parameters are

used as the design variables, but by using f and Ω to

test the proposed methodology, an advantage is gained

in terms of physical intuition about underlying physics,

as the literature presents better knowledge about the

effect of these two parameters on the behavior of this

bistable energy harvesting system.

Many combinations of (f,Ω) lead the dynamical

system to operate in the chaotic regime, an undesirable

condition for electric power usage in principle, since the

process of rectifying the chaotic electrical signal, which

is necessary to enable its use in applications, can con-

sume a significant part of the available energy. Although

it is possible to explore the chaotic dynamics in favor

of greater efficiency of the system [2, 18], as done by

the author and collaborators in [20], through the use

of chaos control techniques, this is not the approach
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followed in the present work, which seeks to develop a

very general numerical framework.

Thus, as not every pair (f,Ω) is an acceptable choice

for the optimal design, it is necessary to impose a con-

straint that ensures the regularity (non-chaoticity) of

the system dynamics. Taking advantage of the 0-1 test

for chaos, described in section 2.4, the constraint to

ensure a regular (non-chaotic) dynamic regime can be

formulated as K = 0. Note that the optimization prob-

lem is extremely nontrivial, once the constraint presents

jump-type discontinuities since K ∈ {0, 1}.

3.2 Constrained problem formulation

In an abstract way, one can formulate the constrained

nonlinear optimization problem described above as find

a feasible vector of design variables x? that maximize a

certain objective function x ∈ D 7→ S(x) ∈ R, i.e.,

x? = arg max
x∈D

S(x), (12)

where the set of admissible (feasible) parameters is de-

fined by the bounded region

D =
{
x | xmin ≤ x ≤ xmax and G(x) = 0

}
. (13)

In this context, it is straightforward to see that the

design variables vector is x = (f,Ω), the objective

function is S(x) = P (f,Ω), the binary constraint is

G(x) = K(f,Ω), and the limits of the design variables

are xmin = (fmin, Ωmin) and xmax = (fmax, Ωmax).

In the case of a problem with more variables, or

with different objective function and/or constraints, the

adaptations to be made are straightforward.

3.3 Penalized problem formulation

A penalized version of this constrained nonlinear opti-

mization problem is introduced here in order to facili-

tate the computational implementation of the solution

algorithm. In this formulation the constraint G(x) = 0

is replaced by the weaker condition G(x) ≤ ε� 1, once

in practice the best one has is K ≈ 0. In this way, the

problem defined by (12) is replaced by the penalized

problem which seeks a pair x? such that

x? = arg max
x∈D
S̃(x), (14)

where the set of feasible parameters is now defined by

D =
{
x | xmin ≤ x ≤ xmax

}
, (15)

and the penalized objective function is given by

S̃(x) = S(x) − α max
{

0,G(x) − ε
}
. (16)

The penalty parameter is heuristically chosen, being

α = 10 the value used in all simulations reported in

this work. In the same way, ε = 1/10 is adopted.

4 The cross-entropy method

4.1 The general idea of CE method

The key idea of the CE method is to transform the given

non-convex optimization problem into an “equivalent”

rare event estimation problem, that can be efficiently

treated by a Monte Carlo like algorithm. The only re-

quirement is that the problem has a single solution, i.e.,

the global extreme is unique.

In this framework, the feasible region is sampled ac-

cording to a given probability distribution chosen by the

user, and the low-order statistics (mean and standard

deviation) of these samples are used to update the opti-

mum point estimation, and the stopping criteria metric

(respectively). It is an iterative process consisting of two

steps:

1. Sampling : The feasible region is sampled according

to a given probability distribution, and a special

subset of these points, dubbed the elite sample set,

is defined (it is used to construct an optimal solution

candidate in the next step);

2. Learning : The parameters of the probability distri-

bution are updated using statistics obtained from

the elite sample set, modifying the given distribu-

tion in a sense that try to make it as close as possi-

ble to a Dirac delta centered on the global optimum.

The distribution mean provides the approximation

for the global optimum.

Throughout this process, the update of the mean is

done in order to move the distribution center towards

the optimization problem optimum, while the standard

deviation tendency is to be reduced, thus “shrinking”

the distribution around its central value. The composi-

tion of these effects of translation and “closing” charac-

terizes the process in which the distribution is “shaped”

towards a point mass Dirac distribution centered on the

optimal.

4.2 Theoretical framework

Without loss of generality, suppose that the problem

of interest is to maximize an objective function x ∈
D 7→ S(x) ∈ R, as stated in Eqs.(12). If the penalized

formulation from Eq.(14) is adopted, just consider x ∈
D 7→ S̃(x) ∈ R instead of S(x).
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Denote the global optimal by x? and the correspond-

ing maximum value by γ? = S(x?), i.e., γ? = max S(x)

for all x ∈ D.

Using this global maximum as a reference value, and

considering a randomized version of the vector x, de-

noted by X, it is possible construct the random event

S(X) ≥ γ?, which represents the scenarios where the

random variable S(X) is bigger or equal to the (de-

terministic) scalar value γ?. In other words, this ran-

dom event considers the possibility of choosing, ran-

domly, points in the feasible region D that produce val-

ues greater than or equal to the global maximum. Note

that this random event is related to the optimization

problem defined in Eq.(12), it can be thought of as its

randomized version.

Since γ? is the maximum value of S(x), no realiza-

tion of X can produce S(X) > γ? and only X = x?

can make S(X) = γ?. Therefore, the probability of this

random event is zero, i.e., P
{
S(X) ≥ γ?

}
= 0.

Relaxing the reference value for a scalar γ < γ?, one

has the random event S(X) ≥ γ, which defines a rare

event if γ ≈ γ?, for which P
{
S(X) ≥ γ

}
≈ 0.

In his 1997 seminal work [52], R. Rubinstein con-

ceived the CE method as a tool to efficiently estimate

such type of probabilities, associated with events lo-

cated at the distribution tail. Sometime later [53], due

to the connection between the random event and the

optimization problem described above, he noticed that

this rare event estimation process could be used as a

global search method to optimize the given objective

function.

Notice that, with the aid of the expected value op-

erator E {·}, and the indicator function

1A(x) =

{
1, if x ∈ A
0, if x /∈ A

(17)

the probability of the random event S(X) ≥ γ can be

written as

P
{
S(X) ≥ γ

}
= E

{
1S(X)≥γ

}
, (18)

which provides a practical way of estimating its value.

Once the right side of Eq.(18) is the mean value of

the random event 1S(X)≥γ , it can be easily computed

through the sample mean of Ns samples of X, i.e.,

P
{
S(X) ≥ γ

}
≈ 1

Ns

Ns∑
k=0

1S(Xk)≥γ , (19)

where the realizations Xk (k = 1, · · · , Ns) are drawn

according to g (x; v), the probability density function

of X, parametrized by the hyper-parameters vector v.

Very often, v = (µ,σ), where µ and σ are the the mean

the standard deviation vectors of X, respectively.

The idea of the CE method is to approximate the so-

lution of the underlying optimization problem by solv-

ing the rare event probability estimation from Eq.(18).

For this purpose, its employs a multilevel approach,

that generates an optimal sequence of statistical esti-

mators for the pair (γ,v), denoted by (γ̂`, v̂`), such that

γ̂`
a.s.−−−→ γ? and g (x, v̂`)

a.s.−−−→ δ (x− x?) , (20)

i.e., the reference level γ tends with probability 1 to the

maximum value, and the family of distributions g(· , v)

goes (almost sure) towards a point mass distribution,

centered on the optimization problem global optimum.

This sequence of estimators is optimal in the sense

that it minimizes the Kullback-Leibner divergence be-

tween 1S(X)≥γ and g(· , v) [55].

More concretely, the feasible region D is sampled

with Ns independent and identically distributed (iid)

realizations of the random vector X, drawn from its

density g (x; v). For each of these samples, the objective

function is evaluated, generating the sequence of values

S(X1),S(X2), · · · ,S(XNs
).

Then, an elite sample Et =
{
Xk : S(Xk) ≥ γ̂t

}
is

defined by lumping the Ne < Ns points that better

performed, i.e., those which produced the highest values

for S(x). Note that this elite set is defined in terms of

the maximum value statistical estimator, given by

γ̂t = S(Ns−Ne+1). (21)

The hyper-parameters vector v is updated using the

maximum likelihood estimator so that, with the aid of

the elite set Et, it is written as

v̂t = arg max
v

∑
Xk∈Et

ln
(
g (Xk; v)

)
. (22)

Depending on the distribution chosen for X, the

stochastic program from Eq.(22) needs to be solved

numerically. However, for the distributions of the ex-

ponential family, which includes the Gaussian and its

truncated version, this estimator can be calculated in a

analytic way, with each component of mean and devia-

tion given by the formulas

µ̂t =

∑
Xk∈Et

Xk

Ne
, (23)

and

σ̂t =

√√√√√
∑

Xk∈Et

(Xk − µ̂t)2

Ne
, (24)

respectively.
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Although this process has a theoretical guarantee of

converging to a point mass distribution centered on the

global optimum, in computational practice it is com-

mon to see the updated distribution numerically de-

generating before it“reaches the target”. Sometimes the

standard deviation decreases very quickly, causing the

distribution to “shrinks” in a region far from the global

optimum. In this scenario, only samples far from the op-

timum point are drawn, producing poor estimates for

the optimization problem solution.

At the theoretical level, where it is possible to sam-

ple an infinite number of times, this pathological situa-

tion is bypassed, because at some point a sample on the

tail is drawn, moving the distribution center out of the

“frozen region”, as this outlier has a lot of weight in the

mean estimate. However, in computational terms, as

any robust implementation requires a maximum num-

ber of iterations (levels), the algorithm may stop with

the distribution center within a “frozen region”.

This problem may be solved through the use of a

smooth updating scheme for the hyper-parameters

µ̂t := α µ̂t + (1− α) µ̂t−1, (25)

σ̂t := βt σ̂t + (1− βt) σ̂t−1, (26)

βt = β − β
(

1− 1

t

)q
, (27)

where the smooth parameters are such that 0 < α ≤ 1,

0.8 ≤ β ≤ 0.99 and 5 ≤ q ≤ 10, and the estimations at

t and t− 1 are obtained by solving the Eq.(22).

4.3 The numerical algorithm

The geometric idea of the CE method is described at

the beginning of this section, being complemented by

the theoretical formalism presented in the previous sub-

section. The compilation of these ideas in the form of

an easy to implement computational algorithm is pre-

sented below:

1. Define the number of samples Ns, the number of

elite samples Ne < Ns, a convergence tolerance tol,

the maximum of iteration levels `max, a family of

probability distributions g (·,v), an initial vector of

hyper-parameters v̂0 for g, and set the level counter

` = 0;

2. Update the level counter ` = `+ 1;

3. Generate a total of Ns independent and identically

distributed (iid) samples from g (·, v̂`−1), denoted

by X1, · · · ,XNs ;

4. Evaluate the objective function S(Xn) at the sam-

ples X1, · · · ,XNs
and sort the results S(1) ≤ · · · ≤

S(Ns) to select the elite sample (the Ne points which

better performed);

5. Update the estimators γ̂` and v̂` with aid of the elite

sample, using the maximum likelihood method;

6. Repeat the steps (2) up to (5) while a (standard

deviation dependent) stopping criterion is not met.

A schematic representation of this algorithm, illus-

trating all the stages of the sampling and learning phases,

can be seen in Figure 3.

4.4 Remarks about CE method

Among the several characteristics that make this rela-

tively novel technique interesting, the following can be

highlighted:

– Simplicity – very intuitive algorithm with few con-

trol parameters (Ns,Ne, `max and tol), each of then

with a very clear interpretation;

– Robustness – theoretical results ensure that, under

typical conditions, the method is guaranteed to con-

verge if the problem has a single global extreme;

– Efficiency – the method typically presents fast con-

vergence in comparison with classic global search

meta-heuristics, such as genetic algorithms;

– Generality – the method does not require any reg-

ularity of the objective function and can be applied

to almost any type of non-convex optimization prob-

lem (even non-differentiable or discontinuous);

– Generalizable – the theory is general, in principle it

can be applied to problems of any finite dimension,

the computational cost being the limiting factor in

practice;

– Easy implementation – the algorithm can be im-

plemented with a few lines of code in a high level

programming language.

The mathematical development associated with the

formalism described above is relatively non-trivial, but

it has been well established throughout the first decade

of the method, including theorems that strictly estab-

lish the conditions where the method has guaranteed

convergence. These details are suppressed from this pa-

per as they are outside the scope of the journal. But

for the interested reader, the following references are

recommended [19, 35, 54, 55].

The computational experiments in the next section

illustrate the efficiency and robustness of this frame-

work in solving a non-trivial problem of optimizing an

energy harvesting device.

5 Numerical experiments

For the numerical experiments conducted here, the fol-

lowing numerical values are adopted for the dynamical
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objective function

𝑿!, … , 𝑿"!

Sampling

elite sample set update estimators

Learning

𝑆 𝑿! , … , 𝑆(𝑿"!)

draw samples

𝑣 𝑣

ℰ#

Figure 3 Schematic representation of the CE algorithm for optimization.

system parameters: ξ = 0.01, χ = 0.05, κ = 0.5 and

λ = 0.05. The initial condition is defined by x0 = 1,

ẋ0 = 0 and v = 0. The dynamics is integrated over the

time interval [0, T ] = [0, 2500], and the mean output

power is computed over the last 50% of this time-series.

5.1 Reference solution

In order to analyze the effectiveness and robustness of

the stochastic solution strategy proposed here, a ref-

erence solution is computed by a standard exhaustive

search on a fine grid over the domain

D =
{

(f,Ω) | 0.08 ≤ f ≤ 0.1, 0.75 ≤ Ω ≤ 0.85
}
.

In this standard approach, a structured 256 x 256 uni-

form numerical grid is used to discretize D. The sys-

tem dynamics is then integrated for each grid point,

with the optimization constraint being evaluated next.

The objective function is evaluated at all feasible points,

and the extreme value is updated at each step of the

grid scanning process. Two contour maps, associated

with the reference solution, are shown in Figure 4: (a)

constraint function, and (b) objective function. The

pair (f,Ω) = (0.0994, 0.7771) that corresponds to the

global maximum is indicated in both contour maps by

a red cross, being associated with a mean output power

P = 0.3438. Figure 5 shows a magnification of the

global maximum neighborhood, where it is possible to

better appreciate the contour levels shape, and verify

that it corresponds to a regular dynamic regime config-

uration. Note also that this result is compatible with

the literature, which points to a better performance

of piezoelectric harvesters for low frequencies and high

amplitudes of excitation [59, 40]. For sake of reference,

this solution was obtained in 14 hours in a MacBook

Pro Core i7 2.2 GHz 16GB 1333 MHz DDR3.
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Figure 4 Contour maps of the: (a) constraint function de-
fined by 0-1 test for chaos, and (b) objective function defined
by mean output power.
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Figure 5 Magnification of the contour maps, around the
global maximum, of the: (a) constraint function, and (b) ob-
jective function.

5.2 Cross-entropy solution

In the approach based on the CE method, the domain is

randomly sampled using for this Ns = 50 points. This
sampling is done according to a truncated Gaussian dis-

tribution, parametrized by mean vector µ = (µf , µΩ)

and standard deviation vector σ = (σf , σΩ). The num-

ber of elite samples is chosen as Ne = round(Ns/10),

maximum number of levels is set tmax = 100, while

the convergence criterion is adopted as max
{
σf , σΩ

}
<

tol, for a tolerance tol = 1×10−3. The smoothing pa-

rameters are α = 0.7, β = 0.8 and q = 5.

A visual illustration of the CE method is presented

in Figure 6, which shows the domain sampling at dif-

ferent levels (iterations) of the algorithm. An anima-

tion of the algorithm in action is available in [11]. The

reader can also appreciate the evolution of this random

algorithm in Table 1, where each line displays the level

index, the value of the means1 and standard deviations

of f and Ω in addition to the optimal value obtained

for the objective function.

1 Remember that the approximation for the optimum point
is given by the vector of means, i.e., (µ∗f , µ

∗
Ω) ≈ (µf , µΩ).

Table 1 Evolution of CE algorithm using Ns = 50 samples.

` P µf µΩ σf σΩ

01 +0.00729 0.08752 0.79356 0.02516 0.12591
02 +0.00634 0.09100 0.77788 0.01006 0.04820
03 -0.97244 0.09241 0.76584 0.00714 0.02012
04 +0.00779 0.09515 0.75804 0.00411 0.01003
05 +0.33424 0.09686 0.76026 0.00281 0.00576
06 +0.33530 0.09706 0.76248 0.00192 0.00425
07 +0.33726 0.09752 0.76526 0.00175 0.00338
08 +0.33792 0.09820 0.76673 0.00168 0.00243
09 +0.33854 0.09869 0.76805 0.00145 0.00240
10 +0.33990 0.09855 0.76977 0.00112 0.00195
11 +0.34022 0.09877 0.77115 0.00097 0.00167
12 +0.34083 0.09858 0.77247 0.00095 0.00149
13 +0.34155 0.09875 0.77361 0.00082 0.00130
14 +0.34126 0.09936 0.77329 0.00069 0.00112
15 +0.34143 0.09942 0.77342 0.00062 0.00116
16 +0.34115 0.09954 0.77319 0.00060 0.00110
17 +0.34191 0.09979 0.77392 0.00049 0.00096

Table 2 Performance of CE algorithm for different number
of samples.

samples levels CPU time* speed-up function
(seconds) evaluation

reference — 50 632 — 65536
25 15 304 167 375
50 17 696 73 850
75 29 1736 29 2175
100 42 3286 15 4200

*MacBook Pro Core i7 2.2 GHz 16GB 1333 MHz DDR3

Note that the approximation obtained is very close

to the reference value of section 5.1, obtained after 17

iterative steps only, which corresponds to a speed-up

of more than 70, when compared with the exhaustive
search (see in Table 2 the CPU time spent). The ac-

curacy can still be slightly improved as shown in Ta-

ble 3, which presents the CE results with Ns = 75.

The corresponding animation can be seen in [12]. The

price to be paid for this additional gain of accuracy is

a loss of performance, which makes the speed-up fall

from more than 70 to 29 (see Table 2). An experiment

with only Ns = 25 samples is also conducted (see the

video in [10]), obtaining a result with no significant loss

of accuracy and more than doubling the speed-up to an

impressive value of 167. A numerical experiment with

Ns = 100 is also reported in Table 2, although no figure

or table from this simulation is shown in the text.

The speed-up shown in Table 2 is defined as the ra-

tio between the calculation time between direct search

(reference) and CE solution. Although this metric pro-

vides a good measure of efficiency for large values of

CPU times, it is extremely dependent on the machine

used. Thus, to provide a machine-independent perfor-

mance measure, this table also lists the number of eval-
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Figure 6 Illustration of CE method sampling of the domain at different levels (iterations) of the algorithm. The reference
solution is indicated with a red cross.
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Table 3 Evolution of CE algorithm using Ns = 75 samples.

` P µf µΩ σf σΩ

01 +0.00676 0.09039 0.78364 0.02378 0.11257
02 +0.00694 0.09134 0.78555 0.01052 0.05551
03 +0.00677 0.09146 0.77791 0.00755 0.02934
04 -7.87800 0.09159 0.77091 0.00587 0.02273
05 +0.00585 0.09168 0.76281 0.00506 0.01298
06 +0.18206 0.09420 0.76179 0.00511 0.01140
07 +0.33294 0.09703 0.76184 0.00337 0.00908
08 +0.33606 0.09834 0.76411 0.00261 0.00652
09 +0.33771 0.09880 0.76678 0.00205 0.00474
10 +0.33819 0.09906 0.76827 0.00157 0.00400
11 +0.33835 0.09897 0.76836 0.00133 0.00315
12 +0.33876 0.09881 0.76952 0.00119 0.00275
13 +0.34010 0.09925 0.77121 0.00097 0.00263
14 +0.34006 0.09939 0.77147 0.00081 0.00237
15 +0.34082 0.09953 0.77219 0.00073 0.00208
16 +0.34101 0.09946 0.77254 0.00067 0.00180
17 +0.34122 0.09941 0.77329 0.00062 0.00174
18 +0.34140 0.09931 0.77316 0.00055 0.00158
19 +0.34166 0.09930 0.77362 0.00050 0.00155
20 +0.34114 0.09947 0.77355 0.00044 0.00149
21 +0.34193 0.09964 0.77385 0.00040 0.00140
22 +0.34034 0.09962 0.77375 0.00038 0.00148
23 +0.34093 0.09957 0.77368 0.00036 0.00142
24 +0.34154 0.09950 0.77389 0.00035 0.00132
25 +0.34193 0.09957 0.77427 0.00033 0.00119
26 +0.34227 0.09959 0.77479 0.00032 0.00110
27 +0.34203 0.09963 0.77490 0.00031 0.00104
28 +0.34220 0.09973 0.77502 0.00029 0.00100
29 +0.34203 0.09972 0.77487 0.00027 0.00095

Table 4 Evolution of CE algorithm using Ns = 25 samples.

` P µf µΩ σf σΩ

01 -0.01735 0.09252 0.78304 0.02400 0.10592
02 -1.71710 0.08654 0.77635 0.00951 0.03866
03 +0.00538 0.08894 0.76449 0.00849 0.01564
04 +0.00781 0.09366 0.75846 0.00491 0.00903
05 +0.33423 0.09698 0.76137 0.00351 0.00671
06 +0.33689 0.09742 0.76432 0.00227 0.00450
07 +0.33610 0.09765 0.76447 0.00210 0.00310
08 +0.33809 0.09810 0.76732 0.00194 0.00244
09 +0.33903 0.09850 0.76834 0.00141 0.00170
10 +0.33874 0.09857 0.76807 0.00137 0.00129
11 +0.33924 0.09907 0.76836 0.00117 0.00110
12 +0.33892 0.09892 0.76867 0.00110 0.00104
13 +0.33937 0.09894 0.76930 0.00110 0.00105
14 +0.33924 0.09927 0.76928 0.00103 0.00086
15 +0.34030 0.09935 0.77019 0.00086 0.00067

uations of the objective function, since this is the most

expensive operation to be performed by the optimiza-

tion algorithm. Note that in this new metric, the ratio

between the objective function evaluations in the ref-

erence and the CE solution produces values very close

to the speed-ups obtained previously, confirming the

computational efficiency of the proposed approach in a

machine independent fashion.

The above results allow us to conclude that the op-

timization approach based on CE method is very robust

(able to find the global optimal) and efficient (computa-

tionally feasible) to address this nonlinear non-convex

optimization problem, which has non-trivial numerical

solution since the existence of jump-like discontinuities

in the constraint prevents gradient-based algorithms

from being used.

Last but not least, it is worth mentioning that the

CE method has a great advantage in terms of simplicity

when compared to most of the meta-heuristics used in

non-differentiable optimization since the algorithm in-

volves only four control parameters, all of which have a

very intuitive meaning, which is a considerable advan-

tage compared to genetic algorithms for example.

6 Concluding remarks

This work presented the formulation of a nonlinear non-

convex optimization problem that seeks to maximize

the efficiency of a bistable energy harvesting system

driven by a sinusoidal excitation and constrained to op-

erate in non-chaotic dynamic regimes only. Since the

problem has jump-type discontinuities, which prevents

the use of gradient-based methods, a stochastic approach

based on the cross entropy method was proposed to

construct a numerical approximation for the optimal

solution. Tests to verify the efficiency and accuracy of

this cross-entropy approach were conducted, showing

that the proposed strategy of solution is quite robust

and effective, constituting a very appealing tool to deal

with the typical (non-convex) problems related to the

optimization of energy harvesting systems.

The impressive results reported here can still be

improved in terms of performance, through the use of

parallelization strategies. In particular, it would be in-

teresting to test the cloud computing parallelization

strategy proposed by [13]. In addition, the optimization

framework is extremely versatile, allowing extension to

problems involving robust optimization such as those

reported by [14, 61], in which the global optimum is

not sought in the strict sense, but in a sense in which

the system performance is maximized in average terms,

respecting probabilistic constraints.
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