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ABSTRACT

This work deals with the formulation and numerical solution of a nonlinear op-
timization problem, with discontinuous constraint, in the context of energy harvesting.
This optimization problem, which seeks to find a suitable configuration of parameters
that maximize the electrical power recovered by a bi-stable energy harvesting device,
is formulated in terms of the harvesting dynamical system response and a classifier
obtained from 0-1 test for chaos. A stochastic strategy of solution, combining penal-
ization and cross-entropy (CE) method is proposed and tested numerically. The results
illustrate the effectiveness of the proposed optimization strategy when compared to a
reference solution obtained with a standard exhaustive search in a very fine grid.

1 INTRODUCTION

Energy harvesting is a process in which a certain amount of energy is pumped
from an abundant source (solar, wind, ocean, environmental vibrations, electromag-
netic radiation, etc) into another system that stores and/or use this energy for its own
operation (Priya and Inman, 2009; Spies et al., 2015). The field of applicability of
this technology ranges from large-scale generation to the use in small devices such as
sensors (Bhatti et al., 2016), medical implants (Pfenniger et al., 2014), micro electro-
mechanical systems - MEMS (Nabavi and Zhang, 2016), nano electro-mechanical sys-
tems - NEMS (Selvan and Ali, 2016), etc.

Enhance the amount of energy collected by energy harvesting devices is a key
problem in the operation of these dispositives, being the object of interest of several
recent research works (Harne, 2012; Rechenbach et al., 2016; Ying et al., 2015; Peter-
son et al., 2016; Lopes et al., 2017). In this sense, this work seeks to find a strategy
to increase the performance of a harvesting device. For this purpose, a nonlinear op-
timization problem with discontinuities is formulated, and a stochastic approach to
construct an approximation for the solution, based on the cross-entropy (CE) method
(Rubinstein, 1997; Rubinstein and Kroese, 2004; Kroese et al., 2013), is proposed and
numerically tested.



The rest of this manuscript is organized as follows. Section 2 presents the phys-
ical device of interest and the underlying dynamical system. An optimization problem
associated to this dynamical system, and stochastic strategy of solution are defined in
the section 3. Numerical experiments, conducted to test the effectiveness of solution
strategy, are shown in section 4. Finally, in section 5, final remarks are set out.

2 NONLINEAR DYNAMICAL SYSTEM

2.1 Physical system

The energy harvesting system of interest in this work, proposed by (Erturk et al.,
2009), is the piezo-magneto-elastic device illustrated in Figure 1. It consists in a verti-
cal fixed-free beam made of ferromagnetic material, a rigid base and a pair of magnets.
In the beam upper part there is a pair of piezoelectric laminae coupled to a resistive
circuit. The rigid base is periodically excited by a force, which, together with the mag-
netic force generated by magnets, induces large amplitude vibrations. The piezoelectric
laminae convert the energy of movement into electrical power, which is dissipated in
the resistor.

Figure 1. Illustration of the piezo-magneto-elastic energy harvesting device of
(Erturk et al., 2009).



2.2 Initial value problem

As shown in (Erturk et al., 2009), the dynamic behavior of the system of interest
is described by the following initial value problem

ẍ+ 2 ξ ẋ− 1

2
x
(
1− x2

)
− χ v = f cos (Ω t), (1)

v̇ + λ v + κ ẋ = 0, (2)

x(0) = x0, ẋ(0) = ẋ0, v(0) = v0, (3)

where ξ is the damping ratio; χ is the piezoelectric coupling term in mechanical equa-
tion; λ is a reciprocal time constant; κ is the piezoelectric coupling term in electrical
equation; f is the rigid base oscillation amplitude; Ω is the external excitation fre-
quency. All of these parameters are positive. The initial conditions are x0, ẋ0 and v0

which respectively represent, the beam edge initial position, initial velocity and the
initial voltage over the resistor. In addition, t denotes the time, so that the beam edge
displacement at time t is given by x(t), and the resistor voltage at t is represented by
v(t). The upper dot is an abbreviation for time derivative, and all of these parameters
are dimensionless.

2.3 Output mean power

In this document the main quantity of interest (QoI) associated to the nonlinear
dynamical system under analysis is the output power

P =
1

T

∫ T

τ=0

λ v2(τ) dτ, (4)

defined as the temporal average of instantaneous power λ v2 over time interval [0, T ].

2.4 Dynamical system classifier

Due to dynamical system nonlinearity, the harvesting device steady state dy-
namics may be chaotic or regular (non-chaotic), such as illustrated in Figure 2, which
show voltage time series.

In order to distinguish between the chaotic and regular dynamics, the 0-1 test
for chaos by (Gottwald and Melbourne, 2004, 2009a,b, 2016) is employed. This test,
which is based on a extension of the dynamical system to a two-dimensional Euclidean
group (Bernardini and Litak, 2016), uses a binary classifier K to identify the regime
of the dynamics. This classifier is constructed from a time observable φ(t). In fact, it
is sufficient to use Φ =

(
φ(t1), φ(t2), · · · , φ(tN)

)
, a discrete version of the observable

φ(t) that is obtained through a sampling process (numerical integration procedure).
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Figure 2. Two typical time series of voltage for the harvesting device. The time
series in (a) has regular steady-state dynamics, while in (b) chaotic steady-state
dynamics is observed.

Receiving this discrete observable as input, test 0-1 analytical procedure con-
sists of the following steps:

1. A real parameter c ∈ [0, 2π) is chosen, and the discrete version of φ(t) is used to
define the translation variables

pn(c) =
n∑
j=1

φ(tj) cos (j c), and qn(c) =
n∑
j=1

φ(tj) sin (j c), (5)

for n = 1, 2, · · · , N .

2. Then the time-averaged mean square displacement of the dynamics trajectory in
(pc, qc) space is computed by

Mn(c) = lim
N→∞

1

N

N∑
j=1

([
pj+n(c)− pj(c)

]2
+
[
qj+n(c)− qj(c)

]2)
, (6)

for n = 1, 2, · · · , N .



3. Finally, defining Mn = (M1,M2, · · · ,Mn) and tn = (t1, t2, · · · , tn), the classi-
fier of the dynamics is constructed through the correlation

Kc = lim
n→∞

cov (tn,Mn)√
var (tn) var (Mn)

, (7)

where cov (·, ·) and var (·) respectively denote the covariance and variance op-
erators.

It can be proved that Kc ∈ {0, 1}, being Kc = 0 for regular dynamics and
Kc = 1 for chaotic dynamics (Gottwald and Melbourne, 2009b; Bernardini and Litak,
2016).

For numerical implementation purposes, the above procedure is performed sev-
eral times, for many values of c randomly chosen and φ(t) = v(t), with discrete version
constructed through temporal integration via Runge-Kuta method. The limit processes
in Eqs.(6) and (7) are replaced by the condition n � N , and the classifier K is calcu-
lated as the median of Kc realizations, i.e., K = median (Kc). Indeed, for a careful
done numerical simulation one has K ≈ 0 or K ≈ 1. See (Gottwald and Melbourne,
2009a) for further details.

3 NONLINEAR OPTIMIZATION PROBLEM

The objective of this work is to find a setting of parameter that maximize the
mean power P into the resistor. For this, it is more natural try to vary the parameters
f and Ω, which are related to the periodic force (system input), once their are easier to
be controlled than the others (which are related to the system physical characteristics).

However, not every pair (f,Ω) is an acceptable choice, since many combi-
nations of then lead the dynamical system to operate in chaotic regime, an unde-
sirable condition for electric power usage. This makes necessary to impose the con-
straint which ensures that system dynamics is regular. Taking advantage of 0-1 test for
chaos, described in section 2.4, the constraint to ensure a regular (non-chaotic) dynamic
regime can be formulated as K = 0. Note that the optimization problem is extremely
nontrivial, since K ∈ {0, 1} the constraint presents jump-type discontinuities.

3.1 Constrained problem

The constrained optimization problem mentioned above can be formalized as
find the pair (f ?,Ω?) such that

(f ?,Ω?) = arg max
(f,Ω)∈Dadm

P (f,Ω). (8)

where the set of admissible (feasible) parameters is defined as

Dadm =
{

(f,Ω) | fmin ≤ f ≤ fmax, Ωmin ≤ Ω ≤ Ωmax, K = 0
}
. (9)



3.2 Penalized problem

A penalized version of the constrained optimization problem is introduced here
in order to facilitate the computational implementation of the solution algorithm. In
this formulation the constraint K = 0 is replaced by the weaker condition K ≤ ε� 1,
once in practice the best one has is K ≈ 0. In this way, the problem defined by (8)
is replaced by the penalized problem which seeks a pair (f ?α,Ω

?
α), parametrized by the

penalty parameters α, such that

(f ?α,Ω
?
α) = arg max

(f,Ω)∈D ′
adm

{
P (f,Ω) − α max

{
0, K − ε)

}}
. (10)

where the set of feasible parameters is now defined as

D ′adm =
{

(f,Ω) | fmin ≤ f ≤ fmax, Ωmin ≤ Ω ≤ Ωmax

}
. (11)

The penalty parameter is heuristically obtained, being α = 10 the value used in all
simulations reported in this work. In the same way, ε = 1/10 is chosen.

3.3 Cross-entropy strategy of solution

In an abstract way, one can see the penalized optimization problem defined in
section 3.2 as find a vector x that maximize a certain cost function S(x). For a global
optimal x? one has γ? = max S(x?). In the CE method the vector x is randomized and
the optimization problem above is associated to the rare-event probability

P
{
S(X) ≥ γ

}
= E

{
1{
S(X)≥γ

}} for γ ≈ γ?, (12)

where E {·} is the expected value operator, 1A is the indicator function of eventA, and
X is a random vector with probability density function f (x; v), parametrized by v. The
idea of CE method is generates a sequence of estimators

(
γ̂t, v̂t

)
such that γ̂t

a.s.−−−→ γ?

and f (x, v̂t)
a.s.−−−→ δ (x− x?), i.e., the family of distributions f(· , v) tends towards a

point mass distribution, centered on a global optimum for the optimization problem.
This sequence of estimators is optimal in the sense that it minimize the Kullback-
Leibner divergence between 1{

S(X)≥γ
} and f(· , v).

The CE algorithm can be summarized as follows: (i) Define the number of sam-
ples N s, the number of elite samples N e, a convergence tolerance tol, the maximum
of levels tmax, a family of probability distributions f (·, v), an initial vector of parame-
ters v̂0 for f and set the level counter t = 0; (ii) Update level t = t + 1; (iii) Generate
X1, · · · ,XN (iid) samples from f

(
·, v̂t−1

)
; (iv) Evaluate performance function S(Xn)

at samples X1, · · · ,XN and sort the results S(1) ≤ · · · ≤ S(N); (v) Update estimators
γ̂t and v̂t; (vi) Repeat (ii) — (v) while a stopping criterion is not met. Further details
can be seen in (Rubinstein and Kroese, 2016; Kroese et al., 2011; De Boer et al., 2005;
Rubinstein and Kroese, 2004).



4 NUMERICAL EXPERIMENTS

For the numerical experiments conducted here, the following numerical values
are adopted for the model parameters: ξ = 0.01, χ = 0.05, κ = 0.5 and λ = 0.05. The
initial condition is defined by x0 = 1, ẋ0 = 0 and v = 0. The dynamics is integrated
over the time interval [t0, tf ] = [0, 2500], and the average output power is computed
over the last 50% of this time series.

4.1 Reference solution

In order to analyze the effectiveness of the stochastic strategy of solution pro-
posed here, a reference solution is calculated by a standard exhaustive search on fine
grid over the domain

D ′adm =
{

(f,Ω) | 0.08 ≤ f ≤ 0.1, 0.75 ≤ Ω ≤ 0.85
}
.

In this standard approach, a 256 x 256 structured uniform grid is used to discretize
D ′adm. System dynamics is integrated for each grid point, with the restriction being
evaluated next. The objective function is evaluated at all feasible points, and the ex-
treme value is updated at each step of the grid scanning process. Two contour maps,
associated to the reference solution, are shown in Figure 3: (a) constraint function,
and (b) objective function. The pair (f,Ω) = (0.0994, 0.7771) that corresponds to the
global maximum is indicated in both contour maps by a red cross, being associated
with an averaged power value P = 0.3438. Figure 4 shows a magnification of the
global maximum neighborhood, where it is possible to better appreciate the contour
levels shape, and verify that it actually corresponds to regular dynamics configuration.
For reference, this solution was obtained in 14 hours in a MacBook Pro "Core i7" 2.2
GHz 16GB 1333 MHz DDR3.
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Figure 3. Contour maps of: (a) constraint function defined by 0-1 test for chaos,
and (b) objective function defined by average output power.
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Figure 4. Magnification of the contour maps around the global maximum: (a)
constraint function, and (b) objective function.

4.2 Cross-entropy solution

In the approach based on the CE method, the domain is randomly sampled us-
ing for this N s = 50 points. This sampling is done according to a truncated Gaussian
distribution, parametrized by mean vector µ = (µf , µΩ) and standard deviation vector
σ = (σf , σΩ). The number of elite samples is chosen as N e = round(N s/10), maxi-
mum number of levels is set tmax = 100, while the convergence criterion is adopted as
max

(
σf , σΩ

)
< tol, for tolerance tol = 1× 10−3.

A visual illustration of the CE method is presented in Figure 5, which shows
the domain sampling at different levels (iterations) of the algorithm. An animation of
the algorithm in action is available at https://youtu.be/-JB3eniIdDY. The
reader can also appreciate the evolution of this random algorithm in Table 1, where
each line displays the level index, the value of the means1 and standard deviations of f
and Ω in addition to the optimal value obtained for the objective function P .

Note that the approximation obtained is very close to the reference value of
section 4.1, obtained after 17 iterative steps only, which corresponds to a speed-up of
more than 70, when compared with the exhaustive search (see in Table 2 the CPU
time spent). The accuracy can still be slightly improved as shown in Table 3, which
presents the CE results with N s = 75. The corresponding animation can be seen in
https://youtu.be/uIZM4SjCbrw. The price to be paid for this additional gain
of accuracy is a lost of performance, which makes the speed-up fall from more than 70
to 29 (see Table 2). An experiment with only N s = 25 samples is also conducted (see
https://youtu.be/0EvzdVXlPqA), obtaining a result with no significant loss
of accuracy and more than doubling the speed-up to an impressive value of 167.

1Remember that the approximation of the optimum point is given by the vector of means, i.e.,
(µ∗

f , µ
∗
Ω) ≈ (µf , µΩ).



The above results allow us to conclude that optimization approach based on
CE method is very robust and efficient to address this nonlinear problem, which has
non-trivial numerical solution, since the existence of jump-like discontinuities in the
constraint prevents gradient-based algorithms from being used.

These impressive results can still be improved in terms of performance, through
the use of parallelization strategies. In particular, it would be interesting to test the cloud
computing parallelization strategy proposed by (Cunha Jr et al., 2014).

Table 1. Evolution of CE algorithm using N s = 50 samples.

level P µf µΩ σf σΩ

01 +7.2903E-03 +8.7521E-02 +7.9356E-01 2.5169E-02 1.2591E-01
02 +6.3452E-03 +9.1001E-02 +7.7788E-01 1.0063E-02 4.8201E-02
03 -9.7244E-01 +9.2414E-02 +7.6584E-01 7.1447E-03 2.0125E-02
04 +7.7948E-03 +9.5157E-02 +7.5804E-01 4.1197E-03 1.0032E-02
05 +3.3424E-01 +9.6867E-02 +7.6026E-01 2.8178E-03 5.7698E-03
06 +3.3530E-01 +9.7061E-02 +7.6248E-01 1.9266E-03 4.2519E-03
07 +3.3726E-01 +9.7527E-02 +7.6526E-01 1.7550E-03 3.3838E-03
08 +3.3792E-01 +9.8206E-02 +7.6673E-01 1.6807E-03 2.4310E-03
09 +3.3854E-01 +9.8699E-02 +7.6805E-01 1.4523E-03 2.4036E-03
10 +3.3990E-01 +9.8556E-02 +7.6977E-01 1.1245E-03 1.9528E-03
11 +3.4022E-01 +9.8770E-02 +7.7115E-01 9.7944E-04 1.6709E-03
12 +3.4083E-01 +9.8589E-02 +7.7247E-01 9.5384E-04 1.4976E-03
13 +3.4155E-01 +9.8756E-02 +7.7361E-01 8.2175E-04 1.3074E-03
14 +3.4126E-01 +9.9368E-02 +7.7329E-01 6.9106E-04 1.1287E-03
15 +3.4143E-01 +9.9423E-02 +7.7342E-01 6.2239E-04 1.1614E-03
16 +3.4115E-01 +9.9543E-02 +7.7319E-01 6.0541E-04 1.1051E-03
17 +3.4191E-01 +9.9790E-02 +7.7392E-01 4.9657E-04 9.6386E-04

Table 2. Performance of CE algorithm for different number of samples.

samples levels CPU time* speed-up
(seconds)

reference — 50 632 —
25 15 304 167
50 17 696 73
75 29 1736 29

*MacBook Pro “Core i7" 2.2 GHz 16GB 1333 MHz DDR3
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Figure 5. Illustration of CE method sampling of the domain at different levels
(iterations) of the algorithm. The reference solution is indicated with a red cross.



Table 3. Evolution of CE algorithm using N s = 75 samples.

level P µf µΩ σf σΩ

01 +6.7650E-03 +9.0390E-02 +7.8364E-01 2.3783E-02 1.1257E-01
02 +6.9438E-03 +9.1348E-02 +7.8555E-01 1.0521E-02 5.5513E-02
03 +6.7726E-03 +9.1464E-02 +7.7791E-01 7.5571E-03 2.9343E-02
04 -7.8780E+00 +9.1598E-02 +7.7091E-01 5.8727E-03 2.2736E-02
05 +5.8535E-03 +9.1685E-02 +7.6281E-01 5.0653E-03 1.2983E-02
06 +1.8206E-01 +9.4203E-02 +7.6179E-01 5.1119E-03 1.1403E-02
07 +3.3294E-01 +9.7038E-02 +7.6184E-01 3.3773E-03 9.0893E-03
08 +3.3606E-01 +9.8348E-02 +7.6411E-01 2.6179E-03 6.5240E-03
09 +3.3771E-01 +9.8801E-02 +7.6678E-01 2.0570E-03 4.7431E-03
10 +3.3819E-01 +9.9067E-02 +7.6827E-01 1.5750E-03 4.0090E-03
11 +3.3835E-01 +9.8973E-02 +7.6836E-01 1.3353E-03 3.1594E-03
12 +3.3876E-01 +9.8813E-02 +7.6952E-01 1.1948E-03 2.7555E-03
13 +3.4010E-01 +9.9256E-02 +7.7121E-01 9.7802E-04 2.6319E-03
14 +3.4006E-01 +9.9392E-02 +7.7147E-01 8.1485E-04 2.3789E-03
15 +3.4082E-01 +9.9531E-02 +7.7219E-01 7.3002E-04 2.0875E-03
16 +3.4101E-01 +9.9467E-02 +7.7254E-01 6.7506E-04 1.8089E-03
17 +3.4122E-01 +9.9414E-02 +7.7329E-01 6.2117E-04 1.7465E-03
18 +3.4140E-01 +9.9319E-02 +7.7316E-01 5.5171E-04 1.5843E-03
19 +3.4166E-01 +9.9305E-02 +7.7362E-01 5.0059E-04 1.5502E-03
20 +3.4114E-01 +9.9474E-02 +7.7355E-01 4.4729E-04 1.4977E-03
21 +3.4193E-01 +9.9641E-02 +7.7385E-01 4.0136E-04 1.4061E-03
22 +3.4034E-01 +9.9626E-02 +7.7375E-01 3.8697E-04 1.4823E-03
23 +3.4093E-01 +9.9575E-02 +7.7368E-01 3.6392E-04 1.4292E-03
24 +3.4154E-01 +9.9508E-02 +7.7389E-01 3.5728E-04 1.3241E-03
25 +3.4193E-01 +9.9579E-02 +7.7427E-01 3.3566E-04 1.1937E-03
26 +3.4227E-01 +9.9599E-02 +7.7479E-01 3.2612E-04 1.1032E-03
27 +3.4203E-01 +9.9635E-02 +7.7490E-01 3.1476E-04 1.0496E-03
28 +3.4220E-01 +9.9731E-02 +7.7502E-01 2.9389E-04 1.0068E-03
29 +3.4203E-01 +9.9729E-02 +7.7487E-01 2.7659E-04 9.5792E-04

5 CONCLUDING REMARKS

This work presented the formulation of a nonlinear optimization problem to
maximize the efficiency of a bi-stable energy harvesting device. Since the problem
has jump-type discontinuities, which prevents the use of gradient-based methods, a
stochastic approach based on the cross-entropy method was proposed to construct a
numerical solution. Tests to verify the efficiency and accuracy of this approach were
conducted, showing that the proposed algorithm is quite robust and effective.



Table 4. Evolution of CE algorithm using N s = 25 samples.

level P µf µΩ σf σΩ

01 -1.7354E-02 +9.2528E-02 +7.8304E-01 2.4005E-02 1.0592E-01
02 -1.7171E+00 +8.6541E-02 +7.7635E-01 9.5138E-03 3.8666E-02
03 +5.3859E-03 +8.8943E-02 +7.6449E-01 8.4947E-03 1.5642E-02
04 +7.8101E-03 +9.3665E-02 +7.5846E-01 4.9188E-03 9.0354E-03
05 +3.3423E-01 +9.6984E-02 +7.6137E-01 3.5145E-03 6.7145E-03
06 +3.3689E-01 +9.7425E-02 +7.6432E-01 2.2768E-03 4.5096E-03
07 +3.3610E-01 +9.7655E-02 +7.6447E-01 2.1021E-03 3.1061E-03
08 +3.3809E-01 +9.8104E-02 +7.6732E-01 1.9404E-03 2.4416E-03
09 +3.3903E-01 +9.8507E-02 +7.6834E-01 1.4161E-03 1.7015E-03
10 +3.3874E-01 +9.8577E-02 +7.6807E-01 1.3770E-03 1.2993E-03
11 +3.3924E-01 +9.9077E-02 +7.6836E-01 1.1700E-03 1.1012E-03
12 +3.3892E-01 +9.8925E-02 +7.6867E-01 1.1089E-03 1.0429E-03
13 +3.3937E-01 +9.8949E-02 +7.6930E-01 1.1003E-03 1.0517E-03
14 +3.3924E-01 +9.9278E-02 +7.6928E-01 1.0300E-03 8.6947E-04
15 +3.4030E-01 +9.9359E-02 +7.7019E-01 8.6681E-04 6.7889E-04
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