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Abstract

Shape Memory Alloys (SMAs) undergo an austenite-martensite solid-solid phase transforma-

tion which confers its pseudo-elastic and shape memory behaviours. Phase transformation can

be induced either by stress or temperature changes. That indicates a strong thermo-mechanical

coupling. Tensile test is one of the most popular mechanical test, allowing an easy observation

of this coupling: transformation bands appear and enlarge giving rise to a large amount of heat

and strain localisation. We demonstrate that the number of transformation bands is strongly as-

sociated with the strain rate. Recent progress in full field measurement techniques have provided

accurate observations and consequently a better understanding of strain and heat generation and

diffusion in SMAs. These experiments bring us to suggest the creation of a new one-dimensional

thermomechanical modelling of the pseudo-elastic behaviour. It is used to simulate the heat rise,

strain localisation and thermal evolution of the NiTi SMA sample submitted to tensile loading.

Keywords: Shape Memory Alloys, Nitinol, martensitic phase transformation,

thermomechanical coupling, transformation bands

1. Introduction

Since their discovery in the early 60’s, Shape Memory Alloys (SMAs) have been widely stud-

ied leading to a great improvement in the understanding of their behaviour (pseudo-elasticity

and shape memory effect), [2, 14, 19, 25]. The progress made promoted their use in many

applications, especially in the medical field for bio-compatible NiTi-based SMAs [4]. A gen-

eralisation of SMAs’ use for structures with increasing complexity requires the development of

more efficient models, reflecting the overall behaviour but also taking into account the strong

thermo-mechanical coupling and its effects (strain localisation, heat emission and thermal phe-

nomena).
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Indeed, whilst submitted to a simple displacement-controlled tensile test, pseudo-elasticity

occurs in SMAs. Pseudo-elasticity corresponds to the ability of the material to elongate in large

proportion (up to 8%) under tensile loading and to recover to its prior shape when unloaded.

Pseudo-elasticity is caused by a phase transformation between the austenitic (A) and martensitic

(M) phases [2]. The phase transformation leads to a distortion of the crystal lattice, that causes

the increase of strain. Associated with low strengthening, localisation usually occurs leading to

so-called ”transformation bands”.

The phase transition is associated with heat emission (or absorption during a reverse loading).

Since the phase transformation is induced either by temperature or stress, the local temperature

fluctuations strongly change the rate of transformation bands. He and Sun [11] or Shaw and

Kyriakides [25] for instance have investigated the dependence of the localisation phenomenon

on the loading rate. As the transformation can be induced by temperature changes, the behaviour

is highly dependent on the competition of the two transient thermal phenomena: how fast the

latent heat is released (i.e. loading rate) and how fast it is evacuated (by conduction and air

convection). Indeed, if natural evacuation is too weak to compensate the released heat at the

front of the band, the transformation is hampered. Thus a new localisation band borns, where

the transformation is easier, at the lowest temperature-point of the sample (stress considered as

homogeneous) [26]. Therefore, the number of bands is well linked to the thermal conditions and

the loading rate. The following experimental law, established by Zhang et al. [28], associates the

strain rate (ε̇) with the maximum number of localised bands, denoted nmax:

nmax = Cε̇m (1)

Where C is a constant, depending on the boundary conditions, conductivity and heat convection.

It is shown that m is between 0.5 and 1 (He and Sun [11]).

On the other hand, recent progress in imaging techniques has allowed an improvement in the

quality of the observations. For instance, He and Sun [11] and Feng and Sun [10] used oblique

light and cameras to evidence the transformation bands. Full field measurement such as Digital

Image Correlation (DIC) and InfraRed Thermography (IRT) are particularly well suited for the

observation of this phenomenon. Indeed they provide quantitative information (displacement or

temperature) at each point on the surface. It opens a field for the study of coupled phenomena

-for instance the main idea is to use these quantities to infer the heat sources associated to phase

transformation [22, 6].

There are numerous articles of literature available on this topic [22, 8] even related to dynamic

conditions [18]. The authors of the present paper have proposed a new correlation method in or-

der to extract thermal and kinematic quantities from a single set of infrared images and a single

computation [17]. This technique is described in the first part of this article (section 2). Once

applied to a tensile strained NiTi SMA, the main phenomena described above are highlighted. A

quantitative evaluation of transformation strain and of thermal gradient at the front of the bands

is made. The second part of this paper (section 3) is introducing a one-dimensional model of a

sample submitted to a displacement-controlled tensile test based on the Clausius-Clapeyron di-

agram (Stress versus Temperature). The computing thermal scheme is first presented, then each

phenomenon is introduced gradually in order to obtain a fully coupled model able to describe

homogeneous transformation as well as localisation, unloading and cycling. The corresponding

algorithm and numerical methods are briefly stated in the third part (section 4). The fourth part

(section 5) proposes a qualitative validation of the one-dimensional model, run with a set of pa-
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rameters supported by existing literature, against several loads. Numerical results are compared

from the experiments conducted at different strain rates. The square-root link between loading

rate and number of bands stated by Zhang et al. [28] and analytically modelled by He and Sun

[11] is verified. The ultimate part discusses the ability of the one-dimensional thermomechanical

model to simulate more complex situations. To conclude, improvements are suggested.

2. Observation of martensitic transformation bands as a result of full-field measurements

This section aims at introducing the three key points of the Ni-Ti SMA behaviour under tensile

loading which are:

• uniform transformation,

• localisation in narrow bands of transformation and enlargement,

• relationship between number of bands, velocity of front band and loading conditions.

Full field measurement techniques are particularly well indicated for observations and measure-

ment of heterogeneous mechanical and thermal quantities. Indeed transformation bands involves

local displacement and localised heat emissions. Many research groups used DIC to obtain kine-

matic fields and IRT to obtain thermal fields [8, 9, 20]. The InfraRed Image Correlation (IRIC)

is a recent global correlation method: correlation is applied on a single set of infrared images,

that delivers in one calculation both thermal and kinematic measurements at each point of a sin-

gle Finite Element Mesh over the zone of interest (ZOI). The determination of both quantities is

done jointly in a fully coupled manner. It has three advantages: simplifying the experimental set

up (only one IR camera), avoiding the time and space pairing of the two fields, and not requiring

expensive optical filters nor separator cubes. For more details on the IRIC technique employed

hereafter the reader could refer to [17].

2.1. Experimental set up

The material used for the test is a Ni49.75 at%Ti alloy (commercial name S E508) produced by

Nitinol Devices and Components (Fremont, California, USA). Samples are formed by Nitifrance

(Lury-sur-Arnon, France). The forming process consists mainly in a cold-rolling and subsequent

2 minutes heat treatment at 480◦C in a salt bath. Samples are flat bone shaped. Their cutting was

performed by electro-erosion machining. The surface was electro-chemically polished. The S 0

section is rectangular (20 × 2 mm2) and the gauge length L0 is 120 mm long.

The forming process provides polycrystalline specimen with a mean grain size of about 30 µm.

At room temperature, the material is fully Austenitic (face-centered cubic symmetry).

Differential Scanning Calorimetry (DSC) measurements have been performed [17] using

a 50 mg sample and a Heat/Cool/Heat method (heating rate : 10 K min−1 ; cooling rate

−3 K min−1). Results are reported in figure 1. This curve exhibits two transitions during cooling

corresponding to the transition limits between A phase and R (rhombohedral symmetry) phase

then between R phase and M (monoclinic symmetry) phase. We estimate the following transi-

tions: Austenite start As = 15◦C, Austenite finish A f = 40◦C, martensite start Ms = −10◦C and

martensite finish M f = −30◦C. The R-phase does occur and may be present at room temper-

ature during our experiments. It will not be considered in the modelling since the deformation
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associated to is much lower than that associated with A to M phase transition. Moreover a con-

troversy does exist about the appearance of R phase during a tensile test at room temperature2.

The DSC measurement allows us to estimate latent heats of phase transformations. The latent

heat corresponding to R to M phase transformation (red area in the figure) will be retained for

the modelling ∆HR−M ≈ 9 Jg−13.
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Figure 1: Differential Scanning Calorimetry of a Ni49.75 at%Ti.

The tensile tests were performed on a 100 kN hydraulic MTS machine. The sample was

installed in the hydraulic jaws. The experimental workspace, including imaging devices, was

protected in order to keep the thermal and ventilation conditions as constant as possible. During

the tests, the ambient temperature of the workspace was 28 ± 0.5◦C. Many displacement

rates δ̇ have been explored from 0.002 mm s−1 to 0.02 mm s−1. The tests reported below

have been conducted using δ̇ = 0.01 mm s−1 and 0.05 mm s−1 corresponding to strain rates

δ̇/L0 = 8.3x10−5 s−1 and 4.2x10−4 s−1 respectively.

The displacement and thermal full field measurement were performed thanks to InfraRed

Image Correlation. For this technique, an infrared camera and a large black body at low

temperature are required. We used a Cedip Jade III infrared camera recording at 100 Hz with an

Integration Time (IT) of 930 µs. This particular IT was chosen to cover a temperature range up

to 60 ◦C. Indeed we are operating at 28 ◦C and, in the considered loading rate, the temperature

of our structure can rise to 30 ◦C. The devices are set up as shown in Figure 2(a). The gauge

surface is covered with a speckle pattern of high emissivity black paint (0.95) over the polished

surface of the sample exhibiting a low emissivity (around 0.2). Consequently the black dots have

an emission which is directly related to the temperature of the surface whereas the radiation

2Even if R phase appears first during cooling denoting a lower chemical energy density than M phase, elastic energy

density associated to R phase is much lower, that could make the M phase more stable during tensile strengthening.
3Latent heat associated with M to A transition is much higher (∆HM−A ≈ 25 Jg−1) and leads to high temperature

variations that have not been observed experimentally. Both R and A phases are probably present in the material at its

initial state.
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coming from the nude surface areas is a mixture between the temperature of the sample itself and

the temperature of the reflecting cold black body. Thus, on the one hand the speckle visible in the

IR pictures from the grey level recorded (see Figure 2(b)) allows us to calculate the displacement

field by image correlation. On the other hand, the temperature of surface can be inferred at each

point, knowing the black body temperature. More details are available in [17], especially the

calibration steps required to obtain quantitative and reliable measurements. The performances of

the correlation code were estimated. It reveals that the uncertainties are dependent on the mesh

size, as for any other correlation code. However, the displacement mean error and uncertainty

(due to the calculation) are lower than 0.05 pixels for a 12 × 12 pixels mesh size; the strain

uncertainty is around 5 × 10−4; the thermal uncertainty oscillates between 10−3 ◦C and 10−4 ◦C

(this numerical uncertainty is lower than the Noise Equivalent Thermal Deviation of the camera).

2.2. Tensile test

The curves plotted in figure 3a give the engineering stress-strain (i.e. F/S 0 vs. δ/L0 with F

the axial force) behaviour of the material for the two different strain rates. The shape is typical

of pseudo-elasticity4: a first linear part -step I- (ended around 350MPa and 1.1%) usually inter-

preted as elasticity of the A phase (even if A to R phase may partially occur); an inflection point

followed by a strain plateau of 4.6% of magnitude -step II- corresponding to the localisation step

and appearance of M phase ; and a final strengthening -step III- usually associated to a transition

from phase transformation to elastic behaviour of M phase (only perceptible for lowest strain rate

test). Higher strain rate leads to a higher slope of plateau and a global higher stress level. We will

see in the next subsections that the phenomena are not so clearly partitioned. The engineering

stress and strain are calculated from macroscopic quantities given by the sensors of the testing

machine (force F and displacement δ). Although stress-strain curve is corrected taking into ac-

count the rigidity of machine and grip, the behaviour is flawed since the heterogeneous character

of the deformation is not accessible. Thus the investigation of the thermal and kinematic fields

and their confrontation to the tensile curve will generate a valuable amount of information.

The results plotted in figure 4 justify, by itself, the use of full field measurements. The figure

shows the simultaneity of longitudinal strain ε = εyy and temperature rise at the three different

physical points on the surface previously defined (see figures 3 and 5) compared to the macro-

scopic quantities: strain and temperature are first uniform (step I), then non uniform (step II)

denoting the birth of a transformation band at the 44th second of the highest strain rate test

(δ̇/L0 = 4.2 × 10−4 s−1.). The strain at point A increases up to 6% and saturates. The band

enlarges and the heat is released only at the front of the band. The full field measurements in

figure 5 confirm this interpretation. A systematic simultaneity of strain increase and heat release

is observed. Before localisation, a diffused appearance of martensite is highlighted. The linear

stress-strain macroscopic behaviour is consequently a mix between diffuse transformation strain

and elastic behaviour of the (A) phase. After localisation, heat diffusion is clearly highlighted

since the thermal band is wider than the strain band. The local character of the measurements,

coupled with the high temporal discretisation allows an accurate observation of the birth and

propagation of the bands. These points are more deeply discussed in the next paragraphs.

4pseudo-elasticity strongly depends on room temperature. At low temperature martensite reorientation occurs leading

to so-called memory effect; at high temperature A to M phase transformation occurs leading to pseudo-elasticity. In the

present case and in agreement with DSC measurements, M to A transformation occurs at room temperature so that the

reverse transformation during unloading may be partial as observed in figure 3a.
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2.3. Uniform transformation step (I)

As shown in figure 4, the first step (I) does not only correspond to an elastic behaviour.

Indeed, the thermoelasticity should induce a cooling of the surface in the very first mo-

ments of the tensile test. On the contrary, we observe after 2 or 3 s that the temperature

increases uniformly over the surface. At the same time, the longitudinal strain increases

uniformly. We can therefore conclude that a diffuse phase transformation occurs. It convinces us

that thermoelasticity is probably negligible for this test (low strain rate leading to low stress rate).

2.4. Localisation step (II)

During the uniform step (I), strain is perfectly uniform, whereas the thermal field exhibits

a smooth gradient (less than 0.3◦C at room temperature and less than 0.6 ◦C over 700 mm2 at

33 ◦C) due to heat diffusion and convection. The transformation localises at the 44th second:

the strain stops increasing uniformly and some points on the surface undergo sudden strain

and temperature rise. One may notice that the localisation first occurs close to the heads of

the specimen due to the additional multi-axial loading and cooler temperature in the clamps.

This area is out of the view field thus the observed bands in figure 5 are not the very first ones.

Localisation results in a simultaneous rise of temperature and strain along a line oriented of

55◦ from the tensile direction. Inside the band, the strain rises until it saturates at 0.06 and the

temperature locally increases by more than 10◦C (depending on the ventilation of the workspace

and the loading rate). On the other hand, the heat emitted during the appearance of the band

goes against the transformation. So if the diffusion or convection is not fast enough compared

to the strain rate, the transformation stops in the band, and another appears where stress and

temperature conditions are more favourable. Otherwise the transformation spreads to the front of

the band, and it begins to widen. These phenomena occur during the plateau of the engineering

curve (step II). Sometimes, a small drop in stress can be observed due to the relaxation induced

by the localisation (here the plateau is not a straight line, see also [25]). Thus, out of the bands

(point C), strain tends to decrease slightly.

These results provide us with some useful informations for the modelling of the tensile test: we

can first assume that strain rate and heat rate are coupled via the volume ratio of the transformed

phase; secondly εsat=0.06 is the maximal longitudinal strain that can be reached in one physical

point; we will finally consider that only the A to M and/or M to A transformations can occur

during the tensile test, neglecting the role of R phase not perceptible on experimental results

(except for DSC).

3. Modelling

Many remarkable works have been done in order to model the specific behaviour of SMAs.

However in most cases, only one aspect of the behaviour is described over others. Among these

works, Hu et al. [12] use a kinematic criterion, neglecting the homogeneous stage to calculate

the width of the localised band. This model assumes that only one band occurs in the middle of

the sample. On the contrary, some studies [7, 1] are based on the Clausius-Clapeyron diagram

in order to deduce the martensitic ratio from the stress. Those ones are able to take the elastic

strain and temperature into account. Nevertheless the Clausius-Clapeyron diagram is only valid

on the homogeneous stage, so those models can not reproduce the localisation phenomenon.
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Some energetic approaches [27, 5, 15] can be used to model the transformation dealing with

the free energy associated to the phase transformation. These approaches are usually applied

to get the homogeneous behaviour of a representative volume element. It should be associated

to Finite Element Modelling (FEM) in order to model the localisation. Another modelling

strategy is applied in [23]: it is based on a benchmark which presents isothermal macroscopic

tensile curves at different temperatures. Each curve is interpolated and implemented in a FEM

solver. Then, this software is able to model the transformation strain (considered as a plastic-like

flow) and calculate the heat associated to this flow. Considering the local temperature at each

point, the adequate tensile curve is used. This method gives good results concerning the tensile

curve, but it can not simulate the local behaviour (no distinction between the two stages i.e.

homogeneous and heterogeneous) and unloading (reverse M to A transformation). Finally,

attention must be paid to the very complete work of Chang et al. [3] after [24] which proposes

a model based on a 1D Helmholtz free energy with strain gradient effects and phase fractions

as internal variables. In this approach, softening associated to phase transformation can lead to

localisation and propagation in the strain, phase fraction, and temperature fields. In this work

the homogeneous stage is nevertheless neglected.

So, it has been figured out that no model is able to simulate all of the following aspects for a

tensile test specimen as presented in the previous experimental section :

1. (a) homogeneous transformation stage
(b) heterogeneous transformation stage

2. temperature dependence of the localisation phenomenon

3. exo/endo -thermic reactions

4. reversibility (mechanical) transformations (loading/unloading)

In the approach proposed herewith, we choose to model the behaviour of the sample as a

one-dimension problem. That means that the considered thermo-mechanical variables are only

dependent on time t and axial position x. It implies that the angle of the localisation bands cannot

be represented.

Figure 6 brings the notations used. The initial gauge length of sample is denoted L0. Initial

cross section and outer length are denoted respectively S 0 and ℓ. The specimen is clamped in

grips at each extremity, that act as mass of high thermal inertia at constant temperature Tclamp.

The gauge zone is surrounded by unventilated air assumed at constant temperature Tair. Conse-

quently, thermal boundary conditions are convection with air on the free surface of the sample

(power loss q̇dis) and conduction ensured by clamps.

The internal variables of the model are defined as a function of x and t (axial and temporal

index): we use f (x, t) the Martensitic ratio, defined between 0 and 1, T (x, t) the temperature,

σ(t) the axial stress considered as position-independent (homogeneous stress due to quasi-static

phenomena).

3.1. Thermal equations

Thanks to 1D problem assumptions, temperature gradients in both transverse directions are

neglected ie temperature is homogeneous over the section S 0. Let define q̇tr and q̇th the transfor-

mation and the thermoelastic power in a current cross section at position x and time t. They are

considered as source in the heat equation:

q̇tr = ρ ḟ (x, t)∆H (2a)

q̇th = −α(x, t)T (x, t)σ̇(t) (2b)
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∆H denotes the latent transformation heat from A to M, ρ(x, t) the local density and α(x, t) the

local thermal expansion factor. Since the problem is one-dimensional, we can consider the air

convection of the sample as a volumetric power loss:

q̇dis =
dPconv

dV
=

hℓ

S 0

(T (x, t) − Tair) (3)

h being the convection factor and Tair the temperature of air. Finally, the heat equation gives:

λ∆T + ρ ḟ∆H − αT σ̇ −
hℓ

S 0

(T − Tair) = ρCp

∂T

∂t
(4)

with λ(x, t) the thermal conductivity and Cp the thermal capacity. The boundary conditions can

be defined as:

−λ(0, t)
∂T

∂x

∣

∣

∣

∣

∣

0

= hc

(

Tclamp − T (0, t)
)

(5a)

−λ(L0, t)
∂T

∂x

∣

∣

∣

∣

∣

L0

= hc

(

T (L0, t) − Tclamp

)

(5b)

where hc is the conductance factor between the sample and the clamps. In the following, we

consider Tclamp = Tair as true all along the test.

3.2. Phase transformation flow rule

As proposed in [1] and initially by [13] for its integrated exponential form, the volume fraction

of martensite f (x, t) is supposed to obey to a first order flow rule:

ḟ (x, t) =
∂ f

∂t
= Vt ( ft(x, t) − f (x, t)) (6)

where ft(x, t) is the phase transformation driving force (or martensite ratio ”at equilibrium”)

and Vt is the maximum transformation rate. The differential equation permits a delay between the

driving force ft(x, t) and the martensitic ratio ḟ (x, t) evolution. It models the non-instantaneous

effect of phase transformation in accordance with the temporal evolution of the strain in a physi-

cal point where the localisation band nucleates (see section 2). It must be noticed that this simple

flow rule is not able to reproduce the complexity of real phase transformation, meaning that only

A and M phases are considered. This formulation ensures us on the other hand to verify the

second principle (positive dissipation) since the thermodynamic force Y associated to internal

variable ḟ satisfies [24, 3]:

∆H = Y − T
∂Y

∂T
and Y ḟ ≥ 0 (7)

This simplicity allows us finally to put forward a robust finite difference modelling able to give

back the complexity of birth and propagation of localisation bands 5.

5Results presented in the paper have been obtained considering f (x, t) = ft(x, t), leading to ḟ (x, t) = ḟt(x, t). In-

deed flow rule (6) allows to avoid too abrupt transformation rates. But some numerical discrepancies may occur for a

macroscopic strain rate δ̇/L0 close to Vt
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3.3. Mechanical equations

We use a classical partition of the strain in elastic strain εel, thermal strain εth, and transforma-

tion strain εtr , giving for a one-dimensional problem:

ε(x, t) = εel(x, t) + εth(x, t) + εtr(x, t) (8)

Thermoelasticity has not been considered in the modelling in accordance with experimental re-

sults. The elastic strain obeys to Hooke’s law: εel(x, t) =
σ(t)

E(x,t)
with E the Young modulus. The

definition of the transformation strain at point x cannot be done without evaluating the question

of spatial resolution of the modelling tool. At the variant scale, εtr gets two possible values: zero

if the matter remains austenitic or εsat the maximum transformation strain if the matter becomes

martensitic. This binary solution is not acceptable for the continuum modelling we want to build.

The suggested model is macroscopic so that we have to consider that physical point x is corre-

sponding to a volume involving a large number of grains, large enough so that the transformation

strain can be defined as linearly dependent of the martensite volume fraction:

εtr(x, t) = f (x, t)εsat (9)

This expression implies that the modelling is a serial 1D modelling (homogeneous stress approx-

imation). Thermal strain is defined by:

εth(x, t) = α(T (x, t) − Tair) (10)

where α is the current thermal expansion factor. The definition of total strain becomes:

ε(x, t) =
σ(t)

E(x, t)
+ α(T (x, t) − Tair) + f (x, t)εsat (11)

Finally, the tensile test is driven by the relative displacement of the clamps u(t) (displacement-

controlled test) so that:

u(L0, t) =

∫ L0

0

ε(x, t)dx (12)

Another correlated consequence is that spatial resolution of the modelling is expected to be at

minimum 2 grain diameters i.e. more than 60 µm.

3.4. Update of the thermomechanical constants :

Each local thermomechanical constant depends on local phase ratio between Martensite and

Austenite. A simple mixture law is employed for thermal expansion coefficient due to 1D serial

modelling, and Reuss estimation of Young modulus and thermal conductivity is employed.

α(x, t) = f (x, t)αM + (1 − f (x, t))αA (13a)

1

E(x, t)
= f (x, t)

1

EM

+ (1 − f (x, t))
1

EA

(13b)

1

λ(x, t)
= f (x, t)

1

λM

+ (1 − f (x, t))
1

λA

(13c)

E, α and λ are the current Young modulus, the current thermal expansion factor and the cur-

rent thermal conductivity at position x and time t respectively. XP represents the X parameter,

assumed constant, of the pure P-phase.
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3.5. Homogeneous stage

We first consider the direct transformation (from A to M). The reverse case is discussed in the

final part of this present paper.

The modelling of the homogeneous transformation is based on the Clausius-Clapeyron di-

agram plotted in figure 7, in which we can define 3 domains separated by the two stress vs.

temperature transitions, corresponding to onset (M start) and termination (M finish) of the trans-

formation. Upper domain is the martensitic domain, lower domain is the austenitic domain. The

intermediate domain is a dual-phase domain (M + A). Transitions σs(T ) and σ f (T ) are assumed

to linearly depend on the temperature exhibiting the same slope KT (MPa.K−1). The driving force

ft used to calculate the martensitic ratio thanks to equation (6) is deduced from the position of a

point in the stress-temperature space using a lever rule:























ft = 0 if σ < σs

ft =
σ−σs

σ f−σs
if σs ≤ σ ≤ σ f

ft = 1 if σ > σ f

(14)

Nevertheless at this stage we are not able to model the localisation. Indeed a local transformation

leads to a local increase of temperature and consequently an increase of σs and σ f that prevents

a further transformation in the region. Nucleation and propagation concepts must be introduced.

3.6. Localisation stage

Nucleation and propagation stresses were introduced first by Shaw and Kyriakides [26]. When

the nucleation stress σn is reached, a pure M band borns. σn is higher than the required stress

for propagation σp. The propagation stress σp, is lower than the minimum stress for complete

homogeneous martensitic transformation (σ f ). Those stresses appear to linearly depend on the

temperature, exhibiting the same slope than σs and σ f transitions. Figure 7 illustrates the homo-

geneous domain (as described in part 3.5) and the so-called nucleation and propagation stresses

vs. temperature transitions.

The propagation laws can be summarized as follows:

i. When the stress reaches the nucleation stress at any point, then this point is “nucleated”,

ii. When any point (or its neighbourhood) is nucleated AND when the stress is higher than

propagation stress, this point is submitted to propagation,

iii. When any point (or its neighbourhood) is submitted to propagation at any time step AND

when the stress is higher than the propagation stress at the next time step, this point is

submitted to propagation at the further step.

These rules are written mathematically using boolean operators:

N(x, t) = [σ(t) > σn(x, t)] (15a)

P(x, t) = (N(x ± dx, t) ∨ P(x ± dx, t − dt)) ∧ [σ(t) > σp(x, t)] (15b)

∨ et ∧ being the boolean operators OR and AND respectively, and [ · ] being the predicate ([h]

= 1 if h is true, 0 else). N denotes the nucleated state whereas P is the propagation undergoing.

±dx denotes here the near region of x:

N(x ± dx, t) = N(x, t) ∨ N(x + dx, t) ∨ N(x − dx, t)

P(x ± dx, t) = P(x, t) ∨ P(x + dx, t) ∨ P(x − dx, t)

10



dx and dt are the element size and the time step respectively. The definition of the neighbour-

hood appears to make this model theoretically mesh dependent (influence of the values of dx

and dt), but we will figure out later (part 5) that this assumption is false.

ft takes now two possible values depending on P(x, t):

{

if P(x, t) is false ⇒ ft(x, t) is calculated from eq. (14)

if P(x, t) is true ⇒ ft(x, t) = 1
(16)

The introduction of a nucleation stress different from the propagation stress is a practical way

to take into account the local stress concentration due to the local appearance of variants of (M)

that are not fully compatible with the (A) parent phase. Indeed the model is one-dimensional that

does not allow to define such a stress gradient.

4. Numerical Algorithm

The equations introduced above lead to a strong non-linear problem, especially because of the

transient thermal phenomenon. A numerical code has been implemented.

4.1. Thermal solver

A Backward Euler Finite Difference decomposition of the sample has been done [21]. Xn
j

denotes the value of X in the element j ∈ [1,m] (m being the number of elements) at the time

step n. Fn is the vector corresponding to the local heating and T n the vector corresponding to the

temperature of each element. The decomposition of the equation (4) gives the following implicit

matrix system:
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(17)

Where [C]n is the m × m- thermal inertia matrix, [BC]n the 2 × m- additional matrix for the

Lagrange Multiplier due to boundary conditions (5):
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With:

An
1 = An

m = 1 +
hℓdt

S 0ρCp

and An
i = 1 +

hℓdt

S 0ρCp

+
2λn

i
dt

ρCpdx2
(18a)

Bn
1 = Bn

m = 0 and Bn
i =

λn
i
dt

ρCpdx2
(18b)

Fn
i = ∆H

f n
i
− f n−1

i

Cp

+
hℓdtTair

S 0ρCp

(18c)

[BC]n =















0 0 0 . . . 0
−λn

m

hcdx
1 +

λn
m

hcdx

1 +
λn

1

hcdx

−λn
1

hcdx
0 . . . 0 0 0















(18d)

4.2. Martensite ratio evolution

Numerical resolution of the flow equation (6) gives:

f (x, t + dt) = Vtdt ( ft(x, t) − f (x, t)) + f (x, t) (19)

This formulation is not used if we choose f (x, t) = ft(x, t). This simplification has been consid-

ered in the numerical applications.

4.3. Algorithm

The numerical code associated to the model can be described by the flowchart given in figure 8.

The initial temperature is considered as a constant, denoted Tini. For each time step n, the elastic

displacement (uel) is calculated with the total displacement (u) and the inelastic displacement

(due to phase transformation):

un
el = un

−

m
∑

i=1

f n
i εsatdx (20)

The local Young moduli are calculated from equation (13b). Since homogeneous stress hy-

pothesis is used (1D problem), a Reuss estimation of the global equivalent Young modulus (Eeq)

is computed:

1

En
eq

=

m
∑

i=1

1

En
i

(21)

The stress is calculated from the macro elastic strain and the equivalent Young modulus:

σn = En
eq

un
el

L0

(22)

Typical results are reported in the next sections for dx = 240 µm (500 elements).

5. Simulation results and comparison to experimental data

12
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Figure 2: (a) Experimental set-up showing the relative position of IR camera, specimen surface and extended black body.

(b) Infra-red raw picture observed during tensile test on Ni-Ti SMA showing the speckled specimen face undergoing a

strain and heating localisation. The measurement ranges between 0 and 16000 digital levels (DL). The colorbar indicates

the grey intensity whose variation could be interpreted as temperature changes thanks to an appropriate calibration.[17]
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0

0.05 mm/s

0.01 mm/s

step I step II step III

(a)

(b)

Figure 3: a- Experimental tensile curves at δ̇/L0 = 8.3 × 10−5 s−1 and 4.2 × 10−4 s−1, (engineering stress vs. strain). b-

Raw image of the sample before tensile testing. The area of interest is embodied by the dotted lines. A, B and C are some

physical points where thermomechanical quantities are highlighted (Lagrangian description). Dimensions are given in

mm.
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Figure 4: Simultaneous evolution of stress, temperature and longitudinal strain. Red lines are macroscopic quantities

whereas doted lines are local quantities at the three physical points (A,B,C) - at δ̇/L0 = 4.2 × 10−4 s−1.
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Figure 5: Temperature and longitudinal strain fields at four typical instants (t1 = 42 sec, t2 = 51.25 sec, t3 = 61.25 sec,

t4 = 75 sec) - at δ̇/L0 = 4.2 × 10−4 s−1.

Figure 6: One-dimensional model
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Figure 7: (a) Clausius-Clapeyron diagram and associated lever rule. (b) Homogeneous and localisation boundaries for

the direct transformation: from A to M phases.

f = 0, σ = 0, T = Tini, u = ui = 0

Eel =
1
∑

i
1
Ei

σ = Eeǫe = Ee
du−dui

Lo

Calc. of boundaries and σR

Calculation of ft

Calculation of f

Calc. of E, λ and α

Calc. of the temperature

Calculation of inelastic strain

t = t + dt

Figure 8: Numerical algorithm for the resolution of the equations associated to the model.
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5.1. Algorithm and identification of thermal parameters

The algorithm described on figure 8 has been implemented using Matlab. Tables 1, 2 and 3

give the parameters used for the simulations. The values of parameters and material constants

(Cp, λA, λM, ∆H...) provided by the material supplier, in agreement with different sources in

the literature (however, the values slightly vary from one author to another). The geometrical

parameters correspond to the experimental set up reported in section 2.1. The external thermal

parameters (h, hc) were chosen in order to properly fit the experimental data provided in section

2.2. The value used for the slope of σ(T ) transition in the Clausius-Clapeyron diagram is KT =

8 MPa K−1 in agreement with [26]. Temperatures reported in table 3 correspond to temperatures

Ti of homogeneous and localisation boundaries i reported in figure 7 at zero stress so that:

σi(T ) = KT (T − Ti) (23)

Outside temp. Init. temp. Init. length Cross sect. Out. length Conv. factor Conductance

Tair = Tclamp Tini L0 S 0 ℓ h hc

290 290 120 40 46 10 500

K K mm mm2 mm Wm−2K−1 Wm−3K−1

Table 1: Geometrical and external parameters for simulation

Th. capacity Thermal conductivities Young moduli Th. expansion factors Latent Heat Density

Cp λA λM EA EM αA αM ∆H ρ

322 18 8.6 32.5 31.5 11x 10−6 6.6x 10−6 9,000 6,500

J kg−1K−1 Wm−1K−1 Wm−1K−1 GPa GPa K−1 K−1 J kg−1 kg m−3

Table 2: Material parameters

Martensite start Martensite finish Nucleation temp. Propagation temp.

Ms M f Mn Mp

263 248 259.75 262.75

K K K K

Table 3: Temperature of homogeneous and localisation boundaries of Clausius-Clapeyron diagram (figure 7).

An arbitrary stress concentration can be used in order to model a distribution of defects (of

geometrical, crystallographic or thermal origin) that initiate the transformation bands:

σe f f (x, t) = (1 + ζΩ(x))σth(t) (24)

σe f f denotes the effective stress, used for the driving force calculation, whereas σth is the theo-

retical stress, uniform over the length, calculated from the elastic strain. ζ is the nominal defect

andΩ is a random value taken between ]−1, 1[. It must be noted that such localisation parameter

is not necessary since the thermal heterogeneity is sufficient to initiate nucleation of the bands.

In the following simulations, ζ has been fixed at 0. A study of sensitivity to this parameter is

nevertheless reported in section 5.4.
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Figure 9a-f and 10a-d allow one to compare the experimental data reported in section 2.2 using

the IRIC system to the modelling results for δ̇/L0 = 4.2 × 10−4 s−1 and δ̇/L0 = 8.3 × 10−5 s−1

respectively. The experimental spatiotemporal maps are not available for the second test. The

area of measurement is limited to 40x26 mm2 in the center region of specimen.

Figure 9b shows the stress-strain curve obtained to be compared to figure 9a (figures 10a and

10b respectively). The first linear stage (0- a©) is due to perfect austenite elasticity. The second

stage ( a©- b©) is the homogeneous transformation. At the point b©, a first localisation occurs and

propagates until c©, only visible for the low strain rate test. From c© to the end, the transformation

is almost complete and the increase of stress is associated to martensite elasticity. These results

highlight the influence of the strain rate on both homogeneous and propagation stages.

Whereas figures 9b and 10b only show the macroscopic behaviour (mean strain calculated

from the relative displacement of the two clamps), figures 9d, 9f, 10c and 10d give the map

corresponding to the evolution of axial deformation and temperature along the sample at each

step corresponding to the simulation of figure 9b and 10b. The colour indicates the level of

the corresponding variable at each position on the sample (ordinate) and at any time (abscissa).

Figures 9c and 9d (9e and 9f respectively) show a good adequacy between the experimental

and the modelled spatiotemporal maps: correlation in time, strain level, temperature level and

space between bands (one must remember that full field is not reachable by experimental set-up).

These figures are completed with figure 11 exhibiting the martensite ratio in the same spa-

tiotemporal frame for both experiments. During the elastic stage (0- a©), no martensite is created.

Hence, only thermoelasticity could be taken into account for the temperature evolution. The

strain rate is small so that the sample is almost isothermal during this stage. The homogeneous

transformation starts at the same time in the whole sample. Due to boundary conditions (Tclamp)

and exothermic transformation, the lowest temperature stays at the clamps whereas the highest is

reached in the middle of the sample during the homogeneous transformation. As a result of this

temperature gradient, the first occurrence of the nucleation stress is always at the clamps: the two

first bands born consequently on the top and the bottom of the sample. Then, the temperature at

the fronts of the bands increases as well as the stress required for the propagation. Considering

the thermal exchange, stress becomes high enough before the arrival of the bands in the middle

part of the sample so a new nucleation occurs at the lowest-temperature point. A lower thermal

exchange parameter or lower strain rate would lead to the birth and propagation of only one band.

We meet the condition of multiple bands without propagation at high strain rate or low thermal

exchange. The same phenomena have been experimentally described in [26].

As a first conclusion, we observe a satisfying agreement between the experiments and the

modelling: stress/deformation levels, number of bands6, associated strain and temperature levels.

5.2. Validation

The thermal parameters have been chosen in order to properly qualify the IRIC experi-

ment. Figures 9 and 10 do not constitute a validation of the approach. Other comparisons are

required involving different strain rates and geometries. This point is addressed in this paragraph.

6Area of measurement is positioned at the centre of the specimen; it is too small to observe bands coming from

clamps.
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Figure 9: Comparison experiments / modelling: a/b- tensile curves at δ̇/L0 = 4.2 × 10−4 s−1. c/d- spatiotemporal map of

axial deformation. e/f- spatiotemporal map of temperature. Dimensions are given in mm.

The same material is used for this new experimental campaign. The section is still

rectangular but width and thickness are different leading to a different heat exchange

(section=12 × 2.5 mm2). The gauge length is kept as 120 mm long. The deformation ratio cho-
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Figure 10: Comparison experiments / modelling: a/b- tensile curves at δ̇/L0 = 8.3 × 10−5 s−1. c- spatiotemporal map of

axial deformation. d- spatiotemporal map of temperature. Dimensions are given in mm.

sen are: δ̇/L0 = 2.8 × 10−5; 2.8x10−4 s−1. During the tests, room temperature is now 23± 0.5◦C.

Figure 12 illustrates the stress-strain curves obtained for experiments and modelling. The fol-

lowing discrepancies can be observed: the stress threshold is overestimated of about 50 MPa. At

the lower strain rate, the model predicts a stress plateau which is not observed in the experiment.

The stress drop is to be related to shift between stress germination and stress propagation. The

one-dimensional model inevitably leads to this kind of result. On the other hand the model does

not allow to understand for such phenomena as the knee observed at 60 MPa in the experimen-

tal results. It is recalled that austenite to R-phase transformation is not taken into account in

the model. This transformation is indeed normally not active since the intensity of the chemo-

mechanical coupling is reduced due to the low transformation strain associated with R-phase.

However it is possible as mentioned in the introduction that the material in the initial state is

biphasic R−A. Such an environment and associated internal stresses can promote the occurrence

of a small amount of R-phase at low stress level, giving rise to such non-linearity.

These results are complemented by the associated spatiotemporal maps, i.e. martensite ratio
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Figure 11: Modelling: spatiotemporal map of martensite ratio corresponding to IRIC test at: (a) δ̇/L0 = 4.2 × 10−4 s−1;

(b) δ̇/L0 = 8.3 × 10−5 s−1 .

and temperature for modelling, and axial deformation for experiments and modelling. Figure 13

allows to compare experimental to modelled axial deformation, exhibiting the localisation bands.

The number of bands is in good agreement between experiments and modelling: two bands at

low strain rate; five bands for experiment and modelling at high strain rate (three visible in the

area of observation and two bands at the clamps); strain levels...

Modelling results concerning martensite ratio and associated temperature elevation are re-

ported in figure 14. The comment is the same as with previous simulations. The strain rate

remains small so that thermoelasticity is not perceptible or masked by the thermal emission due

to the homogeneous transformation stage. Whatever the test, the transformation begins at the

clamps.

At a low strain rate (figure 14(a)), only two bands occur and propagate. We meet the condition

of multiple bands without propagation at high strain rate.

These few experimental results and associated modelling confirm that the localisation phe-

nomenon is suitably described by the model. Comparisons at higher strain rate require experi-

ments that are difficult to process. Results reported in the next section allow us to conclude to

the ability of the model to predict the number of bands, stress and strain level in a wide range of

strain rate.

5.3. Influence of loading conditions on the localisation phenomenon

In [28], authors have attempted to reveal the roles of strain rate, conductivity and heat convec-

tion coefficients in controlling the number of bands and spacing. For most NiTi polycrystals and

heat transfer boundary conditions, the maximum domain number nmax increases with increasing

applied nominal strain rate ε̇ and decreases with increasing heat convection and conductivity. A

simple relationship between strain rate and number of bands, in two different cases, has already

been established [28, 11]:

nmax = Cε̇m (25)
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Figure 12: Comparison experiments / modelling: a/b- tensile curves at δ̇/L0 = 2.8 × 10−5; 2.8 × 10−4 s−1.

• For the case of no convection, a simple square root relationship (m = 0.5) between maxi-

mum number of bands and strain rate is obtained.

• For the case of a very large convection, the number of bands is proportional to the strain

rate (m = 1).

Some simulations have been performed using several strain rates, but with the same thermal

conditions (the convection coefficient chosen as representative of the tests is h = 10 Wm−2K−1).

Figure 15 reports a typical result of simulation for a much high strain rate than previous tests

(δ̇/L0=1.4 × 10−2 s−1) illustrating the so-called multiple bands phenomenon. The stress-strain

curve exhibits a high slope with oscillations at the point of nucleation of the bands (illustrated

in figure 16 where time variation of average quantities are plotted). Spatiotemporal maps indi-

cate a large number of bands with a high elevation of temperature. Considering the unexpected

enlargements of the bands, a possible effect of the number of elements (spatial discretisation) on

the result is highlighted.

Many other strain rates (5 decades) have been tested using 500, 1000 and 2000 elements to

address the role of discretisation. Figure 17 shows the evolution of the number of localised bands,

got from all the simulations.

At lower strain rate, the number of bands reaches the asymptotic value of 1 (nucleation at a

clamp) after a long saturation at 2 bands. At higher strain rate, a limit appears dependent on

discretisation. We observe a saturation at 35 bands for 500 elements. This limit reaches 55 bands

for 1000 elements. The limit is extended to much higher value with the use of 2000 elements.

A linear variation of number of bands vs. strain rate is observed in the log-log diagram. The

linear regression gives a good correlation coefficient (R=0.975) for the points considered and its

slope is 0.452. The number of bands and the strain rate can be approximately linked using the

relationship:

N = 229.5(δ̇/L0)0.452 (26)
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Figure 13: Comparison experiments / modelling of spatiotemporal evolution of the axial deformation at different strain

rates for the exact same thermal conditions and geometries.

This result is quite close to the relation established in [25] and in [28] more recently, in

accordance with the low convection condition (h = 6.5 Wm−2K−1 in [25]). C represents the

maximum number of bands at δ̇/L0=1 s−1. The parameters used lead to C ≃ 229 sm (figure 17).

This number must be compared to the number of elements: the number of elements should be

much larger than the number of potential bands for nucleation, leading to a lower bound for the

number of elements at a given strain rate. This point is illustrated by figure 18, where the number

of bands is plotted as a function of number of elements at high strain rate (δ̇/L0 = 1.4×10−1s−1).

Number of bands drastically decreases to 2 for number of elements lower than 250 as a clear

threshold. For number of elements higher than 250, the number of bands progressively reaches

its maximal value.

Other authors recommended to introduce the strain gradient [24, 3] which regularises the lo-

calisation. But sensitivity to mesh still remains. On the other hand, these models cannot properly

take the homogeneous transformation into account.
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Figure 14: Modelling results: spatiotemporal evolution of the martensite volume ratio f and of the temperature T (Celcius

degrees) at different strain rates for the exact same thermal conditions.

5.4. Sensitivity to convection and defect coefficients

Different heat coefficients have been implemented in the 1D-modelling in order to cross the

theoretical approach of [28]. It has been verified that higher convection coefficients lead to an

increase of the exponent m and a decrease of C joining the analytical approach. Figure 19 shows

the nucleation of bands obtained at δ̇/L0 = 2.8× 10−4s−1 for two extreme convection coefficients

h (0.1 Wm−2K−1 and 1000 Wm−2K−1) to be compared to figure 13(b) obtained for the same

strain rate and for h=10 Wm−2K−1. The number of bands for h=0.1 Wm−2K−1 is the same as for

h=10 Wm−2K−1 indicating that 10 Wm−2K−1 already corresponds to low convection situation.

High convection modelling is quite close to modelling implemented at low strain rate with a

reduced number of bands. Figure 20 shows the evolution of the number of localised bands at

different strain rates for convection coefficients h= 0.1 Wm−2K−1 and h=1000 Wm−2K−1 for

a 2000 elements discretisation, and associated linear approximations. The change of slope is

clearly highlighted (from 0.45 to 0.8 meeting the boundary coefficients proposed by Zhang et al.

[28] and He and Sun [11]). High convection leads to a delay of nucleation at low strain rate

before curves join for strain rate higher than δ̇/L0 ≈ 3 × 10−3s−1, where convection becomes
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Figure 15: Modelling results at δ̇/L0=1.4 × 10−2 s−1: a-Engineering stress-strain curve; b/c/d spatiotemporal evolution

of the longitudinal strain ε, temperature T (Celsius degrees), and of the martensite volume ratio f .

negligible compared to conduction. The strain rate domain where equation (25) is valid strongly

depends on the convection condition: at lower convection, a conduction-controlled nucleation is

observed, leading a power law correlation on a wide range of strain rate; at higher convection, a

transition is clearly observed from convection to conduction -controlled nucleation, leading to a

sharp change of power law coefficient.

Figure 21 illustrates the effect of defect parameter ζ on the initiation of bands. The modelling

has been implemented at lower strain rate δ̇/L0=1.4x10−5 s−1 using the usual convection condi-

tions (h=10Wm−2K−1). Below 0.035, the defect parameter has no significant role; for a value

higher than 0.04, the number of bands drastically increases as illustrated in figure 22. Bands

initiated by defects present a much more complex structure than the multi band system usually

observed at high strain rate.

Another discussion point concerns the role of gap between nucleation stress and propagation

stress. It is not clear how this gap, as a structural parameter (not intrinsic parameter), acts on the

expression for the strain rate dependence of number of bands (24). The physical justification of

this energy is classic: as any phenomenon of germination, the stability of such a process depends
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Figure 16: Modelling results at δ̇/L0=1.4 × 10−2 s−1: variation of engineering stress and strain, average temperature and

martensite ratio as function of time.

on the ratio between the volume energy (free energy) and the surface energy (surface tension,

boundary phenomena). The stability of a band can be interpreted in the same way. Crossing

Clapeyrons lines gives the potential energy necessary for the formation of martensite. The for-

mation of a band requires higher energy, which is very dependent on the specimen geometry. It is

therefore understandable that the gap between propagation stress and nucleation stress depends

on the specimen geometry. One can reasonably ask the question of the dependence of the param-

eters of the relationship between the number of bands and strain rate for this phenomenon. The

chosen geometries considered in experiments are too close to allow an experimental analysis of

this point. However, the model can help to observe the changes in the relationship between the

number of bands and strain rate for different nucleation thresholds. The influence of the ratio

between nucleation and propagation stresses has been evaluated, nucleation stress ranging from

a value close to the propagation stress value (small gap) at a stress value close to the maximum

threshold (large gap) and considering quasi-adiabatic condition (h = 0.1 Wm−2K−1). Figure 23

shows the evolution of the number of bands as a function of the strain rate for seven different

levels of nucleation stress. κ factor defined by equation 27 has been introduced for that purpose:

κ values vary from 0 to 1.

κ =
σnucleation − σs

σ f − σs

=
Mn − Ms

M f − Ms

(27)
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The simulation for high nucleation stress (physically unrealistic) requires a strong discretiza-

tion of the medium (4000 to 6000 elements, 7000 time steps) to avoid mesh sensitivity. For

a better analysis, some fitting curves (corresponding to power law C = ε̇m whose exponent m

is set to 0.5) have been added. A good agreement between fitting laws and numerical points

is observed. This seems to demonstrate that the exponent 0.5 is a constant independent of the

nucleation stress and consequently independent of the specimen geometry. Constant C is con-
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Figure 19: Spatiotemporal evolution of the longitudinal strain at δ̇/L0=2.8 × 10−4 s−1: a- low convection coefficient; b-

high convection coefficient.

versely dependent on the geometry. Optimised C values are plotted in figure 24 as function of κ

in a semi-log graph.

The variation of C vs κ may be represented by a relationship close to an Arrhenius equation

according to:

C = C0exp(−
κ

r
) (28)

with C0 = 620 s0.5 and r = 0.435. κ acts as an activation energy.

Obviously such purely numerical observations should be completed by experimental observa-

tions. But setting up tests with identical convection coefficient for very different geometries is a

difficult challenge to overcome.

6. Toward the modelling of the Hysteresis

6.1. Forward and reverse transformations

All the considerations detailed above only deal with transformation A → M. Experimental

results (figure 3) show that the reverse phenomenon (M → A transformation) occurs during

the unloading (austenitic transformation is endothermic, and localisation appears) leading to a

mechanical hysteresis. Hence, we have to define new transformation boundaries in the Clausius-

Clapeyron diagram:

• σms and σm f : stresses corresponding to M start and finish (forward homogeneous transfor-

mation)

• σmn and σmp : stresses corresponding to M nucleation and propagation (forward localised

transformation)

• σas and σa f : stresses corresponding to A start and finish (reverse homogeneous transfor-

mation)
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Figure 21: Effect of parameter ζ as defect parameter on number of bands.

• σan and σap : stresses corresponding to A nucleation and propagation (reverse localised

transformation)

Those stresses are assumed to linearly depend on the temperature exhibiting the same slope KT

than σs(T ) and σ f (T ) transitions previously defined. The diagram given in figure 7 is completed
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Figure 22: Illustration of bands for two different values of parameter ζ.
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respecting:































σms < σmp < σmn < σm f

σas < σm f

σa f < σms

σa f < σan < σap < σas

(29)
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Figure 25: Homogeneous and localisation boundaries for the reverse transformation: from M to A phases.

leading to reverse diagram plotted in figure 25. The associated temperature transitions are

reported in table 4.

The direction of the transformation is given by the change of the reduced stress σR:

σR = σ − KT T (30)

When σR is increasing, we use the martensitic boundaries (σmX) to calculate the driving force.

The austenitic boundaries (σaX) are used otherwise. Figure 26 sums up the different cases.

Furthermore, the nucleation laws are weakened: a martensite nucleation has to disappear while

unloading, whilst an austenite nucleation has to disappear while loading. The loading way is

explained by the change of f . Hence, complete equations (15) for forward and reverse transfor-
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Austenite start Austenite finish Nucleation temp. Propagation temp.

As A f An Ap

288 313 293 292.5

K K K K

Table 4: Material parameters: temperature of homogeneous and localisation boundaries of Clausius-Clapeyron diagram

(figure 25).

σ̇R > 0 ?

Propagation? Propagation?

ft = ft(σ,σms, σm f ) ft = ft(σ,σas, σa f )ft = 1 ft = 0

yes no

no

yes

no

yes

Figure 26: Calculation of the driving force depending on M transformation (direct), and or A transformation (reverse).

mations are:

NM(x, t) = [σ(t) > σnm(x, t)] ∧ [ f (x, t − dt) > f (x, t − 2.dt)] (31a)

PM(x, t) = P′M(x, t) ∧ [ f (x, t − dt) > f (x, t − 2.dt)] (31b)

NA(x, t) = [σ(t) < σna(x, t)] ∧ [ f (x, t − dt) < f (x, t − 2.dt)] (31c)

PA(x, t) = P′A(x, t) ∧ [ f (x, t − dt) < f (x, t − 2.dt)] (31d)

With:

P′M = (NM(x ± dx, t) ∨ PM(x ± dx, t − dt)) ∧ [σ(t) > σpm(x, t)] (32a)

P′A = (NA(x ± dx, t) ∨ PA(x ± dx, t − dt)) ∧ [σ(t) < σpa(x, t)] (32b)

NM , NA, PM and PA being respectively the martensite nucleation, the austenite nucleation, the

martensite propagation and the austenite propagation.

6.2. Load-Unload simulation and comparison to experiments

Experimental results of load-unload curves for IRIC test strained at δ̇/L0 = 4.2 × 10−4 s−1

are plotted in figure 27a and associated modelling are plotted in figure 27b. The initial state

of the unloading corresponds to the ultimate state of the loading. This test exhibits a so-called

pseudo-elastic effect, and modelling is in accordance.
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Figure 27: Experimental (a) vs. modelling (b) of load-unload curve at δ̇/L0 = 4.2 × 10−4 s−1.

Figure 27 exhibits the same stages as those observed in figure 9b complemented by stages

corresponding to the reverse transformation ( c©-end): 0- a© is the pure elastic strain of austenite,

a© is the onset of martensitic transformation. The first nucleation occurs in b© at the clamps. b’©

corresponds to a second occurrence. b’©- c© is the propagation of all the localisation bands. c©- d©

is the pure elastic strain of martensite whereas d© is the on-set of reverse transformation. Hence,

d©- e© is the homogeneous reverse transformation. e©- f© is the propagation of all the inverse

transformation bands. The simulation stops after the complete loading/unloading (u = 0). The

stage corresponding to elastic strain of austenite is reached close to 0 displacement. Figure 28

shows the result of the corresponding evolution of martensite ratio and temperature.
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Figure 28: Modelling of martensite ratio (a) and temperature during the load-unload test at δ̇/L0 = 4.2 × 10−4 s−1

.
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Figure 29 allows to compare experimental results of load-unload curves for IRIC test strained

at δ̇/L0 = 8.3 × 10−5 s−1. The same stages which were observed in previous results are ob-

served again here. Associated spatiotemporal maps of martensite ratio and temperature are in

accordance too.
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Figure 29: Experimental (a) vs. modelling (b) of load-unload curve at δ̇/L0 = 8.3 × 10−5 s−1.
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Figure 30: Modelling of martensite ratio (a) and temperature during the load-unload test at δ̇/L0 = 8.3 × 10−5 s−1

.

For all simulations, the stress-strain curves are not symmetric because the thermal state at the

beginning of loading, and at the beginning of unloading are not the same. Furthermore, there

exists a significative difference between As and M f limits in the Clapeyron diagram. On the

other hand the unloading stage starts under a thermal gradient that explains the nucleation of a

multi band system during the reverse transformation.
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At this step, it must be highlighted that the modelling proposed here is not usable in compres-

sion in its present form because the Clausius-Clapeyron diagram is not defined in the half plane

corresponding to negative stress. Extension to compression requires to define a new set of σ(T )

limits that do not correspond to a mirror of limits plotted in the positive stress half plane, and

that should consequently be identified. The following points must be addressed:

• Due to a different selection of variants with positive or negative stress (higher number in

compression but lower deformation [16]), higher stress levels must be reached in compres-

sion to initiate the phase transformation.

• The stress transition cannot be determined a priori since the temperature conditions are not

known (thermal gradient at the reverse point). A strong decrease in temperature would lead

to a martensitic transformation at lower stress level.

• As a consequence the model should not be employed under compression until the imple-

mentation of adequate transformation boundaries in the modelling.

The intrinsic test for differentiating forward/reverse transformation allows now to simulate

various loading vs. time schemes. For instance an incremental loading, as described in figure 31

has been simulated keeping the same average strain rate (δ̇/L0=4.2 × 10−4 s−1). The associated

stress-strain curve is given in figure 32 compared to the previous loading-unloading curve. Fig-

ure 33 illustrates the simulated martensite ratio and temperature profiles as a function of time.
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Figure 31: Incremental loading at a constant absolute strain rate δ̇/L0 = 4.2 × 10−4 s−1

At this step, it must be recalled that this one-dimensional model uses a set of parameters partly

provided by literature. A proper identification of these parameters could allow more accurate

simulation results , especially nucleation/propagation boundaries, which are determinant in the

generation of bands. Nevertheless, experimental results and simulations exhibit a qualitative

good agreement, which allows us to validate the approach. Furthermore all phenomena that we

aimed to model are taken into account: homogeneous transformation, localisation and influence

of the strain rate on the number of bands.
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Figure 32: Modeled stress-strain curve obtained for incremental loading at ǫ̇ = 4.2 × 10−4 s−1
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Figure 33: Spatio-temporal maps of martensite ratio and temperature obtained during incremental loading simulation at

ǫ̇ = 4.2 × 10−4 s−1
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7. Conclusion

The model presented in this paper aims at modelling the pseudo-elastic behaviour of a NiTi-

based SMA sample submitted to displacement-controlled uniaxial tensile loading. Focusing on

the Clausius-Clapeyron diagram and the domain of existence of each phase, it takes into account

the thermal exchanges and the martensitic phase transformation that induces coupled strain and

heat generation. Comparisons between simulations carried out at different macroscopic strain

rates and some corresponding experiments indicate that the three following key points of the

behaviour are suitably described :

• homogeneous strain and transformation,

• localisation of strain and heat emission into localisation bands that enlarge until complete

transformation,

• power law dependence of the number of bands to the strain rate,

• transition between convection controlled to conduction controlled nucleation rate of bands

for high convection situations.

Moreover, this model handles either forward (A → M) and reverse (M → A) transformation,

being consequently able to simulate the effect of monotonic or cyclic loading/unloading.

All simulations have been implemented with a set of parameters partly from existing litera-

ture, partly from DSC measurement and partly from a previous tensile test where infrared images

correlation (IRIC) have been used. Of course, the adequacy of the simulation to the experiments

would be greatly improved by the identification of the true thermomechanical constants of (A)

and (M) phases (thermal conductivity, specific heat) as well as the slope of σ(T ) transitions in

the Clausius-Clapeyron diagram. The convection conditions adjusted thanks to an IRIC experi-

ment using an inverse method could be more precisely identified using an adequate experimental

procedure.

The model has been implemented in Matlab in order to make it versatile enough to allow some

optimisations and inverse identification of the thermal conditions for instance. An implementa-

tion in a FEM solver is foreseen in the future to reduce the time calculation and to extend this

model to 2D or 3D problems. Such extension is required, for example, to give account of the

angle of transformation bands versus the stress axis and stress concentration at the band’s fronts.

Another work in progress is the introduction of a more physical constitutive law for martensite

volume fraction prediction [16] which takes the R-phase into account .
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