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Abstract: Localization and homogenization of the magneto-mechanical fields in heterogeneous 
media are discussed. The magneto-elastic modeling for magnetic polycrystals is extended from the 
description of the single crystal modeling. This model is then applied to the prediction of the 
behavior of dual-phase steels. Each phase can be considered as a sphere embedded in a 
homogeneous equivalent medium. The magnetic model used for each phase is an explicit single 
crystalline model representative of the behaviour of the corresponding phase. Homogenization 
rules allow the simulation of the average medium. Experiments are carried out and compared to 
the numerical results.  
Keywords: Ferromagnetic materials, DP steels, magneto-mechanical modeling, localization. 

1. Introduction 

Non destructive evaluation (NDE) is used in the industries of steel since magnetic behavior 
demonstrates a good sensitivity to phase fraction of different nature, applied stress, residual stresses 
and plasticity. Many researchers have devoted themselves to developing higher performance modeling 
in order to implement inverse identification, ie predict the thermo-metallurgico-mechanic state of a 
material from a simple magnetic measurement. 
On line NDE is particularly an important point, in order to optimize on line parameters of a forming or 
elaborating process. Models should take on the other hand account for the multiphased state of real 
materials and for the coupling with mechanical stress. This coupling is characterized by the influence 
of stress on the magnetic susceptibility and by magnetostriction. The magnetostriction µε  consists in a 
dilatation or a contraction depending on the applied field H

!!"
 level and direction [1]. This deformation 

is sensitive to any change of the material microstructure or applied stress [2, 3]. The effect of 
mechanical stress σ on magnetization M

!!"
of a material (change in magnetic susceptibility) is a second 

manifestation of the magneto-mechanical coupling. In case of uniaxial stress, the effect of tensile or 
compressive stress is usually not symmetric [2]; it depends on material composition, magnetic field and 
stress levels. Multiaxiality of stress can on the other hand play a significant role [4]. At higher stress 
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levels, plastic straining occurs, leading to a sharp degradation of the magnetic properties (strong 
decrease of susceptibility, increase of hysteresis losses) [5] and a change in the magnetostriction 
amplitude [6]. Classical magnetoelasticity is able to explain these phenomena assuming that the driving 
force associated to plasticity is the long range internal stresses [6, 7]. 
The modeling of magneto-mechanical phenomena is usually done using an energetic approach where 
variables are written at an appropriate scale. On the one hand, several macroscopic models have been 
proposed. The applicability of these approaches is limited to a short range of loadings, isotropic 
materials and rarely accounted for multiaxial stress. These models do not take account of the 
microstructure of the material; magneto-mechanical coupling is consequently partially described. The 
development of micromagnetic or fully multiscale magneto-elastic models is a promising issue [8, 9]. 
Because the number of degrees of freedom and interactions is increasing quickly with the number of 
magnetic moments, these simulations are always used for small size systems. When a complex 
heterogeneous material is considered, these models lead to dissuasive computation times. Inverse 
identification is consequently still not reachable. 
As part of Nondestructive testing (NDT), a fast accurate modeling to estimate the magneto-elastic 
behaviour has become a crucial element to be taken into account. Our objective is to combine the 
accuracy of micromagnetic modeling in order to describe complex magneto-mechanical phenomena, to 
the simplicity and speed of macroscopic approaches. Quantitative inverse identification should be 
reached using few experiments. 
The paper is divided into four parts. In the first part, localization and homogenization rules are 
discussed, which allow to define residual (internal) stress tensor and local demagnetizing field. The 
second part presents the single-crystalline magnetomechanical model. In the third part, specific 
numerical implementation for the magnetic field is detailed: a method using Taylor series for 
heterogeneous field is proposed. In the last part, the proposed model is used to simulate a dual-phase 
steel- polycrystalline and multiphased medium-, where heterogeneity is associated to the anisotropic 
behavior of the single crystal and to the nature of the crystal (ie ferrite / martensite). The modeling 
considers homogeneous magnetic field and strain within the single crystal. Hysteretic phenomena are 
not considered. The proposed modeling is associated to anhysteretic magnetic field strengthening and 
can be developed for ferri- or ferromagnetic materials. 

2. Localization and homogenization of the magneto-mechanical fields in 

Heterogeneous media 

The representative volume element (RVE) is seen as an assembly of volume of interest (VOI). VOI is 
for example a grain inside a polycrystal or an assembly of grains. The problem will be solved 
(calculation of magnetic, mechanical and coupled quantities) at the VOI scale. The different VOIs have 
to communicate with each others. Localization (expression of local loadings as function of global 
loadings) and homogenization (averaging) operations can be made. 
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2.1 Localization and homogenization of the magnetic fields in heterogeneous 

media 

The aim of this step consists in deriving the local magnetic field IH
!!"

 from the external loading 
( magnetic field H, and stress ), H

!!"
 postulating a given form for the function h: 

( , )IH h H= ∑
!!" !!"

 (1) 

This equation is usually written (in electrotechnical engineering) in the form 

I dH H H= +
!!" !!" !!"

 (2) 

where the local perturbation of the macroscopic magnetic field is taken into account through the 

demagnetising field dH
!!"

. The general form of the localization law can be written: 

( )I IH H M M− = −
!!" !!" !!" !!"!!" !!" !!" !!"!!" !!" !!" !!"!!" !!" !!" !!"

L  (3) 
with M

!!" the mean magnetization in the material, IM
!!"

 the magnetization of the VOI. L is a 2nd order 
localization operator, depending on the magnetization, on the stress state, and on the shape choosen for 
the inclusion I. In the case of stress independent linear isotropic magnetic behavior, and spherical 
inclusions, the tensor L reduces to scalar value N usually called demagnetizing factor so that: 

1
3 2

N =
+ χ

 (4) 

with the equivalent medium susceptibility. We get 

1 ( )
3 2

I IH H M M= + −
+ χ

!!" !!" !!" !!"
 (5) 

This approach demonstrated for linear medium has been extended with success to anisotropic 
non-linear magnetic behavior [9] using: 

M
H

=χ  (6) 

Formulation 5 becomes self-consistent. Its numerical implementation remains a challenge. A new 
algorithm is proposed further in the text, avoiding a step by step calculation. 

2.2 Localization and homogenization of the mechanical fields in 

heterogeneous media 

The aim of this step consists in deriving the local stress σ from the external loading (magnetic field H, 
and stress ), postulating a particular form for the function g in: 

( , )I g Hσ = Σ
!!"

 (7) 

The function g is here deduced from a self-consistent approach. Each inclusion is considered imbedded 
in a homogeneous equivalent medium equivalent so that the problem can be linked to the solution of 
the Eshelby inclusion problem [10]. 
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Consider an unloaded homogeneous infinite medium of stiffness tensor# . A VOI is submitted to a 
free magnetostriction strain

I
µε . This strain is the strain that would act in the VOI if no stress was 

exerted by the surrounding medium. The actual strain Iε  in the VOI can be linked to the free strain 

using the Eshelby tensor ES  [10]: 

:E
I I= µε εS  (8) 

The fourth order tensor ES  only depends on the stiffness tensor #  and the shape chosen for the 
VOI. It is calculated from the Green’s functions and FDO [9]. 
The stress in the VOI Iε is related to the elastic strain of the VOI thanks to the Hooke’s law: 

: e
I I Iσ ε=#  (9) 

Considering the strain decomposition, this decomposition is acceptable only when deformation levels 
are low (<10-2), we get: 

e
I I I

µε ε ε= +  (10) 

The stress can be expressed as function of the free strain: 

: ( )I I I I
µσ ε ε= −#  (11) 

Considering an applied stress  over the VOI, the stress at the grain scale gσ  is derived from the 
implicit equation (13). 

:t gEµ µε=< Β >  (12) 

: : ( )acc
I IEµ µσ ε= Β Σ + −#  (13) 

With 1 0 1 1( ) ( : (( ) ))acc E
I S− − −= + − Ι# # # . 0#  is the stiffness tensor of the effective media[11]. Since a 

self-consistent scheme has been chosen, 0#  refers to the self-consistent stiffness tensor [9]. B is the 
so-called stress concentration tensor. 

3. Multidomain magneto-mechanical modeling of single-crystals 

The prediction of the influence of heterogeneity on magnetic behavior supposes the introduction of the 
complete mechanical loading into a magnetoelastic modeling. As already mentioned, the few 
practically implemented models describing the effect of stress on magnetic behavior are restricted to 
uniaxial mechanical loadings (tension or compression) [12]. A first approach to build a simple 
magneto-elastic model consists in the definition of magneto-elastic constitutive laws including the 
multiaxiality of stress at the local scale. A multidomain modeling following this requirement is briefly 
presented. 

3.1 Original formulation 

The multidomain modeling is a two-scale reversible modeling allowing the prediction of the 
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magneto-mechanical behavior of isotropic polycrystals. It comes from a simplification (which is 
simplified in four points: simplified microstructure, homogeneous field and stress, uniaxial, stress, no 
minimization of energy.) of the so-called multiscale model [9]. A six magnetic domains configuration 
is considered associated to the six easy axes of cubic symmetry for materials that exhibit a positive 
magnetocrystalline constant (figure 1a). Each domain family α is defined by a magnetization vector aM

!!"  

so that 
a sM M=

!!" , and by a magnetostriction tensor 
a
µε  (15) (γi parameters figure the direction cosines 

of magnetization; λ100 and λ111 are the two magnetostrictive constants). This single crystal is considered 

as submitted to a magnetic field H
!!"

 and/or stress σ. Uniform strain and field hypotheses are used over 
the crystal and domain walls contribution to the total energy is neglected [9]. The energy of a magnetic 
domain 

aW  is the sum of the magnetostatic energy H
aW , the magneto crystalline energy K

aW and of the 
magnetoelastic energy 

aW σ  (16) (K1 is the magneto crystalline constant of the material). The stress 

tensor is supposed uniaxial; magnetic field and stress are applied along a same direction cn
"

 defined by 
angles cφ and 

cθ  of the spherical frame (figure 1b). This direction is restricted to the standard triangle 

defined by crystallographical directions < 100 >, < 110 > and < 111 >: cubic symmetry means that at 
any loading direction is corresponding a direction in this triangle. The resolution of the problem (ie 
calculation of the mean magnetization and deformation) requires to evaluate the direction of 
magnetization and the volumetric fraction of each domain family α. 

1 2 3[ , , ]t
a sM M γ γ γ=

!!"
 (14) 

2
100 1 111 1 2 111 1 3

2
111 1 2 100 2 111 2 3

2
111 1 3 111 2 3 100 3

1( )
3

3 1( )
2 3

1( )
3

a
µ

λ γ λ γ γ λ γ γ

ε λ γ γ λ γ λ γ γ

λ γ γ λ γ γ λ γ

 
− 

 
 = − 
 
 − 
 

 ( 15) 
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Fig. 1. (a) Initial domain structure of single crystal considered for the multidomain modeling; (b) 
Standard triangle and parameters for magneto-mechanical loading axis. 

 

0

2 2 2
1 1 2 2 3 1 3

.

:

(( ) ( ) ( ) )

H
aa

a a
K

a

W H M
W
W K

σ µ

µ

σ ε

γ γ γ γ γ γ

= −

= −

= + +

!!" !!"

 (16) 

 

The volumetric fraction af  of a domain is calculated thanks to statistical Boltzmann formula (18); 

sA is an adjusting parameter corresponding to the inverse of entropy following Boltzmann formalism. 

A simple Taylor expansion of volumetric fraction at low field is showing that sA  is proportional to 

the initial susceptibility 0χ  of the magnetization curve. We get: 0
2 2

0

3
. .(cos sin )s

s c c

A
M

χ

µ φ θ
= . 

[cos( )sin( ),sin( )sin( ),cos( )]t
c c c c c cn φ θ φ θ θ=
"

 (17) 

exp( . )
exp( . )

s a
a

s a
a

A Wf
A W

−
=
∑ −

 
(18) 

1 2 3[ , , ] [cos( )sin( ),sin( )sin( ),cos( )]a a a a aγ γ γ φ θ φ θ θ=  (19) 

 

The magnetization direction of a domain is defined by angles aφ  and aθ  of the spherical frame (19). 

These angles are usually estimated thanks to a minimization of the potential energy (20). In the present 
study, the restriction to standard triangle allows an analytical minimization, so that a constitutive law 
for the angles of each domain is obtained as function of magnetic field, stress, and loading direction 
parameters. As an example, equations (21) give the constitutive laws of the two spherical angles for 
domain α=1(Cf. figure 1a). 

( , , , , , ) 0

( , , , , , ) 0

a
c c a a

a

a
c c a a

a

dW H
d
dW H
d

σ φ θ φ θ
φ

σ φ θ φ θ
θ

=

=

 

 
 

(20) 
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+
=

+ +

− + −
=

+ + −

 

 
 

 
(21) 

Average magnetization and magnetostriction (22) are projected along the loading axis cn
"

 leading to 

the behavior of the single crystal ( , )M H σ  and / / ( , )Hµε σ  (23). 

aa a a
a a

M f M fµ µε ε= =∑ ∑
!!" !!"

 (22) 

 

/ /. . .
t

c c cM M n n nµ µε ε= =
!!" " " "

 (23) 
 

3.2 Extension to loading out of the standard triangle 

Multi-domain single-crystal model can be employed only when the loading is applied in the standard 
triangle. Thus, the local loading (Magnetic field and stress) need a linear transformation in order to 
mach the standard triangle. A permutation matrix is used to make the load to be adapted for a 
symmetries cubic crystal. 
Since the standard triangle is a so-called spherical triangle defined between <100>, <110> and <111> 
crystallographic directions, 48 triangles are required to map the whole surface of the sphere. 

Let consider 
i
cn
"

  the loading direction inside triangle iT . cn
"

is the loading direction inside the 

standard triangle 1T  corresponding to 
i
cn
"

 , meaning leading to the same behavior that a loading 

along 
i
cn
"

 due to cubic symmetry of the single crystal. iP  is the corresponding permutation matrix 

verifying: 

.
i

c cin P n=
" "

 (24) 

 

48 permutation matrix can consequently be defined, allowing to define a loading direction inside 1T  

triangle whatever the loading direction. 1P  is the permutation matrix from triangle 1T  to triangle 1T  

(
1

c cn n=
" "

); 2P  is the permutation matrix from triangle 2T  to triangle 1T ; etc…, leading to: 
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1 1 1

2 2 1

1 0 0
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1

p P I

p P

→

→

 
 = = = 
 
 
 
 = = 
 
 

 (25) 

The permutation must be applied to magnetic field and uniaxial stress direction and so on, so that: 

.

.

ii

ii

H P H

Pσ σ

=

=

!!" !!"

!" !"  (26) 

The constitutive law is applied then Magnetic and magnetostrictive quantities are calculated using 
multidomain modeling. Results must be submitted to a reversal permutation in order to get the 
magnetization and magnetostriction tensor in the appropriate frame. 

1

1

.
.

i i

i i i

M P M
P Pµ µε ε

−

−

=

=

!!" !!"
 (27) 

3.3 Extension to multiaxial stress 

The second step is to calculate stress used for rotation. We change the multiaxial stresses σ into 
uniaxial magneto-mechanical equivalent stresses according to the direction of the magnetic loading 

i
cn
"

. We use for that purpose an equivalent stress recently defined in [13]. In the frame ( 1 2, ,h t t
" " "

) 

associated to the magnetic field direction h
"

 and two orthogonal directions associated to the matter 

symmetries. We note k the product s mA λ  as a material dependent parameter: 

1 1 2 2
3 3exp exp

2 2 2ln
3 2

t t

t

eq

k kt St t St
hSh

k
σ

    
+        = −

 
  

" " !" !"
" "

 (28) 

is the deviatoric tensor associated to . Using the hypothesis of uniform stress, we get 

0 100
2

0

6
5 s

k
M

χ λ

µ
=  (29) 

for positive magneto crystalline anisotropy materials and 

0 111
2

0

9
5 s

k
M

χ λ

µ
=  (30) 

for negative magneto crystalline anisotropy materials. 0χ denotes the initial anhysteretic susceptibility 
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of the material, 
0µ  is the permeability of vacuum and 

sM  is the saturation magnetization of the 

material. This definition of equivalent stress finally requires to know some relatively usual material 
parameters and no supplementary adjusting parameter. This expression can be degraded in a more 
simple expression (deviatoric equivalent stress (31)) applicable to moderate loadings and/or relatively 
low magnetostrictive materials. 

3
2

t i ieq
c cn Snσ =
" "

 (31) 

The same value of equivalent stress is considered to be applied along cn
"

. We remark that permutation 

operation can be made on the stress tensor, so we have: 

1.
i i
c cn P n−=
" "

 (32) 

 

1 13 .
2

teq t i i
c cn P SP nσ − −=
" "

 (33) 

 

'3 .
2

teq
c cn S nσ =
" "

 (34) 

The same operation can be applied to the generalized formulation of equivalent stress. 

3.4 Single crystal modeling 

For a single iron crystal, it is possible to subdivide the volume in six domain families associated with 
the six easy magnetization directions. Each domain family is defined by a specific magnetization and 
magnetostriction strain tensor. Considered loadings are 3D multiaxial stress and/or magnetic field. 
Orientation of magnetization of each domain defined analytically avoiding energetic minimization: use 
of equivalent axial loading inside the standard triangle. Volume fraction of domains is calculated 
thanks to energy consideration [14]. 

4. Multidomain magneto-mechanical modeling of polycrystals 

This method is applied to calculate the average behavior of polycrystalline medium. 

4.1 Orientation Distribution Function - ODF 

We consider in a first approach an isotropic texture represented by an orientation distribution function 
at 546 discrete grains oriented to pave properly the entire sphere surface. Euler angles are as: 

TABLE 1 Euler angles of isotropic polycrystal of 546 grains 
Euler angles Domain Number of 

values 
1φ  [0; 2π] 13 

cosψ  [0; π] 7 
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2φ  [0; 2π] 6 
 

The following figure (Fig. 2) shows the associated pole figures. Each grain orientation is defined by a 
matrix Q providing the transition of local frame to macroscopic frame (x, y, z). We can thus define a 
local orientation of the load.  

 
Fig. 2. Pole figure associated with the distribution function of orientations 546 discrete grains 

uniformly distributed in space 
 
We perform the following operations: 
1) Transition of vector fields from the macroscopic frame to the local frame: localization. 
2) Transition of vector fields from the local frame (sphere) to the standard triangle by appropriate 
permutation. 
3) Application of constitutive law; Calculation of the local magnetization and magnetostriction. 
4) Passage of the magnetization vector of the local landmark macroscopically. 
5) Calculation of mean fields and magnetizations of the 546 directions. 
The first method uses the implicit nature of the formulation of field location.  

Assuming the magnetic field is known to each grain IH , one can use the following operations to 

determine the magnetization field in each grain IM and the mean fields M . 

The problem is proposed as following: for a given external magnetic field H , we can define the 

magnetization field IM and the magnetic field IH for each grain, there is two relations between 

IM and IH : on one part, once IM is known, IH can be determined using Eq. (5), on the other hand, 

IH can be known if the process above is used, then IM can be calculated. For simplify the notation, 

the relation is denoted: 

( ),I IM F H=  (35) 

Where F is a function that depends the transition matrices Q and can be determined explicitly.   

But in practice, it is difficult to give the analytical formula for F. By consequence, IM and IH can not 

be determined analytically. Thus, an iterative process is proposed to determine their values. Assuming 

that ( )nM is known at the Nth iteration, noted ( )n
IM , we can determine 
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! The magnetic field ( )n
IH using the relation (35); 

! The magnetization field ( )n
IM using the relation (5). 

So, iteration will continue until the difference between these two iterations is considered sufficiently 
small. Combining these two equations above (Eq. (35) and Eq. (5)), we can get 

( 1) ( ) ( )1( ( )),
3 2

n n n
I IM F H M M+ = + −

+ χ
 (36) 

Where ( )nM (the mean magnetic field ( )n
IM ) also depends on ( )n

IM . Thus, the formula can be 

simplified as 

( 1) ( )( ),n n
I IM G M+ =  

Where the function can be determined by F, H and ; and we go back to a problem of fixed point. As 
we mentioned above, the convergence property of the algorithm depends on the quality of function G. 
In fact, G is needed to be contractive, i.e. 

( ) ( ) ( 1)G x G Y L X Y where L− ≤ − <   

Satisfying at least for X and Y in the vicinity of the solution IM . 

G is a non-analytical function; it is difficult to verify this contracting condition theoretically. For this 

reason, we use the numerical verification. One state of IM  is chosen and a little bit of disturbing is 

done for ( *
IM ), then the numerical value of * *( ( ) ( ) ) / ( )I I I IG M G M M M− −  is calculated. 

For reason of computational complexity, three grains are considered to simply the case. As we do not 

know the state of the equilibrium of the magnetization field IM , many cases (>8000) have been tested 

in order to cover all of the possible configurations of IM . 

We notice that the values of * *( ( ) ( ) ) / ( )I I I IG M G M M M− −  are superior to 1 in many cases, 

so that the convergence of algorithm is not ensured. Some implemented tests have confirmed our fears: 
the algorithm does not provide convergence except for the case where only two grains are considered. 
The usual proposition to avoid this problem is to use an incremental procedure. We consider two steps 

of magnetic field denoted ( )nH and ( 1)nH + . The local magnetic behavior at step (n+1) is given by 

macrocropic field at the same step and demagnetizing field calculated at the previous step (n) following 
equation (5). We get: 

( 1) ( 1) ( ) ( )

( )

1 ( )
3 2

n n n n
I InH H M M

x
+ +

= + −
+

!!" !!" !!" !!"
 (37) 

Average condition is still verified 



- 12 - 

( 1) ( 1)n n
IH H

+ +
=< >

!!" !!"
 (38) 

We propose in the next subsection a new formulation allowing a true calculation of the demagnetizing 
field. 

4.2 Algorithms 

The Taylor series is a representation of a function as an infinite sum of terms calculated from the 
values of its derivatives at a single point. The Taylor series can be defined in the following manner. 

n

n

n

ax
n

afaxaf

axafaxafafxf

)(
!

)(...)(
!3

)(

)(
!2

)('')(
!1

)(')()(

0

)(
3

)3(

2

−=+−+

−+−+=

∑
∞

=

 (39) 

where n! denotes the factorial of n and (n) denotes the thn  derivative of evaluated at the point . 

Assuming the first and second right terms of equation (39) are much bigger than the other terms, 
equation (40) is obtained 

'( )( ) ( ) ( )
1!

f af x f a x a= + −  (40) 

On the other hand, the localization law is considered (corresponding to the 3 projections (k) of 
equation): 

1 1( ( ))
3 2

i i i i
j jiH H M M k+ = + −

+ χ
 (41) 

where j is the index of grains, i is the number of loop for localization (not corresponding to magnetic 

field step). iM is the average magnetization for all the grains at iteration i so that 
i i

jM M=< >   

and iχ  is the mean secant susceptibility given by 

/
i ii M H=χ

!!" !!"
  

Convergence is achieved when 

1( ) 0i i
j j kH H+ − →   

The magnetization jM  is on the other hand function of the magnetic field jH  thanks to local 

constitutive behavior F so that: 

( )( ) ( )( )1 1i i i i
j j j jM F H k or M F H k+ += =  (42) 

Using equation (41), the constitutive law gives: 
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( )1 1
3 2

i i i i
j jiM F H M M k

x
+  

= + −  +  
 (43) 

When the loop step turns to infinite, the magnetization should be a stable value. The magnetization of 

1thi + loop step equals to thi  loop step magnetization. 

1i iM M+ =  (44) 
From equation (44) and (43) the magnetization for grain is obtained: 

( )1
3 2j jM F H M M k

x
  

= + −  +  
 (45) 

Because M and χ are function of Mj, H being a constant for a given loop, we get the following 
self-consistent relation: 

( )( )j jM G M k=  (46) 

We consider now a Taylor expansion of G function: 

( ) ( )( )( )( 1) ( ) ( ) ( 1) ( )n n n n n
j j j j jM G M G M M M k+ +′= + −  (47) 

where (n) indicates the nth magnetic field step. It is assumed that G function is sufficiently linear 
between two magnetic field step and so two magnetization steps. Equation (47) is rewritten: 

( ) ( )
( )

( ) ( ) ( )
( 1)

( )1

n n n
j j jn

j n
j

G M G M M
M k

G M
+

 ′−
 =
 ′− 

 (48) 

The matrix inversion increases considerably the computation time if 546 orientations are considered. 
Please note that a calculation field takes about 20 minutes with a laptop and a trade algorithm coded in 
MATLAB. The taylor expansion is applied to the “local” behavior in the study. 

5. Application to dual-phase steel 

Dual-Phase steels are produced thanks to a complex forming process that leads to a microstructure 
exhibiting two phases (fig. 3). The morphology and the distribution of the martensite islands in the 
ferritic matrix are the keys of the dual phases steel behaviour. This microstructure is obtained by 
quenching of a low carbon steel (wt% C<0.3% typically) from austeno-ferritic domain of the phase 
diagram. 

5.1 Dual-phase ferrite-martensite steel 

The magneto-mechanical behaviour of a dual phase steel is deeply linked to its microstructure and 
especially to the behaviour of its constituents. An accurate modeling of the mean medium supposes 
consequently to have an accurate modeling of each phase separately. The behaviour of ferrite is 
supposed very close to the behaviour of pure iron, which was the subject of many works. The 
measurements presented hereafter have been carried out using an Armco pure iron sample. 
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Table 2. Chemical composition of DP steel used for the study. 

 
The behaviour of martensitic phase is still unknown. Tab. 2 gives the chemical composition of the DP 
steel used for the study. The carbon content is close to 0.15wt%. Figure 3 gives the typical 
microstructure observed for the material as quenched. The volume fraction of martensite has been 
evaluated to 40%. Assuming that carbon content of ferrite is about 0.02wt%, the carbon content in the 
martensite phase can be so evaluated to 0.4wt%. 

 

Fig. 3. Dual phase steel microstructure: distribution of martensite in white, and ferrite in dark. 
1) Behavior and modeling of the single crystal of martensite: A C38 carbon steel has been considered 
for this step (wt% C=0.38%). It has been submitted to various heat treatment (quenching) in order to 
transform the initial microstructure (fig. 4a) into a microstructure close to the microstructure of the 
second phase of the dual phase steel. Hardness measurements are used as indicator of the quality of the 
new microstructure. Figure 4b shows the microstructure obtained after the heat treatment that has been 
selected. As expected we have a quite homogeneous microstructure, composed of martensite needles, 
strained ferrite and bainite. 

 

(a)                           (b) 
Fig. 4. Micro graphies of C38 steel: raw material (a), quenched material (b). [15] 
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5.2 Modeling results of DP steels 

Several simulations were carried out using MATLAB 2009 for a dual phase steel. In order to get a 
reasonable computation time, a fewer number of grains was chosen. On the other hand, the chosen 
grains should show obvious isotropic transverse symmetry. Computations have been made using a 546 
grains RVE of a dual phase steel polycrystal [10].  
The experiment results presented herein are performed thanks to a magnetic measurement benchmark 
where two coils are wounded around the sample. A DP600 from Arcelormittal has been considered for 
the study in order to underline the effect of the thermo-mechanical history on the magnetic behaviour 
of these steels. Samples for all experiments consists of 200 mm long and 12.5 mm wide bands cut by 
electro erosion machining in order to avoid residual stresses that have a strong influence on the 
magneto mechanical behavior. 
The multiscale modeling allows to predict both the magnetic and magnetostrictive behaviors of the 
material for different values of the external field and stress. Several samples with different percentage 

martensite are considered here. Computation for one sample spends almost 48 hours. Results obtained 
for the anhysteretic magnetization curve are shown in Figure 5a for DP steels with different volume 

fraction of martensite. Figure 5b shows corresponding experimental results for martensite (100% 
Martensite), dual phase (50%) and fer (0%) separately. 

 
(a) 
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   (b) 
Fig. 5. Magnetization curve for different volume fractions of martensite: (a) numerical results; (b) 
experimental results 
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(b) 
Fig. 6. Magnetostriction curve for different volume fractions of martensite: (a) numerical results; (b) 
experimental results 

 
Comparison between experimental and numerical results shows that the multiscale model seems to 
describe correctly the effect of an applied stress. For the positive magnetic field, a DP steel with lower 
martensite content has higher magnetic value, and the modeling reproduces it. The result shows that it 
is more difficult to magnetize the DP steels which contain high volume fractions of martensite 
Experimental observations (Fig. 6b) show that the magnetostriction strain first increases with the 
applied field and then decreases until a saturation point is reached. Experimental results illustrate that 
the DP steel with lower martensite contents has a higher magnetostriction strain, which is correctly 
reproduced by the numerical result (Fig. 6a).  

6. Conclusion 

In this paper, a model for the reversible magneto-mechanical behavior of magnetic material, 
accounting for magnetization and microstructure has been presented. It is based on a description 
of the magneto-mechanical coupling at several scales (domain, single crystal, polycrystal). The 
modeling strategy allows a fast prediction of the magneto-mechanic behaviour of a dual phase 
microstructure. This estimation requires the knowledge of the behaviour and the volume fraction 
of the both phases. Numerical results have been compared with experimental results with very 
good agreement.  
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The main shortcomings of the model are first that magnetic and mechanical fields are considered 
homogeneous within a single crystal; second that domain walls are not taken into account. Future 
works will consist in introducing residual stress effects such as plasticity or thermal stress, and 
dynamic phenomena. 
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