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Abstract

Automatic speech recognition for Arabic
is a very challenging task. Despite all the
classical techniques for Automatic Speech
Recognition (ASR), which can be effi-
ciently applied to Arabic speech recogni-
tion, it is essential to take into consider-
ation the language specificities to improve
the system performance. In this article, we
focus on Modern Standard Arabic (MSA)
speech recognition. We introduce the chal-
lenges related to Arabic language, namely
the complex morphology nature of the lan-
guage and the absence of the short vowels
in written text, which leads to several po-
tential vowelization for each graphemes,
which is often conflicting. We develop
an ASR system for MSA by using Kaldi
toolkit. Several acoustic and language
models are trained. We obtain a Word Er-
ror Rate (WER) of 14.42 for the baseline
system and 12.2 relative improvement by
rescoring the lattice and by rewriting the
output with the right Z hamoza above or

below @ Alif.

1 Introduction

The Arabic language is the fifth most widely spo-
ken language in the world with an estimated 295
million native speakers. It is one of the most mor-
phologically complex languages. Due to this, de-
veloping an Automatic Speech Recognition (ASR)
system for Arabic is a very challenging task.

Arabic language is characterized by the high
number of dialects used in daily communications.
There is a significant difference between these di-
alects and the Modern Standard Arabic (MSA),
which is used in newspapers and formal commu-

nication. In this article, we will describe our ASR
system for MSA implemented using Kaldi toolkit.

Kaldi is a state of the art toolkit for speech
recognition based on Weighted Finite State Trans-
ducers (WFST) (Povey et al., 2011; Mohri et al.,
2008). It includes multiple scripts and recipes for
most standard techniques. These recipes are avail-
able with many speech corpora and they are fre-
quently updated to support the latest techniques
like Deep Neural Networks (DNN).

In this work, several state of the art’s modeling
techniques are tested, namely the GMM-HMM
models, the DNN models and various techniques
like: Maximum Mutual Information (MMI) (Bahl
et al., 1986), feature-space Maximum Likeli-
hood Linear Regression (fMLLR) (Povey and
Saon, 2006) and Speaker Adaptive Training (SAT)
(Anastasakos et al., 1996). The gain obtained after
training each model will be reported later on.

Our ASR system is built using several hours of
standard Arabic news broadcasts from corpora dis-
tributed by ELRA.

Another interesting treatment, proposed in this
article, is the auto-correction of Z hamoza in the
ASR system output in order to rectify the orthog-
raphy confusion of this symbol above or below @

Alif. The approach used is inspired from various
techniques proposed in the literature for detection
and correction of spelling errors. The particularity
of our approach is the use of the vector representa-
tion of words to retrieve the context and to correct
misspelled words.

In the next section, an overview about Arabic
language issues and some works proposed in the
literature to deal with those problems is presented.
Section 3 describes the different corpus used to
train the acoustic and language models, as well as
the data normalization process. Section 4 details
the acoustic and language models. Finally, the ex-



perimental results are discussed in Section 5.

2 Related works

Even though classic techniques for ASR systems
can be efficiently applied to Arabic speech recog-
nition, it is necessary to take into account language
specificities to improve the system performance.
Arabic is a morphologically rich language. By
concatenating prefixes and suffixes to stems, other
words are obtained. The stem can be also decom-
posed into a root (generally a sequence of three
consonants) and a pattern of vowels and, possi-
bly, additional consonants. For example: the word
ÑîD

.
�
JºK. ð wabikutubihim ”and with their books” is

composed of the two prefixes ð w ”and” and H.

b ”with”, the stem I.
�
J» kutub ”books”, which is

derived from the root I.
�
J» ktb ”to write” and the

suffixe Ñë hum ”their”. This explains the high
out-of-vocabulary (OOV) rate compared with En-
glish language which consequently leads to the in-
crease of the Word Error Rate (WER). To deal
with this issue, (Afify et al., 2006; Xiang et al.,
2006; Diehl et al., 2009; Ng et al., 2009) propose
to use morphological segmentation. They shown
that the results obtained with a large lexicon could
be achieved with a reduced one if morphological
decomposition is applied.

Another interesting approach investigates lan-
guage models based on morphological analysis.
Choueiter et al. (2006) used a morpheme-based
language modeling by exploiting a statistical seg-
mentation algorithm (Lee et al., 2003) to decom-
pose data. An automaton of type finite state
acceptor was used to allow legal sequences of
morphemes. With this approach, a 2.4% abso-
lute WER improvement was achieved by using a
medium vocabulary (less than 64k words) and a
morpheme n-gram model compared to a conven-
tional word-based model. However, by using a
large vocabulary (800k words), an absolute im-
provement of only 0.2% was achieved.

Likewise, the Factored Language Models
(FLMs) (Bilmes and Kirchhoff, 2003) was used to
improve the WER. In (El-Desoky et al., 2010), the
morphological decomposition was combined with
FLM to iron out the Arabic complex morphology.
A good improvement was shown by rescoring the
n-best list with a FLM based on partially decom-
posed words.

One more idiosyncrasy of the Arabic language

is that it is a consonantal language. It just has
three vowels, each of which has a long and short
form. Formal texts are generally written with-
out short vowels, consequently a single grapheme
word could have several possible pronunciations.
For example, the word I.

�
J» ktb could be pro-

nounced like: �
I.

��
J
�
» kataba ”write”, �

I.

��
J
�
» kutubN

”books” or �
I.

�
J�

�
» Kutiba ”written by” and it also

has other potential diacritizations. This ambiguity
is solved by using the contextual information of
words. Even though the short vowels make easy
the pronunciation modeling, their use increases
the number of the entries in the vocabulary and
consequently the size of the language model. In
fact, El-Desoky et al. (2009) showed that the best
WER value is achieved by applying a morpholog-
ical decomposition on a non-diacritized vocabu-
lary. However, a nice improvement was shown in
(Kirchhoff and others, 2002) by using short vow-
els in data training transcripts.

Besides short vowels, another problem to be
taken into account in pronunciation modeling is
the geminated consonants. In fact, there are
cases where the consonant pronunciation should
be stressed, and this can frequently happen with
the prefix È@ Al ”the”. The solar consonants after
this prefix should be doubled (the solar consonants
are: �

H t, �
H v, X d,

	
¨ g, P r, 	P z, � s, �

� $, � S, 	
�

D,   T, 	
  Z, È l, 	

à n). The matter of geminated
consonants was investigated in some studies. In
(Lamel et al., 2009), it has been shown that mod-
eling explicitly geminates improved a little bit the
system performance.

Another issue in Arabic concerns the omission
of the symbol Z hamoza which is pronounced but
often not written. This leads to a pronunciation
ambiguity. For example: the word I. ªË@ AlEb

could be pronounced I. ªË

@ >aloEab ”I play” if the

hamoza is above Alif

@ or I. ªË@


<ilEab ”play” if it

is below Alif @

.

3 Data resources

The data presented in this section are utilized to
train acoustic and language models, to estimate the
different parameters and to test the performance of
the system.



3.1 Acoustic data
To train the acoustic model, a collection of spo-
ken transcribed data-set is required. In our case,
we used two corpora: Nemlar1 and NetDC2 dis-
tributed by ELRA. They consist of several hours
of Standard Arabic news broadcasts recorded in
linear PCM format, 16 kHz and 16 bits.

The data was splitted into three parts: one part
for training (Train), the second for tuning (Dev)
and the last one for evaluating the performance of
our system (Test). Table 1 illustrates some statis-
tics about the acoustic data.

Corpus Train Dev Test Total
Nemlar 33(83%) 3(08%) 3(9%) 40
NetDC 19(82%) 3(10%) 2(8%) 23
Total 52(83%) 6(09%) 5(8%) 63

Table 1: The acoustic data (hours).

The data splitting is done randomly by keeping
52 hours for the Train, which is equivalent to 83%
of data. 6 hours (9% of data) are used in the Dev
set and the rest (5 hours) is used in the Test set.
In order to balance the data selection between the
two corpora, two-thirds of the data is selected from
Nemlar corpus.

3.2 Textual data
The language model is trained by using two cor-
pora: GigaWord3 Arabic corpus and the acoustic
training data transcription.

GigaWord corpus was collected from nine
sources of information with a total of 1,000 mil-
lion word occurrences. The transcription of the
acoustic training data contains about 315k words.

As regards the lexicons, the Nemlar and NetDC
corpora are provided with phonetic lexicons in
Arabic SAMPA format. We used them in the train-
ing task in order to specify the pronunciation of
each word in the transcription of acoustic training
data. The two lexicons have 79k pronunciation
variants and 77k unique vowelized words, which
is equivalent to an average of 1.02 pronunciation
variants per word. The number of pronunciation
variants per word is weak because all data tran-
scripts and lexicons are written with short vowels

1http://catalog.elra.info/product_
info.php?products_id=874

2http://catalog.elra.info/product_
info.php?products_id=13&language=fr

3https://catalog.ldc.upenn.edu/
LDC2011T11

and thus each word will not have various pronun-
ciation.

In the recognition task, we used non-diacritized
data for training language model, therefore an-
other lexicon without short vowels is used. This
lexicon will be described in Section 4.2.

3.3 Data normalization

Several issues were encountered while process-
ing the textual corpora due to the Arabic spelling,
which is often ambiguous. Therefore, a normal-
ization step is necessary when processing the Ara-
bic text.

Most of the orthographical errors were treated
by using regular expression rules. In following,
some processing necessary for reducing the ambi-
guity of spelling and pronunciation are presented:

• All email addresses, url paths, special char-
acters (&lt;, $amp; ...), punctuations and non-
Arabic texts are removed.

• All diacritics representing short vowels or
consonant stressing are striped.

• All numbers are normalized and they are con-
verted into literal words.

• The prefix ð wa ”and” is separated from
words by using Farasa toolkit (Abdelali et al.,
2016) and all other prefixes: H. b,

	
¬ f, È@ Al,

¼ k, È l and � s are concatenated to words.

• The stretched words are reduced to their orig-
inal form. For example: È@@ @ Ag. QË @ is replaced

by ÈAg. QË @ ”men”.

• A space is inserted after all words end by a
�
è ta marobuTa if it is attached to the next

word. For example: replace 	
àQ

�
®Ë@

�
éK
Aî

	
E by

	
àQ

�
®Ë@

�
éK
Aî

	
E nihAyat Aloqaron ”century end”.

• The time is literally written such as in
the following example: replace 15:30 by
�
é
�
®J


�
¯X

	
àñ

�
KC

�
K ð

�
é
�
JËA

�
JË @ Alv∼livap wa valAvwn

daqyqap.

• Some abbreviations are replaced by their cor-
responding meaning (see table 2 for some ex-
amples).



Abbre Word English gloss
%

�
é

KAÖÏ @ ú




	
¯ Percent

	
¨

�
H

�
�

�
�
	
JK
Q

	
«

�
IJ


�
¯ñ

�
K GMT

�
H t�'
PA

�
K Date

�ë ø



Qj. ë Islamic Calendar

¼. X ø



Y
	
J» PBðX canadian dollar

�
�
é«A� Hour

X
�
é
�
®J


�
¯X Minute

�
H

�
éJ


	
K A

�
K Second

Table 2: Abbreviations and their corresponding
meaning.

4 Modelization

In this section, the different steps involved in the
development of the DNN acoustic model is pre-
sented. Afterwards, the language modeling as-
pects and the various models developed are de-
tailed.

4.1 Acoustic model
The development of the acoustic model is based
on the Kaldi recipe. Our purpose here is to train
a DNN model, which perform well with respect to
the WER. For this, six different acoustic model-
ing systems are developed. For three of them, the
emission probability of the HMM states is mod-
eled by Gaussian Mixture Models (GMM) and for
the others it is modeled by DNN models.

The acoustic features used are the Mel-
Frequency Cesptral Coefficients (MFCC) with
first and second order temporal derivatives. There-
fore, the feature dimension is 39.

Three GMM-HMM models are successively
trained. The first acoustic model (triphone1) is
trained using directly the MFCC features. A Lin-
ear Discriminative Analysis (LDA) followed by a
Maximum Likelihood Linear Transform (MLLT)
are applied to train the second acoustic model (tri-
phone2). For the third model (triphone3), the
Speaker Adaptive Training (SAT) transformation
with feature-space Maximum Likelihood Linear
Regression (fMLLR) are used to make the system
independent of speakers.

In order to take into account the influence of the
context on the acoustic realization of the phones,
all these models are triphone based models. The
last model (triphone3) has 100k Gaussians for
4,264 states.

The DNN-HMM systems are trained using
the frame-level cross entropy, sMBR criterion,
the senone generated from the last GMM-HMM
model (triphone3) and corresponding fMLLR
transforms. In total, three DNN models are
trained.

• DNN1 classifies frames into triphone-states,
i.e it estimates Probability Density Functions
(PDFs). DNN1 training is based on the cross-
entropy criterion.

• DNN2 and DNN3 are based on sMBR
sequence-discriminative training. The differ-
ence between the two models is the num-
ber of iterations used to train the model.
The sMBR sequence-discriminative training
is used to train the neural network to jointly
optimize for whole sentences instead of a
frame-based criterion.

The DNN models have 6 hidden layers and
2048 nodes per layer. The input layer has 440
nodes (40-dimensional fMLLR features spliced
across 5 frames on each side of the central frame)
and the output has 4,264 nodes. The number of
parameters to estimate is about 30.6 millions.

Figure 1 summarizes all the acoustic models of
our ASR system.

Speech
signal

MFCC,
∆ + ∆2

Triphone1 Triphone2 Triphone3

DNN1 DNN2 DNN3

LDA + MLLT SAT + fMLLR

sMBR criterion 4 iterations of sMBR

Features extraction

Cross entropy criterion

Figure 1: Acoustic model flow diagram.

4.2 Language modeling
A 2-gram Language Model (LM) is used to gener-
ate the lattice and a 4-grams LM is used to rescore
this lattice. As the two text corpora available (Gi-
gaWord and transcripts of Train corpus) are unbal-
anced, a conventional training process is used. A
LM is first trained on each data set (one on Gi-
gaWord and one on transcripts). They are then
merged through a linear interpolation, where the



optimal weights are determined in order to max-
imize the likelihood of the transcripts of the Dev
set, which has a size of about 31k words.

For the 4-gram LM, which is used to rescore
the lattice, 10 LMs are interpolated. Nine of them
are trained on the different sources of GigaWord
corpus and the last one is trained on the transcripts
of the Train data. The interpolation coefficients
are again estimated on the transcripts of the Dev
data set.

The recognition vocabulary (lexicon) is gener-
ated by first keeping the 109k most frequent words
from GigaWord corpus and the words that appear
more than 3 times in the transcripts of the Train
corpus. Afterwards, only the words for which pro-
nunciation variants are in the Nemlar, NetDC lexi-
cons and the lexicon used in (Ali et al., 2014) were
kept. This process has generated a lexicon having
95k unique grapheme words and 485k pronuncia-
tion variants, that is an average of 5.07 pronunci-
ation variants per word. The high number of pro-
nunciation variants per word is due to the fact that
the lexicon entries do not contain the indication
of the short vowels. Hence several pronunciation
variants are possible for each word. This lexicon is
used as the vocabulary to train the language mod-
els.

The SRILM toolkit (Stolcke, 2002) has been
used to train the different LMs and all of them use
Good-Turing (Katz) (Katz, 1987) smoothing tech-
nique. It is known that the Kneser-Kney smooth-
ing (Chen and Goodman, 1996) performs better
than the Katz technique. However, in (Chelba
et al., 2010), the authors showed through dif-
ferent experimental setup that the Katz smooth-
ing performs much better than the Kneser-Kney
smoothing for aggressive pruning regimes, which
is the case in our system. In fact, due to memory
constraints while compiling the automaton used
by Kaldi for speech decoding, we used 2-grams
pruned language models to generate the lattice.
The pruning is done by keeping the n-grams with
probability greater than 10−9. The 4-grams lan-
guage model has also been pruned according two
approaches. The first approach is the same as the
one used to prune the 2-grams LM and the sec-
ond is based on stolcke pruning technique (Stol-
cke, 2000). This second pruned 4-grams LM is
presented in Section 5.2.

The n-gram number and the perplexity calcu-
lated on the transcripts of the Dev data for various

models before and after pruning are presented in
Table 3.

n-gram unpruned pruned Stolcke
pruning

1-gram 95 589
2-grams 69 307k 20 164k 2 449k
3-grams 327 302k 22 283k 1 395k
4-grams 586 722k 4 967k 192k

(a) Number of n-grams in the interpolated language models.

n-gram Perplexity
2-gram 246.76
2-grams (pruned) 258.22
4-grams 178.48
4-grams (pruned) 189.45
4-grams (stolcke pruning) 214.58

(b) 2 and 4-grams models perplexity.

Table 3: Statistics about LMs used to generate and
to rescore the lattice.

5 Evaluations

This section presents the speech recognition re-
sults obtained with a 95k word lexicon for the
baseline system, and after rescoring lattices. We
also proposed an approach to auto-correct the Z

hamoza above or below @ Alif to improve the per-
formance.

5.1 Baseline system

Speech recognition engines determine the word
sequence W which maximises the combination of
two scores: the acoustic score P (O|W ) and the
linguistic one P (W ). However, these two scores
are calculated on different data which leads to a
different scale of probabilities. In fact, the lan-
guage model score is greater than the one provided
by the acoustic model. The probabilities are ad-
justed as follows:

Ŵ = arg max
W

P (O|W )P (W )LM (1)

where LM is a fudge factor.
In order to estimate the best value of LM , we

used the transcripts of the Dev corpus. Figure 2
presents the evolution of the WER with respect to
the language model weight LM for each acoustic
model.
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Figure 2: WER evolution with respect to the lan-
guage model weight.

In table 4, the best values of LM for each
acoustic model are presented, as well as the WER
calculated on the Dev (31,314 running word) and
the Test (31,726 running word) sets. Note that the
lattice, in this baseline system, is generated by us-
ing the pruned 2-grams language model.

Model LMw Dev WER Test WER
tri3 17 16.69 17.65
DNN1 14 14.18 15.23
DNN2 14 13.76 14.61
DNN3 13 13.54 14.42

Table 4: WERs for baseline systems (without
rescoring and by using the 2-grams LM).

As expected, DNN models perform better than
the GMM-HMM models. The best WER value is
14.42 obtained by using the DNN3 model, which
is based on four iterations of sMBR sequence-
discriminative training. It should be noted that
another GMM-HMM model is trained by apply-
ing the Maximum Mutual Information (MMI) cri-
terion. By this, the WER decreased from 17.65
to 16.86 (a relative improvement of 4%). By us-
ing the DNN model, a relative reduction in WER
of 14.47 has been achieved with respect to GMM-
HMM model.

It should be also noted that OOV rate is about
2.35% for the Dev part and 2.54% for the Test.

5.2 Rescoring

Let’s recall that Kaldi is based on Weighted Finite
State Transducers (WFST) for decoding. Because
of this constraint, the decoding is done with a 2-
grams LM. One can expect that a rescoring using
a more detailed LM (e.g., 4-grams) would improve

performance. Thus, we applied a 4-grams rescor-
ing, but only on the DNN3 hypotheses.

WFST is an automaton, which has a set of states
and a unique start state. These states are inter-
connected by arcs, where each arc has an input
label, an output label and a weight. To accom-
plish the language model rescoring, Kaldi gener-
ally first subtract the old language model cost from
the global score and then add in the new language
model cost to avoid modifying the other parts of
the global score.

When using this approach, it is more accurate to
replace a 4-grams model by another 4-grams LM.
For this, we pruned the full 4-grams LM by using
stolcke pruning technique (Stolcke, 2000). This
technique is based on minimizing the relative en-
tropy between the full and the pruned model. We
get a model which represents only 30% of the orig-
inal model and consisting of 4 × 106 n-grams. It
should be noted that the pruning is done by us-
ing the pocolm toolkit4. We used this new model
to produce the lattice. Afterward, this lattice is
rescored by using a full 4-grams LM.

As in the baseline system, we estimate the im-
pact of the LM weight on the Dev data. The vari-
ation of the LM weight is illustrated in Figure 3.
We can remark that the smallest value of WER is
obtained for LM = 14.

10 12 14 16 18 20

13

15

17

19

LMw

W
E

R

DNN3

Figure 3: WER with respect to the language model
weight after rescoring the lattice.

The evolution of the WER with or without
rescoring is given in Table 5.

4https://github.com/danpovey/pocolm



Model Dev WER Test WER
DNN3 14.65 15.32
DNN3+rescoring 13.07 14.02

Table 5: WERs before and after rescoring the
whole lattice produced by using the 4-grams
pruned LM.

Rescoring the whole lattice with the 4-gram LM
leads to an absolute improvement of 1.58% on the
Dev set and 1.3% on Test corpus in comparison
to the system, where the lattice is produced using
the pruned 4-grams language model (the LM with
4× 106 n-grams).

We can also remark that producing the lattice
by using a 2-grams pruned LM gives better re-
sults than using a 4-grams LM pruned with an
aggressive pruning regimes. This is justified by
the number of n-grams in each model (the number
of n-grams in the 2-grams LM is 5 times greater
than the number of n-grams in the 4-grams pruned
LM).

6 Auto-correction of hamoza

The Z hamoza symbol is widely used in Arabic; by
analyzing the ASR system output, we noticed that
there are cases where the symbol Z hamoza above

or below @ Alif is omitted. Therefore, it seems in-
teresting to auto-correct the hamoza spelling.

Our approach is inspired from techniques pro-
posed in the literature to detect and auto-correct
the spelling errors. This issue is a common prob-
lem to all languages. In Arabic, the most fre-
quently occurring errors are editing errors and se-
mantic spelling errors. The first error type occurs
when a correctly spelled word is replaced by a
non-word, while in the semantic spelling errors,
the word is replaced by another correctly spelled
word (Alkanhal et al., 2012).

Several works have been proposed for spelling
auto-correction in Arabic. Most of these works are
based on the three steps described below.

Error detection: Techniques used in the liter-
ature for detecting Arabic spelling errors are es-
sentially based on two approaches: the language
rules (AlShenaifi et al., 2015; Shaalan et al., 2010;
Hassan et al., 2014) or a dictionary (Attia et al.,
2014; Zerrouki et al., 2014; Alkanhal et al., 2012).
For the first technique, detecting whether a word
is misspelled or not depends on morphological an-
alyzers. While the dictionary based technique de-

pends on a large word list that covers the most fre-
quently used words in the language.

The technique which we used to detect hamoza
error is the dictionary lookup, where the input
word is considered such as a non-word if it is not
found in the dictionary. The word list size used
in our case is 9.2M words. It is developed by At-
tia et al. (2012) by amalgamating various Arabic
resources.

Production of hypotheses: The most common
used technique to produce candidates is based on
an edition distance, which measures the difference
between two sequences by calculating the num-
ber of required edits to transform a word into an-
other. We used a modified version of Damerau-
Levenshtein distance proposed in (Alkanhal et al.,
2012). The idea behind this distance is to assign
a low distance cost for the letters that have shape
or pronunciation similarity, or keyboard proxim-
ity. As we just want to correct hamoza error, we
considered the similarity between the letters @,


@, @



and
�
@. For example: consider the misspelled word

QÓ@ Aamara ”to order”, if we calculate the similar-
ity between the misspelled word and the two cor-
rect words QÖ

�
ß tamor ”date” and QÓ


@ >amara ”to or-

der” using the normal Damerau-Levenshtein dis-
tance, we will obtain the same cost=1. While the
modified distance will assign a lower cost for the
word QÓ


@ >amara ”to order” than QÖ

�
ß tamor ”date”

because of the similarity between the two letters

@

and @. At the end, to produce correction hypothe-
ses, we just considered words in the Arabic word
list, which have the same spelling as the wrong
word except for the hamoza above or below @ Alif

(

@ and @


. In the case where any candidature is not

found, the word will not be corrected.
Error correction: for error correction i.e. se-

lecting the best solution among the list of candi-
dates, we tried to retrieve the words context by us-
ing word2vec (Mikolov et al., 2013). In fact, we
used the GigaWord corpus to train a cbow model
and to obtain word vectors, which are positioned
in a 200-dimensional space such that words that
share common contexts in the corpus are located
in close proximity to one another in the space. Af-
terwards, we used the cosine similarity to retrieve
the most similar word among the candidates.

Table 6 shows the results before and after cor-



recting the hamoza in the ASR system output.

Model Dev WER Test WER
Baseline 13.54 14.42
Correction 13.03 14.14
Rescoring 13.07 14.02
Rescoring+correction 12.26 13.45

Table 6: WERs before and after correcting the
hamoza.

From Table 6, note that the WER for the base-
line system is 14.42. It should be noted that the
lattice in this system is generated by using the 2-
grams LM. By correcting the hamoza in the ASR
system output, we improved our ASR baseline
system by 2%. The WER after rescoring the lat-
tice generated by using the pruned 4-grams LM
is 14.02. This represents 3% relative reduction in
WER comparing to the baseline system. The best
WER is 13.45 obtained by correcting the system
output after rescoring. This leads to 7% relative
improvement.

7 Conclusion

In this article, we described an ASR system for
MSA developed by using Kaldi toolkit. We pre-
sented the different acoustic models trained and
the text pre-processing done before training the
LMs. The best results are achieved by rescoring
the lattice, which is generated by using the DNN
model, a 4-grams pruned LM and a lexicon of 95k
words. This way we have obtained 3% relative im-
provement. In order to improve the system output,
we proposed an approach based on the edit dis-
tance to auto-correct the hamoza spelling above or
below Alif. Applying this approach, we achieved
an improvement of 12% relative in comparison to
the baseline model.
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