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Abstract. In this paper, we study the feasibility of using a neural network to
learn a fitness function for a machine translation based on a genetic algorithm
termed GAMaT. The neural network is learned on features extracted from
pairs of source sentences and translations. The fitness function is trained in
order to estimate the BLEU of a translation as precisely as possible. The
estimator has been trained on a corpus of more than 1.3 million data. The
performance is very promising: the difference between the real BLEU and the
one given by the estimator is equal to 0.12 in terms of Mean Absolute Error.

Keywords: Statistical Machine Translation, Genetic algorithm, Quality esti-
mation, Neural network

1. Introduction

Nowadays, a lot of Statistical Machine Translation (SMT) systems use a Beam-search
algorithm [5] in order to retrieve the best possible translation by taking into account
different scores provided by several models: language, translation, distortion, etc.
Starting with an empty set, the solution building process consists in producing in-
crementally a set of complete solutions from partial ones provided by a translation
table (T'T). Because the translation is built incrementally, it is then difficult to chal-
lenge a previous decision of translation, which can eliminate a partial hypothesis,
even if it could propose a good final solution.

An alternative to this algorithm is to start with a complete translation hypothesis
and try to refine it in order to retrieve the best solution. With complete translation



hypotheses, it is possible to revisit each part of the research space and modify it, if
necessary.

GAMaT [4] is a new decoder for SMT based on a genetic algorithm. It has the
advantage to refine several complete solutions in an iterative process and produce
acceptable solutions. In fact, a possible solution is encoded as a chromosome, where
the chromosome encloses several information (the source sentence segmented into
phrases, a translation hypothesis also segmented into phrases, and alignment be-
tween source and target segments). Then, from a population of chromosomes, we
estimate their fitness (score) in order to keep them, or not, for next generations.
To do so, the fitness is a combination of several scores measuring how the different
segments of a chromosome are coherent with each others. Nine scores correspond-
ing to nine features are combined to score translations [4]. A weight proportional
to the impact of the feature on the evaluation function is assigned to each feature.
This combination has been held by a log-linear approach. In GAMaT, the weights
corresponding to the nine scores are provided by Moses [5]. According to the BLEU
[10] metric results, the translation performance is good, but not better than Moses.
To get away from Moses and to propose a relevant solution for GAMaT, we propose
to learn the function of the chromosome evaluation by using a neural network (N N)
which predicts a BLEU value of the translation represented in a chromosome. In
other words, we would like the fitness function to be correlated to BLEU. The NN is
learned on the nine features mentioned before. We opted for BLEU metric because
it is commonly used in the MT community to evaluate translations. This kind of
learning algorithm is used in the Quality Estimation (QE) community [3], in order
to estimate the translation quality without access to the reference translation.

The article is structured as follows. In Section 2 we describe the chromosome fea-
tures. In Section 3 we present the NN used to learn the fitness function. Then, in
Section 4 we describe how we generate the dataset for the NN. We give the results
of several configurations in Section 5. Finally, we conclude and give some analyses
and perspectives.

2. Related works

In this paper, we propose a new translation evaluation function for a phrase-based
SMT decoders, and which is applied for our genetic-based decoder GAMaT [4]. This
function is learned, using a neural network, on nine chromosome features and cor-
related with the BLEU value of the translation enclosed in the chromosome.

Therefore, our work can be classed at the intersection of two research disciplines;
The first one is the optimization of decoder parameters for machine translation [7, 9].
Where, for the majority of decoders, the objective function combines log-linearly a
set of translation features to evaluate the translation hypotheses (see equation (1)).
Optimising the weights of this function allows a better translation accuracy. In the
machine translation community to optimise these weights, the proposed algorithms
are largely based on a grid search algorithm [9]. Where the goal is to find the best



set of weights which minimise a loss function adapted for the translation process [7].
The second domain is the Quality Estimation (QE). The main goal in this area is to
estimate the translation quality without access to the reference translation [3]. To
this end, in QE community, machine learning algorithms are trained on features ex-
tracted from pairs of source sentences and their translations, and they are correlated
with an evaluation metric, which can be a metric with binary values (good/bad), or
a metric with continuous values (BLEU, TER, ...etc.).

In this work, we use a neural network as in QE community, to combine optimally
features used in the log-linear approach. The learned function estimate the qual-
ity of the translation by predicts its BLEU value without access to the reference
translation, which is the case at decoding time.

3. The features of the chromosomes

In order to evaluate the relevance of a chromosome, we need to evaluate it by combin-
ing its different features, such as what was done in [4]. The features are log-linearly
combined as follows:

Score(c) = Z)\i x log(hi(e, f)) (1)

Where f is the source sentence and e the translation represented in the chromosome
c. \; is the weight of h; determined by Moses and h; is the score related to the ith
feature. The value of each weight defines the influence of the corresponding feature
in the final score. Nine features related to the construction of a chromosome have
been used and are described in the following.

e Fi: a language model feature, which estimates how the translation e is lin-
guistically correct in the target language. In practice, Fj is estimated by the
likelihood P(e) of a translation yielded by the classical n-gram. In our exper-
iments, n is set to 3.

e Fy: the second feature concerns the translation probability. Given a chromo-
some ¢, Fy is based on the alignment presented in c¢. This alignment links each
source phrase to a target phrase. Then, F5 is the product of translation scores
(from the source towards the target languages, given by the translation table)
between linked source and target phrases. This feature is called the direct
translation probability.

e Fj: this feature concerns the inverse translation probability, which is equivalent
to the previous one, except that the translation scores are from the target
towards the source languages.

e Fy: this feature estimates the quality of a pair of segments at word level [6].
It is defined as the product of lexical probabilities inside one segment and over
all the segments of the source sentence. This feature is called a direct lexical
probability.



e [5: symmetrically to Fy, an inverse lexical probability is estimated.

e Fy: this one concerns the length of the target sentence in the chromosome
to produce. In fact, the translation should not be too much longer than the
source sentence. This feature is set with the difference between the length of
the source and the translation in terms of words.

e F7: to reinforce the previous feature, a length model is trained [4] that assigns
a probability to a pair of sentences depending on their lengths. In other words,
this feature is estimated as the probability that a source sentence with a length
ls, will produce a translation of length I;.

e Fy: longer sequences are linguistically more informative than smaller ones.
Therefore, a chromosome with a few number of phrases should give a better
translation. This feature is called the phrase penalty and is estimated as an
exponential function of the number of phrases: e*, where k is the number of
phrases in the chromosome.

e [y: it is the cost of permutations in the translation at the phrase level, when
the target phrases are picked out of order [5].

To estimate some of the previous features, we need a translation table, which contains
pairs of source and translation phrases with their associated probabilities.

4. A machine learning algorithm for prediction

As presented in the introduction, the goal of this work is to propose a new chromo-
some fitness function which combines optimally the features previously presented,
and which must be correlated with BLEU. To do so, we decided to train a supervised
neural network which takes as input the nine features of a chromosome, and as label
in output the BLEU value of the corresponding translation (Figure 1). The learned
fitness function is supposed to predict the BLEU of the translation of a chromosome.

BLEU

Figure 1.: The neural network architecture



We experimented different configurations of the neural network by varying the
number of the layers and the number of neurons. We used the Sigmoid function for
the neuronal activation. The experiments have been conducted by using Keras, a
Deep Learning library [1].

5. The dataset for Neural Network

To learn the neural network, a training corpus is necessary. In the following, it will
be composed by an important number of pairs < v., a« >. Where v, is a vector of 9
features which characterize a chromosome ¢ and « represents the BLEU value of the
translation hypothesis represented in the chromosome c. To this end, we used the
French-English parallel corpus of the 9*" task workshop on SMT [2]. We used this
corpus to produce the translation table TT" which is necessary to build the chromo-
somes and also to calculate some features of chromosomes.
The corpus contains pairs of French sentences and their English reference transla-
tions. We split it into two sets: the former, containing 1,323,382 pairs, is used to
build the TT handled by GIZA++ [8] and the language model; while the latter set
(Cnn), containing 165,422 pairs, is used to produce chromosomes.
For each source sentence in Cyy we built a set of chromosomes, e.g. a set of hy-
potheses with the segmentation of source and target sentences, and the alignment
between source and target segments. We have to produce chromosomes represent-
ing perfect, good and bad translations in order to diversify the dataset because the
fitness must predict correctly the translation quality of chromosomes, whatever this
quality is. To produce chromosomes, we used several functions of GAMaT [4] which
take a source sentence and produce one or more chromosomes.

The methods used to build chromosomes are presented in the following:

e From a source sentence, the builder of chromosomes proposes a segmentation
based on the longest phrase within it. This longest phrase can be found any-
where in the source sentence. This phrase is picked up from the T7T. The
segmentation process is iteratively repeated until the whole sentence is seg-
mented. Then, each source phrase is translated in the target language by
choosing the most likely translation from 7T7T. Source sentence and hypothesis
have same phrase ordering. This produces one chromosome.

e The process is the same as the previous method, but the source sentence is
segmented from left to right. This produces one chromosome.

e The process is the same as the previous method, but the source sentence is
segmented from right to left. This produces one chromosome.

e Here, the source sentence is randomly segmented, where all the produced seg-
ments must exist in the TT. This random segmentation is done several times,
in order to increase the number of chromosomes. This allows to increase the
size of the training corpus.



In this one, the builder performs similarly such as in the previous point, except
that instead of selecting the best translation for a source phrase, it chooses
randomly from 77T one from the possible translations of this phrase.

The producer proposes chromosomes such as in the previous point, except that
the alignment between a source phrase and a target segmentation is not mono-
tone: target phrases are mixed. This allows to build several bad chromosomes.

For each source sentence, the producer of chromosomes keeps the best solution
proposed by GAMaT. This allows to produce for each source sentence one
chromosome with a good quality translation.

Similarly to the previous one, the producer of chromosomes keeps the best
solution proposed by Moses for the source sentence.

Using these methods, we produced 1,5 million of chromosomes, from 165,422

source sentences. For each of them, we produced a set v. of 9 features, and we
calculated «, which is the BLEU value in this work. The BLEU estimates the
similarity between the hypothesis and the reference translation. This produced a
training corpus for the NN composed of a set of pairs < v, a >.

6.

Experiments and results

In this section, we describe our experiments. We describe the different training and
test corpus we used, and how we measured the performance of the neural network.

6.1.

Evaluation metric

To evaluate the precision of the prediction function, the Mean Average Error (MAE)
criterion [11] is calculated on the test set. The error is the difference between the
real BLEU and the predicted value:

1 n
MAEBLEU = E E |BLEUT(Cl) - BLEUP<C,L)‘ (2)
i=1

Where BLEU,(¢;) is the real BLEU value of the translation in the chromosome

¢i, and BLEU,(c;) is the predicted BLEU value for the same translation. n repre-
sents the size of the test set.



6.2. Training and test corpus

In order to build the training and test corpus, we followed the process we described in
Section 5. We segmented this corpus into a training and a test part respectively 90%
and 10%. We show in Figure 2 the distribution of this corpus according to the BLEU
value. This figure shows the proportion of chromosomes for five BLEU intervals:
[0,0.25] (very bad translation according to reference), [0.25,0.5[, [0.5,0.75], [0.75,1]
and BLEU=1 (perfect translation). The bar Unbalanced training set corresponds to
the proportions of the different qualities of translations presented above. The bar
referenced as Test set corresponds to the proportions of the test corpus for which we
keep the same distribution as in the training corpus. This corpus is not balanced,
this could be a drawback, because the NN should estimate the translation quality
with the same precision, whatever the correctness of a chromosome is. That is
why, we trained also, the NN with a balanced training corpus (the bar Balanced
training set). In GAMaT, at the translation time, the distribution presented above
is not necessarily respected because the set of chromosomes (population) evolves
at each iteration. Therefore, we achieve also experiments with another test corpus
(bar GAMaT test set in Figure 2) built from a translation corpus used in [4]. This
test corpus is representative of chromosomes obtained at end of the real translation
process. This test corpus contains 50,000 chromosomes built from 1,000 source
sentences. It contains very few perfect translations, and relatively more very bad
translations compared to Test set.

100 — |:| BLEUE€[0,0.25]
80 — D BLEUE[0.25,0.5]
o 60 |- — D BLEUE[0.5,0.75]
40 |~ — . BLEUE[0.75,1]
20 |~ — . BLEU=1
0 |
| | |
ANV st
nced ed 7O " T tes
unbel®iiet  palont Test ¢ cAMe
prain? ing ® set

Figure 2.: Distribution of data in the training sets and test sets.

In the following, we present the performance of the estimator on Test set and
GAMaT test set, trained with Unbalanced training set and Balanced training set.

6.3. Impact of the neural network architecture

In this section, we study the performance of the NN according to the number of
layers (1 to 7) and neurons (8, 16, 32 and 64) in each layer. Figure 3 shows the
MAE performance on Test set according to the number of layers, and to the number
of neurons. In the left curve, for each number of layers the plot is the average
performance according to the number of neurons. In the right curve, for each number



of neurons the plot is the average performance according to the number of layers.
The figure shows that the best results are achieved for 4 layers and 32 neurons by
layer.
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Figure 3.: The influence of the number of layers and neurons in the MAE score.

As these values are only averages, we give in Figure 4 the performance for each
couple (number of layers, number of neurons by layer). This figure shows that
the performance is better when the number of neurons grows with the number of
layers. In the following experiments, we keep the best configuration: 4 layers, and
32 neurons by layer.
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Figure 4.: Details of the influence of the number of layers and neurons in the MAE score.

6.4. Impact of the size and quality of the training corpus

In machine learning, the size of the training data is crucial, and the test data should
not be very different from the training data. To respect this constraint, we increased
the training set, from 225,000 to 2,250,000 with and without paying attention to the
proportion of the quality of the set of chromosomes (Figures 5 and 6). Figure 5-(a)
shows the performance on Test set and GAMaT test set trained with several sizes of
the Unbalanced training set.
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Figure 5.: The influence of the number of data in Unbalanced training set.

The performance on the corpus Test set is not affected by the size of the training
corpus according to the results of Figure 5. On the contrary, the curve for GAMaT
test set is more chaotic but the performance of the estimator tends to be better, as
the size of the training increases. Figure 5-(b) shows that the estimator produces
bad results for chromosomes for which the BLEU is greater than 0.75 and estimates
correctly the others. This is probably due to the fact that bad chromosomes are
more numerous than the good ones in Test set.

In Figure 6-(a), we did the same experiments, but with Balanced training set. The
performance with good chromosomes is henceforth better, since the training corpus
is more balanced.

—F— BLEU=[0,0.25]
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AT e foue Semibience. ofibhe numben oh dxi it REABoshITURInG.S%: test
subsets according to translation quality in Figure 6-(b). This figure shows that
balancing the training corpus allows to improve the prediction performance for good
quality translations, but this is not sufficient to improve the overall performance
because these good translations are not numerous in the Test set.
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6.5. Results and Discussion

The results in the different campaigns of Quality Estimation are very close to each
other [3]. Our results obey to this rule. Two main results emerge from this study.
For a training corpus not selected smartly, in other words for the Unbalanced training
set, the estimator needs 2.25 million of chromosomes to reach the best result 0.1061
(Table 1) on GAMaT test set. While for the Test set, we need only 1.25 million of
chromosomes for a MAE of 0.1212. In spite of these low scores (lower is better for
MAE), the estimator evaluates badly the best hypotheses of translation, for which
the BLEU is greater than 0.75 (see Figure 5-(b)). When we use Balanced training
set, we need only 0.5 million of chromosomes to reach the best performance for
GAMaT test set with a MAE of 0.1138. The best result for the Test set is obtained
for 1.5 million of chromosomes which leads to a MAE of 0.1257. With this Balanced
training set, the best hypotheses are better evaluated than with the first training
set (see Figure 6-(b)), but we lose in the quality estimation of the bad hypotheses,
which are more numerous in the real translation process. This explains the fact that
the performance of Unbalanced training set is better than those of Balanced training
set.

Test set

Training set | # of data Test GAMaT

1.25m 0.1212 0.1212
Unbalanced

2.25m 0.1242 0.1061

1.50m 0.1257 0.1243
Balanced

0.50m 0.1276 0.1138

Table 1.: Best MAE scores for Unbalanced training set and Balanced training set.

To study the behavior of the proposed evaluation function in a real transla-
tion process, we used it as a chromosome evaluation function in our SMT decoder
(GAMaT) in order to translate a set of 1.000 sources sentences. In Table 2 we
present some translation results according to BLEU metric. Where for each training
set we take the best function, learned by the neural network, according to the MAE
score and we used it as a chromosome evaluation function in GAMaT.

The best translation performance are obtained when we train the neural network on
1.250.000 data with 5 hidden layers and 64 neurons in each layer. This configuration
allowed us to achieve 21.05 in BLEU.

Through these results, we notice the fact that the neural network configuration, in
terms of number of hidden layers and number of neurons, has the same influence on
the quality of the learned function (Figure 5-(a) ) as on the translation accuracy,
when we use this function as a chromosome evaluation function in GAMaT. The
function which has the best MAE score (Table 1), used as fitness function, it leads
GAMaT to produce the best output translations.
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Size of training set (Millions) | # of hidden layers | # of neurones | BLEU
0.25 5 32 17.91
0.50 7 20 18.34
0.75 6 64 19.80
1.00 5 64 20.15
1.25 5 64 21.05
1.50 6 64 18.56
1.75 3 64 16.27
2.00 4 64 17.94
2.25 5 64 17.98

Table 2.: Translation performance according to BLEU using the proposed function.

7. Conclusion and perspectives

In this paper, we investigated the use of a new function to evaluate chromosomes in
GAMaT. The function is an estimator of BLEU for a chromosome. This estimator
has been trained by a neural network which is learned on nine features extracted
from a set of chromosomes built by GAMaT. The experiments show that the amount
of the training data, and their distribution in terms of translation quality, impact the
precision of the function. The prediction function achieved convincing results. In
fact, the MAE calculated on a test set of 100,000 chromosomes is around 0.12. Also,
the use of this function in GAMaT such as a fitness function achieves an encouraging
translation performance. The presented method uses BLEU for evaluating a trans-
lation, but could be extended to other measures which might be combined in order
to get a more robust fitness function. To improve this prediction function, sampling
techniques should be used to select more representative data for the training.
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