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The study deals with off-line change point detection using the Iterative Filtered Derivative with t-Value method. The i-FDtV method is a multi-step procedure for change point analysis. The first step is based on the Filtered Derivative function to select a set of potential change points, using its extra-parameters -namely the threshold for detection and the sliding window size. The other steps are an iteration set of eliminations with an increasing t-value threshold in order to discard the change points with a t-value lower than the threshold, called false alarms (with probability 1 -α 2 ), and keep the true positives (with probability 1 -α 1 ) once the stopping condition is checked. Furthermore, we give the theoretical results and the practical choices of the extra-parameters. Finally, we give Monte Carlo simulations and application on a real heart rate data set, for which the Matlab code is available on the platform Github on the following link https://github.com/dohadouni/Code_IFDtV.

Iterative Filtered Derivative with t-Value method for change point detection -Application to Heart Rate series

Introduction

Change point detection is an important problem in various applications such as volcanology [START_REF] Bombrun | On the transition from strombolian to fountaining activity: a thermal energy-based driver[END_REF], global warming [START_REF] Wang | Testing for increasing weather risk[END_REF], magnetospheric dynamics [START_REF] Wanliss | Space storm as phase transition[END_REF], neuro-physiological studies [START_REF] Schneider | Messages of oscillatory correlograms : A spike train model[END_REF][START_REF] Grun | Unitary events in multiple single neuron spiking activity II non-stationary data[END_REF][START_REF]Unitary events in multiple single neuron spiking activity: I detection and significance[END_REF], motion of chemical or physical particles [START_REF] Lim | Modeling single-file diffusion by step fractional brownian motion and generalized fractional langevin equation[END_REF], finance [START_REF] Bianchi | Efficient markets and behacioral finance : a comprehensive multifractal model[END_REF][START_REF] Xiao | Parameter identification for drift fractional brownian motions with application to the chinese stock markets[END_REF], sport [START_REF] Seifert | Temporal dynamics of inter-limb coordination in ice climbing revealed through change-point analysis of the geodesic mean of circular data[END_REF], health [START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection some case studies[END_REF]. Most of the previous examples concern detection of change on the mean of series derived from the original one, as the series of energy calculated by the wavelet analysis [START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection some case studies[END_REF] and the series of Hurst index [START_REF] Wanliss | Space storm as phase transition[END_REF][START_REF] Bianchi | Efficient markets and behacioral finance : a comprehensive multifractal model[END_REF][START_REF] Xiao | Parameter identification for drift fractional brownian motions with application to the chinese stock markets[END_REF]. However, in all those cases, we still detect changes on the mean of the derived series, that is changes on the mean value of the Hurst series [START_REF] Wanliss | Space storm as phase transition[END_REF][START_REF] Bianchi | Efficient markets and behacioral finance : a comprehensive multifractal model[END_REF][START_REF] Xiao | Parameter identification for drift fractional brownian motions with application to the chinese stock markets[END_REF] or changes of the mean value of the wavelet transform for the series of energy [START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection some case studies[END_REF]. To sum up, change point detection on the mean is a relevant question in many applications.

On the other hand, in statistics, the change point analysis field has been studied for more than forty years [START_REF] Brodsky | Nonparametric methods in change-point problems[END_REF][START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF][START_REF] Csörgö | Strong approximations in probability and statistics[END_REF] or [START_REF] Gombay | Monitoring parameter change in ar(p) time series models[END_REF][START_REF] Rigaill | Learning sparse penalties for changepoint detection using max margin interval regression[END_REF][START_REF] Hušková | Change point analysis based on the empirical characteristic functions[END_REF] for an updated overview. Depending on the method of data acquisition, we distinguish two kinds of change point detection :

• We observe the whole time series and we want to detect all the change points a posteriori or off-line, see e.g. [START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF][START_REF] Boutoille | A hybrid fusion system applied to off-line detection and change-points estimation[END_REF].

• We observe the time series and we want to detect a change point as soon as possible. It is the on-line change point detection, see e.g [START_REF] Shiryaev | Quickest detection problems: Fifty years later[END_REF][START_REF] Fearnhead | On-line inference for multiple change point problems[END_REF][START_REF] Bertrand | Detecting small shift on the mean by finite moving average[END_REF].

In this work, we only consider the 'a posteriori' detection also called change point analysis in the statistical literature. We describe our framework in Section 1.

At the beginning of 21st century, the method used for this kind of problem was the Penalized Least Square (PLS) method. This algorithm is based on the minimisation of the contrast function when the number of change points is known [START_REF] Bai | Estimating and testing linear models with multiple structural changes[END_REF]. When the number of change point is unknown, many authors use the penalized version of the contrast function [START_REF] Lavielle | Least-squares estimation of an unknown number of shifts in a time series[END_REF]. From a computational point of view, the time and memory complexity of PLS algorithm is of order O(n 2 ), where n denotes the size of the dataset. Due to the data deluge, the sizes of datasets become larger and larger, to the point where the computational complexity of this statistical method has become a challenge. For this reason, pruned versions of PLS algorithm has been introduced [START_REF] Fotopoulos | Inference for single and multiple change-points in time series[END_REF][START_REF] Rigaill | Pruned dynamic programming for optimal multiple change point detection[END_REF][START_REF] Haynes | A computationally efficient nonparametric approach for change point detection[END_REF][START_REF] Lebarbier | Segmentation of the poisson and negative binomial rate models: a penalized estimator[END_REF] with a time complexity varying following the configuration and the different pruning strategies. For example, in [START_REF] Killick | Optimal detection of changepoints with a linear computational cost[END_REF], we read that the Pruned Exact Linear Time (PELT) algorithm has a time complexity O(n log n) when the number of change points K is linear, i.e. K = a × n but it is less good when the number of change points is K = b × n 1/2 or constant. Still, it is better than the Optimal Partitioning (OP) algorithm which is O(n 2 ). However, in all cases the result is more accurate than with the Binary Segmentation (BS) algorithm which has also a time complexity O(n log n). Moreover, in [START_REF] Maidstone | On optimal multiple change point algorithms for large data[END_REF], two new algorithms are proposed, the Functional Pruning Optimal Partitioning (FPOP) and Segment Neighbourhood with Inequality Pruning (SNIP), and compared whith PELT and pruned Dynamic Programming Algorithm (pDPA). Basing on their results, the computing time for FPOP is equivalent to the time of BS which is O(n log n × log K). Moreover, the FPOP algorithm is faster than the other algorithms. Among these mainstream methods, the use of the Filtered Derivative (FD) function, for a posteriori change detection, has been introduced by [START_REF] Benveniste | Detection of abrupt changes in signals and dynamical systems: some statistical aspects, Analysis and optimization of systems[END_REF][START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF]. The advantage of the Filtered Derivative method is the time and memory complexity, both of order O(n) [START_REF] Messer | The shark function -asymptotoc behavior of the filetered derivative for point process in case of change points[END_REF][START_REF] Messer | A multiple filter test for the detection of rate changes in renewal processes with varying variance[END_REF][START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF][START_REF] Soh | High-dimensional change-point estimation: Combining filtering with convex optimization[END_REF]. A first drawback is the difficulty to manage the tradeoff between non detection of true positive and false alarm. For this reason, we have introduced a two step method so-called FDpV based on FD algorithm [START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF]. Similarly, [START_REF] Messer | A multiple filter test for the detection of rate changes in renewal processes with varying variance[END_REF] also uses a two-step procedure based on the Filtered Derivative function. In the first step, [START_REF] Messer | A multiple filter test for the detection of rate changes in renewal processes with varying variance[END_REF] computes the FD function with a small window A 1 and a threshold C 1 guaranteeing no false alarm (at risk 0.05). In a second step, [START_REF] Messer | A multiple filter test for the detection of rate changes in renewal processes with varying variance[END_REF] uses a family of the window size H = {A 1 , . . . , A k } to detect missing change points. Yet in [START_REF] Messer | A multiple filter test for the detection of rate changes in renewal processes with varying variance[END_REF], the choice of the family of the window size is completely arbitrary. Moreover, this algorithm only detects 66% of the right change points. Actually, the remaining drawback of the Filtered Derivative methods is its dependency on extra-parameters. In this article, we give two innovative results. We have defined an iterative variant of the Filtered Derivative with p-Value (iterative FDtV) method in which the critical threshold of the second step is iteratively incremented with an estimated stopping condition to guarantee a risk of false alarm α 2 . Concomitantly, we have eliminated all the extra-parameters of the Filtered Derived (FD), Filtered Derived with p-Value (FDpV) and iterative FDtV (i-FDtV) methods. The extra-parameters of each method are calculated to guarantee a false alarm risk α 2 and a risk of non-detection α 1 , which are now the only extra-parameters to be fixed. Finally, we show that the i-FDtV method has a better resolution than the FDpV method, which is better than the Filtered Derivative (FD). All the results exposed in this paper were obtained by using Matlab code available on the platform Github http://. The rest of this article is organized as follows. In Section 1, we describe the problem of change point analysis with a simple model and we give some comparison criteria. In Section 2, we define the Filtered Derivative with p-Value method and the Iterative Filtered Derivative with p-value method. After that, we give the theoretical calculations to determine the extraparameters for both methods and also the practical choices with preliminary estimation in Section 3. Finally, in Section 4, we simulate by Monte-Carlo some cases and then we apply the method on real data of heartbeat time series.

Change point analysis

In this section, we describe the problem of the change point analysis that will be used throughout the sequel of this work. Then, we give some comparison criterion.

Change point model

Let X = (X 1 , X 2 , . . . , X n ) be a series indexed by the time t = 1, 2, . . . , n. We assume that a segmentation τ = (τ 1 , . . . , τ K ) exists such that X t is a family of independent identically distributed (iid) random variables for t ∈ (τ k , τ k+1 ], for k = 0, . . . , K, where by convention

τ 0 = 0 and τ K+1 = n. A simple model is X ∼ N (µ(•), σ 2
) a sequence of independent standard Gaussian variables, where N (µ, σ 2 ) denotes the Gaussian law with mean µ and variance σ 2 . The function of time t -→ µ(t) is piecewise constant that is to say µ(t) = µ k for all t ∈ (τ k , τ k+1 ], see eg. • associated to the configuration of mean values µ = (µ 0 , . . . , µ K ),

• X t ∈ N (µ k , σ), for t ∈ (τ k , τ k+1 ] and for all k = 0, . . . , K.

• For notational convenience, we define the configuration of shifts δ = (δ 1 , . . . , δ K ) where

δ k = µ k -µ k-1 , for k = 1, . . . , K. (1.1) 
• The minimal distance between two consecutive change points is defined by

L 0 = inf{|τ k+1 -τ k |, f or k = 0, . . . , K}. (1.2) 
• The minimal absolute value of the shifts is

δ 0 = inf{|δ k |, k = 1, . . . , K}. (1.3) 
Let us also recall the definition of the cumulative distribution function for standard Gaussian law

Φ(x) = 1 √ 2π x -∞ e -u 2
2 du and Ψ(x) = 1 -Φ(x).

(1.4)

The Comparison Criteria

We have to estimate the configuration of changes τ = (τ 1 , . . . , τ K ) and the values of the mean µ = (µ 0 , µ 1 , . . . , µ K ). We denote the corresponding estimates by τ = (τ 1 , . . . , τ K ) and μ = (μ 0 , μ1 , . . . , μ K ). Stress that in real life situations the number of change points is also unknown and is estimated by K. In this frame, the comparison criterion concerning the different methods for change point analysis are :

1. The quality of estimation. For one sample, this quality can be measured by :

• The number of false alarms (NFA) and the number of undetected change points (NND), which are linked by the relationship N F A = K -K + N N D.

• The integrated square error (ISE). Actually, we can reformulate the problem as a problem of estimation of a noisy signal, see eg. [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF][START_REF] Arlot | Segmentation of the mean of heteroscedastic data via crossvalidation[END_REF]. The signal is

s(t) = K k=0 µ k × 1 (τ k ,τ k+1 ] (t), the estimated signal is s(t) = K k=0 µ k × 1 ( τ k , τ k+1 ] (t) and the integrated square error (ISE) is defined by ISE = n t=1 ( s(t) -s(t)) 2 .
2. The time complexity and the memory complexity: it is the mean CPU (Central Processing Unit) time for estimating s and the amount of memory used.

2 Two-Step methods : FDtV and Iterative FDtV

The FDpV and the iterative FDtV methods are two step-methods. In the first step, we use the Filtered Derivative function to select a set of potential change points T 1 = {τ 1 , . . . , τ K }. In the second step, we calculate the p-values or equivalently the t-values for each potential change point τ k ∈ T 1 . Next, we compare t-values with a critical threshold t c . When the corresponding change point τ k verifies |t k | < t c , we decide that this is a false alarm, otherwise, we decide this is a true positive. This is the FDpV method [START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF]. Investigation on the choice of the critical p-value p or equivalently the critical t-value t c shows that in some cases, there exists no good choice of t c . However, by increasing progressively the critical threshold, we would still detect correctly the change points. This would be explained in Section 3. This is the Iterative FDtV method. Precisely, the methods are defined as follows:

Step 1 : Filtered Derivative

The first step (FD selection) depends on two parameters: the window size A and the threshold C 1 . Before going further, let us give some notations. We will denote by

µ(X, [u, v]) := 1 (v -u + 1) × v t=u X t (2.1)
the empirical mean of the variables X t calculated on the box t ∈ [u, v].

1. Computation of the Filtered Derivative function. The Filtered Derivative function is defined as the difference between the estimators of the mean computed in two sliding windows respectively to the right and to the left of the time t, both of size A, with the following formula :

F D(t, A) = µ(X, [t + 1, t + A]) -µ(X, [t -A + 1, t]), (2.2) f or A < t < n -A,
where µ(X, Box) denotes the empirical mean of the family X t for the indices t ∈ Box as defined by (2.1). This method consists on filtering data by computing the estimators of the parameter µ before applying a discrete derivation. So this construction explains the name of the algorithm, so called Filtered Derivative method [START_REF] Benveniste | Detection of abrupt changes in signals and dynamical systems: some statistical aspects, Analysis and optimization of systems[END_REF][START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF]. Next, remark that quantities A × F D(t, A) can be inductively calculated by using

A × F D(t + 1, A) = A × F D(t, A) + X(t + 1 + A) -2X(t + 1) + X(t -A + 1) (2.3)
Thus, the computation of the whole function t -→ F D(t) for t ∈ [A, n -A] requires O(n) operations and the storage of n real numbers. k and we iterate this algorithm while [START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF]. When there is noise (e.g. σ = 1), we get the following landscape, see figure ?? below.

|F D k (τ * k , A)| > C 1 , see
At the end of Step 1, we have a family of K potential change points T 1 = {τ 1 , . . . , τ K }.

Step 2 : Elimination of false discoveries

In the second step, our aim is the elimination of false discoveries without removing the right change points. To do so, we calculate the t-value for each potential change point. Then, we apply two slightly different strategies for FDpV and iterative FDtV methods. For FDpV method, we fix a threshold t c and decide that a potential change point is a false alarm when the corresponding t-value |t * k | is lesser than t c . For iterative FDtV method, critical t-value is progressively incremented from t c 0 , for example t c 0 = 1, and stopped as soon as all the |t * k | are greater than an estimate of the maximum of the t-value for false alarms (see Subsect. 3.2.1, 3.2.2).

Computation of the t-value

After Step 1 for FDpV, respectively Step j for iterative FDtV, we get a set of potential change points T j . A potential change point τ (j) k ∈ T j can be an estimator of a true change point or a false alarm. In Step (j + 1), we test

(H 0,k ) : µ (j) k = µ (j) k+1 versus (H 1,k ) : µ (j) k = µ (j) k+1
where the terms µ (j) k are defined by (2.5) below. We choose the Student t-statistic:

t (j) k = µ (j) k -µ (j) k-1 S (j) k-1 2 N (j) k-1 + S (j) k 2 N (j) k , (2.4) 
where µ

(j)
k and S (j)

k denote respectively empirical mean and the standard deviation computed on the interval [τ

(j) k + ε 0 , τ (j) k+1 -ε 0 ]. Indeed, when τ (j) k
is a true positive, there exists an uncertainty on the change point location, which can be bounded by ε 0 , see [START_REF] Bertrand | A local method for estimating change points: the "hat-function[END_REF][START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF] and Subsection 3.2.1. The quantities µ

(j) k , N (j) k and S (j) k are defined by µ (j) k := µ(X, [τ (j) k + ε 0 , τ (j) k+1 -ε 0 ]), (2.5) 
N (j) k := τ (j) k+1 -τ (j) k -2ε 0 , (2.6 
) and

S (j) k =    1 N (j) k τ (j) k+1 -ε 0 t=τ (j) k +ε 0 X 2 t    -µ (j) k 2 , (2.7) 
which allows to compute the t-values t

(j)
k , as given by (2.4), associated to each potential change point τ

(j) k ∈ T j .

Elimination of false alarms for FDpV method

In FDpV method, we fix a critical threshold t c , for e.g. t c = 3 in [START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF]. If |t k | < t c then we decide that τ k is a false alarm which is removed from the list of the potential change points T 1 . Then, we get a new family of potential change points

T 2 = τ k ∈ T 1 such that |t k | > t c .

Elimination of false alarms for iterative FDtV method

At

Step j, we have a family of potential change points T j . Next, we compute the t-value t (j) k , as given by (2.4), associated to each potential change point τ

(j) k ∈ T j . Then, we fix a critical threshold t c j . If |t (j) k | < t c j , we remove τ (j) k
from the list of the potential change points. We get a sub-family of potential change points

T j+1 = τ (j) k ∈ T k such that |t (j) k | > t c j .
We denote by K (j) the cardinal of the set T j . Clearly T j+1 ⊂ T j and after K (j+1) ≤ K (j) . At the beginning of iterative procedure, we use the set of potential change points T 1 obtained at Step 1 (by using FD method) and set t c j = 1. At Step j, we set t c j+1 = t c j + 0.1, and stop as soon as t c j > t F A , where t F A is an estimation of the maximum of t-value of false alarm of Step 1, at risk α 2 .

Estimation of max t F A at risk α 2

We compute maximum of t-value of false alarm of Step j, at risk α 2 , by the following formula

t F A = Ψ -1 1 -(1 -α 2 ) 1/ N F A j 2 (2.8)
where the number of false alarms is estimated by

N F A j = #{τ (j) k ∈ T 1 such that |t (j) k | ≤ t c j }.
To begin with, we set N F A 1 = K (1) , where K (1) is the number of potential change points after Step 1.

3 How to choose the extra-parameters ?

All the change point methods depend on extra-parameters which must be well chosen. The first step of both FDpV and i-FDpV method depends on two extra-parameters : the window size A and the threshold C 1 . The second step of FDpV depends on the uncertainty parameter ε 0 and the critical t-value t c , whereas the iterative step of i-FDtV only depends on the uncertainty parameter ε 0 . Our objective is to determine the sets of extra-parameters insuring respectively a probability of zero undetected true positive greater than (1 -α 1 ), and a risk of false alarm smaller than α 2 , see also Definition 3.1. Clearly, these sets would depend on the five parameters of the change point model (see Subsection 1.1). Definition 3.1 (Exact change point method) Exactness means that we detect all the change points with zero undetected true positive at risk α 1 and zero false alarm at risk α 2 , for any chosen risk levels (α 1 , α 2 ) ∈ (0, 1) 2 . More formally,

I P (Zero N on Detection) ≥ (1 -α 1 )
and

I P (F alse Alarm) ≤ α 2 . (3.1) 
False alarms at Step 1 can be removed at Step 2, but non detection can not be corrected. Therefore, at Step 1 of FDpV or i-FDtV we just have to control the rate of non detection at a level α 1 /2, and at Step 2 control both rate of non detection at a level α 1 /2 and the rate of false alarms at level α 2 ).

Theoretical Results on the Extra-parameters of Step 1

The window size should be smaller than the minimum distance between two successive change points, i.e. A < L 0 as shown by the following pictures. The Secondly, it is possible to derive sufficient condition for zero false alarm and zero undetected true positive. From [27, Prop. 2.1, p.218], we have the decomposition

F D(t, A) = K k=1 δ k × g (t -τ k ) A + σ × Γ(t, A) (3.2)
were the map g(x) is the hat function, that is g(x) = 1 -|x| if |x| ≤ 1 and zero elsewhere and Γ(t, A) is a zero mean Gaussian process with specific covariance structure. In other words, the filtered derivative function F D(t, A) given by (2.2) is the sum of a zero mean Gaussian process and a deterministic function with hat of length 2A around each change point τ k and zero elsewhere, see also Proposition 3.2 (True positives) Let α 1 ∈ (0, 1) be the risk level. Assume that A < L 0 , then up to a negligible factor, the condition

δ 0 > C 1 + σ 2 A × Φ -1 (1 -α 1 ) 1/K (3.3) implies I P (Zero N on Detection) > (1 -α 1 )
Proof. See Appendix A.

Theoretical Results on the Extra-parameters of Step 2 of FDpV or Step j of i-FDtV

The extra-parameters of this step depend on those of the first step and the signal-to-noise ratio SN R = δ 0 /σ.

Choice of the uncertainty parameter ε 0

Firstly, we investigate the extra parameter ε 0 corresponding to the uncertainty on the localisation of the true positives. Monte-Carlo simulations show that 

ε 0 = ν δ 0 σ × σ δ 0 

Choice of the critical t-value

Secondly, we turns us to the study of the critical t-value t c . Step 2 of FDpV respectively Step (j + 1) of i-FDtV works if there exists a critical t-value t c such that

I P (|t (j) k | ≥ t c , f or all τ (j) k f alse alarm) = α 2
(3.5) and I P (|t

(j) k | ≥ t c , f or all τ (j) k true positive) = (1 -α 1 ), (3.6) 
where τ 

) If τ (j) k is a false alarm then t (j) k ∼ +St N (j) k +N (j) k+1 -2 ii) If τ (j) k is a true positive then t (j) k ∼ ∆ (j) k + St N (j) k +N (j) k+1 -2
with St ν being the Student law of degree ν, and

∆ (j) k = δ k S 2 k /N (j) k + S 2 k+1 /N (j) k+1 (3.7)
where δ k , S

k and N (j) k are respectively defined by (1.1, 2.6, 2.7).

Proof. See Appendix A.

The Student law St ν converges to the normal law when ν → ∞ and the approximation is accurate as soon as ν ≥ 62. Similarly, the empirical variance S

(j) k 2 converges to the theoretical variance σ 2 when N (j) k → ∞. Set N (j) 0 = min{N (j) k , f or k = 1, . . . , K (j) }. (3.8) 
From the previous remarks combined with (1.3), when N (j) 0 is large enough, we get the lower bound

∆ (j) k ≥ ∆ (j) 0 := δ 0 σ × N (j) 0
2 for all k = 1, . . . , K (j) .

(3.9) Proposition 3.3 combined with formula (3.9) mean there is a shift between the distribution of t-values of false alarms and t-values of true positive as seen in the figures ?? and ?? below. We can see that for ∆ 0 = 4, the distribution of the false discoveries overlaps the one of the true positives. Thus, we can not separate them, whereas for ∆ 0 = 7.5, we have a gap between the true positives and the false discoveries meaning that we can separate them. Moreover, the elimination of the false discoveries in this case can be done in only one step. From Proposition 3.3, we can deduce sufficient condition for zero undetected true positive at risk α 1 and zero false alarm at risk α 2 .

Proposition 3.4 Assume that A < L 0 , and let (α 1 , α 2 ) ∈ (0, 1) 2 be the risk levels for undetected true positive and false alarm.

i) If

t c ≥ Ψ -1 1 -(1 -α 2 ) 1/N F A 2 , (3.10) 
where N F A denotes the number of false alarms. Then (3.5) holds.

ii) If

∆ (j) 0 ≥ t c + Φ -1 (1 -α 1 ) 1/K , (3.11) 
where ∆ (j) 0 is given by (3.9, 3.8), and K is the right number of change points. Then (3.6) holds.

Proof. See Appendix A.

Therefore, if

∆ (j) 0 ≥ Ψ -1 1 -(1 -α 2 ) 1/N F A 2 + Φ -1 (1 -α 1 ) 1/K (3.12)
then, (j + 1)th Step of i-FDtV method is exact with a critical t-value t c chosen accordingly to (3.10).

Next, the minimum size of the shifts is ∆ (j) 0 and depends on the SNR and on the minimum distance between successive potential change points. For example, the shift ∆

(1) 0 is linked to the parameters of the FDpV method by the following result: Property 3.5 With the previous notations, for all positive real number x ∈ R + , if

A ≥ σ δ 0 2 × 2x 2 + 2ν δ 0 σ (3.13) then ∆ (1) 0 ≥ x.
Proof. From (2.6, 3.8) combined with |τ

(1)

k+1 -τ (1) 
k | > A for all k = 0, . . . K (1) , we get

N (1) 0 > A -2ε 0 .
Next, by using (3.4) combined with (3.13), we deduce

N (1) 0 ≥ 2x 2 × σ δ 0 2 .
Then, by using (3.9), we get ∆

(1) 0 ≥ x. This finishes the proof of Property 3.5.

Remark 3.6 Both functions k -→ Ψ -1 1 -(1 -α 2 ) 1/k 2 and k -→ Φ -1 (1 -α 1 ) 1/k
slightly depend on the exact value of k, as shown by Fig. ?? below. So, we can approximate Condition (3.12) by ∆ 0 ≥ x, with x = 7 when α 1 = α 2 = 0.01 or x = 6 when α 1 = α 2 = 0.05.

Preliminary estimation of the standard deviation σ 2

In practice, the variance σ 2 is most often unknown. The following method works well:

• If δ 0 and L 0 are known or if we have lower bounds: δ 0 ≥ δ 1 , and L 0 ≥ L 1 , then we compute the empirical variance σ 2 0 on the whole series (X 1 , . . . , X n ). We have σ 2 0 > σ 2 , and we deduce a lower bound of SNR: SN R := 

δ 1 σ 0 ≤ SN R. Since SN R -→ ε 0 (SN R)
≤ n/L 1 . Since the map k -→ Φ -1 (1 -α 1 ) 1/k is increasing, we get Φ -1 (1 - α 1 2 ) 1/K ≥ Φ -1 (1 - α 1 2
) L 1 /n . Next we apply Step 1 (FD method) with

C 1 = 0 and A = 2 × Φ -1 (1 - α 1 2 ) L 1 /n 2 × SN R -2
.

Eventually, we compute the empirical variance σ 2 1 on the series (X t ) for t ∈ {1, . . . , n} -

K (1)

k=1

(τ

(1) k -ε 1 , τ (1) 
k -ε 1 ).

• If δ 0 is unknown. We fix SN R = 2 and compute the the empirical variance σ 2 1 as before. Eventually, we deduce an estimate of the minimal jump size:

δ 0 = σ 1 × SN R.
To sum up, a change point model depends on the five parameters (n, K, σ, δ 0 , L 0 ). The length of the series n is always observed. The knowledge of a lower bound of the minimum distance between successive change points, i.e. L 1 ≤ L 0 allows us to estimate the variance σ 2 and to eliminate the impact of other parameters on FDpV algorithm.

Practical choices of the extra-parameters

In this subsection, we give choices for the extra-parameters for the FDpV and the iterative FDtV methods. Stress that, for both methods, the extra-parameters are automatically chosen.

FDpV

The extra-parameters of the FDpV method can be computed depending only on the length of the series n, the signal-to-noise ratio SN R and the risk levels of undetected true positives and false alarms (α 1 , α 2 ), as stated in the following proposition. Proposition 3.7 Assume that SN R and n are known. Let (α 1 , α 2 ) ∈ (0, 1) 2 be the risk levels for undetected true positive and false alarm, we can successively define

A 2 (SN R) := y + 2ν(SN R) × (SN R) -2
with y = 32, (3.14)

K max (SN R) = n A 2 (SN R) -1 , (3.15) x(SN R) = Ψ -1 1 -(1 -α 2 ) 2/Kmax 2 + Φ -1 (1 - α 1 2 ) 2/Kmax , (3.16) λ(SN R) := 1 - Φ -1 (1 -α 1 2 ) 1/Kmax x(SN R) 2 + ν (SN R) , ( 3 
.17)

A 1 (SN R) := 2 (1 -λ) 2 × Φ -1 (1 - α 1 2 ) 1/Kmax 2 × (SN R) -2 , (3.18) A 3 (SN R) := 2x(SN R) 2 + 2ν(SN R) × (SN R) -2 , (3.19 
)

t c = Ψ -1 1 -(1 -α 2 ) 2/Kmax 2 , (3.20 
)

C 1 = λ(SN R) × SN R × σ 1 , (3.21) 
δ 1 = SN R × σ 1 , (3.22) 
where σ 1 is defined accordingly to Subsect. 3.3. If

A ≥ A 1 (SN R) ∨ A 2 (SN R) ∨ A 3 (SN R),
then the FDpV method is exact at risk α 1 , α 2 , for all time resolution L 0 ≥ A and all signal δ 0 ≥ δ 1 .

Proof. See Appendix A Remark 3.8 • The value of λ(SN R) is chosen such that A 1 (SN R) = A 3 (SN R), for all SN R > 0.
• For any fixed values of n, α 1 , and α 2 , we can plot the maps SN R • We can remark that the value of λ slightly depends on SN R and is around 0.5 for FDpV, whereas the critical threshold for Step 2 varies from 2.8 to 4.

-→ A 1 (SN R) (red line), SN R -→ A 2 (SN R) (green line), SN R -→ A 3 (SN R, λ) (blue points) and the maps SN R -→ λ(SN R) (green line), SN R -→ t c (SN R) (red line), see resp.

Iterative FDtV

In i-FDtV method the threshold is iteratively estimated. We just have to insure that, in the first iteration, we do not eliminate a true positive. As in Subsection 3.4.1, the extraparameters can be computed depending only on the length of the series n, the signal-to-noise ratio SN R and the risk levels of undetected true positives and false alarms (α 1 , α 2 ).

Proposition 3.9 Assume that SN R and n are known. Let (α 1 , α 2 ) ∈ (0, 1) 2 be the risk levels for undetected true positive and false alarm, we can successively define A 2 by (3.14), K max by(3.15), λ is still defined by (3.17) but where formula (3.16) has been replaced by

x(SN R) = t c 0 + Φ -1 (1 - α 1 2 ) 2/Kmax with e.g. t c 0 = 1,
We then define A4 and A5 by

A 4 (SN R) := 2 (1 -λ) 2 × Φ -1 (1 - α 1 2 ) 1/Kmax 2 × (SN R) -2 , A 5 (SN R) := 2x(SN R) 2 + 2ν(SN R) × (SN R) -2 ,
The threshold C 1 for Step 1, δ 1 and σ 1 are still defined respectively by (3.21), (3.22), and Subsect.

If

A ≥ A 1 (SN R) ∨ A 4 (SN R) ∨ A 5 (SN R),
then the iterative FDtV method is exact at risk α 1 , α 2 , for all time resolution L 0 ≥ A and all signal δ 0 ≥ δ 1 .

Proof. See Appendix A

Remark 3.10

• The value of λ(SN R) is still chosen such that A 4 (SN R) = A 5 (SN R), for all SN R > 0.

• For any fixed values of n, α 1 , and α 2 , we can plot the maps SN R -→ A 4 (SN R) (blue line), SN R -→ A 2 (SN R) (green line), SN R -→ A 5 (SN R, λ) (magenta crosses) and the maps SN R -→ λ(SN R) (green dashes), see resp. • Stress that the domain of exactness of the iterative FDtV method is larger than the one for the FDpV method, specially for small values of SNR.

• We can remark that the value of λ slightly depends on SN R and varies from 0.33 to 0.28.

Adaptive estimation in iFDtV

Fig. ?? shows that iterative FDtV method works in some case where FDpV method would not work. This is illustrated by the following pictures Fig. ?? shows that we detect all the true positives by using the iterative FDtV method.

Whereas with the FDpV, we lose some true positives when we eliminate with the same critical t-value t c f of the last step of the I-FDtV. Furthermore, Fig. ?? illustrates that it is not possible to separate the false alarms and the true positives just by using Step 2 of FDpV. Indeed the maximum t-value of false alarms is greater than the minimum t-value of true positives, corresponding to a negative spread. However, by increasing iteratively the critical threshold t c i , the spread defined as the minimum t-value of true positive minus the maximum of t-value of false alarms becomes positive and it is possible to separate true positives and false alarms.

In this example, see Fig. ??, the crossing point is around t c i = 1.9. The figure ?? below shows the result of the last elimination and the last critical threshold t c magenta line. We have the change points discarded (red) until the last elimination, and the change points kept (green circle) as true positives.

Applications

Monte-Carlo Simulations

We have proceeded to many Monte-Carlo simulations as numerical experiments. For the sake of brevity, we give just few highlights :

• For a given Signal-to-Noise Ratio SN R, the mean number of false alarms, the mean number of undetected true positive decrease as the window size A increases as long as the window size remains smaller than the minimum distance between two successive change point, i.e. A < L 0 . Then the number of undetected true positive increases.

• The uncertainty on the localisation of true positive does not depend on the threshold C 1 at Step 1, and almost not depends on the window size A. To sum up, the parameter ε 0 does not depend on the extra-parameters of Step 1 or Step 2.

We give 4 pictures of Monte-Carlo simulation of mean number of false alarm (red line), mean number of non-detection (green line), mean error on location of true positives (magenta line), depending on the window size A, in the cases SN R = 1, 2, 1/2, and 1/2.5 and L 0 = 198.

Heart Rate Series

In this section, we apply the iterative Filtered Derivative with t-Value method to detect change on the mean of a real sample concerned with health. New devices as watches or wearable activity trackers allow the recording of heartbeat series during several consecutive hours. Physical activity induces variation of the heart rate (HR), which is defined as the number of heartbeats by minute. Heart rate series of sport men has been analysed through different scenario such as for Marathon runners, see eg. [START_REF] Haynes | A computationally efficient nonparametric approach for change point detection[END_REF][START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection some case studies[END_REF][START_REF] Billat | Detection of changes in the fractal scaling of heart rate and speed in a marathon race[END_REF]. As pointed in [START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection some case studies[END_REF][START_REF] Billat | Detection of changes in the fractal scaling of heart rate and speed in a marathon race[END_REF], devices are not measuring heart rate but the time interval between two successive R-waves.

The RR interval corresponds to the duration (in seconds) of each single cardiac cycle. The two quantities are linked by the equation HR = 60/RR, [START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection some case studies[END_REF]. Actually, the data set is not independent. However, we obtain a result corresponding to the different running steps of the marathon runner. So, we apply the iterative FDtV method on the HR-signal at risk α 1 = 0.01 and α 2 = 0.025. Physiologists estimate that ∆HF = 10 beats/mn is a quite reasonable value of minimum jump size during physical activities. Except δ 0 deduce from ∆HF , all the extra-parameters used are chosen automatically. In the first step, for a window size A = 180 corresponding to 1min30s and a threshold of detection C 1 = 0.092, we obtain 119 potential change points after Step 1. Then, in second step, we need to discard the false discoveries and retain the true positives. For so, we start with a critical t-value t c 0 = 1 and iteratively, we increase iteratively the threshold t c until all the potential change points left have a t-value bigger than t c . The final signal composed with the change points (green circle), remaining with the last elimination, has the shape below (see Fig. ?? below). Furthermore, we can see the different steps of the runner. In the first hour, we see clearly that the marathon is warming up. After that, the heart rate decreases waiting for the start of the marathon. At the beginning of the marathon, the heart rate increases until it reaches 158 beats/min. After almost three hours, our iFDtV algorithm highlights fluctuations in the heart rate that correspond to some brief rest periods so the runner can finish the marathon. After crossing the finishing line, the heart rate returns to lower values. The use of the i-FDtV method can have many applications such as for providing objective measures of stress in psychological disability conditions or in workplace, see [START_REF] Hufnagel | The need for objective measures of stress in autism[END_REF].

Conclusion

Our analysis suggest a comprehensive way to optimize the detection of change points using the Filtered Derivative function. Firstly, we optimized the extra-parameters of the Filtered Derivative method, namely the window size A and the threshold of detection C 1 . We give a theoretical results to compute them automatically in order to obtain less false alarms at risk α 2 and zero undetected change point at risk α 1 . Thus, in the second step of the FDpV method, we calculate less p-values, gaining computational times. Secondly, we give a theoretical value of the critical t-value for the elimination on the second step. However, for ratio noise signal greater than 1.5, we cannot disentangle false alarms and true positives at Step 2 of the FDpV on view of their t-values. Thus, we develop a new method called the Iterative Filtered Derivative with t-Value based on the Filtered Derivative with p-Value. The first step is the FD function whereas the second step concerns the iteration of the eliminations. For this step, we give the theoretical results of the extra-parameters, the uncertainty of localization ε 0 and the critical t-value t c f . Furthermore, we propose practical choices for the extra-parameters such that they are automatically computed. Point that the extra-parameters depend only on the signal -to -noise ratio SN R and the probabilities of undetected change points and false alarms α 1 and α 2 respectively. For comparison, in [START_REF] Cleynen | Segmentor 3 is back : an R package for the fast and exact segmentation of seq-data[END_REF], they process a dataset of size n = 230, 000 in 5.4 minutes and a set of 6 million data in 10 hours, with code in C++ and a computer at 2.4 Ghz. Whereas with the FDpV method, we treat a data set n = 110, 000 in less than 2 seconds with a Matlab code and a 2.6 GHz Intel Core i7 processor (Macbook Pro) and in less than 0.5 second when the code is translated into Java. Moreover, the iterative-FDtV method treats a set of 50, 000 heart rate data in 3.24 seconds with a Matlab code and a 2.7 GHz processor and in only 0.05 seconds when the code is translated into Java. This work of detection on the mean was done under the hypothesis of independent variables. For further works, we want to relax the assumptions on the independence of the variables and investigate applications on other field than the sports (eg. finance, health, ...).

A Proofs of section 3

Proof. [Proposition 3.2] We have

I P (Zero N on Detection) = I P K k=1 max t∈[τ k -A, τ k +A] |F D(t, A)| > C 1 But the events {max t∈[τ k -A, τ k +A] |F D(t, A)| > C 1 } are independent, therefore I P (Zero N on Detection) = K k=1 I P max t∈[τ k -A, τ k +A] |F D(t, A)| > C 1
Remark that for all change point τ k we have is a standard zero mean Gaussian variable. For notational simplicity, we assume that δ k > 0.

I P max t∈[τ k -A, τ k +A]
Note that the same result can be obtain when δ k < 0 . We get

I P (|F D(τ k , A)| > C 1 ) = I P δ k + σ 2 A × U > C 1 + I P δ k + σ 2 A × U < -C 1 = I P U > (C 1 -δ k ) σ × A 2 + I P U < - (C 1 + δ k ) σ × A 2 = I P -U < (δ k -C 1 ) σ × A 2 + I P -U > (C 1 + δ k ) σ × A 2 = Φ (δ k -C 1 ) σ × A 2 + Ψ (C 1 + δ k ) σ × A 2 ≥ Φ (δ 0 -C 1 ) σ × A 2 + Ψ (C 1 + δ k ) σ × A 2 
where the last inequality results from (1.3). Moreover

Ψ (C 1 +δ k ) σ × A 2
is negligible with respect to Φ (δ 0 -C 1 ) σ × A 2 . Therefore we have

I P (Zero N on Detection) ≥ Φ (δ 0 -C 1 ) σ × A 2 K × 1 + o(1)
This is equivalent to Formula (3.3). This finishes the proof of Proposition 3.2.

Proof. [Proposition 3.3] i) We have ∀τ k , the t-value is t

* k = μk -μ k-1 S 2 k-1 N k-1 + S 2 k N k
Under (H 0 ) : μk = μk-1 . So, I P (t * k < t c ) = 0 =⇒ t * k ∼ N (0, 1) Thus, t k ∼ St N k +N k+1 -2 where St ν is the Student law. i) We have τ * k true positive. So μk = µ k Then

t * k = µ k -µ k-1 S 2 k-1 N k-1 + S 2 k N k = δ k S 2 k-1 N k-1 + S 2 k N k = ∆ k Thus t k ∼ t * k ∼ ∆ k + N (0, 1) =⇒ t k ∼ ∆ k + St N k +N k+1 -2
Proof. We deduce that Proof. [Formula 3.12] We have t T P = ∆ k + N (0, 1) that implies

I P (max |t F A | < t c ) ≥ 1 -α 2 ⇐⇒ [1 -2Ψ(t c )] N F A ≥ 1 -α 2 ⇐⇒ 1 -2Ψ(t c ) ≥ (1 -α 2 ) 1/N F A ⇐⇒ Ψ(t c ) ≤ 1 -(1 -α 2 ) 1/N F A 2 ⇐⇒ t c ≤ Ψ -1 1 -(1 -α 2 ) 1/N F A
I P (|t T P k | > t c ) = Φ(∆ 0 -t c ) + Ψ(∆ 0 + t c ) Φ(∆ 0 -t c )
Thus I P (|t T P k | > t c ) ≥ (1 -α 1 ) 1/K ⇐⇒ ∆ k ≥ t c + Φ -1 (1 -α 1 ) 1/K The critical t-value t c should be, for eliminating the false alarms,

t c = Ψ -1 1 -(1 -α 2 ) 1/N F A 2 
Therefore :

∆ 0 ≥ Φ -1 (1 -α 1 ) 1/K + Ψ -1 1 -(1 -α 2 ) 1/N F A

  Fig. ?? and Fig. ??. To sum up, we have : • a configuration of K change points τ = (τ 1 , . . . , τ K ) enlarged, by convention, by adding τ 0 = 0 and τ K+1 = n,

2 .

 2 Determination of the potential change points. The absolute value of the Filtered Derivative |F D| (magenta) presents hats at the vicinity of the change points (red lines) as seen on the figures ??, ?? below. Potential change points τ * k , for k = 1, . . . , K * , are selected as local maxima of the absolute value of the filtered derivative |F D(t, A)| where moreover |F D(τ * k , A)| exceed a given threshold C 1 . For a signal without noise (σ = 0), we get spikes of width 2A and height |µ k+1 -µ k | at each change point τ k , see Figure ?? below where we have in red, the right signal, in blue dashes, the observed signal, in magenta, the Filtered Derivative function, in green the threshold C 1 , and red lines at potential change points. For this reason, we select as first potential change point τ * k the global maximum of the function |F D k (t, A)|, then we define the function F D k+1 by putting to 0 a vicinity of width 2A of the point τ *

  Fig. ??, Fig.??, Fig. ?? concern the ideal case without noise (σ = 0) whereas the Fig. ??, Fig. ??, Fig. ?? concern the case with noise (σ = 1), respectively with L 0 > 2A, A < L 0 < 2A, and A > L 0 . The dashed red line corresponds to the right signal, the blue line to the observed signal. Without noise both signals are equal. The magenta line corresponds to the filtered derivative function and the green lines correspond to the positive and negative threshold for change detection. The vertical red lines correspond to the detected change points. In Fig. ?? and Fig. ??, L 0 > 2A, we get hats in the Filtered Derivative function at each right change point, which are thus perfectly detected but completed by false discoveries in case of noise. In Fig. ??, A < L 0 < 2A, the hats are not perfect as in the Fig. ?? or Fig. ??, but we still detect all the change points. However, in Fig. ?? and Fig. ??, L 0 < A, we miss one right change point. Stress that the same results can be obtained by using formula (3.2) below.

  Fig. ?? and Fig. ??. Then, by using the decomposition (3.2), we can control the risk of non detection of true positive.

2 ( 3 . 4 )

 234 where ν δ 0 σ ≤ 10 as point in [27, Remark. 3, p.225], see Figure ?? In all the sequel, we choose the uncertainty ε 0 accordingly to Fig. ??.

k

  denote the change point detected at Step j. The law of t-values for false alarm and true positive is described by the following proposition.Proposition 3.3 Let τ (j) k∈ T j be a potential change point selected at Step j and t (j) k the associate t-value computed with (2.4).

  i

  is a decreasing map (see Fig.??), then ε 1 = ε 0 SN R is an upper bound on the uncertainties on localisation of true positive. Moreover, we deduce from (A.5) the upper bound: K

  Fig.?? and Fig.?? below.

  Fig.?? and Fig.??.

  |F D(t, A)| > C 1 ≥ I P (|F D(τ k , A)| > C 1 )From (3.2) and [27, Lemma B1, p.231], we getF D(τ k , A) = δ k +σ 2 A×U where U ∼ N (0, 1)

[Proposition3. 4 ]

 4 We want to proveI P (|t k | < t c , f or all τ k f alse alarm) = (1 -α 2 ).The Step 2 of the FDpV works when we have :I P (max |t F A | < t c ) ≥ 1 -α 2 and I P (min |t T P | > t c ) ≥ 1 -α 1 .Actually, t k and t k+1 are not independent. Yet, t k and t k+l are independent as soon as l ≥ 2. i) Thus,I P (max |t F A | < t c ) = I P k∈F A {|t F A | < t c } = k∈F A I P (|t F A | < t c ) = [I P (|N (0, 1) < t c )] N F A = [1 -2Ψ(t c )] N F A

  ii) We have I P (min |t T P | > t c ) = I P (∀k = 1, ..., K; |t T P k | < t c ) = I P k∈T P {|t T P | < t c } = k∈T P I P (|t T P | > t c ) But t T P = ∆ k + N (0, 1) impliesI P (|t T P | > t c ) = I P (∆ k + N (0, 1) > t c ) + I P (∆ k + N (0, 1) < -t c ) = I P (N (0, 1) > t c -∆ k ) + I P (N (0, 1) < -t c -∆ k ) = I P (-N (0, 1) < ∆ k -t c ) + I P (-N (0, 1) > t c + ∆ k ) = Φ(∆ k -t c ) + Ψ(∆ k + t c ) Thus I P (min |t T P | > t c ) = k∈T P Φ(∆ k -t c ) + Ψ(∆ k + t c )The function Φ is increasing, Ψ ≥ 0 and ∆ k ≥ ∆ 0 implies thatI P (min |t T P | > t c ) ≥ Φ(∆ 0 -t c ) K A sufficient condition for I P (min |t T P k | > t c ) ≥ (1 -α 1 ) is then Φ(∆ 0 -t c ) K ≥ (1 -α 1 ) ⇐⇒ Φ(∆ 0 -t c ) ≥ (1 -α 1 ) 1/K ⇐⇒ ∆ 0 -t c ≥ Φ -1 1 -α 1 1/K ⇐⇒ ∆ 0 ≥ t c + Φ -1 1 -α 1 1/K
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Proof. [Proposition 3 .7] Let SN R = δ 0 /σ denotes the signal -to -noise ratio with δ 0 ≥ δ 1 and L 1 a lower bound of the minimum distance between two successive change points such that L 1 ≤ L 0 . Our aim is to define a set of conditions on the extra-parameters insuring a risk α 1 /2 of non detection at Step 1, a risk α 1 /2 of non detection and a risk α 2 of false alarms at

Step 2. This correspond to the three following conditions : [START_REF] Benveniste | Detection of abrupt changes in signals and dynamical systems: some statistical aspects, Analysis and optimization of systems[END_REF]. In Formula (3.3), we get :

which is equivalent to

Finally, we get

• From (2.6, 3.8) combined with |τ

(1)

k | > A for all k = 0, . . . K (1) , we get

(see proof of Property 3.5). Combined to (3.4), we obtain

Next, for St N k +N k+1 -2 N (0, 1) and S

(1) k σ for all k = 1, . . . , K (1) , we have a sufficient condition

with e.g. y = 32.

Combining the inequalities (A.2) and (A.3)

• The sufficient condition for separation of false alarm and true positive at Step 2 of FDpV is (3.13) that can be written as

Still, the two quantities K (number of change points) and N F A (number of false alarms after Step 1) are both unknown. However, we have the bounds:

When the condition (3.3) is fulfilled, we have, with probability (1 -α 1 /2), K + N F A = K (1) and N F A ≤ K (1) .

The quantity x attend its maximum for K max /2 (see Figure ??). Furthermore, we have K (1) < K max . Then, we get

Proof. [Proposition 3.9] The proof of this proposition correspond to the proof of the proposition 3.7. Although, instead of using the uniform bound K max for all the iterations of the iFDpV, we can estimate N F A and K and use them for x(SN R).