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Abstract

The method presented below focuses on the numerical approximation of the Euler compressible system. It pursues a
two-fold objective: being able to accurately follow slow material waves as well as strong shock waves in the context of
low Mach number flows. The resulting implicit-explicit fractional step approach leans on a dynamic splitting designed
to react to the time fluctuations of the maximal flow Mach number. When the latter rises suddenly, the IMEX scheme,
so far driven by a material-wave Courant number, turn into a time-explicit approximate Riemann solver constrained by
an acoustic-wave Courant number. It is also possible to enrich the dynamic splitting in order to capture high pressure
jumps even when the flow Mach number is low. One-dimensional low Mach number test cases involving single or
multiple waves confirm that the present approach is as accurate and efficient as an IMEX Lagrange-Projection method.
Besides, numerical results suggest that the stability of the present method holds for any Mach number if the Courant
number related to the convective subsystem arising from the splitting is of order unity.

Keywords: Fractional Step, Implicit-Explicit Schemes, Multi-scale Flows, Low Mach Number, Relaxation Schemes,
Hyperbolic Equations

1. Introduction1

The present work deals with the construction of a time implicit-explicit scheme providing a sketch of answer to2

cope with multi-scale wave scenarios and more specifically with what is called a condensation induced water hammer3

(CIWH).4

Indeed, in the very first instants of this phenomenon, one is interested in following a slow interface between hot vapor5

and cooler liquid water. Since the speed of such a material wave is of the order of 1 m.s−1, which is considerably6

smaller than the acoustic wave speeds in both phases, the interface dynamics is typical of low Mach number flows.7

Nonetheless, as time goes on, shear instabilities and steep temperature gradients entail the trapping and then the8

sudden condensation of vapor pockets. This leads finally to the production of strong shock waves in the liquid phase.9

The objective is thus to design a numerical scheme accurate for material waves in a low Mach number flow while10

being able to capture high pressure gradients.11

On one hand, fulfilling both aims might seem contradictory if one considers the Euler or Navier-Stokes incompressible12

systems since their divergence-free constraint prohibits any compressible effects and hence the occurrence of com-13

pressive shock waves. On the other hand, the pioneering works of Joukowski [1] and Allievi [2] state that, at constant14

temperature, pressure jumps in a low Mach number compressible flow are given by: ∆p =ρ0 c0 ∆u; with ρ0 (respec-15

tively c0) the constant density (respectively the constant speed of sound) of the fluid. See also [3] for a review of the16

water hammer theory. Thus, in the case of liquid water, at 295K, ρ0≈103 kg.m−3, c0≈1.5×103 m.s−1. If one assumes17
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that ∆u≈1 m.s−1, pressure jumps amplitude is of 15 bar which is the order of magnitude observed experimentally in18

[4].19

From a numerical point of view, different strategies have been adopted in order to be accurate on slow material20

waves in the case of low Mach number flows. Preconditioning methods stemming from [5] and improved in [6, 7, 8]21

aim at modifying the Jacobian eigenvalues of hyperbolic systems in order to get rid of their constraining acoustic22

part. Asymptotic preserving schemes (AP schemes), introduced by Jin in [9], are based on the identification of a23

non-stiff and a stiff part of hyperbolic systems. The latter is then discretized using a time-implicit method which24

allows the scheme to be consistent, for fixed time and space-steps, with a targeted asymptotic discrete solver as a25

scale parameter tends towards zero. Recently in [10, 11, 12, 13], different kinds of AP schemes have been derived26

to seize the incompressible limit of the Euler or the Navier-Stokes system as the flow Mach number tends towards27

zero. It results in an implicit-explicit (IMEX) algorithm providing a time-implicit discretization for the hydrodynamic28

pressure gradient, and a time-explicit discretization for the convective terms. Besides, if one considers the Courant29

number C based on the slowest material waves of the flow, a key property for the above AP schemes is also to remain30

stable for C ≈1 at any Mach number. This typical issue has been explored using the “modified equation” tools as well31

as the spectral theory by Noelle an his collaborators in [14, 15]. See also [16] in which the AP property as well as the32

Mach-uniform stability property has been proved for a Lagrange-Projection method described in [17].33

If the Mach number flow is small, the above strategies produce satisfying results when one seeks to seize the slow34

material waves dynamics as well as the pressure incompressible profile. However, no satisfying solution has been yet35

found in order to dynamically capture strong shock waves if they suddenly appear in such a configuration.36

Continuing ideas suggested in [18, 19, 20], the present work derives an IMEX scheme based on a Mach-sensitive37

splitting of the Euler system. Such a splitting stems from the pioneering work of Baraille et al. [21] extended by38

Buffard et al. [22]. Contrary to [21, 13, 22, 17], the splitting evolves dynamically in time thanks to a parameter39

measuring a priori the instantaneous maximal Mach number of the flow. It results in a dynamically Weighted Frac-40

tional Step Approach (WFSA) enabling to cope with a wide panel of situations. Indeed, in the context of a low Mach41

number flow, starting from a completely decoupled IMEX formulation with C ≈1, it offers the possibility to retrieve42

a time-explicit Godunov-like solver for the overall Euler system if a sudden rise of the Mach number is detected. The43

CFL condition adapts itself and is re-based on the fastest physically relevant wave speed, i.e. the acoustic one. Thus, if44

this rise of the Mach number is associated with the production of shock waves, they will be optimally captured. What45

is more, the temporal splitting parameter can be enriched by a simple “shock detector” ensuring that a time-explicit46

solver is recovered when high amplitude shock waves arise even if the material velocity is low. Then, strong water47

hammer pressure jumps occurring in low Mach number flows can also be handled.48

The second section of this article is a condensed presentation of the Mach-sensitive splitting fully described49

in [19, 20]. The readers are notably referred to this work for the construction of a time-explicit scheme for both50

convective and acoustic parts of the Mach-sensitive splitting. Hence, the third and the fourth section of the present51

manuscript are entirely dedicated to the study and then the derivation of a time-implicit scheme related to the acoustic52

part of the splitting. It leans on the relaxation schemes theory and particularly on a Suliciu-like relaxation procedure53

detailed in [23, 24, 18, 25]. The fifth section aggregates four types of one-dimensional numerical results. A first part54

briefly describes the effect of the Courant number when an IMEX scheme is triggered on isolated shock or contact55

waves in the context of a low Mach number flow. Secondly, the accuracy and the efficiency of the present approach56

are compared with the Lagrange-Projection fractional step method described in [17]. This comparative study is based57

on a low-Mach shock tube test case in which pressure fluctuations remain small. Thirdly a double Riemann problem58

involving a stiffened gas equation of state is examined. It aims at modeling the occurrence of water hammers in a59

low-Mach number flow. Finally, in the last part of the numerical results, the ability of the proposed IMEX scheme60

to deal with very specific low-velocity flow regimes is assessed. It focuses on the capture of constant states initially61

perturbed by small amplitude acoustic waves as well as the capacity to compute weakly compressible approximate62

solutions.63

64
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2. A Mach-Sensitive Fractional Step Approach65

The present work focuses on the Euler compressible system. However its extension to the two-phase Homoge-
neous Equilibrium Model (HEM, [26]) in which both phases have the same velocity u, pressure p, temperature T and
chemical potential is straightforward since it results in the same conservation law structure, namely:

∂tρ+div(ρu) = 0, (2.1a)
∂t (ρu)+div(ρu⊗u+ pI) = 0, (2.1b)
∂t (ρe)+div((ρe+ p)u) = 0, (2.1c)

e =
|u|2

2
+ε, ε=εEOS (ρ, p) , (2.1d)

(ρc)2 =
(
∂pε|ρ

)−1 (
p− ρ2∂ρε|p

)
, (2.1e)

with ρ the density of the mixture and ε its specific internal energy. The function εEOS (., .) defines the equation of state66

between the thermodynamic variables while c is the sound speed involved in the nonlinear wave propagation.67

As described in [19, 20], it is possible to derive a scheme able to deal with highly compressible flows as well as low68

Mach number flows by splitting the system (2.1) into a convective (C) and an acoustic (A) subsystem:69

C :


∂tρ+div(ρu) = 0,

∂t (ρu)+div
(
ρu⊗u+E 2

0 (t) pI
)
= 0,

∂t (ρe)+div
(
(ρe)+E 2

0 (t) p)u
)
= 0,

(2.2) A :


∂tρ= 0,

∂t (ρu)+div
(
(1−E 2

0 (t)) pI
)
= 0,

∂t (ρe)+div
(
(1−E 2

0 (t)) pu
)
= 0.

(2.3)

Here, E0(t)∈ ]0, 1] is a dynamic splitting parameter designed to be equal to one in the case of sonic or supersonic
flows or equal to the maximal flow Mach number in the case of subsonic flows:

E0(t) = max
(
Min f ,min(Mmax(t), 1)

)
,

Mmax(t) = sup
x∈Ω

(
M(x,t) =

|u(x,t)|
c(x,t)

)
,

(2.4)

with Min f a given lower bound preventing E0(t) from being exactly equal to zero. As shown in [19, 20], both subsys-
tems are hyperbolic for a stiffened gas EOS provided that the pressure remains positive throughout space and time. In
one dimension, their eigenvalues are:

λC1 = u−E0 cC ≤λC2 = u≤λC3 = u+E0 cC,

λA1 =−
(
1−E 2

0

)
cA ≤λA2 = 0≤λA3 =

(
1−E 2

0

)
cA,

(2.5)

with cC (respectively cA) the convective (respectively the acoustic) celerity defined by:

(ρcC (ρ, p))2 =
(
∂pε|ρ

)−1 (
E 2

0 p− ρ2∂ρε|p
)
,

(ρcA (ρ, p))2 =
(
∂pε|ρ

)−1
p,

(2.6)

and:
(cC)2 +

(
1−E 2

0

)
(cA)2 = c2. (2.7)

What is more, for both subsystems, the 1-wave and 3-wave are associated to genuinely non-linear fields whereas the70

2-wave field is linearly degenerate.71

It can be noticed that, when the Mach number is small so that E0(t) is close to zero, pressure terms completely72

disappear from the subsystem C which only conserves the convective spatial operator div (u ∗). Pressure terms are73

retrieved in the subsystem A which turns out to hold most of the acoustic effects. That is why, in the case of low74

Mach number flows, if the physics of interest is essentially related to material waves propagating at speed |u|� c, a75

time-implicit discretization will be provided for subsystemA while C will be solved with a time-explicit scheme.76
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Indeed, define ∆x the space-step of the computational domain. If ∆t is the time-step guaranteeing the stability of the
numerical scheme, one can formally introduce several Courant numbers related to the above wave speeds, namely:

CE =
∆t
∆x

(|u|+c) Euler Courant number,

C|u|=
∆t
∆x
|u| Convective Courant number,

CC=
∆t
∆x

(|u|+E0 cC) Courant number related to C,

CA=
∆t
∆x

((1−E 2
0 )cA) Courant number related toA.

(2.8)

By using a time-implicit scheme for the resolution of the subsystem A, one seeks to be relieved from most of the77

time-explicit stability condition: CE <1. Particularly, if the scheme allows to fulfill CC≈1 when E0�1, one expects78

a substantial drop of the numerical diffusion holding on the material waves propagating at speed |u|. We refer the79

readers to [19, 20] for the complete study of both continuous subsystems C and A as well as the derivation of a full80

time-explicit fractional step involving relaxation schemes. A short description of the time-explicit convective flux81

related to the subsystem C is written in Appendix A.82

In the following, the derivation of the A-time-implicit C-time-explicit fractional step approach is presented. As the83

C-time-explicit scheme described in [19, 20] is given in Appendix A, focus is only given on the A-time-implicit84

integration.85

3. A Sulicu-like Relaxation Scheme for the Acoustic Subsystem86

Let us introduce a new Suliciu-like relaxation subsystemAµ as:

Aµ :



∂tρ= 0,

∂t (ρu)+∂x

(
(1−E 2

0 (t))Π
)
= 0,

∂t (ρΠ)+∂x

(
(1−E 2

0 (t))a2
Au

)
=
ρ (p−Π)

µ
,

∂t (ρe)+∂x

(
(1−E 2

0 (t))Πu
)
= 0,

(3.9)

(Aµ)NC :



∂t τ= 0,

∂t u+ (1−E 2
0 (t))τ∂x Π= 0,

∂t Π+ (1−E 2
0 (t))a2

Aτ∂x u =
(p−Π)
µ

,

∂t e+ (1−E 2
0 (t))τ∂x (Πu) = 0.

(3.10)

More details on relaxation schemes can be found in [23, 27, 25]. Moreover, the derivation of the above relaxation
subsystem can be found in [19, 20]. Recall that Π is the relaxation pressure forced to converge towards the real pressure
p thanks to a source term of timescale µ�1. Besides, aA is a relaxation constant encapsulating the thermodynamic
nonlinearity. In order to provide sufficient diffusion to the relaxation subsystem, one can exhibit (see [28, 17, 19, 20])
the following subcharacteristic condition:

aA>ρcA. (3.11)

Let us define τ= 1/ρ the specific volume. Using the fact that the density is independent of time, the relaxation
subsystem Aµ is equivalent to its non-conservative version (Aµ)NC . Then, one can easily prove that the relaxation
subsystem is hyperbolic, and that its eigenvalues are:

λ
A,µ
1 =−(1−E 2

0 )aAτ<λ
A,µ
2 =λ

A,µ
3 = 0<λA,µ4 = (1−E 2

0 )aAτ. (3.12)

4



Besides all its characteristic fields are linearly degenerate. Let us now introduce W and R as:

W = u−Π/aA,

R = u+Π/aA.
(3.13)

It is worth noticing that the non-conservative subsystem (Aµ)NC is equivalent to:

∂t τ= 0,

∂t W +λ
A,µ
1 ∂x W =−

(p−Π)
aAµ

,

∂t R+λ
A,µ
4 ∂x R =

(p−Π)
aAµ

,

∂t e+ (1−E 2
0 (t))τ∂x (Πu) = 0.

(3.14)

with u(W,R) = (R+W)/2 and Π(W,R) = aA (R−W)/2. Thus, W (respectively R) is constant along the 1-characteristic87

curves (respectively the 4-characteristic curves). What is more, it is a 1-strong Riemann invariant (respectively a 4-88

strong Riemann invariant) meaning that it is constant through the 2,3 and 4 waves (respectively the 1 and 2,3 waves).89

In Figure 1 the domains of invariance of R and W are drawn.90

xi−1/2 xi+1/2

Wn
i

Wn
i

Rn
i

Rn
i

Wn
i+1

Rn
i−1

x

t−(1 − (E n
0 )2)(aA)nτn

i−1/2 (1 − (E n
0 )2)(aA)nτn

i−1/2 −(1 − (E n
0 )2)(aA)nτn

i+1/2 (1 − (E n
0 )2)(aA)nτn

i+1/2t

Cell: i− 1 Cell: i Cell: i+ 1

Figure 1: Strong Riemann Invariants Behaviors

As already noticed in [18, 29], if one formally removes the relaxation terms ±(p−Π)/(aAµ) from the PDEs (3.14),
the dynamics of W and R become totally uncoupled. Besides the energy flux depends only on these two quantities
since according to equation (3.13):

Πu =
aA
4

(
R2−W2

)
. (3.15)

In the next subsection, the time-implicit scheme for the subsystem A is derived. It is based on the discretization of91

the simple transport dynamics of the quantities W and R.92

4. The Acoustic Time-Implicit Scheme93

This section focuses on the space and time discretization of the acoustic subsystem A. It is split in three parts.94

Subsections 4.1 and 4.2 provide the way to derive the time-implicit acoustic flux. Subsection 4.3 points out some95

properties of the overall IMEX scheme while subsection 4.4 concentrates of the discrete time-step construction.96

4.1. A One-dimensional Implicit-Solver for the Evolution Step97

The numerical resolution of the acoustic relaxation subsystemAµ is split into two steps: the first one, sometimes
called the evolution step corresponds to the resolution of the homogeneous subsystem where the term (p−Π)/µ has
been removed. It becomes active afterwards in an additional step which consists in solving:

∂t Π= (p−Π)/µ. (4.16)
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However, in the present approach, the relaxation pressure Π is relaxed instantaneously. Then, µ= 0 and the resolution
of Eq (4.16) is replaced by the projection onto the equilibrium manifold:{

W =
[
ρ, ρu, ρΠ, ρe

]T , ε= e−u2/2, s.t. p(ρ, ε) =Π
}
. (4.17)

For the sake of simplicity, this second step is called the projection step.98

Suppose that the computational domain Ω= [0, L] is made of Ncells cells. Let us define ∆x = L/Ncells (respectively ∆t)
the space-step (respectively the time-step) of the scheme. For i∈ [1, ..,Ncells] let us set xi = (i−1/2)∆x, the coordinate
of the cell center i and xi+1/2 = xi +∆x/2, the coordinate of face i+1/2. Finally define Ωi =]xi−1/2, xi+1/2[. Suppose that

at time tn+, the set of states Un+
i =

[
ρn+

i , (ρu)n+
i , (ρe)n+

i

]T
, i∈ [1, ..,Ncells] produced after the resolution of the convective

subsystem C is provided toAµ as an initial piece-wise constant datum on tNcells
i=1 Ωi. Then, by averaging the W-equation

and the R-equation in (3.14) over Ωi×]tn+, tñ> tn+[ one obtains:

W ñ
i −Wn+

i

∆t
−

(
1− (E n

0 )2
)

(aA)n+τn+
i

∆x

(
Wi+1/2(tn+, tñ)−Wi−1/2(tn+, tñ)

)
= 0,

Rñ
i −Rn+

i

∆t
+

(
1− (E n

0 )2
)

(aA)n+τn+
i

∆x

(
Ri+1/2(tn+, tñ)−Ri−1/2(tn+, tñ)

)
= 0,

(4.18)

with Wn+
i the spatial average over Ωi at time tn+, Wi+1/2(tn+, tñ) =

(
1/(tñ− tn+)

)
×
∫ tñ

tn+ W(xi+1/2/t)dt, and (aA)n+ =

K max
i∈[1,Ncells]

(
ρn+

i (cA)n+
i

)
, K >1, the discrete acoustic relaxation constant fulfilling inequality (3.11) throughout the

whole computational domain. Eventually the Mach-sensitive discrete parameter, built using the initial states Un
i , i∈

[1, ..,Ncells] before the convective subsystem resolution, is given by:

E n
0 = max

(
Min f ,min

(
Mn

max, 1
))
,

with: Mn
max = max

i∈[1,Ncells]


∣∣∣un

i

∣∣∣
cn

i

 . (4.19)

Remark 4.1. Averaging over a non-conservative term:99

One can notice that, even if the R and W PDEs are non-conservative because of the τ∂x (.) operator, the fact100

that ∂t τ= 0 in the acoustic subsystem of the current splitting and the piecewise continuous structure of the computed101

solution at time tn allow to derive exactly relations (4.18). This, is a key point to make sure that the discrete acoustic102

relaxation subsystem is conservative which, for the present IMEX scheme, is a necessary condition to ensure that the103

overall fractional step approach is conservative (see Proposition 4.2 below). Finally, it has to be mentioned that, up104

to the Mach-sensitive parameter, similar equations have already been obtained in the framework of the Lagrange-105

Projection methods where a mass variable m such as ∂m =τ∂x is at stake. See [18, 17] for more details.106

The end of the scheme derivation follows naturally by remembering that W (respectively R) is constant over the
2,3 and 4-waves (respectively the 1 and 2,3-waves). Indeed, the signs of the different eigenvalues drawn in Figure 1
suggest that Wi+1/2(tn+, tñ) (respectively Ri+1/2(tn+, tñ)) can be approximated by W ñ

i+1 (respectively by Rñ
i−1). Finally

the two discrete dynamics write:

W ñ
i −Wn+

i

∆t
−

(
1− (E n

0 )2
)

(aA)n+τn+
i

∆x

(
W ñ

i+1−W ñ
i

)
= 0,

Rñ
i −Rn+

i

∆t
+

(
1− (E n

0 )2
)

(aA)n+τn+
i

∆x

(
Rñ

i −Rñ
i−1

)
= 0.

(4.20)

Thus,
(
W ñ

i

)
i∈[1,Ncells]

(respectively
(
Rñ

i

)
i∈[1,Ncells]

) is solution of an uncoupled linear system involving an upper-bidiagonal107

matrix (respectively a lower-bidiagonal matrix). If transmissive boundary conditions are used by introducing fictitious108

states Uñ
0 = Uñ

1 and Uñ
Ncells+1 = Uñ

Ncells
, then W ñ

Ncells+1 = W ñ
Ncells

and W ñ
0 = W ñ

1 . The matrices involved in (4.20) are then non109

singular since all their diagonal terms are strictly positive. What is more their bidiagonal structure, inherited from110

the transport dynamics of the strong relaxation Riemann invariants W and R, allows to invert them without using any111

particular linear solver.112
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4.2. Projection Step and Time-Implicit Acoustic Flux113

Once the two uncoupled linear systems (4.20) have been solved, the time-implicit acoustic flux related to the114

subsystemAµ can be deduced immediately. It reads:115

Hµ
A

ñ
i+1/2 =

(
1− (E n

0 )2
) 

0
(Π∗
A

)̃n
i+1/2

(an+
A

)2 (u∗
A

)̃n
i+1/2

(Π∗
A

)̃n
i+1/2 (u∗

A
)̃n
i+1/2

 ,
(u∗A )̃n

i+1/2 =
Rñ

i +W ñ
i+1

2
,

(Π∗A )̃n
i+1/2 =

(aA)n+
(
Rñ

i −W ñ
i+1

)
2

.

(4.21)

In the present work, the projection step is performed instantaneously. Indeed, µ is forced to tend fictively towards zero
such that p =Π. Particularly, the time-implicit acoustic pressure at face i+1/2 can be defined as: (p∗

A
)n+1
i+1/2 = (Π∗

A
)̃n
i+1/2.

The other flux quantities remain invariant through the projection step and one can rewrite (u∗
A

)̃n
i+1/2 as (u∗

A
)n+1
i+1/2. Finally

the time-implicit scheme for the acoustic subsystemA writes:

Un+1
i = Un+

i −
∆t
∆x

(
HA n+1

i+1/2−HA n+1
i−1/2

)
,

with HA n+1
i+1/2 =

(
1− (E n

0 )2
) 

0
(p∗
A

)n+1
i+1/2

(p∗
A

)n+1
i+1/2 (u∗

A
)n+1
i+1/2

 . (4.22)

One can notice that, up to the factor (1− (E n
0 )2), the obtained time-implicit acoustic flux is identical to the one derived

in [17, 29]. Furthermore, the relaxation constant aA makes it independent of the fluid EOS. As already stated, it
requires no particular linear solver since the two uncoupled systems (4.20) can be inverted by hand. Besides, as
proved in Appendix A, solving the discrete momentum equation of (4.22) is equivalent to setting:

un+1
i =

Rn+1
i +Wn+1

i

2
, (4.23)

provided that un+
i =

Rn+
i +Wn+

i
2 .116

In the sequel, some additional properties of the overall IMEX fractional step are presented.117

4.3. The IMEX Scheme Properties118

Three properties are underlined below. The two first deal with the conservativity and the maximum principle119

whereas the last one concerns the discrete preservation of the Riemann Invariants of single contact discontinuities.120

Proposition 4.2. Conservativity and maximum principle of the overall IMEX scheme:121

• Conservativity:122

Let us formally introduce HC n
i+1/2

(
Un

i ,U
n
i+1

)
the time-explicit numerical flux associated to the subsystem C (see123

[19, 20] or (A.7) in Appendix A for a definition). Then, the overall IMEX scheme is conservative and writes:124

Un+1
i = Un

i −
∆t
∆x

(
HC n

i+1/2
(
Un

i ,U
n
i+1

)
+HA n+1

i+1/2−HC n
i−1/2

(
Un

i−1,U
n
i
)
−HA n+1

i−1/2

)
. (4.24)

• Maximum principle:125

Consider ρφ a given conservative variable such as ∀(x, t) : ∂t (ρφ)+∂x (ρφu) = 0. Assume that (ρφ)n
i ∈126

[(ρφ)Min, (ρφ)Max]. Then, the maximum principle preservation (ρφ)n+1
i ∈ [(ρφ)Min, (ρφ)Max] depends only on the con-127

vective sub-step discretization. It naturally holds under a non-restrictive sufficient condition written in [19]: p.17,128

Lemma 1 (Positivity of intermediate density).129
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It is well known that the above global conservativity result, which in this case is directly obtained because the acoustic130

sub-step discretization is conservative by construction, is a necessary step in order to capture the Euler physical shock131

fronts (see [30]). As for the maximum principle preservation for purely convected quantities, it can be considered as132

a first step towards the L∞ stability of the overall scheme.133

Proposition 4.3. Discrete preservation of the contact discontinuity Riemann invariants:134

Assume that the equation of state is such that (ρε)EOS (ρ, p) =C(p)ρ+ B(p), with p→C(p) and p→B(p) smooth135

functions such as (ρε)EOS
|ρ : p→C(p)ρ+ B(p) is injective on the domain of definition of p (see [31] or Appendix A for136

an explanation of such hypothesis); then, the overall IMEX scheme exactly preserves the constant velocity and the137

constant pressure of an isolated contact discontinuity from one time-step to another.138

According to [31], the above general expression of (ρε)EOS (ρ, p) belongs to the category of the “T1” equation of139

state. One can notably notice that the stiffened gas EOS: ρε= p+γΠ, is included in it. However the Van der Waals140

EOS: ρε=
(p+aρ2)(1−bρ)

γ−1 −aρ2 is out of it. The above proposition will be useful in the sequel to detect the appearance of141

instabilities related to high convective Courant number C|u|. Proofs, including a brief description of the time-explicit142

convective flux related to subsystem C, can be found in Appendix A. The next subsection is devoted to the discrete143

time-step specification.144

4.4. Construction of the numerical time-step145

The time-step of the IMEX scheme is built using the convective eigenvalues λC1 and λC3 written in equation (2.5).146

As described in [19, 20], the convective subsystem C is discretized using the same relaxation techniques as the one147

described in Section 3. The eigenvalues of the resulting relaxation system Cµ then write: λC,µ1 = u−E0 aCτ, λC,µ2,3 = u148

and λC,µ4 = u+E0 aCτ. They are related to the subcharacteristic condition aC>ρcC.149

For a given convective Courant number CC, the time-step at the n-th iteration of the numerical scheme is:

∆tn
C=CC

∆x

max
i+1/2

(
max

(∣∣∣∣un
i −E n

0 (aC)n
i+1/2τ

n
i

∣∣∣∣ , ∣∣∣∣un
i+1 +E n

0 (aC)n
i+1/2τ

n
i+1

∣∣∣∣)) ,
(an
C)i+1/2 = K max

(
ρn

i (cC)n
i , ρ

n
i+1 (cC)n

i+1

)
, K >1.

(4.25)

Let us assume that the stiffness of the discrete pressure gradient in the acoustic subsystem A has been completely150

removed thanks to the time-implicit integration. In that case one should expect that the present IMEX scheme is151

stable under the convective CFL condition: CC≈1.152

From a numerical stability point of view, the time-step definition (4.25) is thus the only admissible one regarding the
waves produced by the convective subsystem. However, these waves never exist in the overall Euler system. For low
Mach number flows under convective time-scales, the acoustic waves have vanished and the leading phenomenon is
driven by the material velocity u. For that reason, one can introduce another time-step as:

∆tn =C|u|
∆x

max
i

(∣∣∣un
i

∣∣∣) . (4.26)

Once again, let us stress that the time-step definition (4.26) is essentially motivated by physical considerations. In153

the context of IMEX schemes based on convective-acoustic splittings, its formulation has also the advantage of being154

completely independent of the way to split as well as the way to discretize the associated subsystems. That is why, in155

the following numerical results section, the cases appealing to a fine accuracy or stability comparison between IMEX156

schemes are performed using the physical and universal time-step formula (4.26). On the contrary, more complicated157

configurations requiring the proposed approach to be stable in order to capture some specific asymptotic regimes at158

low Mach number are tested with the convective-like time-step (4.25).159
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5. Numerical Results160

The following section is devoted to one-dimensional numerical results produced by the present IMEX approach.161

Subsection 5.1 focuses on the sensitivity w.r.t C|u| of the acoustic and material waves propagation. Subsection 5.2162

mainly concentrates on grid-convergence studies completed by efficiency comparisons between time-explicit and163

time-implicit solvers. For the reasons given in the above paragraph, IMEX schemes involved in subsection 5.1 and164

5.2 use the discrete time-step (4.26). Nevertheless for each value of C|u| an estimation of CC is systematically provided.165

Subsection 5.3 deals with the appearance, in a fluid endowed with a stiff equation of state, of strong pressure jumps166

in an uniformly low-Mach number flow. Finally, subsection 5.4 aims at testing the ability of the present approach to167

treat a larger application spectrum like weakly compressible flows. In the last two subsections, the proposed method168

is systematically combined with the convective-like time-step (4.25).169

5.1. Low Mach Isolated Waves170

The first part of the numerical results is dedicated to the influence of the Courant number on quantities varying171

through the acoustic or material waves. Indeed, it is well known (see [32, 33, 34, 35, 36, 37]) that full time-implicit172

schemes, even with the use of high-order accurate discretizations in space, are only accurate on σ-like waves when the173

time-steps ∆t are such that Cσ = (|σ|∆t)/∆x≈1. In the following, one seeks to investigate the accuracy of the above174

IMEX fractional step with respect to C|u| and compare it with an other IMEX Lagrange-Projection (LP) fractional step175

described in [17, 38] in the context of low Mach number flows. Two low Mach number cases are thus evaluated. The176

first one details the propagation of a single 3-shock wave while the second one corresponds to the evolution of a single177

contact wave. In both cases, a particular attention will be paid to the diffusive or stiffening effects associated with the178

increase of C|u|. Transmissive conditions are used at the inlet and the outlet of the computational domain.179

5.1.1. Isolated Shock Wave180

For this test case, the fluid is endowed with an ideal gas EOS:

ε=
p

(γ−1)ρ
, and c =

√
γ p
ρ
, (5.27)

with γ= 7/5, the heat capacity ratio. The left state of the considered 3-isolated shock wave is completely defined by:

ρ0
L = 1 (kg.m−3), p0

L = 104 (Pa), and u0
L = M0×c0

L, (5.28)

with M0 = 10−2 the maximal Mach number of the flow. What is more, the shock wave speed σ is fixed equal to181

c0
L ≈118.32 (m.s−1). The three remaining unknowns ρ0

R, u0
R and p0

R are the solutions of the corresponding Rankine-182

Hugoniot problem and can then be found analytically. Besides, the resulting right state abides by the Lax entropy183

criterion: u0
R +c0

R<σ<u0
L +c0

L. The analytical solution is then composed of a single 3-shock wave.184

In Figure 2, the isolated 3-shock wave pressure profile is shown. The physical time of the simulation is such that the185

initial discontinuity located at x0 = 0.5 m stops at x = 0.75 m. The mesh is made of 103 cells.186

Different curves are plotted; Sp-(M) stands for the current splitting presented in Eqs (2.2) and (2.3) whereas Sp-LP187

refers to a Lagrange-Projection splitting method fully described in [17] and taken as a benchmark in this work. Besides188

the abbreviation “Exp” indicates that the acoustic part of the Sp-(M) splitting (respectively the Sp-LP splitting) has189

been discretized using a time-explicit scheme detailed in [19, 20] (respectively [17]). In this case, the CFL condition190

is such that CE = 1. On the contrary “Imp” refers to the above time-implicit approach.191

Two different convective Courant numbers values have been tested in the implicit-explicit approaches: the first one192

C|u|= 0.01 (CC≈2.37×10−2) has been deliberately chosen to provide time-steps close to those based on the constraint193

CE ≈1 since formally C|u|= M/(1+ M)CE and M = 10−2. The other value C|u|= 0.3 (CC≈7.11×10−1) corresponds to194

CE ≈30 and is thus expected to be too high for the IMEX scheme to accurately follow the shock wave front.195

In this low Mach number case, it turns out that the sharper pressure profiles are those provided by the time-explicit196

schemes complying with the constraint: CE ≈1. On the contrary the higher is CE , the more diffused the shock profile197

is. Besides, for a fixed Euler Courant number CE ≈1, the averaging effect of the time-implicit schemes relatively198

to the time-explicit ones can be observed as the profile of “Sp-(M)-Imp: C|u|= 0.01” is largely more diffused than199

“Sp-(M)-Exp: CE = 1”.200
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Figure 2: Pressure profile, Ideal Gas, M = 10−2, with Ncells = 103

Finally, one can notice that, for all the Courant number values involved here, the Sp-(M) splitting is as accurate as the201

Sp-LP method. These results, obtained in the context of the Euler system, seem to be close to the predictions given202

by the linear stability analysis in [37].203

The above simple test case, involving a fast acoustic wave related to a genuinely non-linear field, has allowed to test204

the robustness with respect to C|u| of the present approach compared with the LP method. In the sequel the same study205

is performed on a slow material wave associated with a linearly degenerate field.206

5.1.2. Isolated Contact Discontinuity207

For the same thermodynamical law, a single contact discontinuity is created by imposing:

ρ0
L = 1 (kg.m−3), ρ0

R = 0.125 (kg.m−3),

p0
L = p0

R = p0 = 104 (Pa),

u0
L = u0

R = M0×c0
R = u0,

(5.29)

with M0 = 10−2. This wave linked to a linearly degenerate field propagates at speed u0≈3.35 (m.s−1).208

In Figure 3, one can observe the density profiles. As it was expected, the isolated contact discontinuity sharpens as the209

convective Courant number C|u| reaches 1. Once again, for the same Courant number, the profiles between the present210

IMEX scheme and the IMEX-LP scheme overlap quasi-perfectly.211

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79

0.2

0.4

0.6

0.8

1

x (m)

ρ

Exact
Sp-(M)-Exp: CE ≈ 1

Sp-(M)-Imp: C|u| = 0.44 (CE ≈ 44)
Sp-LP-Exp: CE ≈ 1

Sp-LP-Imp: C|u| = 0.44 (CE ≈ 44)
Sp-LP-Imp: C|u| = 0.95 (CE ≈ 95)

Figure 3: Density profile, Ideal Gas, Mmin = 10−2, with Ncells = 103

However, one can notice that the ideal target associated to C|u|= 0.95≈1 has only been achieved for the LP method.
Indeed, for this test case, the present splitting and the resulting IMEX approach triggers instabilities for C|u| above
0.44. Trying to connect this threshold with a reconstructed value of the convective Courant number CC, one can

10



define:

(CC)n
i+1/2 =

max
(∣∣∣∣un

i −E n
0 (aC)n

i+1/2τ
n
i

∣∣∣∣ , ∣∣∣∣un
i+1 +E n

0 (aC)n
i+1/2τ

n
i+1

∣∣∣∣) ∆tn

∆x
,

(5.30)

with ∆tn the discrete time-step defined in equation (4.26) and used in this test case. In Figure 4 the value of (CC)n
i+1/2212

is displayed at the final simulation time and overall the computational domain. One can observe that the reconstructed

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

x (m)

(C
C)

n i+
1/

2
Sp-(M)-Imp: C|u| = 0.44

Figure 4: Reconstructed local convective Courant number

213

convective Courant number is strictly higher than one in the region where the Mach number is minimal. Let us214

recall that, as the term E0 decreases, the proportion of the pressure gradient that is discretized using a time-implicit215

integration increases as
(
1−E 2

0

)
according to the definition of the time-implicit acoustic flux (4.22). Then, when E0216

is small enough, the amount of numerical diffusion produced by the time-implicit part of the scheme is sufficient to217

balance the anti-diffusive effect brought by the time-explicit discretization if CC>1. Such a phenomenon is analyzed218

in [14, 15] using the modified equation tool.219

Conversely, when M0 is high enough, the splitting parameter E0 tends towards one so that the time-implicit numerical220

diffusion is canceled out. The classical time-explicit CFL condition CC≈1 is then retrieved.221

Details dealing with the stability of the proposed IMEX scheme when applied to this test case with varying Mach222

number M0 are provided in Appendix B. The residual term E0 cC prevents from reaching the material CFL condition223

C|u|= 1 proved by Zakerzadeh in [16] for the IMEX LP scheme. This is the price to be paid after having introduced224

E 2
0 p into the convective subsystem C. Nevertheless, in this test case, the stability of the proposed IMEX scheme225

holds under CC≈1 for any value of the flow Mach number. These numerical observations support a “Mach-uniform”226

CC-stability property of the present method.227

In the sequel, accuracy and efficiency of the above IMEX schemes are compared with their full time-explicit versions228

in the context of low Mach number flows.229

5.2. A Low Mach Sod Shock Tube230

By imposing a common Courant number relying on the material velocity u, the above isolated wave test cases231

have pointed out some stability differences between the proposed IMEX scheme and the LP-IMEX method. In the232

sequel, one wishes to refine the comparison by adding some grid-convergence and efficiency results obtained from a233

multiple wave test case.234

Herein, a low Mach number shock tube is computed. The fluid is endowed with the same previous ideal gas EOS. The
initial conditions are made of a density discontinuity, a constant velocity, and a slightly discontinuous pressure:

ρ0
L = 1 kgm−3, ρ0

L = 0.125 kgm−3

u0
L = u0

R = u0 = 1 m s−1

p0
L = 10080 Pa, p0

R = 10000 Pa.

(5.31)
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It results in a left-going 1-rarefaction wave, a 2-contact discontinuity propagating to the right and a right-going 3-shock235

wave. The maximal Mach number of the flow, reached in the head of the rarefaction wave, is equal to 1.26×10−2.236

Various time-explicit schemes have been tested: “no-Sp” corresponds to the case where E n
0 = 1 is imposed along237

the simulation. Thus, the splitting is not triggered. “Sp-(
√

M)” is the weighted splitting approach with E n
0 =238

max
( √

Min f ,min
(√

Mn
max, 1

))
while “Sp-(M)” involves E n

0 defined in formula (4.19) which is a priori optimal for239

a time-explicit scheme, because, as shown in [19, 20], it minimizes the numerical diffusion of the subsystem C in240

the low-Mach number case. Lastly, “Sp-LP” is again the Lagrange Projection splitting method, described in [17].241

Besides, the mention “-corr” means that a low-Mach correction inspired from [39] and written in [19, 20] is triggered.242

As observed in [19, 20, 17, 38], it aims at considerably reducing the numerical diffusion in the case of low Mach243

number flows.244

Regarding the time-implicit schemes, two values for C|u| have been tested. As shown in Appendix E, the ratio between
C|u| the convective Courant number based on u0 and C 0,∗

E the most constraining Euler Courant number is:

C u0

|u| ≈1.5×10−3 C 0,∗
E . (5.32)

Then, the selected convective Courant numbers are C|u|= 1.5×10−2 (C 0,∗
E ≈10, CC≈6.34×10−2) and C|u|= 4.5×10−2

245

(C 0,∗
E ≈30, CC≈1.9×10−1).246
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Figure 5: Convergence curve (left), Efficiency curve (right) for the pressure variable p: M = 1.26×10−2
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Figure 6: Convergence curve (left), Efficiency curve (right) for the passive tracer variable Y: M = 1.26×10−2
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In this test case, in order to isolate the effect of the IMEX scheme on the contact discontinuity, a passive tracer Y has
been added to the Euler system. Its PDE writes:

∂t (ρY)+∂x (ρY u) = 0. (5.33)

Starting from Y0
L = 1 and Y0

R = 0.5, the exact solution jumps only through the contact discontinuity.247

Figure 5 (respectively Figure 6) presents the convergence curve and the efficiency curve for the pressure (respectively248

Y) variable. As already pointed out in [19, 20], for such a low Mach number, and focusing on the pressure (or249

any variable jumping through the genuinely non-linear fields), the time-explicit schemes with the low Mach number250

correction Sp-(
√

M)-corr and Sp-LP-corr, are the most accurate as well as the most efficient. As already observed251

in the isolated 3-shock wave test case, time-implicit schemes such that CE >1 are less accurate than any of the time-252

explicit schemes. Besides, according to the pressure efficiency curve, this lack of accuracy is not compensated by253

a substantial gain in CPU time. Indeed, for a given pressure L1-error level, time-implicit schemes are still more254

CPU-consuming than the time-explicit ones.255

In the case of the passive tracer Y , no specific difference on the convergence curve can be noticed between the time-256

explicit and the time-implicit schemes. Indeed, the convective Courant number C|u|≤4.5×10−2 is still very far from257

one. Thus for every scheme, numerical diffusion has uniformly smoothed the variables only jumping through the slow258

material wave. Nevertheless, as shown in Table 1, time-implicit schemes are clearly more efficient, for the Y variable,259

than the time-explicit ones, the latter being 7 (respectively 13) times more CPU-consuming than time-implicit schemes260

when setting C 0,∗
E = 10 (respectively C 0,∗

E = 30).261

Ncells CE = 10 CE = 30
102 1.97 2.80
103 3.75 5.51
104 7.52 13.36

3×104 7.26 13.71
5×104 6.74 13.66
7×104 7.39 13.34
9×104 7.67 13.78

Table 1: T CPU
No-Sp/T

CPU
Sp-(M)-Imp

As announced in the introduction, one of the objective of the present approach is to capture high amplitude pressure262

jumps in low velocity areas as it is noticed in water-hammer events. This is the purpose of the next numerical example.263

5.3. A Double Riemann Problem With Stiff Thermodynamics264

In the following test case, two Riemann problems are triggered at x0 = 0.55m and x1 = 1.23m in a domain of length265

L = 2m. The three initial condition areas are written in Table 2.266

Left state (x< x0) Middle state (x0< x< x1) Right state (x1< x)
ρ (kg.m−3) ρ0

L = 103 ρ0
m = 9.98×102 ρ0

R = 9.97×102

u (m.s−1) u0
L = 1 u0

m = 1 u0
R = 1

p (bar) p0
L = 103 p0

m = 10 p0
R = 1

Y Y0
L = 0.7 Y0

m = 0.2 Y0
R = 0.1

Table 2: Double Riemann Problem: initial conditions

The fluid is endowed with a stiffened gas EOS, i.e.:

ε=
p+ P∞

(γ−1)ρ
, and c =

√
γ(p+ P∞)

ρ
, (5.34)
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with γ= 7.5 and P∞= 3×103 bar. These constants have been chosen such that, at a given temperature T = 295K, the267

value of the speed of sound is approximately c≈1.5×103 m.s−1. It is representative of the liquid water behavior.268

The analytical solution of the present test case is composed of two successive shock tubes whose waves are similar269

to these presented in subsection 5.2. The maximal Mach number of the Riemann problem initially located at x0270

(respectively x1) is Mx0
max ≈2×10−2 (respectively Mx1

max ≈8.6×10−4). Thus, the flow Mach number is uniformly low.271

Besides the important variations of the Mach number are associated with strong velocity fluctuations. It passes from272

u≈32m.s−1 in the contact wave related to the Riemann problem located at x0 to u≈1.3m.s−1 in the contact wave of the273

one located at x1. That is why in the sequel, the Riemann problem initially located at x0 is referred as “high-velocity”274

shock tube, whereas the one initially located at x1 is called “low-velocity” shock tube.275

In any case, the stiffened gas EOS combined with high initial pressure discontinuities produce strong shock waves276

in both Riemann problems. The pressure jump amplitude associated with the high-velocity shock tube (respectively277

the low-velocity shock tube) is approximately 480 bar (respectively 4.5 bar). The above test case represents the278

sudden occurrence of high amplitude shock waves in a uniformly low Mach number flow as it can be observed in279

water-hammer scenarios.280

In the sequel, a comparison between the IMEX fractional steps Sp-(M)-Imp and Sp-LP-Imp is done. For each nu-
merical scheme, the time-step is only provided by the waves produced by the convective subsystem: ∆tn

C
written in

formula (4.25) for the present splitting and

∆tn
LP =CC

∆x

max
i+1/2

((
(u∗
A

)n
i−1/2

)+
−
(
(u∗
A

)n
i+1/2

)−) ,
(u∗A)n

i+1/2 =
un

i+1 +un
i

2
−

1
2an

i+1/2

(
pn

i+1− pn
i

)
,

an
i+1/2 = K max

(
ρn

i cn
i , ρ

n
i+1 cn

i+1

)
, K >1,

(5.35)

for the Lagrange-Projection splitting (see [17]). For both time-steps, the convective Courant number CC is set to 0.9.
What is more, the discrete splitting parameter E n

0 defined in Eqs (4.19) is here enriched for the present test case with
a simple hand-made shock detector:

E n
0 = max

(
Min f ,min

(
max

(
Mn

max,M
n
S ,max

)
1
))
,

with Mn
max = max

i∈[1,Ncells]


∣∣∣un

i

∣∣∣
cn

i

 , Mn
S ,max = max

i∈[1,Ncells]


∣∣∣∣(σS )n

i+1/2

∣∣∣∣
max

(
cn

i+1, c
n
i

)
 , (5.36)

and

(σS )n
i+1/2 =


(ρu)n

i+1− (ρu)n
i

ρn
i+1−ρ

n
i

if
∣∣∣ρn

i+1−ρ
n
i

∣∣∣>ε thresmax
(
ρn

i+1, ρ
n
i

)
0 otherwise,

(5.37)

where ε thres = 10−8. One can notice that in Eqs (5.36), (σS )n
i+1/2 corresponds to the exact shock front speed formula

in the case of an isolated shock wave separating the states Un
i and Un

i+1. If one considers the waves related to the
genuinely non-linear fields, i.e. u±c, the Lax entropy conditions related to admissible shock waves then give:

un
i ±cn

i > (σS )n
i+1/2>un

i+1±cn
i+1. (5.38)

Hence, in the case of a low Mach number flow, for which
∣∣∣un

i+1

∣∣∣/cn
i+1�1 and

∣∣∣un
i

∣∣∣/cn
i �1, the term

∣∣∣∣(σS )n
i+1/2

∣∣∣∣ should281

approximately belong to
]
min(cn

i+1, c
n
i ),max(cn

i+1, c
n
i )
[
. Besides, the low compressibility of a fluid endowed with the282

above stiffened gas EOS involves very small variations of ρ if p�P∞. Then, c should remain constant at least in the283

low-velocity shock tube area. Thus, in the case of shock waves, Mn
S ,max should be of order one and the present IMEX284

approach should turn into a fully time-explicit Godunov-like solver.285
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The number of cells is 2×103 and the simulation time Tend = 1.95×10−4 s is set in order to avoid interactions between286

the 3-right-going shock wave of the high-velocity shock tube and the 1-left-going rarefaction wave of the low-velocity287

shock tube. Transmissive boundary conditions have been used.288

Figure 7 and Figure 8 show the pressure and the velocity profiles for both successive shock tubes. Figure 9 displays289

the passive tracer profile Y which only jumps through the contact waves.290
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Figure 7: Pressure profile, stiffened gas EOS, Ncells = 2×103
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Figure 8: Velocity profile, stiffened gas EOS, Ncells = 2×103

In the case of Sp-(M)-Imp, once the different waves have appeared, the measured shock detector Mn
S ,max is of

order one through the rarefaction and the shock waves. Then after several time-steps E n
0 = 1, and a full time-explicit
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Riemann solver associated with an Euler-like time-steps,

∆tn
C≈CC

∆x

max
i+1/2

(
max

(∣∣∣un
i −cn

i

∣∣∣ , ∣∣∣un
i+1 +cn

i+1

∣∣∣)) ,
CC= 0.9,

(5.39)

is recovered. Thanks to the degree of freedom offered by E n
0 , the present fractional step is therefore able to select the291

appropriate time-discretization for the acoustic flux and in the same time the right time-step adapted to the physics292

of interest. On the contrary, the acoustic part of the Lagrange-Projection fractional step is still discretized using a293

time-implicit scheme linked to a CFL condition based on a very low material velocity such as u� c. Then, it is far294

less accurate at capturing stiff rarefaction and shock waves in both “high-” and “low-velocity” shock tubes. One can295

notably observe in Figure 7b and Figure 8b that, on this mesh, Sp-LP-Imp fails to capture the initial state (u0
m, p0

m)296

between the 1-right-going shock wave of the high-velocity shock tube and the 3-left-going rarefaction wave of the297

low-velocity one. This is due to an excessive numerical dissipation through the associated waves.298
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Figure 9: Y profile, stiffened gas EOS, Ncells = 2×103

Eventually, as seen in Figure 9, both IMEX schemes produce similar results regarding the accuracy of the Y profile. It299

can be explained because the simulation time Tend is based on the fast acoustic waves, the exact contact discontinuities300

only move a few space-steps. One can assume that, on a larger time of simulation, the Sp-LP-Imp should be more301

accurate on Y than Sp-(M)-Imp. Indeed, the LP time-step is directly based on slow material velocities.302

Therefore, this test case has shown that the degree of freedom offered by the splitting parameter E n
0 allows to auto-303

matically switch from a scheme designed to follow slow material dynamics to a scheme able to capture fast acoustic304

waves even when the flow Mach number is low.305

The next section proposes to widen the application fields of the present IMEX scheme. Indeed, it aims at assessing306

the scheme ability to seize some simple constant states as well as weakly compressible flows.307

5.4. Applications to some other asymptotic regimes308

5.4.1. Constant state perturbed by small amplitude acoustic wavesRemark 3
309

310

The first configuration is a “dimensionalized” version of a Riemann problem taken from [13]. The fluid at stake is311

endowed with an ideal gas EOS with γ= 1.4. Its density and pressure are initially constant: ρ0 = 1kg.m−3, p0 = 1 bar.312

Let us also introduce u0 = 1m.s−1 and a reference Mach number M0 = u0/c0 with c0≡=
√

p0/ρ0. For these values, one313

obtains M0≈3.2×10−3.314
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As detailed in Table 3, the computational domain of length L0 = 1m is split in three areas in which the constant velocity315

u0 is perturbed by a term scaling as O(M0). The initial conditions are thus “well-prepared” according to the definition316

written in [39, 8].

(zone 1): x<0.2 or x>0.8 (zone 2): x∈ [0.2, 0.25] or x∈ [0.75, 0.8] (zone 3): x∈ [0.25, 0.75]
ρ (kg.m−3) ρ0 ρ0 ρ0

u (m.s−1) u0
L = u0×

(
1−M0/2

)
u0

R = u0×
(
1+ M0/2

)
u0

m = u0

p (bar) p0 p0 p0

Table 3: Dimarco et al Riemann Problem: initial conditions

317

As time goes on, the four discontinuities of the initial velocity field will produce interacting non-linear waves of small318

amplitude. For long convective time-scales one expects that these waves fade away and leave a constant velocity field.319

Here, the ability of the present IMEX approach to seize this almost incompressible state is analyzed.320

Once again the proposed IMEX method is compared with the LP-IMEX scheme. The time-steps are given by formulas321

(4.25) and (5.35) and the computational domain is made of a 103 cells mesh. The physical time of the simulation322

is Tend = 0.05× t0 with t0 = L0/u0 the convective time-scale of reference. Finally periodic boundary conditions are323

imposed so that the acoustic waves are constantly re-introduced in the computational domain. Let us end the setting324

description by mentioning that the shock detector presented in equations (5.36), (5.37) has been unplugged in this test325

case.326

0 0.2 0.4 0.6 0.8 1

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

x (m)

u
(m

.s
−

1 )

(a) Velocity profile: initial conditions

0 0.2 0.4 0.6 0.8 1

0.9993

0.9995

0.9997

0.9999

x (m)

u
(m

.s
−

1 )

No-Sp
Sp-(M)-Imp-CC 0.9

LP-Imp-CC 0.9

(b) Velocity profile: Tend = 0.05 s

Figure 10: Dimarco’s et al Riemann problem: initial conditions and comparison with a full time-explicit scheme

At the final simulation time, Figure 10a shows the velocity initial distribution while Figure 10b displays the profiles,
of the present approach, the LP-IMEX method and a full time-explicit Riemann solver No-Sp. The latter has already
been used in subsection 5.2 and is obtained by imposing E n

0 = 1 at every time-step during the simulation. One can
notice that both IMEX schemes manage to reach a plateau by the end of the simulation. On the contrary, No-Sp
continues to solve all the details produced by the acoustic waves interaction. A closer look at Figure 11a reveals that
both time-implicit methods reach the constant value u∗≈0.999526m.s−1. Such a velocity is consistent with the total
momentum conservation since periodic boundary conditions are at stake:∫

Ω

ρ0 u∗dΩ=

∫
Ω

ρ0 u(x, t = 0)dΩ,

⇔ρ0 u∗=ρ0 u0
[
0.4(1−M0/2)+0.5+0.1(1+ M0/2)

]
,

⇔u∗≈0.9995256.

(5.40)
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Figure 11: Dimarco’s et al Riemann problem: zoom on the constant incompressible state

Finally, a look at Figure 11b confirms that the pressure obtained from the IMEX methods also remains constant at the327

end of the simulation.328

5.5. Weakly Compressible Colliding Pulses329

The last test considered has been taken from [40] and is also treated in [12, 13]. It deals with weakly compressible
flows whose solutions are made of long wave acoustic pressure and density pulses. Here, the ability of the present
IMEX scheme to follow smooth but fast acoustic waves associated with an intermediate value of the Mach number is
assessed. The fluid is endowed with an ideal gas EOS with γ= 1.4. The non-dimensional initial conditions presented
in [40] read:

ρ(x, 0) =ρ0 +

 M0
ref

2

 ρ1

(
1−cos

(
2πx
L

))
, ρ0 = 0.955, ρ1 = 2,

u(x, 0) =−
u0

2
sign(x)

(
1−cos

(
2πx
L

))
, u0 = 2

√
γ,

p(x, 0) = p0 +

 M0
ref

2

 p1

(
1−cos

(
2πx
L

))
, p0 = 1, p1 = 2γ.

(5.41)

The Mach number of reference M0
ref has been taken equal to 1/11≈9.1×10−2. The computational domain Ω is

[−L, L] with L = 2/M0
ref. Thus, the first-order pulses w.r.t M0

ref evolve with a large space-scale variable ξ= M0
ref x. Let

us introduce p0
ref (respectively ρ0

ref, u0
ref) a reference pressure (respectively a reference density, a reference velocity)

such that:
ρ0

ref = 1kg.m−3, u0
ref = 1m.s−1,

p0
ref =

ρ0
refρ0

γ

u0
ref u0

M0
ref

2

.
(5.42)

The reference pressure p0
ref has been set such that the exact maximal value of the initial Mach number is of the order of330

M0
ref. The dimensional initial conditions then write: ρ(x, 0) =ρ0

refρ(x, 0), u(x, 0) = u0
ref u(x, 0) and p(x, 0) = p0

ref p(x, 0).331

Figure 12 and Figure 13 display the pressure and velocity profiles at two physical times. The first one captures the332

time when the two pulses collide producing an over-pressure peak at the center of the computational domain. The333

second one corresponds to the instant where the two pressure pulses have separated again.334
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Figure 12: Pressure: just after the pulses super-position (a), once the pulses have separated again (b)

The present IMEX approach with no shock detector, is compared with the LP-IMEX and No-Sp schemes. The335

non-dimensional initial conditions have been added as a dashed line in order to observe the diffusion and dispersion336

introduced w.r.t the initial pulses.337

In Figure 12a, one can notice that both IMEX methods manage to catch the over-pressure peak although they are338

slightly more diffusive than the full time-explicit scheme. However, in Figure 12b, the full time-implicit discretization339

of the pressure gradient in the LP-Imp approach combined with a CFL condition based on u completely diffuses340

the re-appearing pressure pulses. On the contrary, in the case of the present IMEX method, one can notice that E n
0341

remains of order M0
ref during most of the simulation. For example, at time t = 8.41×10−1 s, Mn

max = 7.4×10−2 =E n
0 .342

The intermediate value of E0 is enough to produce considerably lower time-steps which are more appropriate to follow343

the long acoustic waves. As a result, even if it is more diffused compared with the full-time explicit scheme, the global344

shape of the pressure pulses is retrieved. However, the present approach suffers from the same drawback as the one345

noticed in [40]: in the vicinity of the locations x≈±18.5m, the pressure gradient stiffens such that the long-length scale346

acoustic wave hypothesis no longer holds, and the time-implicit discretization of the acoustic subsystem considerably347

smears the appearing discontinuities. In any case, a specific additional work should be undertaken if one is interested348

in capturing the fast acoustic dynamics related to first-order pressure terms w.r.t M0
ref.349
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6. Conclusion350

The present work focuses on the derivation of an IMEX version of the Mach-sensitive fractional step introduced351

in [19, 20]. The time-implicit scheme derived for the acoustic subsystem is based on the non-conservative dynamics352

of strong Riemann invariants provided by the relaxation schemes framework. Although such a technique stems from353

the Lagrange-Projection theory [18, 29], it can be extended to the present splitting because of density time invariance354

in the acoustic sub-step and the piece-wise constant structure of the computed solution. The resulting IMEX scheme355

is simple, the implicit part being inverted by hand, and conservative by construction. What is more, the maximum356

principle preservation for purely convected quantities holds under a non-restrictive condition for the time-explicit357

convective flux.358

A low Mach number shock tube involving an ideal gas thermodynamics and small pressure jumps has highlighted359

a trade-off in the use of IMEX schemes. Indeed, if one is interested by pressure jumps through shock waves, then360

using an IMEX scheme with CE�1 might be inappropriate in terms of accuracy. Besides, the gain in CPU time is361

not sufficient to compensate the implicit diffusion and dispersion errors: for the pressure variable, IMEX schemes are362

still less efficient than full time-explicit ones. However, any quantities varying only through material waves should be363

depicted more efficiently and with a sufficient accuracy.364

When the thermodynamics becomes stiffer, high amplitude pressure jumps can occur in low-Mach number flows.365

This is for example the case during water-hammer events. Then, one can complete the splitting parameter E n
0 with366

a basic “shock detector” which enforces the initial IMEX scheme associated with a convective-like CFL condition367

to turn into a fully time-explicit approximate Riemann solver related to an acoustic-like CFL condition. Hence, the368

splitting parameter allows to select the acoustic-flux time-discretization and in the same time the time-step adapted to369

the physical-scale looked at. The application of such a strategy to a double Riemann problem endowed with a stiffened370

gas EOS has shown that, contrary to the IMEX version of the Lagrange-Projection fractional step, the present IMEX371

approach is able to accurately follow stiff rarefaction and shock waves even in low velocity regions.372

Besides, when the fluid is at rest, the proposed IMEX scheme is able to filter out small amplitude acoustic waves373

of no interest in order to retrieve the underlying constant state. The present IMEX approach has also been tried on374

intermediate configurations in which smooth and large-scale acoustic waves associated with first order terms w.r.t the375

flow Mach number propagate and need to be followed. The proposed method provides lower time-steps than the one376

produced by the LP-IMEX scheme. It is thus able to capture the global shape of the pressure colliding or re-appearing377

pulses but considerably smears the solution in regions where the pressure gradient stiffens.378

Finally, the different test cases presented in this study show that the present IMEX scheme is stable, whatever the379

Mach number, under CC≈1; with CC the Courant number based on the eigenvalues of the convective subsystem C.380
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Even if it is not yet rigorously proved, the Mach-uniform-CC stability property seems to hold.381

The fact is that, at a given instant, the computational domain can feature subsonic areas as well as sonic or382

supersonic ones. Thus, the spatial dependence of the splitting parameter could also been examined. Indeed, provided383

that the consistency of the overall fractional step is not deteriorated, such a spatial dependence would allow to capture384

local fluctuations of the Mach number, and the present approach to react more finely. In addition, some improvements385

regarding the construction of the “shock detector” could also be proposed.386

Acknowledgements387

The first author received a financial support through the EDF-CIFRE contract 0561-2015. Computational facilities388

were provided by EDF.389

The authors would also like to thank the reviewers who have spent time reading this paper. Indeed, the remarks and390

questions they have pointed out have considerably allowed the present work to be improved.391

21



Appendix A. Discrete Preservation of the Contact Discontinuity Riemann Invariants392

393

Before focusing on the preservation of the contact discontinuity Riemann invariants property, let us have a look394

on the discrete momentum equation related to the flux (4.22).395

Assume that: un+
i =

Rn+
i +Wn+

i

2
,then:

un+1
i =

Rn+1
i +Wn+1

i

2

⇔
un+1

i −un+
i

∆t
=

1
2

[
Rn+1

i −Rn+
i

∆t
+

Wn+1
i −Wn+

i

∆t

]
⇔

un+1
i −un+

i

∆t
=−

(1− (E n
0 )2)(aA)n+τn+

i

2

[
Rn+1

i −Rn+1
i−1

∆x
−

Wn+1
i+1 −Wn+1

i

∆x

]
ρn+1

i =ρn+
i︷︸︸︷

⇔
ρn+1

i un+1
i −ρn+

i un+
i

∆t
+

(1− (E n
0 )2)(aA)n+

∆x

[
Rn+1

i −Wn+1
i+1

2
−

Rn+1
i−1 −Wn+1

i

2

]
= 0

⇔
ρn+1

i un+1
i −ρn+

i un+
i

∆t
+ (1− (E n

0 )2)
(p∗
A

)n+1
i+1/2− (p∗

A
)n+1
i−1/2

∆x
= 0,

with: (p∗A)n+1
i+1/2 = (aA)n+

Rn+1
i −Wn+1

i+1

2
.

(A.1)

Thus:396

un+
i =

Rn+
i +Wn+

i

2
, and un+1

i =
Rn+1

i +Wn+1
i

2
⇔

un+
i =

Rn+
i +Wn+

i

2
, and

(ρu)n+1
i − (ρu)n+

i

∆t
+ (1− (E n

0 )2))
(p∗
A

)n+1
i+1/2− (p∗

A
)n+1
i−1/2

∆x
= 0.

(A.2)

Then, if un+
i =

(
Rn+

i +Wn+
i

)
/2, solving the momentum equation is strictly equivalent to directly setting un+1

i =397 (
Rn+1

i +Wn+1
i

)
/2.398

Appendix A.1. Discrete Preservation of the Riemann Invariants of a Contact Discontinuity399

400

Consider an equation of state such that:

(ρε)EOS (ρ, p) =C(p)ρ+ B(p), (A.3)

with p→C(p) and p→B(p) smooth functions such as (ρε)EOS
|ρ : p→C(p)ρ+ B(p) is injective on the domain of defi-401

nition of p. Formula (A.3) belongs to the “T1-class” of EOS introduced in [31]. One can notice that the stiffened gas402

EOS is included in this category. In the sequel, the exact invariance of velocity and pressure in the case of an isolated403

contact wave described in subsection 5.1.2 is checked.404

Appendix A.1.1. Acoustic Sub-step405

406

Assume that at the end of the convective sub-step, the isolated contact discontinuity has been preserved:

∀i : un+
i = u0, pn+

i = p0,

⇒∀i : Wn+
i = u0−

p0

an+
A

= W0,n+, Rn+
i = u0 +

p0

an+
A

= R0,n+.
(A.4)

Considering the discrete dynamics of W and R written in (4.20) coupled with the transparent boundary conditions
Wn+

Ncells+1 = Wn+
Ncells

and Wn+
0 = Wn+

1 , one can easily see that:

∀i : Wn+1
i = W0,n+, Rn+1

i = R0,n+. (A.5)
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Please note that the constant relaxation hypothesis (aA)n = K max
i∈[1,Ncells]

(
ρn

i (cA)n
i

)
, K >1, plays an important role here

since a local value of aA would have been sensible to the density discontinuity preventing W and R to remain con-
stant. Thus, property (A.5) cannot be guaranteed in this case. Then, (p∗

A
)n+1
i+1/2 = (p∗

A
)n+1
i−1/2 = an+

A

(
R0,n+−W0,n+

)
/2 and

(u∗
A

)n+1
i+1/2 = (u∗

A
)n+1
i−1/2 =

(
R0,n+ +W0,n+

)
/2 such that the discrete fluctuation of the time-implicit acoustic flux is null. The

mass, momentum and the energy equations thus become:

ρn+1
i −ρn+

i

∆t
= 0,

ρn+
i

un+1
i −un+

i

∆t
= 0,

ρn+
i

(
εn+1

i −εn+
i

)
+
(
(un+1

i )2/2− (un+
i )2/2

)
∆t

= 0.

⇒

ρn+1
i =ρn+

i ,

un+1
i = un+

i = u0,

(ρε)EOS
(
ρn+

i , pn+1
i

)
= (ρε)EOS (ρn+

i , pn+
i

)
.

(A.6)

Since (ρε)EOS
|ρ : p→C(p)ρ+ B(p) is injective, pn+1

i = pn+
i = p0 and the acoustic sub-step exactly preserves the velocity407

and pressure uniform profiles.408

Appendix A.1.2. Convective Sub-step409

410

The convective flux associated to subsystem C is obtained using the same kind of relaxation method. Details are
given in [19, 20]. The convective flux formula at face i+1/2 reads:

HC n
i+1/2 =


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FC
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i
if un
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0 (an

C)i+1/2τ
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0 (an
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i ≤0< (u∗C)n

i+1/2(
FC

)∗∗,n
i+1/2

if (u∗C)n
i+1/2≤0<un

i+1 +E n
0 (an

C)i+1/2τ
n
i+1(

FC
)n

i+1
if un

i+1 +E n
0 (an

C)i+1/2τ
n
i+1≤0

(an
C)i+1/2 = K max

(
ρn

i (cC)n
i , ρ

n
i+1 (cC)n

i+1

)
, K >1

FC
(
U

)
=

[
ρu, ρu2 +E 2

0 p, (ρe+E 2
0 p)u

]T
,

(A.7)

where (an
C

)i+1/2 = K max
(
ρn

i (cC)n
i , ρ

n
i+1 (cC)n

i+1

)
, K >1, the discrete convective relaxation constant fulfilling the convec-

tive subcharacteristic condition, i.e. aC>ρcC, throughout the whole computational domain and with:

(
FC

)∗,n
i+1/2

=


(ρ∗
C

)n
i (u∗
C

)n
i+1/2

(ρ∗
C

)n
i

(
(u∗
C

)n
i+1/2

)2
+ (E n

0 )2(Π∗
C

)n
i+1/2(

(ρ∗
C

e∗
C

)n
i + (E n

0 )2(Π∗
C

)n
i+1/2

)
(u∗
C

)n
i+1/2

 ,
(
FC

)∗∗,n
i+1/2

=


(ρ∗
C

)n
i+1 (u∗

C
)n
i+1/2

(ρ∗
C

)n
i+1

(
(u∗
C

)n
i+1/2

)2
+ (E n

0 )2(Π∗
C

)n
i+1/2(

(ρ∗
C

e∗
C

)n
i+1 + (E n

0 )2(Π∗
C

)n
i+1/2

)
(u∗
C

)n
i+1/2

 ,
(u∗C)n

i+1/2 =
un

i+1 +un
i

2
−

E n
0

2(aC)n
i+1/2

(
pn

i+1− pn
i

)
,

(E n
0 )2 (Π∗C)n

i+1/2 = (E n
0 )2 pn

i+1 + pn
i

2
−

E n
0 (aC)n

i+1/2

2

(
un

i+1−un
i

)
,

(ρ∗C)n
k = 1/(τ∗k,C)n, (τ∗k,C)n =τn

k +
(−1)Jk+1

E n
0 (aC)n

i+1/2

(
(u∗C)n

i+1/2−un
k

)
,

(e∗C)n
k = en

k +E n
0

(−1)Jk

(aC)n
i+1/2

(
(Π∗Cu∗C)n

i+1/2− pn
k un

k

)
,

k∈ {i, i+1} , Ji = 1, Ji+1 = 2.

(A.8)
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The time-explicit scheme solving the convective subsystem then reads:

Un+
i = Un

i −
∆t
∆x

(
HCn

i+1/2−HCn
i−1/2

)
. (A.9)

In the case of an isolated contact discontinuity with u0>0, the convective flux writes:

HC n,Contact
i+1/2 =


ρn

i u0

ρn
i (u0)2 + (E n

0 )2 p0

(ρε)EOS
(
ρn

i , p0
)

u0 +ρn
i

(u0)3

2 + (E n
0 )2 p0 u0

 . (A.10)

The mass, momentum and energy dynamics then read:

ρn+
i −ρ

n
i

∆t
+u0 ρ

n
i −ρ

n
i−1

∆x
= 0,

ρn+
i un+

i −ρ
n
i u0

∆t
+ (u0)2 ρ

n
i −ρ

n
i−1

∆x
= 0,

(ρε)EOS
(
ρn+

i , pn+
i

)
− (ρε)EOS

(
ρn

i , p0
)

∆t
+

1
2
ρn+

i (un+
i )2−ρn

i (u0)2

∆t

+u0
(ρε)EOS

(
ρn

i , p0
)
− (ρε)EOS

(
ρn

i−1, p0
)

∆x
+

(u0)3

2
ρn

i −ρ
n
i−1

∆x
= 0.

(A.11)

By rewriting ρn+
i un+

i −ρ
n
i u0 as ρn+

i

(
un+

i −u0
)
+
(
ρn+

i −ρ
n
i

)
u0 and using the discrete mass equation, the momentum equa-

tion can be simplified:

ρn+
i

un+
i −u0

∆t
= 0⇒un+

i = u0. (A.12)

The kinetic part in the discrete energy equation then vanishes by factorizing by (u0)2/2 and using, once again, the
discrete mass equation. Injecting formula (A.3), one obtains:

C(pn+
i )ρn+

i + B(pn+
i )−

(
C(p0)ρn

i + B(p0)
)

∆t
+u0

C(p0)
(
ρn

i −ρ
n
i−1

)
∆x

= 0. (A.13)

The linear behavior of (ρε)EOS
|p : ρ→C(p)ρ+ B(p) as well as the fact that C(p) =C(p0) is a constant in this configura-

tion, play an important role. Indeed, it allows to retrieve the discrete mass equation by factorizing by C(p0). Finally,
one obtains:

C(pn+
i )ρn+

i + B(pn+
i )−

(
C(p0)ρn+

i + B(p0)
)

∆t
= 0

⇔
(ρε)EOS

(
ρn+

i , pn+
i

)
− (ρε)EOS

(
ρn+

i , p0
)

∆t
= 0.

(A.14)

Using the fact that (ρε)EOS
|ρn+

i
: p→C(p)ρn+

i + B(p) is injective, it results in pn+
i = p0.411

Appendix B. Stability Analysis412

This appendix deals with the definition of a stability criterion for the proposed IMEX scheme. It focuses on the413

isolated contact discontinuity test case discussed in subsection 5.1.2. As shown in Figure D.15 and Figure D.16 in414

Appendix D, the present splitting seems to suffer from instabilities when the convective Courant number C|u| goes415

over a certain threshold. In the following, the dependence to the Mach number M of such a threshold is examined.416

One can notably wonder whether the time-explicit CFL condition C|u|= M/(1+ M)CE is retrieved as M tends toward417

zero.418

In the sequel, Appendix B.1 describes a pragmatic way to measure stable Courant numbers while Appendix B.2419

endeavors to derive a von Neumann stability analysis predicting stable Courant numbers analytically.420

24



Appendix B.1. Empirical Stable Courant Numbers421

As stated in Proposition 4.3 for a sufficiently simple shape of the equation of state, velocity and pressure are422

supposed to be left constant by the overall scheme from one time-step to another. Nonetheless, truncation errors423

on double-precision floating-point numbers can be amplified by the scheme’s instability and lead to the crash of the424

simulation. Thus, the selected criterion to detect the instability appearance is: max
i

(∣∣∣pn
i − p0

∣∣∣)/p0>η with η= 10−7
425

which is nearly the single-precision for floating-point numbers. Besides at the beginning of each calculation a ramp426

of CFL is enforced so that the targeted Courant number is reached after 200 time-steps, which corresponds to a427

propagation of 0.1 m of the exact contact discontinuity. If the calculation ends without triggering the above pressure428

stability criterion then the same calculation is launched again on a five times finer mesh of 5×103 cells in order to429

make sure that the numerical diffusion has not damped the instability appearance.430

In Figure B.14, the curve labeled Sp-(M) gathers the different points resulting from the above stable convective431

Courant number research. Recall that in this test case the velocity is given by u0 = Mmin c0
R, with c0,R =

√
(γ p0)/ρ0

R the432

maximal sound speed and Mmin the minimal Mach number of the flow used as an input parameter here. Hence the433

stable Courant number upper bound is displayed as a function of Mmin. The latter starts from Mmin = 1, u0 = 335(m.s−1)434

and decreases until Mmin = 10−4, u0 = 0.0335(m.s−1).435
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Figure B.14: Evaluation of an upper bound for the stable convective Courant number C|u| as function of the Mach number Mmin: global view (a)
and zoom in the region C|u| ∈ [0.2, 0.5] (b)

One can observe that for Mmin≈1, E n
0 ≈1 so that the full Euler system is brought back into the time-explicit

convective subsystem. The latter is thus bound by the classical CFL condition CE ≈1. As C|u|= M/(1+ M)CE , this
leads to C|u|≈0.5 for Mmin≈1 which is observed here. Then, as the Mach number decreases, the contribution of the
time-implicit part of the acoustic subsystem becomes more and more active. It results in a drop of the Euler time-
explicit CFL condition until Mmin≈0.35 where C|u|= 0.26.
An attempt at explaining this decline is given in the following. First, as it will be shown, this behavior might be related
to the gap between the definition of C|u| and the Courant number involving the largest eigenvalues of the convective
subsystem as given in 4.4:

CC=
∆t
∆x

(∣∣∣u0
∣∣∣+E n

0 c0,R
C

)
with: c0,R

C
= cC

(
ρ0

R, p0
)
.

(B.1)
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One can notice that:

C|u|=

1+E n
0

c0,R
C∣∣∣u0
∣∣∣
−1

CC=

1+
E n

0

Mmin

c0,R
C

c0,R

−1

CC,

since:
∣∣∣u0

∣∣∣= Mmin c0,R,

and:
c0,R
C

c0,R =

√
(E n

0 )2 γ−1
γ

+
1
γ
∈
[
1/γ, 1

]
.

(B.2)

Besides, according to formula (4.19):

E n
0 = min

(
Mn

max, 1
)
= min

(∣∣∣u0
∣∣∣/c0,L, 1

)
= min

Mmin

√
ρ0

L

ρ0
R

, 1

 ,
then for Mmin≥Mthres =

√
ρ0

R

ρ0
L

: E n
0 = 1,

and for Mmin<Mthres =

√
ρ0

R

ρ0
L

: E n
0 = Mmin/Mthres.

(B.3)

It results that:

C|u|=



(
1+

1
Mmin

)−1

CC, if Mmin≥Mthres,1+
1

Mthres

√(
Mmin

Mthres

)2
γ−1
γ

+
1
γ


−1

CC, otherwise.
(B.4)

Define Mmin→C th
|u| (Mmin), the continuous function described by formula (B.4). This function has been plotted as a436

dashed black line in Figure B.14.437

For every Mmin between Mthres and 1 the comparison between C th
|u| and the measured stable convective Courant438

number is fair: the cut-off Mmin = Mthres≈0.35, the C th
|u| (Mthres)≈0.26 value as well as the global shape of C th

|u| (.) are439

retrieved. Yet, as Mmin falls below Mthres, the measured stable convective Courant number increases to reach the440

plateau value C|u|= 0.43 which is bigger than the one predicted by the above analysis.441

In any case, for this specific test case, C|u|≈0.26 or equivalently CC≈1 is sufficient to ensure the scheme stability442

for every Mach number. Thus, the “Mach-uniform” stability property, C|u|≈1,∀Mmin, obtained by Zakerzadeh in [16]443

for the IMEX LP scheme and which can be observed in Figure B.14, is not retrieved for the present method. At a444

given Mach number, the presence of ±E0 cC in the eigenvalues of the convective subsystem prevents from reaching445

the stability condition C|u|≈1. However, in the above simple test case, the stable convective Courant number CC no446

longer behaves as O(Mmin) as Mmin→0.447

This latter result is absolutely not guaranteed by the time-implicit integration of the stiff part of the IMEX approach448

and strongly depends on the splitting at stake. Indeed, in [14, 15] several IMEX fractional steps on Euler-like systems449

are studied. It turns out that the “modified” equation obtained from the order two Taylor expansion of a smooth450

solution of an IMEX fractional step approach exhibits a diffusive operator which can be written as D0∂xx U; with D0 =451

βC|u| I− (AC0 )2 + (AA0 )2 +
[
AC0 ,A

A
0

]
, β being a coefficient related to the scheme numerical diffusion of the convective452

sub-step, AC0 (respectively AA0 ) the linearized jacobian matrix related to the convective (respectively the acoustic)453

subsystem, and
[
AC0 ,A

A
0

]
= AC0 AA0 −AA0 AC0 being the commutator linked to the splitting. The latter can be viewed454

as a mathematical operator which couples the two subsystems of the fractional step approach. Hence, even if it is455

discretized using a time-implicit scheme, the acoustic subsystem can still have an influence on the overall fractional456

step stability through the commutator which can impact the diffusion (or the anti-diffusion) effect of the modified457

equation. In Figure B.14, the orange-triangle line labeled “Sp-LP” represents the stable convective Courant number458
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obtained with the Lagrange-Projection IMEX approach. As already proven in [16], this scheme is Mach-uniformly459

stable for C|u|= 1.460

The next subsection provides an analytical stability analysis in order to compare with the above measured stable461

Courant numbers.462

Appendix B.2. A Von Neumann Stability Analysis463

In order to better understand the shape of the stable Courant number, a von Neumann-like stability analysis based464

on a linearized version of the IMEX approach has been performed. This strategy is motivated by the fact that, as465

shown in Figure D.15 of Appendix D, the instability seems to appear in a region where ρ, u and p are constant. The466

linearization required by the von Neumann analysis is thus justified. However, one should keep in mind that such a467

method relies on periodic boundary conditions which is not the case here because of the density discontinuity.468

Starting at time-step tn with a perturbed constant flow:

ρn
i =ρ0 +ε ρ1,n

i , ρ0 =ρ0
R,

un
i = u0 +εu1,n

i ,

pn
i = p0 +ε p1,n

i ,

(B.5)

the discrete dynamics of the perturbation is derived when a Rusanov scheme is used to solve the first convective
subsystem (2.2). The numerical flux at face i+1/2 associated to this scheme reads:

Hrus
n
i+1/2 =

FC
(
Un

i+1

)
+FC

(
Un

i

)
2

−

∣∣∣∣λn
i+1/2

∣∣∣∣
2

(
Un

i+1−Un
i

)
,

with: FC (U) =
[
ρu, ρu2 +E 2

0 p, (ρe+E 2
0 p)u

]T
,

and:
∣∣∣λn

i+1/2

∣∣∣= max
(∣∣∣un

i+1

∣∣∣+ (E0)n (cC)n
i+1,

∣∣∣un
i

∣∣∣+ (E0)n (cC)n
i

)
.

(B.6)

Let us define ρn+
i =ρ0,n+

i +ε ρ1,n+
i , un+

i = u0,n+
i +εu1,n+

i , and pn+
i = p0,n+

i +ε p1,n+
i the solution produced by the Rusanov

scheme applied to the convective subsystem. Then, zeroth order and first order dynamics can be decoupled and one
obtains:

ρ0,n+
i =ρ0,

u0,n+
i = u0,

p0,n+
i = p0,

ρ1,n+
i −ρ1,n

i

∆t
+u0 ρ

1,n
i+1−ρ

1,n
i−1

2∆x
+ρ0 u1,n

i+1−u1,n
i−1

2∆x
−
∣∣∣λ0

∣∣∣ ρ1,n
i+1−2ρ1,n

i +ρ1,n
i−1

2∆x
= 0,

u1,n+
i −u1,n

i

∆t
+u0 u1,n

i+1−u1,n
i−1

2∆x
+
(
(E n

0 )2/ρ0
) p1,n

i+1− p1,n
i−1

2∆x
−
∣∣∣λ0

∣∣∣ u1,n
i+1−2u1,n

i +u1,n
i−1

2∆x
= 0,

p1,n+
i − p1,n

i

∆t
+u0 p1,n

i+1− p1,n
i−1

2∆x
+ρ0 (c0

C)2 u1,n
i+1−u1,n

i−1

2∆x
−
∣∣∣λ0

∣∣∣ p1,n
i+1−2 p1,n

i + p1,n
i−1

2∆x
= 0,

with:
∣∣∣λ0

∣∣∣= ∣∣∣u0
∣∣∣+ (E0)n (c0

C).

(B.7)

If ∀φ∈ {ρ, u, p} the following sinus spatial pulse is conjectured φt
i = φ̂t e jk xi , t∈ {n, n+}; one can derive the von Neumann

gain matrix related to the convective subsystem:

ρ̂
n+

ûn+

p̂n+

=


G −

ρ0 C|u|

|u0|
j sin(k∆x) 0

0 G −
(E n

0 )2 C|u|

ρ0 |u0|
j sin(k∆x)

0 −
ρ0 (c0

C
)2 C|u|

|u0|
j sin(k∆x) G


ρ̂

n

ûn

p̂n

 ,
with: G = 1−2

∣∣∣λ0
∣∣∣∣∣∣u0
∣∣∣C|u| sin2(k∆x/2)− j

u0∣∣∣u0
∣∣∣C|u| sin(k∆x).

(B.8)
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The spectral radius |G|C related to this gain matrix can be found easily and one can state that (See Appendix C for a
proof):

C|u|<C crit
|u| =

∣∣∣u0
∣∣∣/ ∣∣∣λ0

∣∣∣⇒|G|C<1. (B.9)

In particular, when Mmin tends towards one, (E0)n tends towards one and c0
C

tends towards c0 such that |G|C<1⇔C|u|<469

Mmin/(1+ Mmin). Thus, the classical CFL condition is retrieved.470

The same kind of analysis is performed on the acoustic subsystem. However, the time-implicit flux (4.22)
raises new issues in the sense that its energy contribution strongly couples zeroth-order and first-order terms:
(p∗
A

)n+1
i+1/2 (u∗

A
)n+1
i+1/2 = (p0,∗

A
)n+1
i+1/2 (u0,∗

A
)n+1
i+1/2 +ε

(
(p0,∗
A

)n+1
i+1/2 (u1,∗

A
)n+1
i+1/2 + (p1,∗

A
)n+1
i+1/2 (u0,∗

A
)n+1
i+1/2

)
. What is more, this coupling

is strongly non-linear and prevents from deriving a simple von Neumann analysis. That is why, it has been addition-
ally assumed that zeroth-order terms including these taken at time tn+1 were constant namely:

ρ0,n+1
i =ρ0,

u0,n+1
i = u0,

p0,n+1
i = p0;

(B.10)

then, as proved in Appendix C the dynamics of the perturbation reads:

ρ1,n+1
i −ρ1,n+

i

∆t
= 0,

u1,n+1
i −u1,n+

i

∆t
+
(
1− (E n

0 )2
) 1
ρ0

p1,n+1
i+1 − p1,n+1

i−1

2∆x
−

a0
A

ρ0

u1,n+1
i+1 −2u1,n+1

i +u1,n+1
i−1

2∆x

= 0,

p1,n+1
i − p1,n+

i

∆t
+
(
1− (E n

0 )2
)
ρ0 (c0

A)2

u1,n+1
i+1 −u1,n+1

i−1

2∆x
−

1
a0
A

p1,n+1
i+1 −2 p1,n+1

i + p1,n+1
i−1

2∆x

= 0.

(B.11)

The von Neumann gain matrix writes:
1 0 0
0 1+2αn sin2(k∆x/2) αn

a0
A

j sin(k∆x)

0 αn (ω0
A

)2 a0
A

j sin(k∆x) 1+2αn (ω0
A

)2 sin2(k∆x/2)


ρ̂

n+1

ûn+1

p̂n+1

=

ρ̂
n+

ûn+

p̂n+

 ,
with: αn =

(
1− (E n

0 )2
) a0
A

C|u|

ρ0
∣∣∣u0

∣∣∣ ,
and: ω0

A=
ρ0 c0

A

a0
A

.

(B.12)

Finally the von Neumann gain matrix related to the fractional step approach reads:[
G 0
0 G−1

A
GC

]
,

with:

GC=

 G −
(E n

0 )2 C|u|

ρ0 |u0|
j sin(k∆x)

−
ρ0 (c0

C
)2 C|u|

|u0|
j sin(k∆x) G

 ,
GA=

 1+2αn sin2(k∆x/2) αn

a0
A

j sin(k∆x)

αn (ω0
A

)2 a0
A

j sin(k∆x) 1+2αn (ω0
A

)2 sin2(k∆x/2)

 ,
G−1
A =

1
∆

1+2αn (ω0
A

)2 sin2(k∆x/2) − αn

a0
A

j sin(k∆x)

−αn (ω0
A

)2 a0
A

j sin(k∆x) 1+2αn sin2(k∆x/2)

 , ∆= detGA.

(B.13)

G is a first eigenvalue related to the mass equation. As written in Appendix C, |G|<1 if C|u|<C crit
|u| . The two remaining471

eigenvalues are linked to the matrix G−1
A

GC which couples the momentum and the energy equations and can not be472
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easily found analytically. Starting from C crit
|u| , a loop on all the k modes ∈ [0, 4π/∆x] is performed and the spectral473

radius |G|kAC associated to
(
G−1
A

GC
)
(k) is calculated. If, during the loop, |G|kAC>1, then C crit

|u| is slightly decreased and474

the loop is restarted. Otherwise the current Courant number is stored and considered as the stable Courant number of475

the above von Neumann analysis.476

In Figure B.14, the curve labeled “VN-Sp” (red line) displays the different stable convective Courant numbers477

obtained thanks to the above von Neumann method. Recall that the analytical curve M→C th
|u| (M) is equivalent to478

CC= 1 for this test case. For Mmin ∈
[
7.5×10−2, 1

]
, “VN-Sp” and M→C th

|u| (M) overlap quasi-perfectly. Unfortunately,479

for very low Mach numbers, C|u| plunges down. For example, it predicts C|u|= 10−2 when Mmin = 10−4.480

This difference could stem from the assumptions made on the time-implicit acoustic scheme in order to linearize
it. Indeed the zeroth order terms of the updated solution have been assumed to be constant:

ρ0,n+1
i =ρ0,

u0,n+1
i = u0,

p0,n+1
i = p0.

(B.14)

The resulting dynamics then binds only first-order pressure terms with first-order velocity terms. Yet, in that case the481

small perturbation parameter ε is not related to the flow Mach number. As formally shown in [19, 20] on the continuous482

subsystemA, one could make the discrete acoustic scheme (4.22) non-dimensional and consider a constant base flow483

perturbed by modes written in powers of the Mach number. Then, one would observe that the zeroth-order momentum484

term is fed by the second-order pressure gradient. Thus, one could assume that if the amplitude of this second-order485

pressure gradient explodes because of an instability, the zeroth-order momentum term would rise too. It would result486

in an increase of the Mach number associated with a decrease of the discrete numerical time-step built on the zeroth-487

order velocity terms. This might damp the instability. In any case, further investigations should be done in order to488

better understand this sudden drop.489

Appendix C. Study of the von Neumann Gain Matrices490

491

This appendix is dedicated to the study of the von Neumann gain matrices written in (B.8) and (B.13). The492

derivation of the convective gain matrix being relatively straightforward, special attention is paid to the expression of493

its eigenvalues as well as a sufficient condition ensuring that their modulus is strictly lower than one. Besides, the494

derivation of the acoustic gain matrix is completely done.495

Appendix C.1. Analysis of the Convective Gain Matrix Eigenvalues496

497

Let us consider the von Neumann gain matrix associated with the convective sub-step:
G −

ρ0 C|u|

|u0|
j sin(k∆x) 0

0 G −
(E n

0 )2 C|u|

ρ0 |u0|
j sin(k∆x)

0 −
ρ0 (c0

C
)2 C|u|

|u0|
j sin(k∆x) G

 ,
and: G = 1−2

C|u|

C crit
|u|

sin2(k∆x/2)− j
u0∣∣∣u0

∣∣∣C|u| sin(k∆x),

with: C crit
|u| =

∣∣∣u0
∣∣∣/ ∣∣∣λ0

∣∣∣∈ ]0, 1[ .

(C.1)
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G is the first eigenvalue of this matrix. Define X = sin2(k∆x/2)∈ [0, 1], then sin2(k∆x) = 4X (1−X). Thus:

|G|2 =

1−2
C|u|

C crit
|u|

X

2

+4C 2
|u|X (1−X),

|G|2<1⇔C|u|<
C crit
|u|(

(1− (C crit
|u| )2)X + (C crit

|u| )2
) . (C.2)

Since X ∈ [0,1] the most constraining CFL condition is C|u|<C crit
|u| .498

The two other eigenvalues of the above gain matrix are the roots of the characteristic polynomial function:

(G−λ)2 + (E n
0 )2 (C|u|)2

c0
C

u0

2

sin2(k∆x). (C.3)

They write:

λ± =G∓ jE n
0 C|u|

∣∣∣∣∣∣∣ c
0
C

u0

∣∣∣∣∣∣∣ |sin(k∆x)| ,

∣∣∣λ±∣∣∣2 =

1−2
C|u|

C crit
|u|

X

2

+C 2
|u|

[1+ (E n
0 )2

∣∣∣∣∣∣∣ c
0
C

u0

∣∣∣∣∣∣∣
2

]4X (1−X)± 2E n
0

u0∣∣∣u0
∣∣∣
∣∣∣∣∣∣∣ c

0
C

u0

∣∣∣∣∣∣∣sin(k∆x) |sin(k∆x)|


⇒

∣∣∣λ±∣∣∣2 ≤ 1−2
C|u|

C crit
|u|

X

2

+4

1+E n
0

∣∣∣∣∣∣∣ c
0
C

u0

∣∣∣∣∣∣∣
2

C 2
|u|X (1−X) =

1−2
C|u|

C crit
|u|

X

2

+4

 C|u|

C crit
|u|

2

X (1−X).

(C.4)

A sufficient condition ensuring that |λ±|<1 is once again C|u|<C crit
|u| .499

Appendix C.2. Derivation of the Linearized Acoustic Dynamics500

501

The von Neumann analysis has to be made on the relaxation system (3.9). Define at time tn+:

Wn+
i = un+

i −
pn+

i

an+
A

= un+
i −

Πn+
i

an+
A

,

Rn+
i = un+

i +
pn+

i

an+
A

= un+
i +

Πn+
i

an+
A

.

(C.5)

Then, 

ρn+1
i −ρ

n+
i

∆t = 0,
(ρu)n+1

i −(ρu)n+
i

∆t +
(
1− (E n

0 )2
) (p∗

A
)n+1
i+1/2−(p∗

A
)n+1
i−1/2

∆x = 0,
(ρΠ)n+1

i −(ρΠ)n+
i

∆t +
(
1− (E n

0 )2
)

(an+
A

)2 (u∗
A

)n+1
i+1/2−(u∗

A
)n+1
i−1/2

∆x = 0,
(ρe)n+1

i −(ρe)n+
i

∆t +
(
1− (E n

0 )2
) (p∗

A
u∗
A

)n+1
i+1/2−(p∗

A
u∗
A

)n+1
i−1/2

∆x = 0,

⇔

ρn+1
i −ρ

n+
i

∆t = 0,
(ρu)n+1

i −(ρu)n+
i

∆t +
(
1− (E n

0 )2
)[

Πn+1
i+1 −Πn+1

i−1
2∆x −

an+
A

2
un+1

i+1 −2un+1
i +un+1

i−1
∆x

]
= 0,

(ρΠ)n+1
i −(ρΠ)n+

i
∆t +

(
1− (E n

0 )2
)[

(an+
A

)2 un+1
i+1 −un+1

i−1
2∆x −

an+
A

2
Πn+1

i+1 −2Πn+1
i +Πn+1

i−1
∆x

]
= 0,

(ρe)n+1
i −(ρe)n+

i
∆t +

(
1− (E n

0 )2
)
[ (Πu)n+1

i+1 −(Πu)n+1
i−1

2∆x − 1
4an+
A

(Π2)n+1
i+1 −2(Π2)n+1

i +(Π2)n+1
i−1

∆x

−
an+
A

4
(u2)n+1

i+1 −2(u2)n+1
i +(u2)n+1

i−1
∆x ] = 0.

(C.6)
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Supposing that ∀φ∈ {ρ, u,Π, e} , φ0,n+1
i =φ0 a constant, one can extract the linearized dynamics related to (C.6):

ρ1,n+1
i −ρ1,n+

i

∆t
= 0,

ρ0 u1,n+1
i −u1,n+

i

∆t
+
(
1− (E n

0 )2
)Π

1,n+1
i −Π

1,n+1
i

2∆x
−

a0
A

2

u1,n+1
i+1 −2u1,n+1

i +u1,n+1
i−1

∆x

= 0,

ρ0 Π
1,n+1
i −Π

1,n+
i

∆t
+
(
1− (E n

0 )2
)(a0

A
)2 u1,n+1

i −u1,n+1
i

2∆x
−

a0
A

2

Π
1,n+1
i+1 −2Π

1,n+1
i +Π

1,n+1
i−1

∆x

= 0,

ρ0 e1,n+1
i −e1,n+

i

∆t
+
(
1− (E n

0 )2
)p0 u1,n+1

i −u1,n+1
i

2∆x
+u0 Π

1,n+1
i −Π

1,n+1
i

2∆x


−
(
1− (E n

0 )2
) p0

a0
A

Π
1,n+1
i+1 −2Π

1,n+1
i +Π

1,n+1
i−1

2∆x
+u0 a0

A

u1,n+1
i+1 −2u1,n+1

i +u1,n+1
i−1

2∆x

= 0.

(C.7)

During the projection step, Πn+1
i = pn+1

i = pEOS
(
ρn+1

i , εn+1
i

)
is imposed with εn+1

i = en+1
i − (un+1

i )2/2. If one assumes that
this projection holds separately for zeroth order and first order terms then ∀]∈ {n+, n+1}:

Π
1,]
i = p1,]

i = (∂ρ p|ε)0ρ
1,]
i + (∂ε p|ρ)0

(
e1,]

i −u0 u1,]
i

)
. (C.8)

Using the momentum equation, the perturbed pressure dynamics is then:

p1,n+1
i − p1,n+

i

∆t
+
(
1− (E n

0 )2
) (
∂ε p|ρ)

)0 p0

ρ0

u1,n+1
i+1 −u1,n+1

i−1

2∆x
−

1
a0
A

p1,n+1
i+1 −2 p1,n+1

i + p1,n+1
i−1

2∆x

= 0. (C.9)

According to definition (2.6),
(
∂ε p|ρ)

)0 p0

ρ0 is exactly equal to ρ0 (c0
A

)2. The linearized dynamics of the non conservative
variables related to the acoustic scheme is then:

ρ1,n+1
i −ρ1,n+

i

∆t
= 0,

u1,n+1
i −u1,n+

i

∆t
+
(
1− (E n

0 )2
) 1
ρ0

p1,n+1
i+1 − p1,n+1

i−1

2∆x
−

a0
A

ρ0

u1,n+1
i+1 −2u1,n+1

i +u1,n+1
i−1

2∆x

= 0,

p1,n+1
i − p1,n+

i

∆t
+
(
1− (E n

0 )2
)
ρ0 (c0

A)2

u1,n+1
i+1 −u1,n+1

i−1

2∆x
−

1
a0
A

p1,n+1
i+1 −2 p1,n+1

i + p1,n+1
i−1

2∆x

= 0.

(C.10)

Appendix D. Location of the IMEX Instability502

503

Figure D.15 and Figure D.16 show the growth of the numerical instability observed in the case presented in504

subsection 5.1.2. The picture is taken at time t = 2.496×10−2 s but for a mesh of 103 cells (Figure D.15) and for a finer505

one of 5×103 cells (Figure D.16).506

One can observe than the instability originates from the region located after the contact discontinuity front where507

the Mach number takes its lowest value. As the mesh is refined, the amplitude of the instability surges considerably508

since the numerical diffusion is largely diminished.509
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Figure D.15: p, Ideal Gas, Mmin = 10−2, with Ncells = 103, C|u| = 0.49, iteration 270, (t = 2.496×10−2 s)
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Figure D.16: p, Ideal Gas, Mmin = 10−2, with Ncells = 5×103, C|u| = 0.49, iteration 1399, (t = 2.497×10−2 s)
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Appendix E. The Most Constraining Euler Courant Number510

511

Let us consider the shock tube test case presented in subsection 5.2. The fastest Euler eigenvalue is u∗+c0,∗
R512

with c0,∗
R = c

(
ρ∗R, p∗

)
. It corresponds to the characteristic colliding with the 3-shock wave front speed. Here u∗ and513

p∗ are the intermediate velocity and pressure whose values can be approximatively calculated: u∗≈1.49886 m s−1,514

p∗≈10020.9 Pa. What is more, the conservation of entropy through the 3-shock brings: ρ∗R =ρ0
R

(
p∗/p0

R

)1/γ
, and515

c
(
ρ∗R, p∗

)
= c0

R

(
p∗/p0

R

)(γ−1)/γ
≈336.36256 m s−1.516

The most constraining time-step got from the above wave speed writes:

∆t0,∗
E =

C 0,∗
E

2
∆x

u∗+c0,∗
R

. (E.1)

Besides the time-step related to u0 writes simply ∆tu0

C
=C u0

|u| ∆x/u0. Then:

∆tu0

C =∆t0,∗
E ⇔C u0

|u| =
u0

2
(
u∗+c0,∗

R

)C 0,∗
E ≈1.48649×10−3 C 0,∗

E . (E.2)

33



References517

[1] N. E. Joukowski, Memoirs of the Imperial Academy Society of St. Petersburg, Proceedings of the American Water Works Association 24518

(1898) 341–424.519

[2] L. Allievi, Teoria generale del moto perturbato dell’acqua nei tubi in pressione (coplo d’ariete), Tip. del Genio civile . (1903) .520

[3] M. S. Ghidaoui, M. Zhao, D. A. McInnis, D. H. Axworthy, A review of water hammer theory and practice, Applied Mechanics Reviews 58521

(2005) 49.522

[4] A. R. Simpson, E. B. Wylie, Large water-hammer pressures for column separation in pipelines, Journal of Hydraulic Engineering 117 (1991)523

1310–1316.524

[5] E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, Journal of Computational Physics525

72 (1987) 277–298.526

[6] H. Guillard, C. Viozat, On the behavior of upwind schemes in the low Mach number limit, Computers and Fluids 28 (1999) 63–86.527

[7] H. Guillard, A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II Godunov type schemes, Computers and528

Fluids 33 (2004) 655–675.529

[8] A. Murrone, H. Guillard, Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two530

phase model, Computers and Fluids 37(10) (2008) 1209–1224.531

[9] S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM Journal on Scientific Computing 21 (1999)532

441–454.533

[10] P. Degond, M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equation, Communications in Computational534

Physics 10 (2011) 1–31.535

[11] J. Haack, S. Jin, J. G. Liu, An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations, Communications536

in Computational Physics 12 (2012) 955–980.537
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Rendu de l’Académie des Sciences 314 (1992) 147–152.556

[22] T. Buffard, J.-M. Hérard, A conservative fractional step method to solve non-isentropic Euler equations, Computer Methods in Applied557

Mechanics and Engineering 144 (1996) 199–225.558

[23] I. Suliciu, On the thermodynamics of fluids with relaxation and phase transitions, International Journal of Engineering Science 36 (1998)559

921–947.560

[24] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, Birkäser, 2004.561
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