
HAL Id: hal-01531306
https://hal.science/hal-01531306v1

Preprint submitted on 1 Jun 2017 (v1), last revised 19 Feb 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Mach-Sensitive Implicit-Explicit Scheme Adapted to
Compressible Multi-scale Flows

David Iampietro, Frédéric Daude, Pascal Galon, Jean-Marc Hérard

To cite this version:
David Iampietro, Frédéric Daude, Pascal Galon, Jean-Marc Hérard. A Mach-Sensitive Implicit-
Explicit Scheme Adapted to Compressible Multi-scale Flows. 2017. �hal-01531306v1�

https://hal.science/hal-01531306v1
https://hal.archives-ouvertes.fr


A Mach-Sensitive Implicit-Explicit Scheme Adapted to Compressible
Multi-scale Flows

D. Iampietro ∗1,3,4, F. Daude †1,3, P. Galon ‡3,5, and J-M Hérard §2,4

1EDF lab Saclay, 7 boulevard Gaspard Monge 92120 Palaiseau, France
2EDF lab Chatou, 6 Quai Watier 78400 Chatou, France

3IMSIA, UMR EDF/CNRS/CEA/ENSTA 9219 Université Paris Saclay 828 Boulevard des Maréchaux 91762
Palaiseau Cedex, France

4I2M, UMR CNRS 7373 Technopôle Château-Gombert 39, rue F. Joliot Curie 13453 Marseille Cedex 13, France
5CEA DEN/DANS/DM2S/SEMT/DYN, D36 91190 Saclay, France

May 31, 2017

Abstract
The method presented below focuses on the numerical approximation of the Euler compressible system.
It pursues a two-fold objective: being able to accurately follow slow material waves as well as strong
shock waves in the context of low Mach number flows. The resulting implicit-explicit fractional step
approach leans on a dynamic splitting designed to react to the time fluctuations of the maximal flow
Mach number. Would the latter rise suddenly, the IMEX scheme, so far driven by a material-wave
Courant number, would turn into a time-explicit approximate Riemann solver constrained by an
acoustic-wave Courant number. One dimensional low Mach number test cases involving single or
multiple waves confirm that the present approach is as accurate and efficient as an IMEX Lagrange-
Projection method. Besides, a pragmatic stability study suggests that the resulting IMEX scheme is
stable, whatever the Mach number, for a material-wave Courant number of order unity.

1 Introduction
The present work deals with the construction of a time implicit-explicit scheme providing a sketch of
answer to cope with multi-scale wave scenarios and more specifically with what is called a condensation
induced water hammer (CIWH).
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Indeed, in the very first instants of this phenomenon, one is interested in following a slow interface
between hot vapor and cooler liquid water. Since the speed of such a material wave is of the order of
1 m.s−1, which is considerably smaller than the acoustic wave speeds in both phases, the interface
dynamics is typical from a low Mach number flow. Nonetheless, as time goes on, shear instabilities and
steep temperature gradients entail the trapping and then the sudden condensation of vapor pockets
leading to the production of strong shock waves in the liquid phase.

The objective is thus to design a numerical scheme accurate for material waves in a low Mach number
flow while being able to capture high pressure gradients.
On one hand, fulfilling both aims might seem contradictory if one considers the Euler or Navier-

Stokes incompressible systems since their divergence-free constraint prohibits any compressible effects
and hence the occurrence of compressive shock waves. On the other hand, the pioneering works of
Joukowski [25] and Allievi [1] state that, at constant temperature, pressure jumps in a low Mach
number compressible flow are given by: ∆p = ρ0 c0 ∆u; with ρ0 (respectively c0) the constant density
(respectively the constant speed of sound) of the fluid. See also [17] for a review of the water hammer
theory. Thus, in the case of liquid water, at 295K, ρ0 ≈ 103 kg.m−3, c0 ≈ 1.5 × 103 m.s−1. If one
assumes that ∆u ≈ 1 m.s−1, pressure jumps amplitude is of 15 bar which is the order of magnitude
observed experimentally in [32].
From a numerical point of view, different strategies have been adopted in order to be accurate on

slow material waves in the case of low Mach number flows. Preconditioning methods stemming from
[34] and improved in [20, 19, 29] aim at modifying the Jacobian eigenvalues of hyperbolic systems in
order to get rid of their constraining acoustic part. Asymptotic preserving schemes (AP schemes),
introduced by Jin in [24], are based on the identification of a non-stiff and a stiff part of hyperbolic
systems. The latter is then discretized using a time-implicit method which allows the scheme to be
consistent, at discrete level, with a targeted asymptotic continuous system as a scale parameter tends
towards zero. Recently in [13, 21, 30, 15], different kinds of AP schemes have been derived to seize the
incompressible limit of the Euler or the Navier-Stokes system as the flow Mach number tends towards
zero. It results in an implicit-explicit (IMEX) algorithms providing a time-implicit discretization for the
hydrodynamic pressure gradient, and a time-explicit discretization for the convective terms. Besides, if
one considers the Courant number C based on the slowest material waves of the flow, a key property
for the above AP schemes is also to remain stable for C ≈ 1 at any Mach numbers. This topical issue
has been explored using the "modified equation" tools as well as the spectral theory by Noelle an his
collaborators in [31, 37]. See also [36] in which the AP property as well as the Mach-uniform stability
property has been proved for a Lagrange-Projection method described in [8].

If the above tracks of reflection constitute substantial breakthroughs for the material waves represen-
tation in the context of low Mach numbers flows, no satisfying solution has been yet found in order to
dynamically capture shock waves if they suddenly appear in such a configuration.
Continuing ideas suggested in [11, 23], the present work derives an IMEX scheme based on a

Mach-sensitive splitting of the Euler system. Such a splitting stems from the pioneering work of
Baraille and co-authors [4]. The resulting fractional step approach evolves dynamically in time thanks
to a parameter measuring the instantaneous maximal Mach number of the flow. Particularly, starting
from a completely decoupled IMEX formulation with C ≈ 1, it offers the possibility to retrieve a
time-explicit scheme for the overall Euler system if a sudden rise of the Mach number is detected.
The CFL condition adapts itself and is re-based on the fastest physically relevant wave speed, i.e. the
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acoustic one. Thus, shock waves can be optimally captured.
The first section of this article is a condensed presentation of the Mach-sensitive splitting fully

described in [23]. The readers are notably referred to this work for the construction of a time-explicit
scheme for both convective and acoustic parts of the Mach-sensitive splitting. Hence, the second section
of the present study is entirely dedicated to the derivation of a time-implicit scheme related to the
acoustic part of the splitting. It leans on the relaxation schemes theory and particularly on a Suliciu-like
relaxation procedure detailed in [33, 6, 11, 10]. Eventually the last two sections aggregate three types
of one dimensional numerical results. A first part describes briefly the effect of the Courant number
when an IMEX scheme is triggered on an isolated shock or contact waves in the context of a low Mach
number flow. In a second time, the accuracy and the efficiency of the present approach are compared
with the Lagrange-Projection fractional step method described in [8]. Finally, the Mach-uniformity of
the stability condition for C ≈ 1 is tested and analyzed.

2 A Mach-Sensitive Fractional Step Approach
The present work focuses on the Euler compressible system. However its extension to the two-phase
Homogeneous Equilibrium Model (HEM, [9]) in which both phases have the same velocity u, pressure
p, temperature T and chemical potential is straightforward since it results in the same conservation
law structure, namely:

∂t ρ+∇ · (ρu) = 0, (1a)
∂t (ρu) +∇ · (ρu⊗ u + p I) = 0, (1b)
∂t (ρ e) +∇ · ((ρ e+ p) u) = 0, (1c)

e = |u|
2

2 + ε, ε = εEOS (ρ, p) , (1d)

(ρ c)2 =
(
∂p ε|ρ

)−1 (
p− ρ2 ∂ρ ε|p

)
, (1e)

with ρ the density of the mixture and ε its specific internal energy. The function εEOS(., .) defines
the equation of state between the thermodynamic variables while c is the sound speed involved in the
nonlinear wave propagation.

As described in [23], it is possible to derive a scheme able to deal with highly compressible flows as
well as low Mach number flows by splitting the system (1) into a convective (C) and an acoustic (A)
subsystem:

C :


∂t ρ+∇ · (ρu) = 0,

∂t (ρu) +∇ ·
(
ρu⊗ u + E 2

0 (t) p I
)

= 0,

∂t (ρ e) +∇ ·
(
(ρ e) + E 2

0 (t) p) u
)

= 0,

(2) A :


∂t ρ = 0,

∂t (ρu) +∇ ·
(
(1− E 2

0 (t)) p I
)

= 0,

∂t (ρ e) +∇ ·
(
(1− E 2

0 (t)) pu
)

= 0.

(3)

Here, E0(t) ∈ ]0, 1] is a dynamic splitting parameter designed to be equal to one in the case of sonic or
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supersonic flows or equal to the maximal flow Mach number in the case of subsonic flows:

E0(t) = max (Minf , min (Mmax(t), 1)) ,

Mmax(t) = sup
x∈Ω

(
M(x, t) = |u(x, t)|

c(x, t)

)
,

(4)

with Minf a given lower bound preventing E0(t) from being exactly equal to zero. As shown in [23],
both subsystems are hyperbolic for a stiffened gas thermodynamics provided that the pressure remains
positive throughout space and time. In one dimension, their eigenvalues are:

λC1 = u− E0 cC ≤ λC2 = u ≤ λC3 = u+ E0 cC ,

λA1 = −
(
1− E 2

0

)
cA ≤ λA2 = 0 ≤ λA3 =

(
1− E 2

0

)
cA,

(5)

with cC (respectively cA) the convective (respectively the acoustic) celerity defined by:

(ρ cC (ρ, p))2 =
(
∂p ε|ρ

)−1 (
E 2

0 p− ρ2 ∂ρ ε|p
)
,

(ρ cA (ρ, p))2 =
(
∂p ε|ρ

)−1
p,

(6)

and:
(cC)2 +

(
1− E 2

0

)
(cA)2 = c2. (7)

What is more, the 1-wave and 3-wave of both subsystems are associated to genuinely non-linear fields
whereas the 2-wave field is linearly degenerate.

It can be noticed that, when the Mach number is small so that E0(t) is close to zero, pressure
terms completely disappear from the subsystem C which only conserves the convective spatial operator
∇· (u ∗). Pressure terms are retrieved in the subsystem A which turns out to hold most of the acoustic
effects. That is why, in the case of low Mach number flows, if the physics of interest is essentially
related to material waves propagating at speed |u| � c, a time-implicit discretization will be provided
for subsystem A while C will be solved with a time-explicit scheme.
Indeed, define ∆x the space step of the computational domain. If ∆t is the time step guaranteeing

the stability of the numerical scheme, one can formally introduce several Courant numbers related to
the above wave speeds, namely:

CE = (|u|+ c) ∆t
∆x Euler Courant number,

C|u| =
|u| ∆t

∆x Convective Courant number,

CC = (|u|+ E0 cC) ∆t
∆x Courant number related to C,

CA = ((1− E 2
0 ) cA) ∆t
∆x Courant number related to A.

(8)

By using a time-implicit scheme for the resolution of the subsystem A, one seeks to be relieved from
most of the time-explicit stability condition: CE < 1. Particularly, if the scheme allows to fulfill
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C|u| ≈ 1, one expects a substantial drop of the numerical diffusion holding on the material waves
propagating at speed |u|.

We refer the readers to [23] for the complete study of both continuous subsystems C and A as well as
the derivation of a full time-explicit fractional step involving relaxation schemes. A short description
of the time-explicit convective flux related to the subsystem C is written in Appendix A.
In the following, the derivation of the A-time-implicit C-time-explicit fractional step approach is

presented. As the C-time-explicit scheme described in [23] is given in Appendix A, focus is only given
on the A-time-implicit integration.

3 A Sulicu-like Relaxation Scheme for the Acoustic Subsystem
Let us introduce a new Suliciu-like relaxation subsystem Aµ as:

Aµ :



∂t ρ = 0,

∂t (ρ u) + ∂x
(
(1− E 2

0 (t)) Π
)

= 0,

∂t (ρΠ) + ∂x
(
(1− E 2

0 (t)) a2
A u
)

= ρ (p−Π)
µ

,

∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) Πu
)

= 0,
(9)

(Aµ)NC :



∂t τ = 0,
∂t u+ (1− E 2

0 (t))τ ∂x Π = 0,

∂t Π + (1− E 2
0 (t)) a2

A τ ∂x u = (p−Π)
µ

,

∂t e+ (1− E 2
0 (t))τ ∂x (Πu) = 0.

(10)
More details on relaxation schemes can be found in [33, 5, 10]. Moreover, the derivation of the above
relaxation subsystem can be found in [23]. Recall that Π is the relaxation pressure forced to converge
towards the real pressure p thanks to a source term of timescale µ� 1. Besides, aA is a relaxation
constant encapsulating the thermodynamic nonlinearity. In order to provide sufficient diffusion to the
relaxation subsystem, one can exhibit (see [35, 8, 23]) the following subcharacteristic condition:

aA > ρ cA. (11)
Let us define τ = 1/ρ the specific volume. Using the fact that the density is independent of time, the
relaxation subsystem Aµ is equivalent to its non-conservative version (Aµ)NC . Then, one can easily
prove that the relaxation subsystem is hyperbolic, and that its eigenvalues are:

λA, µ1 = −(1− E 2
0 ) aAτ < λA, µ2 = λA, µ3 = 0 < λA, µ4 = (1− E 2

0 ) aAτ. (12)
Besides all its characteristic fields are linearly degenerate. Let us now introduce W and R as:

W = u−Π/aA,
R = u+ Π/aA.

(13)

It is worth noticing that the non-conservative subsystem (Aµ)NC is equivalent to:

∂t τ = 0,

∂tW + λA, µ1 ∂xW = −(p−Π)
aA µ

,

∂tR+ λA, µ4 ∂xR = (p−Π)
aA µ

,

∂t e+ (1− E 2
0 (t))τ ∂x (Πu) = 0.

(14)
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with u(W, R) = (R+W )/2 and Π(W, R) = aA (R−W )/2. Thus, W (respectively R) is constant along
the 1-characteristic curves (respectively the 4-characteristic curves). What is more, it is a 1-strong
Riemann invariant (respectively a 4-strong Riemann invariant) meaning that it is constant through the
2,3 and 4 waves (respectively the 1 and 2,3 waves). On Figure 1 the domains of invariance of R and W
are drawn.

xi−1/2 xi+1/2

Wn
i Wn

i

Rni

Rni

Wn
i+1

Rni−1

x

t−(1− (E n
0 )2)(aA)nτni−1/2 (1− (E n

0 )2)(aA)nτni−1/2 −(1− (E n
0 )2)(aA)nτni+1/2 (1− (E n

0 )2)(aA)nτni+1/2t

Cell: i− 1 Cell: i Cell: i+ 1

Figure 1: Strong Riemann Invariants Behaviors

As already noticed in [11, 18], if one formally removes the relaxation terms ±(p−Π)/(aA µ) from
the PDEs (14), the dynamics of W and R become totally uncoupled. Besides the energy flux depends
only on these two quantities.
The time-implicit scheme for the subsystem A derived below is based on the extension of this

property at the discrete level.

4 The Acoustic Time-Implicit Scheme
The numerical resolution of the acoustic relaxation subsystem Aµ is split into two steps: the first one,
sometimes called the evolution step corresponds to the resolution of the homogeneous subsystem where
the term (p− Π)/µ has been removed. It becomes active afterwards during a projection step which, in
our case, consists in solving: ∂t Π = (p−Π) /µ.

4.1 A One-dimensional Implicit-Solver for the Evolution Step
Suppose that the computational domain Ω = [0, L] is made of Ncells cells. Let us define ∆x = L/Ncells

(respectively ∆t) the space step (respectively the time step) of the scheme. For i ∈ [1, .., Ncells] let us
set xi = (i− 1/2) ∆x, the coordinate of the cell center i and xi+1/2 = xi + ∆x/2, the coordinate of
face i+ 1/2. Finally define Ωi =]xi−1/2, xi+1/2[. Suppose that at time tn = n∆t, the initial datum of
Aµ is piecewise continuous on tNcells

i=1 Ωi. Then, by averaging the W-equation and the R-equation in
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(14) over Ωi×]tn, tn+ > tn[ one obtains:

Wn+
i −Wn

i

∆t −
(
1− (E n

0 )2) (aA)n τni
∆x

(
Wi+1/2(tn, tn+)−Wi−1/2(tn, tn+)

)
= 0,

Rn+
i −Rni

∆t +
(
1− (E n

0 )2) (aA)n τni
∆x

(
Ri+1/2(tn, tn+)−Ri−1/2(tn, tn+)

)
= 0,

(15)

withWn
i the spatial average over Ωi at time tn,Wi+1/2(tn, tn+) =

(
1/(tn+ − tn)

)
×
∫ tn+

tn
W(xi+1/2/t) dt,

and (aA)n = K max
i∈[1, Ncells]

(ρni (cA)ni ) , K > 1, the discrete acoustic relaxation constant fulfilling

inequality (11) throughout the whole computational domain. Eventually the Mach-sensitive discrete
parameter is given by:

E n
0 = max (Minf , min (Mn

max, 1)) ,

with: Mn
max = max

i∈[1, Ncells]

(
uni
cni

)
.

(16)

Remark 1. Averaging over a non-conservative term:
One can notice that, even if the R and W PDEs are non-conservative because of the τ ∂x (.) operator,

the fact that ∂t τ = 0 in the acoustic subsystem of the current splitting and the piecewise continuous
structure of the computed solution at time tn allow to derive exactly relations (15). This, is a key point
to make sure that the discrete acoustic relaxation subsystem is conservative which, for the present IMEX
scheme, is a necessary condition to ensure that the overall fractional step approach is conservative
(see Proposition 1 below). Finally, it has to be mentioned that, up to the Mach-sensitive parameter,
similar equations have already been obtained in the framework of the Lagrange-Projection methods
where a mass variable m such as ∂m = τ ∂x is at stake. See [11, 8] for more details.

The end of the scheme derivation follows naturally by remembering that W (respectively R) is
constant over the 2,3 and 4-waves (respectively the 1 and 2,3-waves). Indeed, the signs of the different
eigenvalues drawn on Figure 1 suggest that Wi+1/2(tn, tn+) (respectively Ri+1/2(tn, tn+)) can be
approximated by Wn+

i+1 (respectively by Rn+
i−1). Finally the two discrete dynamics write:

Wn+
i −Wn

i

∆t −
(
1− (E n

0 )2) (aA)n τni
∆x

(
Wn+
i+1 −W

n+
i

)
= 0,

Rn+
i −Rni

∆t +
(
1− (E n

0 )2) (aA)n τni
∆x

(
Rn+
i −R

n+
i−1

)
= 0.

(17)

Thus,
(
Wn+
i

)
i∈[1, Ncells]

(respectively
(
Rn+
i

)
i∈[1, Ncells]

) is solution of an uncoupled linear system in-
volving an upper-bidiagonal matrix (respectively a lower-bidiagonal matrix). If transmissive boundary
conditions are used by introducing fictitious states Un+

0 = Un+
1 and Un+

Ncells+1 = Un+
Ncells

, then
Wn+
Ncells+1 = Wn+

Ncells
and Wn+

0 = Wn+
1 . The matrices involved in (17) are then non singular since all

their diagonal terms are strictly positive.

4.2 Projection Step and Time-Implicit Acoustic Flux
Once the two uncoupled linear systems (17) have been solved, the time-implicit acoustic flux related to
the subsystem Aµ can be deduced immediately. It reads:
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Hµ
ac
n+
i+1/2 =

(
1− (E n

0 )2
)


0
(Π∗A)n+

i+1/2
(a2
A)n (u∗A)n+

i+1/2
(Π∗A)n+

i+1/2 (u∗A)n+
i+1/2

 ,

(u∗A)n+
i+1/2 =

Rn+
i +Wn+

i+1
2 ,

(Π∗A)n+
i+1/2 =

(aA)n
(
Rn+
i −W

n+
i+1

)
2 .

(18)

In the present work, the projection step is performed instantaneously. Indeed, µ is forced to tend
fictively towards zero such that p = Π. Particularly, the time-implicit acoustic pressure at face i+ 1/2
can be defined as: (p∗A)n+1

i+1/2 = (Π∗A)n+
i+1/2. The other flux quantities remain invariant through the

projection step. Finally the time-implicit scheme for the acoustic subsystem A writes:

Un+1
i = Un

i −
∆t
∆x

(
Hac

n+1
i+1/2 −Hac

n+1
i−1/2

)
,

with: U]
i =

[
ρ]i, (ρ u)]i, (ρ e)]i

]T
, ] ∈ {n, n+ 1} ,

and: Hac
n+1
i+1/2 =

(
1− (E n

0 )2
)  0

(p∗A)n+1
i+1/2

(p∗A)n+1
i+1/2 (u∗A)n+1

i+1/2

 .
(19)

It requires no particular linear solver since the two uncoupled systems (17) can be inverted by hand.
Besides, as proved in Appendix A, solving the discrete momentum equation of (19) is equivalent to
setting:

un+1
i = Rn+1

i +Wn+1
i

2 , (20)

provided that uni = Rni +Wn
i

2 .
In the sequel, some additional properties of the overall IMEX fractional step are presented.

4.3 The IMEX Scheme Properties
Three properties are underlined below. The two first deal with the conservativity and the maximum
principle whereas the last one concerns the discrete preservation of the Riemann Invariants of single
contact discontinuities.

Proposition 1. Conservativity and maximum principle of the overall IMEX scheme:
• Conservativity:
Let us formally introduce Hc

n
i+1/2

(
Un
i , Un

i+1
)
the time-explicit numerical flux associated to the

subsystem C (see [23] or (45) in Appendix A for a definition). Then, the overall IMEX scheme is
conservative and writes:

Un+1
i = Un

i −
∆t
∆x

(
Hc

n
i+1/2

(
Un
i , Un

i+1
)

+ Hac
n+1
i+1/2 −Hc

n
i−1/2

(
Un
i−1, Un

i

)
−Hac

n+1
i−1/2

)
. (21)
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• Maximum principle: Consider ρ φ a given conservative variable such as ∀ (x, t) : ∂t (ρ φ)+∂x (ρ φu) =
0. Assume that (ρ φ)ni ∈ [(ρ φ)Min, (ρ φ)Max]. Then, the maximum principle preservation (ρ φ)n+1

i ∈
[(ρ φ)Min, (ρ φ)Max] depends only on the convective sub-step discretization. It naturally holds under a
non-restrictive sufficient condition written in [23]: p.20, Lemma 1 (Positivity of intermediate
density)] .

It is well known that the above global conservativity result, which in this case is directly obtained
because the acoustic sub-step discretization is conservative by construction, is a necessary step in order
to capture the Euler physical shock fronts (see [22]). As for the maximum principle preservation for
purely convected quantities, it can be considered as a first step towards the L∞ stability of the overall
scheme.

Proposition 2. Discrete preservation of the contact discontinuity Riemann invariants:
Assume that the equation of state is such that (ρ ε)EOS (ρ, p) = C(p) ρ+B(p), with p→ C(p) and

p→ B(p) smooth functions such as (ρ ε)EOS
|ρ : p→ C(p) ρ+B(p) is injective on the domain of definition

of p (see[16] or Appendix A for an explanation of such hypothesis); then, the overall IMEX scheme
exactly preserves the constant velocity and the constant pressure of an isolated contact discontinuity
from one time step to another.

According to [16], the above general expression of (ρ ε)EOS (ρ, p) belongs to the category of the "T1"
equation of state. One can notably notice that the stiffened gas EOS: ρ ε = p+ γΠ, is included in it.

However the Van der Waals EOS: ρ ε = (p+ a ρ2) (1− b ρ)
γ − 1 − a ρ2 is out of it. The above proposition

will be useful in the sequel to detect the appearance of instabilities related to high convective Courant
number C|u|. Proofs, including a brief description of the time-explicit convective flux related to
subsystem C, can be found in Appendix A. The next subsection is devoted to the discrete time step
specification.

4.4 Construction of the Numerical time step
For a given convective Courant number C|u|, the time step at the n-th iteration of the numerical scheme
is:

∆tn = C|u|
∆x

max
i

(|uni |)
. (22)

One should notice that the above time step formula does not take into account the real eigenvalues
u ± E0 cC associated to the convective subsystem C. Besides, as described in [23], this subsystem is
solved using the same relaxation techniques than these described in Section 3; the eigenvalues of the
relaxation convective subsystem Cµ being u± E0 aC τ , with aC > ρ cC . Thus, a more suitable way to set
the time step in order to preserve the stability criteria of the subsystem Cµ is:

∆tnC = CC
∆x

max
i+1/2

(
max

(∣∣∣uni − E n
0 (aC)ni+1/2 τ

n
i

∣∣∣ , ∣∣∣uni+1 + E n
0 (aC)ni+1/2 τ

n
i+1

∣∣∣)) ,
(anC)i+1/2 = Kmax

(
ρni (cC)ni , ρni+1 (cC)ni+1

)
, K > 1.

(23)
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In practice, formula (22) is implemented because, contrary to (23), it does not contain any dependence
in the speed of sound. Nevertheless, in Section 6, the influence of the choice of ∆tn rather than ∆tnC
can be seen through a stability analysis.

The following section is devoted to one-dimensional numerical results produced by the present IMEX
approach.

5 Numerical Results
5.1 Low Mach Isolated Waves
The first part of the numerical results is dedicated to the influence of the Courant number on quantities
varying through the acoustic or material waves. Indeed, it is well known (see [27, 28, 2, 3, 26, 12])
that time-implicit schemes, even if of high order in space, are only accurate on σ-like waves when
the time steps ∆t are such that Cσ = (|σ| ∆t)/∆x ≈ 1. In the following, one seeks to investigate the
accuracy of the above IMEX fractional step with respect to C|u| and compare it with an other IMEX
Lagrange-Projection (LP) fractional step described in [8, 7] in the context of low Mach number flows.
Two low Mach number cases are thus evaluated. The first one details the propagation of a single
3-shock wave while the second one corresponds to the evolution of a single contact wave. In both cases,
particular attention will be paid to the diffusive or stiffening effects associated to the increase of C|u|.

5.1.1 Isolated Shock Wave

For this test case, the fluid is endowed with a perfect gas thermodynamics ε = p/ ((γ − 1) ρ), and
c =

√
γ p/ρ with γ = 7/5, the heat capacity ratio. The left state of the considered 3-isolated shock

wave is completely defined by ρ0
L = 1 (kg.m−3), p0

L = 104 (Pa) and u0
L = M0 × c0

L with M0 = 10−2 the
maximal Mach number of the flow. Besides, the shock wave speed σ is fixed equal to c0

L ≈ 118.32 (m.s−1).
The three remaining unknowns ρ0

R, u0
R and p0

R are the solutions of the corresponding Rankine-Hugoniot
problem and can then be found analytically. Besides, the resulting right state abides by the Lax
entropy criterion: u0

R + c0
R < σ < u0

L + c0
L.

On Figure 2, the isolated 3-shock wave pressure profile is shown. The physical time of the simulation
is such that the initial discontinuity located at x0 = 0.5 m stops at x = 0.75 m. The mesh is made of
103 cells. Different curves are plotted; Sp-(M) stands for the current splitting presented in (2) and (3)
whereas Sp-LP refers to a Lagrange-Projection splitting method fully described in [8] and taken as a
benchmark in this work. Besides the abbreviation "Exp" indicates that the acoustic part of the Sp-(M)
splitting (respectively the Sp-LP splitting) has been discretized using a time-explicit scheme detailed
in [23] (respectively [8]). In this case, the CFL condition is such that CE = 1. On the contrary "Imp"
refers to the above time-implicit approach.
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Figure 2: Pressure profile, Perfect Gas, M = 10−2, with Ncells = 103

Two different convective Courant numbers values have been tested in the implicit-explicit approaches:
the first one C|u| = 0.01 has been deliberately chosen to provide time steps close to those based on
the constraint CE ≈ 1 since formally C|u| = M/(1 +M)CE and M = 10−2. The other value C|u| = 0.3
corresponds to CE ≈ 30 and is thus expected to be too high for the IMEX scheme to accurately follow
the shock wave front.

It turns out that, in this low Mach number case, the sharper pressure profiles are those provided by
the time-explicit schemes complying with the constraint: CE ≈ 1. On the contrary the closer to one is
C|u|, the more diffused the shock profile is. Besides, for a fixed Euler Courant number CE ≈ 1, the
averaging effect of the time-implicit schemes relatively to the time-explicit ones can be observed as the
profile of "Sp-(M)-Imp: C|u| = 0.01" is largely more diffused than "Sp-(M)-Exp: CE = 1". Finally, one
can notice that, for all the Courant number values involved here, the Sp-(M) splitting is as accurate as
the Sp-LP method. These results, obtained in the context of the Euler system, seem to be close to the
predictions given by the linear stability analysis in [12].
This simple test case, involving a fast acoustic wave related to a genuinely non-linear field, has

allowed to test the robustness with respect to C|u| of the present approach compared to the LP method.
In the sequel the same study is performed on a slow material wave associated with a linearly degenerate
field.

5.1.2 Isolated Contact Discontinuity

For the same thermodynamical law, a single contact discontinuity is created by imposing: ρ0
L =

1 (kg.m−3), ρ0
R = 0.125 (kg.m−3), p0

L = p0
R = p0 = 104 (Pa), u0

L = u0
R = M0 × c0

R = u0 with
M0 = 10−2. This wave linked to a linear degenerate field propagates at speed u0 ≈ 3.35 (m.s−1).

On Figure 3, one can observe the density profiles. As it was expected, the isolated contact discontinuity
sharpens as the convective Courant number C|u| reaches 1. Once again, for the same Courant number,
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the profiles between the present IMEX scheme and the IMEX-LP scheme overlap quasi-perfectly.
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Figure 3: Density profile, Perfect Gas, Mmin = 10−2, with Ncells = 103

However, one can notice that the ideal target associated to C|u| = 0.95 ≈ 1 has only been achieved
for the LP method. Indeed, for this test case, the present splitting and the resulting IMEX approach
triggers instabilities for C|u| above 0.44. A tentative of explanation for this stability issue is done
further in Section 6.
In the sequel, accuracy and efficiency of the above IMEX schemes are compared to their full

time-explicit versions in the context of low Mach number flows.

5.2 A Low Mach Sod Shock Tube
After having measured the impact of the IMEX fractional step approach on isolated waves, one
wishes to extend the study to multiple waves test cases. Herein, a low Mach number shock tube is
computed. The fluid is endowed with the same previous perfect gas thermodynamics. The initial
conditions are made of a density discontinuity ρ0

L = 1 kgm−3, ρ0
L = 0.125 kgm−3, a constant velocity

u0
L = u0

R = u0 = 1 ms−1, and a slightly discontinuous pressure p0
L = 10080 Pa, p0

R = 10000 Pa. It
results in a left-going 1-rarefaction wave, a 2-contact discontinuity propagating to the right and a
right-going 3-shock wave. The maximal Mach number of the flow, reached in the head of the rarefaction
wave, is equal to 1.26× 10−2.

Various time-explicit schemes have been tested: "no-Sp" corresponds to the case where E n
0 = 1 is

imposed along the simulation. Thus, the splitting is not triggered. "Sp-(
√
M)" is the weighted splitting

approach with E n
0 = max

(√
Minf , min

(√
Mn
max, 1

))
while "Sp-(M)" involves E n

0 defined in formula
(16) which is a priori optimal for a time-explicit scheme, because, as shown in [23], it minimizes the
numerical diffusion of the subsystem C in the low-Mach number case. Lastly, "Sp-LP" is again the
Lagrange Projection splitting method, described in [8]. Besides, the mention "-corr" means that a
low-Mach correction inspired from [14] and written in [23] is triggered. As observed in [23, 8, 7], it
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aims at considerably reducing the numerical diffusion in the case of low Mach number flows.
Regarding the time-implicit schemes, two values for C|u| have been tested. As shown in Appendix D,

the ratio between C|u| the convective Courant number based on u0 and C 0, ∗
E the most constraining

Euler Courant number is:
C u0

|u| ≈ 1.5× 10−3 C 0, ∗
E . (24)

Then, the selected convective Courant numbers are C|u| = 1.5× 10−2 (C 0, ∗
E ≈ 10) and C|u| = 4.5× 10−2

(C 0, ∗
E ≈ 30).
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Figure 4: P Convergence Curve (left), Efficiency Curve (right): M = 1.26× 10−2
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Figure 5: Y Convergence Curve (left), Efficiency Curve (right): M = 1.26× 10−2

In this test case, in order to isolate the effect of the IMEX scheme on the contact discontinuity, a
passive tracer Y has been added to the Euler system. Its PDE being:

∂t (ρ Y ) + ∂x (ρ Y u) = 0. (25)

Starting from Y 0
L = 1 and Y 0

R = 0.5, the exact solution jumps only through the contact discontinuity.
Figure 4 (respectively Figure 5) presents the convergence curve and the efficiency curve for the

pressure (respectively Y ) variable. As already pointed out in [23], for such a low Mach number,
and focusing on the pressure (or any variable jumping through the genuinely non-linear fields), the
time-explicit schemes with the low Mach number correction Sp-(

√
M)-corr and Sp-LP-corr, are the

most accurate as well as the most efficient. As already observed in the isolated 3-shock wave test
case, time-implicit schemes such that CE > 1 are less accurate than any of the time-explicit schemes.
Besides, according to the pressure efficiency curve, this lack of accuracy is not compensated by a
substantial gain in CPU time. Indeed, for a given pressure L1-error level, time-implicit schemes are
still more CPU-consuming than the time-explicit ones.
In the case of the passive tracer Y , no specific difference on the convergence curve can be noticed

between the time-explicit and the time-implicit schemes. Indeed, the convective Courant number
C|u| ≤ 3× 10−2 is still very far from one. Thus for every scheme, numerical diffusion has uniformly
smoothed the variables only jumping through the slow material wave. Nevertheless, as shown on
Table 1, time-implicit schemes are clearly more efficient, for the Y variable, than the time-explicit
ones, the latter being 7 (respectively 13) times more CPU-consuming than time-implicit schemes when
setting C 0, ∗

E = 10 (respectively C 0, ∗
E = 30).
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Ncells CE = 10 CE = 30
102 1.97 2.80
103 3.75 5.51
104 7.52 13.36

3× 104 7.26 13.71
5× 104 6.74 13.66
7× 104 7.39 13.34
9× 104 7.67 13.78

Table 1: TCPU
No-Sp/T

CPU
Sp-(M)-Imp

The next section is a sketch of stability analysis in order to determine an upper bound for the
convective Courant number under which the present IMEX scheme remains stable.

6 Stability Analysis
Let us consider the isolated contact discontinuity test case with a 103 cells mesh discussed in sub-section
5.1.2. As shown on Figure 8 and Figure 9 in Appendix C, the present splitting seems to suffer from
instabilities when the convective Courant number C|u| goes over a certain threshold. In the following
the dependence to the Mach number M of such a threshold is examined. Among other questions, one
wonders whether the time-explicit CFL condition C|u| = M/(1 +M) is retrieved as M tends toward
zero?
As stated in Proposition 2 for a sufficiently simple shape of the equation of state, velocity and

pressure are supposed to be left constant by the overall scheme from one time step to another.
Nonetheless, truncation errors on double-precision floating-point numbers can be amplified by the
scheme’s instability and lead to the crash of the simulation. Thus, the selected criterion to detect the
instability appearance is: max

i

(∣∣∣pni − p0
∣∣∣) /p0 > η with η = 10−7 which is nearly the single-precision

for floating-point numbers. Besides at the beginning of each calculation a ramp of CFL is enforced so
that the targeted Courant number is reached after 200 time steps, which corresponds to a propagation
of 0.1 m of the exact contact discontinuity. If the calculation ends without triggering the above pressure
stability criterion then the same calculation is launched again on a five times finer mesh of 5× 103

cells in order to make sure that the numerical diffusion has not damped the instability appearance.
On Figure 6, the curve labeled Sp-(M) gathers the different points resulting from the above stable

convective Courant number research. Recall that in this test case the velocity is given by u0 = Mmin c
0
R,

with c0, R =
√

(γ p0)/ρ0
R the maximal sound speed and Mmin the minimal Mach number of the

flow used as an input parameter here. Hence the stable Courant number upper bound is displayed
as a function of Mmin. The latter starts from Mmin = 1, u0 = 335 (m.s−1) and decreases until
Mmin = 10−4, u0 = 0.0335 (m.s−1).
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Figure 7: Evaluation of an upper bound for the stable convective Courant number C|u| as
function of the Mach number Mmin, C|u| ∈ [0.2, 0.5]

One can observe that for Mmin ≈ 1, E n
0 ≈ 1 so that the full Euler system is brought back into the

time-explicit convective subsystem. The latter is thus bound by the classical CFL condition CE ≈ 0.49.
Then, as the Mach number decreases, the contribution of the acoustic subsystem becomes more and
more effective. It results in a drop of the Euler time-explicit CFL condition until Mmin ≈ 0.35 where
C|u| = 0.26. This decline might be related to the gap between the definition of C|u| and the Courant
number involving the biggest eigenvalues of the convective subsystem:
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CC =

(∣∣u0∣∣+ E n
0 c0, R
C

)
∆t

∆x ,

with: c0, R
C = cC

(
ρ0
R, p

0
)
.

(26)

One can notice that:

C|u| =
(

1 + E n
0
c0, R
C
|u0|

)−1

CC =
(

1 + E n
0

Mmin

c0, R
C
c0, R

)−1

CC ,

since:
∣∣∣u0
∣∣∣ = Mmin c

0, R,

and: c
0, R
C
c0, R =

√
(E n

0 )2γ − 1
γ

+ 1
γ
∈ [1/γ, 1] .

(27)

Besides, according to formula (16):

E n
0 = min (Mn

max, 1) = min
(∣∣∣u0

∣∣∣ /c0, L, 1
)

= min
(
Mmin

√
ρ0
L

ρ0
R

, 1
)
,

then ∀Mmin ≥Mthres =
√
ρ0
R

ρ0
L

: E n
0 = 1,

and ∀Mmin < Mthres =
√
ρ0
R

ρ0
L

: E n
0 = Mmin/Mthres.

(28)

It results that:

C|u| =



(
1 + 1

Mmin

)−1
CC , if: Mmin ≥Mthres,1 + 1

Mthres

√(
Mmin

Mthres

)2 γ − 1
γ

+ 1
γ

−1

CC , otherwise.
(29)

Define Mmin → C th
|u| (Mmin), the continuous function described by formula (29). This function

has been plotted as a dashed black line on Figure 6 and Figure 7. Then, one can notice that when

Mmin = 1, C th
|u|(Mmin) = CC/2 whereas it reaches a plateau value

(
1 + 1

Mthres
√
γ

)−1

as Mmin tends

towards zero. If one assumes that the time-explicit scheme associated to the convective subsystem
is stable for CC ≈ 1, then one finds numerically that C th

|u|(1) ≈ 0.5 while lim
Mmin→0

C th
|u|(Mmin) ≈ 0.2949.

Besides, Mthres ≈ 0.3535 and C th
|u|(Mthres) ≈ 0.2612. Actually, for every Mmin between Mthres and 1

the comparison between C th
|u| and the measured stable convective Courant number is fair: the cut-off

Mmin = Mthres, the C th
|u|(Mthres) value as well as the global shape of C th

|u|(.) are retrieved. Yet, as Mmin

falls below Mthres, the measured stable convective Courant number increases to reach the plateau value
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C|u| = 0.43 which is bigger than the one predicted by the above analysis. Nevertheless it seems that, on
this test case, C|u| ≈ 0.3 is sufficient to ensure the scheme stability for every Mach number. According
to Zakerzadeh in [36], this is what is called the "Mach-uniform" stability property. This latter result
is absolutely not guaranteed by the time-implicit integration of the stiff part of the IMEX approach
and strongly depends on the splitting at stake. Indeed, in [31, 37] several IMEX fractional steps on
Euler-like systems are studied. It turns out that the "modified" equation obtained from the order
two Taylor expansion of a smooth solution of an IMEX fractional step approach exhibits a diffusive
operator which can be written D0 ∂xx U; with D0 = β C|u| I− (AC0)2 + (AA0 )2 +

[
AC0 , AA0

]
, β being

a coefficient related to the scheme numerical diffusion of the convective sub-step, AC0 (respectively
AA0 ) the linearized jacobian matrix related to the convective (respectively the acoustic) subsystem,
and

[
AC0 , AA0

]
= AC0 AA0 −AA0 AC0 being the commutator linked to the splitting. The latter can be

viewed as a mathematical operator which couples the two subsystems of the fractional step approach.
Hence, even if it is discretized using a time-implicit scheme, the acoustic subsystem can still have an
influence on the overall fractional step stability through the commutator which can impact the diffusion
(or the anti-diffusion) effect of the modified equation. On Figure 6, the orange-triangle line labeled
"Sp-LP" represents the stable convective Courant number obtained with the Lagrange-Projection IMEX
approach. As already proven in [36], this scheme is Mach-uniformly stable for C|u| = 1.

In order to better understand the shape of the stable Courant number, a von Neumann-like stability
analysis based on a linearized version of the IMEX approach has been performed. This strategy is
motivated by the fact that, as shown on Figure 8 of Appendix C, the instability seems to appear in a
region where ρ, u and p are constant. The linearization required by the von Neumann analysis is thus
justified. However, one should keep in mind that such a method relies on periodic boundary conditions
which is not the case here because of the density discontinuity.

Starting at time step tn with a perturbed constant flow:

ρni = ρ0 + ε ρ1, n
i , ρ0 = ρ0

R,

uni = u0 + ε u1, n
i ,

pni = p0 + ε p1, n
i ,

(30)

the discrete dynamics of the perturbation is derived when a Rusanov scheme is used to solve the first
convective subsystem (2). The numerical flux at face i+ 1/2 associated to this scheme reads:

Hrus
n
i+1/2 =

FC
(
Un
i+1
)

+ FC (Un
i )

2 −

∣∣∣λni+1/2

∣∣∣
2

(
Un
i+1 −Un

i

)
,

with: FC (U) =
[
ρ u, ρ u2 + E 2

0 p, (ρ e+ E 2
0 p)u

]T
,

and:
∣∣∣λni+1/2

∣∣∣ = max
(∣∣uni+1

∣∣+ (E0)n (cC)ni+1, |uni |+ (E0)n (cC)ni
)
.

(31)

Let us define ρn+
i = ρ0, n+

i + ε ρ1, n+
i , un+

i = u0, n+
i + ε u1, n+

i , and pn+
i = p0, n+

i + ε p1, n+
i the solution

produced by the Rusanov scheme applied to the convective subsystem. Then, zeroth order and first
order dynamics can be decoupled and one obtains:
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ρ0, n+
i = ρ0,

u0, n+
i = u0,

p0, n+
i = p0,

ρ1, n+
i − ρ1, n

i

∆t + u0 ρ
1, n
i+1 − ρ

1, n
i−1

2 ∆x + ρ0 u
1, n
i+1 − u

1, n
i−1

2 ∆x −
∣∣∣λ0
∣∣∣ ρ1, n

i+1 − 2 ρ1, n
i + ρ1, n

i−1
2 ∆x = 0,

u1, n+
i − u1, n

i

∆t + u0 u
1, n
i+1 − u

1, n
i−1

2 ∆x +
(
(E n

0 )2/ρ0
) p1, n

i+1 − p
1, n
i−1

2 ∆x −
∣∣∣λ0
∣∣∣ u1, n

i+1 − 2u1, n
i + u1, n

i−1
2 ∆x = 0,

p1, n+
i − p1, n

i

∆t + u0 p
1, n
i+1 − p

1, n
i−1

2 ∆x + ρ0 (c0
C)2 u

1, n
i+1 − u

1, n
i−1

2 ∆x −
∣∣∣λ0
∣∣∣ p1, n

i+1 − 2 p1, n
i + p1, n

i−1
2 ∆x = 0,

with:
∣∣∣λ0
∣∣∣ =

∣∣∣u0
∣∣∣+ (E0)n (c0

C).

(32)

If ∀φ ∈ {ρ, u, p} the following sinus spatial pulse is conjectured φti = φ̂t ej k xi , t ∈ {n, n+}; one can
derive the von Neumann gain matrix related to the convective subsystem:

ρ̂
n+

ûn+

p̂n+

 =



G −
ρ0 C|u|
|u0|

j sin(k∆x) 0

0 G −
(E n

0 )2 C|u|
ρ0 |u0|

j sin(k∆x)

0 −
ρ0 (c0

C)2 C|u|
|u0|

j sin(k∆x) G


ρ̂

n

ûn

p̂n

 ,

with: G = 1− 2
∣∣λ0∣∣
|u0|

C|u| sin
2(k∆x/2)− j u

0

|u0|
C|u| sin(k∆x).

(33)

The spectral radius |G|C related to this gain matrix can be found easily and one can state that (See
Appendix B for a proof):

C|u| < C crit
|u| =

∣∣∣u0
∣∣∣ / ∣∣∣λ0

∣∣∣⇒ |G|C < 1. (34)

In particular, when Mmin tends towards one, (E0)n tends towards one and c0
C tends towards c0 such

that |G|C < 1⇔ C|u| < Mmin/ (1 +Mmin). Thus, the classical CFL condition is retrieved.
The same kind of analysis is performed on the acoustic subsystem. However, the time-implicit flux (19)

raises new issues in the sense that its energy contribution strongly couples zeroth-order and first-order
terms: (p∗A)n+1

i+1/2 (u∗A)n+1
i+1/2 = (p0, ∗

A )n+1
i+1/2 (u0, ∗

A )n+1
i+1/2+ε

(
(p0, ∗
A )n+1

i+1/2 (u1, ∗
A )n+1

i+1/2 + (p1, ∗
A )n+1

i+1/2 (u0, ∗
A )n+1

i+1/2

)
.

What is more, this coupling is strongly non-linear and prevents from deriving a simple von Neumann
analysis. That is why, it has been additionally assumed that zeroth-order terms including these taken
at time tn+1 were constant namely:

ρ0, n+1
i = ρ0,

u0, n+1
i = u0,

p0, n+1
i = p0;

(35)

then, as proved in Appendix B the dynamics of the perturbation reads:
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ρ1, n+1
i − ρ1, n+

i

∆t = 0,

u1, n+1
i − u1, n+

i

∆t +
(
1− (E n

0 )2
) [ 1

ρ0
p1, n+1
i+1 − p1, n+1

i−1
2 ∆x − a0

A
ρ0

u1, n+1
i+1 − 2u1, n+1

i + u1, n+1
i−1

2 ∆x

]
= 0,

p1, n+1
i − p1, n+

i

∆t +
(
1− (E n

0 )2
)
ρ0 (c0

A)2
[
u1, n+1
i+1 − u1, n+1

i−1
2 ∆x − 1

a0
A

p1, n+1
i+1 − 2 p1, n+1

i + p1, n+1
i−1

2 ∆x

]
= 0.

(36)
The von Neumann gain matrix writes:

1 0 0

0 1 + 2αn sin2(k∆x/2) αn

a0
A
j sin(k∆x)

0 αn (ω0
A)2 a0

A j sin(k∆x) 1 + 2αn (ω0
A)2 sin2(k∆x/2)


ρ̂

n+1

ûn+1

p̂n+1

 =

ρ̂
n+

ûn+

p̂n+

 ,
with: αn =

(
1− (E n

0 )2
) a0
A C|u|
ρ0 |u0|

,

and: ω0
A = ρ0 c0

A
a0
A
.

(37)

Finally the von Neumann gain matrix related to the fractional step approach reads:[
G 0
0 G−1

A GC

]
,

with:

GC =


G −

(E n
0 )2 C|u|
ρ0 |u0|

j sin(k∆x)

−
ρ0 (c0

C)2 C|u|
|u0|

j sin(k∆x) G

 ,

GA =

 1 + 2αn sin2(k∆x/2) αn

a0
A
j sin(k∆x)

αn (ω0
A)2 a0

A j sin(k∆x) 1 + 2αn (ω0
A)2 sin2(k∆x/2)

 ,
G−1
A = 1

∆

1 + 2αn (ω0
A)2 sin2(k∆x/2) −α

n

a0
A
j sin(k∆x)

−αn (ω0
A)2 a0

A j sin(k∆x) 1 + 2αn sin2(k∆x/2)

 , ∆ = detGA.

(38)

G is a first eigenvalue related to the mass equation. As written in Appendix B, |G| < 1 if C|u| < C crit
|u| .

The two remaining eigenvalues are linked to the matrix G−1
A GC which couples the momentum and

the energy equations and can not be easily found analytically. Starting from C crit
|u| , a loop on all

the k modes ∈ [0, 4π/∆x] is performed and the spectral radius |G|kAC associated to
(
G−1
A GC

)
(k) is

calculated. If, during the loop, |G|kAC > 1, then C crit
|u| is slightly decreased and the loop is restarted.

20



Otherwise the current Courant number is stored and considered as the stable Courant number of the
above von Neumann analysis.
On Figure 6 and Figure 7, the curve labeled "VN-Sp" (red line) displays the different stable

convective Courant numbers obtained thanks to this method. A very good agreement holds with
the empirical measures for all Mmin above Mthres. Then, contrary to the numerical measures, the
von Neumann method seems to reach the theoretical plateau lim

Mmin→0
C th
|u|(Mmin), at least for Mmin ∈[

7.5× 10−2, 0.35
]
. Unfortunately, for very low Mach numbers C|u| plunges down. It predicts C|u| = 10−2

when Mmin = 10−4. This might stem from the fact that the dynamics of the zeroth-order terms at
time step tn+1 have been supposed constant to allow the derivation of the acoustic gain matrix. Yet,
as formally shown in [23] by performing a Mach expansion on the non-conservative variables of the
acoustic subsystem: when the reference Mach number is close to zero, the zeroth-order momentum
term is fed by the second-order pressure gradient. Thus, one could assume that if the amplitude of this
second-order pressure gradient explodes because of an instability, the zeroth-order momentum term
would rise too so that to partially damp the instability. Further investigations should be done in order
to better understand this sudden drop. As of now, one can simply have a look on the shape of the
modulus of the eigenvalues

∣∣∣λ1
AC

∣∣∣ and ∣∣∣λ2
AC

∣∣∣ of G−1
A GC seen as functions of the k mode ∈ [0, 4π/∆x].

Figure 10 and Figure 11 in Appendix E display (k∆x)/(4π)→ |λrAC | , ∀r ∈ {1, 2} for Mmin = 10−3

and C|u| = C crit
|u| . It seems that the maximal value for

∣∣∣λ2
AC

∣∣∣ is reached in the neighborhood of k ≈ T∆x/2
with T∆x = 4π/∆x. Then one can linearize G−1

A GC(T∆x/2 + ε) and derive the analytical shape of the
eigenvalues modulus up to a O(ε2) term. After tedious calculations (see Appendix E), one can observe
that the imaginary parts of the eigenvalues contain a C|u|/Mmin term which becomes preponderant as
the Mach number tends towards zero.

7 Conclusion
The present work focuses on the derivation of an IMEX version of a Mach-sensitive fractional step
introduced in [23]. The time-implicit scheme derived for the acoustic subsystem is based on the
non-conservative dynamics of strong Riemann invariants provided by the relaxation schemes framework.
Although such a technique stems from the Lagrange-Projection theory [11, 18], it can be extended to
the present splitting because of density time invariance in the acoustic sub-step and the piece-wise
constant structure of the computed solution. The resulting IMEX scheme is simple, the implicit part
being inverted by hand, and conservative by construction. What is more, the maximum principle
preservation for purely convected quantities holds under a non-restrictive condition for the time-explicit
convective flux.

A low Mach number shock tube has highlighted a trade-off in the use of IMEX schemes. Indeed, if
one is interested by pressure jumps through shock waves, then using an IMEX scheme with CE � 1
might be inappropriate if the accuracy of the shock profile is at stake. Besides, the gain in CPU time
is not sufficient to compensate the implicit diffusion and dispersion errors: for the pressure variable,
IMEX schemes are still less efficient than full time-explicit ones. However, any quantities varying only
through material waves should be depicted more efficiently and with a sufficient accuracy.
Finally, stability measures performed in the case of an isolated contact discontinuity for different
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Mach numbers seem to suggest that the present IMEX approach is uniformly stable for a convective
Courant number C|u| of the order of 0.3. A von Neumann-like stability analysis performed in the
constant flow region where the instability spreads is in good agreement with the numerical observations
for Mach numbers lying between 0.3 and 1. Further investigations should be undertaken to understand
the sudden drop of the stable convective Courant number obtained with the von Neumann approach
as the Mach number tends towards zero. As for the Lagrange-Projection approach, the Mach-uniform
stability predicted in [36] has been found for C|u| = 1.
As pointed out along the introduction, the ultimate goal here is to derive an IMEX scheme able

to accurately follow slow material waves and, when a strong shock wave occurs, even in the case of a
low Mach number flow, to switch for a fully time-explicit Riemann solver. That is why, future works
could deal with the design of an additional global shock detector criterion to complete the definition of
the splitting parameter E n

0 . Then, the resulting Mach-Shock-sensitive IMEX scheme might be better
suited for a condensation induced water hammer scenario. What is more, at a given instant, the
computational domain can feature subsonic areas as well as sonic or supersonic ones. Thus, the spatial
dependence of the splitting parameter could also been examined. Indeed, provided that the consistency
of the overall fractional step is not deteriorated, such a spatial dependence would allow to capture
local fluctuations of the Mach number, and the present approach to react more finely.
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Appendix A: Discrete Preservation of the Contact Discontinuity Riemann
Invariants
Before focusing on the preservation of the contact discontinuity Riemann invariants property, let us
have a look on the discrete momentum equation related to the flux (19).

Assume that: un+
i = Rn+

i +Wn+
i

2 ,then:

un+1
i = Rn+1

i +Wn+1
i

2

⇔ un+1
i − un+

i

∆t = 1
2

[
Rn+1
i −Rn+

i

∆t + Wn+1
i −Wn+

i

∆t

]

⇔ un+1
i − un+

i

∆t = −(1− (E n
0 )2)(aA)n+ τn+

i

2

[
Rn+1
i −Rn+1

i−1
∆x −

Wn+1
i+1 −W

n+1
i

∆x

]
ρn+1

i =ρn+
i︷︸︸︷⇔ ρn+1

i un+1
i − ρn+

i un+
i

∆t + (1− (E n
0 )2) (aA)n+

∆x

[
Rn+1
i −Wn+1

i+1
2 −

Rn+1
i−1 −W

n+1
i

2

]
= 0

⇔ ρn+1
i un+1

i − ρn+
i un+

i

∆t + (1− (E n
0 )2)

(p∗A)n+1
i+1/2 − (p∗A)n+1

i−1/2
∆x = 0,

with: (p∗A)n+1
i+1/2 = (aA)n+ Rn+1

i −Wn+1
i+1

2 .

(39)

Thus:

un+
i = Rn+

i +Wn+
i

2 , and un+1
i = Rn+1

i +Wn+1
i

2 ⇔

un+
i = Rn+

i +Wn+
i

2 , and (ρ u)n+1
i − (ρ u)n+

i

∆t + (1− (E n
0 )2))

(p∗A)n+1
i+1/2 − (p∗A)n+1

i−1/2
∆x = 0.

(40)

Then, if un+
i =

(
Rn+
i +Wn+

i

)
/2, solving the momentum equation is strictly equivalent to directly

setting un+1
i =

(
Rn+1
i +Wn+1

i

)
/2.

Discrete Preservation of the Riemann Invariants of a Contact Discontinuity
Consider an equation of state such that:

(ρ ε)EOS (ρ, p) = C(p) ρ+B(p), (41)

with p→ C(p) and p→ B(p) smooth functions such as (ρ ε)EOS
|ρ : p→ C(p) ρ+B(p) is injective on

the domain of definition of p. Formula (41) belongs to the "T1-class" of EOS introduced in [16]. One
can notice that the stiffened gas thermodynamics is included in this category. In the sequel, the exact
invariance of velocity and pressure in the case of an isolated contact wave described in subsection 5.1.2
is checked.
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Acoustic Sub-step

Assume that at the end of the convective sub-step, the isolated contact discontinuity has been preserved:

∀ i : un+
i = u0, pn+

i = p0,

⇒∀ i : Wn+
i = u0 − p0

an+
A

= W 0, n+, Rn+
i = u0 + p0

an+
A

= R0, n+.
(42)

Considering the discrete dynamics ofW and R written in (17) coupled with the transparent boundary
conditions Wn+

Ncells+1 = Wn+
Ncells

and Wn+
0 = Wn+

1 , one can easily see that:

∀ i : Wn+1
i = W 0, n+, Rn+1

i = R0, n+. (43)

Please note that the constant relaxation hypothesis (aA)n = K max
i∈[1, Ncells]

(ρni (cA)ni ) , K > 1, plays

an important role here since a local value of aA would have been sensible to the density discontinuity
preventing W and R to remain constant. Thus, property (43) cannot be guaranteed in this case. Then,
(p∗A)n+1

i+1/2 = (p∗A)n+1
i−1/2 = an+

A

(
R0, n+ −W 0, n+

)
/2 and (u∗A)n+1

i+1/2 = (u∗A)n+1
i−1/2 =

(
R0, n+ +W 0, n+

)
/2

such that the discrete fluctuation of the time-implicit acoustic flux is null. The mass, momentum and
the energy equations thus become:

ρn+1
i − ρn+

i

∆t = 0,

ρn+
i

un+1
i − un+

i

∆t = 0,

ρn+
i

(
εn+1
i − εn+

i

)
+
(
(un+1
i )2/2− (un+

i )2/2
)

∆t = 0.

⇒

ρn+1
i = ρn+

i ,

un+1
i = un+

i = u0,

(ρ ε)EOS
(
ρn+
i , pn+1

i

)
= (ρ ε)EOS

(
ρn+
i , pn+

i

)
.

(44)
Since (ρ ε)EOS

|ρ : p→ C(p) ρ+B(p) is injective, pn+1
i = pn+

i = p0 and the acoustic sub-step exactly
preserves the velocity and pressure uniform profiles.

Convective Sub-step

The convective flux associated to subsystem C is obtained using the same kind of relaxation method.
Details are given in [23]. The convective flux formula at face i+ 1/2 reads:

Hc
n
i+1/2 =



(FC)
n
i if uni − E n

0 (anC)i+1/2τ
n
i > 0

(FC)
∗, n
i+1/2 if uni − E n

0 (anC)i+1/2τ
n
i ≤ 0 < (u∗C)ni+1/2

(FC)
∗∗, n
i+1/2 if (u∗C)ni+1/2 ≤ 0 < uni+1 + E n

0 (anC)i+1/2τ
n
i+1

(FC)
n
i+1 if uni+1 + E n

0 (anC)i+1/2τ
n
i+1 ≤ 0

(anC)i+1/2 = Kmax
(
ρni (cC)ni , ρni+1 (cC)ni+1

)
, K > 1

FC (U) =
[
ρ u, ρ u2 + E 2

0 p, (ρ e+ E 2
0 p)u

]T
,

(45)
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with :

(FC)
∗, n
i+1/2 =


(ρ∗C)ni (u∗C)ni+1/2

(ρ∗C)ni
(
(u∗C)ni+1/2

)2
+ (E n

0 )2(Π∗C)ni+1/2(
(ρ∗C e∗C)ni + (E n

0 )2(Π∗C)ni+1/2

)
(u∗C)ni+1/2

 ,

(FC)
∗∗, n
i+1/2 =


(ρ∗C)ni+1 (u∗C)ni+1/2

(ρ∗C)ni+1

(
(u∗C)ni+1/2

)2
+ (E n

0 )2(Π∗C)ni+1/2(
(ρ∗C e∗C)ni+1 + (E n

0 )2(Π∗C)ni+1/2

)
(u∗C)ni+1/2

 ,
(u∗C)ni+1/2 =

uni+1 + uni
2 − E n

0
2 (aC)ni+1/2

(
pni+1 − pni

)
,

(E n
0 )2 (Π∗C)ni+1/2 = (E n

0 )2 p
n
i+1 + pni

2 −
E n

0 (aC)ni+1/2
2

(
uni+1 − uni

)
,

(ρ∗C)nk = 1/(τ∗k, C)n, (τ∗k, C)n = τnk + (−1)Jk+1

E n
0 (aC)ni+1/2

(
(u∗C)ni+1/2 − u

n
k

)
,

(e∗C)nk = enk + E n
0

(−1)Jk

(aC)ni+1/2

(
(Π∗C u∗C)ni+1/2 − p

n
k u

n
k

)
,

k ∈ {i, i+ 1} , Ji = 1, Ji+1 = 2.

(46)

In the case of an isolated contact discontinuity with u0 > 0, the convective flux writes:

Hc
n,Contact
i+1/2 =


ρni u

0

ρni (u0)2 + (E n
0 )2 p0

(ρ ε)EOS
(
ρni , p

0
)
u0 + ρni

(u0)3

2 + (E n
0 )2 p0 u0

 . (47)

The mass, momentum and energy dynamics then read:

ρn+
i − ρni

∆t + u0 ρ
n
i − ρni−1

∆x = 0,

ρn+
i un+

i − ρni u0

∆t + (u0)2 ρ
n
i − ρni−1

∆x = 0,

(ρ ε)EOS
(
ρn+
i , pn+

i

)
− (ρ ε)EOS (ρni , p0)

∆t + 1
2
ρn+
i (un+

i )2 − ρni (u0)2

∆t

+ u0 (ρ ε)EOS (ρni , p0)− (ρ ε)EOS (ρni−1, p
0)

∆x + (u0)3

2
ρni − ρni−1

∆x = 0.

(48)

By rewriting ρn+
i un+

i −ρ
n
i u

0 as ρn+
i

(
un+
i − u

0
)

+
(
ρn+
i − ρ

n
i

)
u0 and using the discrete mass equation,

the momentum equation can be simplified:

ρn+
i

un+
i − u0

∆t = 0⇒ un+
i = u0. (49)
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The kinetic part in the discrete energy equation then vanishes by factorizing by (u0)2/2 and using,
once again, the discrete mass equation. Injecting formula (41), one obtains:

C(pn+
i )ρn+

i +B(pn+
i )−

(
C(p0)ρni +B(p0)

)
∆t + u0C(p0)

(
ρni − ρni−1

)
∆x = 0. (50)

The linear behavior of (ρ ε)EOS
|p : ρ → C(p) ρ + B(p) as well as the fact that C(p) = C(p0) is a

constant in this configuration, play an important role. Indeed, it allows to retrieve the discrete mass
equation by factorizing by C(p0). Finally, one obtains:

C(pn+
i )ρn+

i +B(pn+
i )−

(
C(p0)ρn+

i +B(p0)
)

∆t = 0

⇔
(ρ ε)EOS

(
ρn+
i , pn+

i

)
− (ρ ε)EOS

(
ρn+
i , p0

)
∆t = 0.

(51)

Using the fact that (ρ ε)EOS
|ρn+

i
: p→ C(p) ρn+

i +B(p) is injective, it results in pn+
i = p0.

Appendix B: Study of the von Neumann Gain Matrices
This appendix is dedicated to the study of the von Neumann gain matrices written in (33) and (38).
The derivation of the convective gain matrix being relatively straightforward, special attention is paid
to the expression of its eigenvalues as well as a sufficient condition ensuring that their modulus is
strictly lower than one. Besides, the derivation of the acoustic gain matrix is completely done.

Analysis of the Convective Gain Matrix Eigenvalues
Let us consider the von Neumann gain matrix associated with the convective sub-step:

G −
ρ0 C|u|
|u0|

j sin(k∆x) 0

0 G −
(E n

0 )2 C|u|
ρ0 |u0|

j sin(k∆x)

0 −
ρ0 (c0

C)2 C|u|
|u0|

j sin(k∆x) G


,

and: G = 1− 2
C|u|
C crit
|u|

sin2(k∆x/2)− j u
0

|u0|
C|u| sin(k∆x),

with: C crit
|u| =

∣∣∣u0
∣∣∣ / ∣∣∣λ0

∣∣∣ ∈ ]0, 1[ .

(52)

G is the first eigenvalue of this matrix. Define X = sin2(k∆x/2) ∈ [0, 1], then sin2(k∆x) =
4X (1−X). Thus:
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|G|2 =
(

1− 2
C|u|
C crit
|u|

X

)2

+ 4 C 2
|u|X (1−X),

|G|2 < 1⇔ C|u| <
C crit
|u|(

(1− (C crit
|u| )2)X + (C crit

|u| )2
) . (53)

Since X ∈ [0, 1] the most constraining CFL condition is C|u| < C crit
|u| .

The two other eigenvalues of the above gain matrix are the roots of the characteristic polynomial
function:

(G− λ)2 + (E n
0 )2 (C|u|)2

(
c0
C
u0

)2

sin2(k∆x). (54)

They write:

λ± = G∓ j E n
0 C|u|

∣∣∣∣∣ c0
C
u0

∣∣∣∣∣ |sin(k∆x)| ,

∣∣λ±∣∣2 =
(

1− 2
C|u|
C crit
|u|

X

)2

+ C 2
|u|

[1 + (E n
0 )2

∣∣∣∣∣ c0
C
u0

∣∣∣∣∣
2

] 4X (1−X)± 2E n
0
u0

|u0|

∣∣∣∣∣ c0
C
u0

∣∣∣∣∣ sin(k∆x) |sin(k∆x)|


⇒
∣∣λ±∣∣2 ≤ (1− 2

C|u|
C crit
|u|

X

)2

+ 4
(

1 + E n
0

∣∣∣∣∣ c0
C
u0

∣∣∣∣∣
)2

C 2
|u|X (1−X) =

(
1− 2

C|u|
C crit
|u|

X

)2

+ 4
(

C|u|
C crit
|u|

)2

X (1−X).

(55)
A sufficient condition ensuring that

∣∣λ±∣∣ < 1 is once again C|u| < C crit
|u| .

Derivation of the Linearized Acoustic Dynamics
The von Neumann analysis has to be made on the relaxation system (9). Define at time tn+:

Wn+
i = un+

i −
pn+
i

an+
A

= un+
i −

Πn+
i

an+
A

,

Rn+
i = un+

i + pn+
i

an+
A

= un+
i + Πn+

i

an+
A

.

(56)

Then,
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

ρn+1
i − ρn+

i

∆t = 0,

(ρ u)n+1
i − (ρ u)n+

i

∆t +
(
1− (E n

0 )2
) (p∗A)n+1

i+1/2 − (p∗A)n+1
i−1/2

∆x = 0,

(ρΠ)n+1
i − (ρΠ)n+

i

∆t +
(
1− (E n

0 )2
)

(an+
A )2 (u∗A)n+1

i+1/2 − (u∗A)n+1
i−1/2

∆x = 0,

(ρ e)n+1
i − (ρ e)n+

i

∆t +
(
1− (E n

0 )2
) (p∗A u∗A)n+1

i+1/2 − (p∗A u∗A)n+1
i−1/2

∆x = 0,

⇔

ρn+1
i − ρn+

i

∆t = 0,
(ρ u)n+1

i − (ρ u)n+
i

∆t +
(
1− (E n

0 )2
) [Πn+1

i+1 −Πn+1
i−1

2 ∆x − an+
A
2
un+1
i+1 − 2un+1

i + un+1
i−1

∆x

]
= 0,

(ρΠ)n+1
i − (ρΠ)n+

i

∆t +
(
1− (E n

0 )2
) [

(an+
A )2u

n+1
i+1 − u

n+1
i−1

2 ∆x − an+
A
2

Πn+1
i+1 − 2 Πn+1

i + Πn+1
i−1

∆x

]
= 0,

(ρ e)n+1
i − (ρ e)n+

i

∆t +
(
1− (E n

0 )2
)

[
(Πu)n+1

i+1 − (Πu)n+1
i−1

2 ∆x − 1
4 an+
A

(Π2)n+1
i+1 − 2 (Π2)n+1

i + (Π2)n+1
i−1

∆x

−a
n+
A
4

(u2)n+1
i+1 − 2 (u2)n+1

i + (u2)n+1
i−1

∆x ] = 0.
(57)

Supposing that ∀φ ∈ {ρ, u, Π, e} , φ0,n+1
i = φ0 a constant, one can extract the linearized dynamics

related to (57):

ρ1, n+1
i − ρ1, n+

i

∆t = 0,

ρ0u
1, n+1
i − u1, n+

i

∆t +
(
1− (E n

0 )2
) [Π1, n+1

i −Π1, n+1
i

2 ∆x − a0
A
2
u1, n+1
i+1 − 2u1, n+1

i + u1, n+1
i−1

∆x

]
= 0,

ρ0 Π1, n+1
i −Π1, n+

i

∆t +
(
1− (E n

0 )2
) [

(a0
A)2u

1, n+1
i − u1, n+1

i

2 ∆x − a0
A
2

Π1, n+1
i+1 − 2 Π1, n+1

i + Π1, n+1
i−1

∆x

]
= 0,

ρ0 e
1, n+1
i − e1, n+

i

∆t +
(
1− (E n

0 )2
) [
p0u

1, n+1
i − u1, n+1

i

2 ∆x + u0 Π1, n+1
i −Π1, n+1

i

2 ∆x

]

−
(
1− (E n

0 )2
) [ p0

a0
A

Π1, n+1
i+1 − 2 Π1, n+1

i + Π1, n+1
i−1

2 ∆x + u0 a0
A
u1, n+1
i+1 − 2u1, n+1

i + u1, n+1
i−1

2 ∆x

]
= 0.

(58)
During the projection step, Πn+1

i = pn+1
i = pEOS

(
ρn+1
i , εn+1

i

)
is imposed with εn+1

i = en+1
i −

(un+1
i )2/2. If one assumes that this projection holds separately for zeroth order and first order terms

then ∀] ∈ {n+, n+ 1}:
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Π1, ]
i = p1, ]

i = (∂ρ p|ε)0 ρ1, ]
i + (∂ε p|ρ)0

(
e1, ]
i − u

0 u1, ]
i

)
. (59)

Using the momentum equation, the perturbed pressure dynamics is then:

p1, n+1
i − p1, n+

i

∆t +
(
1− (E n

0 )2
) (

∂ε p|ρ)
)0 p0

ρ0

[
u1, n+1
i+1 − u1, n+1

i−1
2 ∆x − 1

a0
A

p1, n+1
i+1 − 2 p1, n+1

i + p1, n+1
i−1

2 ∆x

]
= 0.

(60)

According to definition (6),
(
∂ε p|ρ)

)0 p0

ρ0 is exactly equal to ρ0 (c0
A)2. The linearized dynamics of

the non conservative variables related to the acoustic scheme is then:

ρ1, n+1
i − ρ1, n+

i

∆t = 0,

u1, n+1
i − u1, n+

i

∆t +
(
1− (E n

0 )2
) [ 1

ρ0
p1, n+1
i+1 − p1, n+1

i−1
2 ∆x − a0

A
ρ0

u1, n+1
i+1 − 2u1, n+1

i + u1, n+1
i−1

2 ∆x

]
= 0,

p1, n+1
i − p1, n+

i

∆t +
(
1− (E n

0 )2
)
ρ0 (c0

A)2
[
u1, n+1
i+1 − u1, n+1

i−1
2 ∆x − 1

a0
A

p1, n+1
i+1 − 2 p1, n+1

i + p1, n+1
i−1

2 ∆x

]
= 0.

(61)

Appendix C: Location of the IMEX Instability
Figure 8 and Figure 9 show the growth of the numerical instability observed in the case presented in
subsection 5.1.2. The picture is taken at time t = 2.496× 10−2 s but for a mesh of 103 cells (Figure 8)
and for a finer one of 5× 103 cells (Figure 9).

29



0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.9999

1

1

1.0001
·104

D
C

fr
on

t

x (m)

p
(P

a)

Exact
Sp-(M)-Imp-C|u| 0.49

Figure 8: p, Perfect Gas, Mmin = 10−2, with Ncells = 103, C|u| = 0.49, iteration 270,
(t = 2.496× 10−2 s)

0 0.2 0.4 0.6 0.8 1

0.96

0.97

0.98

0.99

1

·104

D
C

fr
on

t

x (m)

p
(P

a)

Exact
Sp-(M)-Imp-C|u| 0.49

Figure 9: p, Perfect Gas, Mmin = 10−2, with Ncells = 5× 103, C|u| = 0.49, iteration 1399,
(t = 2.497× 10−2 s)

One can observe than the instability originates from the region located after the contact discontinuity
front where the Mach number takes its lowest value. As the mesh is refined, the amplitude of the
instability surges considerably since the numerical diffusion is largely diminished.
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Appendix D: The Most Constraining Euler Courant Number
Let us consider the shock tube test case presented in subsection 5.2. The fastest Euler eigenvalue is
u∗+c0, ∗

R with c0, ∗
R = c (ρ∗R, p∗). It corresponds to the characteristic colliding with the 3-shock wave front

speed. Here u∗ and p∗ are the intermediate velocity and pressure whose values can be approximatively
calculated: u∗ ≈ 1.49886 ms−1, p∗ ≈ 10020.9 Pa. What is more, the conservation of entropy through
the 3-shock brings: ρ∗R = ρ0

R

(
p∗/p0

R

)1/γ
, and c (ρ∗R, p∗) = c0

R

(
p∗/p0

R

)(γ−1)/γ
≈ 336.36256 ms−1.

The most constraining time step got from the above wave speed writes:

∆t0, ∗E = C 0, ∗
E

2
∆x

u∗ + c0, ∗
R

. (62)

Besides the time step related to u0 writes simply ∆tu0
C = C u0

|u| ∆x/u0. Then:

∆tu0
C = ∆t0, ∗E ⇔ C u0

|u| = u0

2
(
u∗ + c0, ∗

R

)C 0, ∗
E ≈ 1.48649× 10−3 C 0, ∗

E . (63)

Appendix E: Eigenvalues of a Linearized Unstable Gain Matrix of the
Whole IMEX Scheme
Figure 10 and Figure 11 display the profile of the von Neumann gain matrices eigenvalues as function
of the non-dimensional mode k∆x

4π . The Mach number is Mmin = 10−3 and the convective Courant
number has deliberately been imposed equal to C crit

|u| , the critical Courant number ensuring the spectral
radius of the convective gain matrix to be lower than one. The eigenvalues of G−1

A GC are plotted in
blue whereas those of GC (respectively G−1

A ) are plotted in red (respectively green). See (38) for the
expressions of the gain matrices.
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According to Figure 10 and Figure 11 the maximal spectral radius of the von Neumann gain matrix
is obtained in the neighborhood of k = T∆x/2 with T∆x = 4π/∆x. Assume than the wave number k is
equal to T∆x/2 + ε, with ε a small perturbation. Then:

sin(k∆x/2) = sin(π + (ε∆x)/2) = −ε∆x
2 +O(ε3),

2 sin2(k∆x/2) = (ε∆x)2

2 +O(ε4),

sin(k∆x) = sin(2π + ε∆x) = ε∆x+O(ε3).

(64)

In the sequel, one tries to compute the eigenvalues of the whole von Neumann gain matrix G−1
A GC

truncating order O(ε3) terms. For the sake of simplicity ε∆x is now written ε.

Convective Gain Matrix:
The diagonal term of the convective gain matrix in equation (38) can be written:

G = 1− 2
C|u|
C crit
|u|

sin2(k∆x/2)− j u
0

|u0|
C|u| sin(k∆x) = 1− ε j C|u| −

C|u|
C crit
|u|

ε2

2 +O(ε3). (65)

The convective gain matrix then writes:

GC =


1− ε j C|u| −

C|u|
C crit
|u|

ε2

2 −ε j
(E n

0 )2 C|u|
ρ0 |u0|

−ε j
ρ0 (c0

C)2 C|u|
|u0|

1− ε j C|u| −
C|u|
C crit
|u|

ε2

2

+O(ε3). (66)

Acoustic Gain Matrix:
The acoustic gain matrix is:

GA =

 1 + ε2

2 α
n ε j

αn

a0
A

ε j αn (ω0
A)2 a0

A 1 + ε2

2 αn (ω0
A)2

+O(ε3),

with: αn =
(
1− (E n

0 )2
) a0
A C|u|
ρ0 |u0|

, a0
A = ρ0 c0,

and: ω0
A = ρ0 c0

A
a0
A

= c0
A
c0 .

(67)

The determinant of such matrix writes easily:

∆ = detGA = 1 + ε2 αn

2
(
1 + (ω0

A)2 (1 + 2αn)
)

+O(ε4), (68)

and:
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G−1
A = 1

∆

 1 + ε2

2 αn (ω0
A)2 −ε j α

n

a0
A

−ε j αn (ω0
A)2 a0

A 1 + ε2

2 α
n

+O(ε3). (69)

Please note that, by construction, the term αn is of the order of 1/M0 with M0 =
∣∣∣u0
∣∣∣ /c0 whereas

ω0
A is an order one term with respect to M0.

Acoustic-Convective Gain Matrix:
Neglecting punctually 1/∆, each term of the product G−1

A GC are derived.

Term M11: (
1 + ε2

2 αn (ω0
A)2

) (
1− ε j C|u| −

C|u|
C crit
|u|

ε2

2

)
− ε2 C|u|

ρ0 (c0
C)2

|u0|
αn

a0
A

+O(ε3)

=1− ε j C|u| +
ε2

2

(
αn (ω0

A)2 −
C|u|
C crit
|u|
− 2 C|u|

ρ0 (c0
C)2

|u0|
αn

a0
A

)
+O(ε3).

(70)

Term M22: (
1 + ε2

2 αn
) (

1− ε j C|u| −
C|u|
C crit
|u|

ε2

2

)
− ε2 C|u|

(E n
0 )2

ρ0 |u0|
αn (ω0

A)2 a0
A +O(ε3)

=1− ε j C|u| +
ε2

2

(
αn −

C|u|
C crit
|u|
− 2 C|u|

(E n
0 )2

ρ0 |u0|
αn (ω0

A)2 a0
A

)
+O(ε3).

(71)

It can be noticed that: M22 = M11 + ε2 ∆M +O(ε3) with ∆M ∈ R defined as:

∆M =
[
αn (1− (ω0

A)2)
2 −Ψ

]
,

Ψ =
αn C|u|
|u0|

(
(E n

0 )2 (ω0
A)2 a0

A
ρ0 − ρ0 (c0

C)2

a0
A

)
.

(72)

Term M12:

Directly:

−ε j
[

(E n
0 )2 C|u|
ρ0 |u0|

+ αn

a0
A

]
− ε2 C|u|

αn

a0
A

+O(ε3). (73)
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Term M21:

Directly:

−ε j
[
ρ0 (c0

C)2 C|u|
|u0|

+ αn (ω0
A)2 a0

A

]
− ε2 C|u| α

n (ω0
A)2 a0

A +O(ε3). (74)

Derivation of the Eigenvalues
The eigenvalues of G−1

A GC can be obtained by finding the roots of:[
M11 − λ M12
M21 M11 − λ+ ε2 ∆M

]
. (75)

One can notice that the order O(ε2) in M12 and M21 will give a O(ε3) contribution. Define
X = M11 − λ. One has to solve:

X2 + ε2 ∆M X + ε2

(E n
0 )2 C 2

|u|

(
c0
C
|u0|

)2

+ (αn)2 (ω0
A)2 + Φ

+O(ε3) = 0,

Φ =
αn C|u|
|u0|

(
(E n

0 )2 (ω0
A)2 a0

A
ρ0 + ρ0 (c0

C)2

a0
A

)
.

(76)

If one neglects the order O
(
ε3
)
terms in (76), the discriminant of the simplified polynomial function

writes:

∆d = ε4 (∆M)2 − 4 ε2
(E n

0 )2 C 2
|u|

(
c0
C
|u0|

)2

+ (αn)2 (ω0
A)2 + Φ


= −4 ε2

(E n
0 )2 C 2

|u|

(
c0
C
|u0|

)2

+ (αn)2 (ω0
A)2 + Φ

+O(ε4).

(77)

Thus ∆d is negative for sufficiently small ε. One can approximate the roots as:

X± = −ε2 ∆M
2 ± |ε| j X0 +O(ε3),

X0 =

√√√√(E n
0 )2 C 2

|u|

(
c0
C
|u0|

)2

+ (αn)2 (ω0
A)2 + Φ.

(78)

It can be noticed that the order O(|ε|) contribution X0 results from the product of the order O(ε)
terms of M12 and M21.
Finally, the roots of the von Neumann gain matrix are:
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λ± = 1
∆

(
1 + ε2

2 (∆M +R)∓ |ε| j X0 − ε j C|u| +O(ε3)
)
,

R =
(
αn (ω0

A)2 −
C|u|
C crit
|u|
− 2 C|u|

ρ0 (c0
C)2

|u0|
αn

a0
A

) (79)

It can be noticed that the contribution of the determinant ∆ only has an impact on the O(ε2) terms,
namely:

λ± = 1 + ε2

2 (∆M +R−W )∓ |ε| j X0 − εC|u| +O(ε3),

R =
(
αn (ω0

A)2 −
C|u|
C crit
|u|
− 2 C|u|

ρ0 (c0
C)2

|u0|
αn

a0
A

)
,

W = αn
(
1 + (ω0

A)2 (1 + 2αn)
)
.

(80)

A crucial point here is to note that the coefficient X0 contains terms of order O(1/M0) since (ω0
A)2

is an order one term and αn an order O(1/M0) term. Indeed after calculation, one can find a simpler
expression for X0:

X0 =
C|u|
|u0|

√√√√(c0
C)2 + (1− (E n

0 )2)
(
a0
A
ρ0

)2

(ω0
A)2 =

C|u|
|u0|

√
(c0
C)2 + (1− (E n

0 )2) (c0
A)2 =

C|u|
M0 ,

since: (c0
C)2 +

(
1− (E n

0 )2
)

(c0
A)2 = (c0)2.

(81)

We think that the |ε| X0 contribution in the imaginary part of the gain matrix eigenvalues is
responsible for the decay of the upper bound of the stable convective Courant number C|u|.
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