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Ordering Garside groups

We introduce a structure on a Garside group that we call Dehornoy structure and we show that an iteration of such a structure leads to a left-order on the group. We define two conditions on a Garside group G and we show that, if G satisfies these two conditions, then G has a Dehornoy structure. Then we show that the Artin groups of type A and of type I 2 (m), m ≥ 4, satisfy these conditions, and therefore have Dehornoy structures. As indicated by the terminology, one of the orders obtained by this method on the Artin groups of type A coincides with the Dehornoy order. 20F36

Introduction

A group G is said to be left-orderable if there exists a total order < on G invariant by left-multiplication. Recall that a subset P of G is a subsemigroup if αβ ∈ P for all α, β ∈ P. It is easily checked that a left-order < on G is determined by a subsemigroup P such that G = P ⊔ P -1 ⊔ {1}: we have α < β if and only if α -1 β ∈ P. In this case the subsemigroup P is called the positive cone of <.

The first explicit left-order on the braid group B n was determined by Dehornoy [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF]. The fact that B n is left-orderable is important, but, furthermore, the Dehornoy order is interesting by itself, and there is a extensive literature on it. We refer to Dehornoy-Dynnikov-Rolfsen-Wiest [START_REF] Dehornoy | Ordering braids[END_REF] for a complete report on left-orders on braid groups and on the Dehornoy order in particular. The definition of the Dehornoy order is based on the following construction.

Let G be a group and let S = {s 1 , s 2 , . . . , s n } be a finite ordered generating set for G. Let i ∈ {1, 2, . . . , n}. We say that α ∈ G is s i -positive (resp. s i -negative) if α is written in the form α = α 0 s i α

1 • • • s i α m (resp. α = α 0 s -1 i α 1 • • • s -1 i α m ) with m ≥ 1
and α 0 , α 1 , . . . , α m ∈ s i+1 , . . . , s n . For each i ∈ {1, 2, . . . , n} we denote by P + i (resp. P - i ) the set of s i -positive elements (resp. s i -negative elements) of G. The key point in the definition of the Dehornoy order is the following.

Theorem 1.1 (Dehornoy [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF]) Let G = B n+1 be the braid group on n + 1 strands and let S = {s 1 , s 2 , . . . , s n } be its standard generating set. For each i ∈ {1, 2, . . . , n} we have the disjoint union s i , s i+1 , . . . , s n = P + i ⊔ P - i ⊔ s i+1 , . . . , s n .

Let G = B n+1 be the braid group on n + 1 strands. Set P D = P + 1 ⊔ P + 2 ⊔ • • • ⊔ P + n . Then, by Theorem 1.1, P D is the positive cone for a left-order < D on G. This is the Dehornoy order.

A careful reader will notice that Theorem 1.1 leads to more than one left-order on B n+1 . Indeed, if ǫ = (ǫ 1 , ǫ 2 , . . . , ǫ n ) ∈ {+, -} n , then P ǫ = P ǫ 1 1 ⊔ P ǫ 2 2 ⊔ • • • ⊔ P ǫn n is a positive cone for a left-order on B n+1 . The case ǫ = (+, -, +, . . . ) is particularly interesting because, by Dubrovina-Dubrovin [START_REF] T V Dubrovina | On braid groups[END_REF], in this case P ǫ determines an isolated left-order in the space of left-orders on B n+1 .

Our goal in the present paper is to extend the Dehornoy order to some Garside groups.

A first approach would consist on keeping the same definition, as follows. Let G be a group and let S = {s 1 , s 2 , . . . , s n } be a finite ordered generating set for G. Again, we denote by P + i (resp. P - i ) the set of s i -positive elements (resp. s i -negative elements) of G. Then we say that S determines a Dehornoy structure (in Ito's sense) if, for each i ∈ {1, . . . , n}, we have the disjoint union s i , s i+1 , . . . , s n = P + i ⊔P - i ⊔ s i+1 , . . . , s n . In this case, as for the braid group, for each ǫ ∈ {+, -} n the set P ǫ = P ǫ 1 1 ⊔P ǫ 2 2 ⊔• • •⊔P ǫn n is the positive cone for a left-order on G. This approach was used by Ito [START_REF] Ito | Dehornoy-like left orderings and isolated left orderings[END_REF] to construct isolated left-orders in the space of left-orders of some groups.

In the present paper we will consider another approach of the Dehornoy order in terms of Garside groups (see Dehornoy [START_REF] Dehornoy | Alternating normal forms for braids and locally Garside monoids[END_REF], Fromentin [START_REF] Fromentin | Every braid admits a short sigma-definite expression[END_REF], Fromentin-Paris [START_REF] Fromentin | A simple algorithm for finding short sigma-definite representatives[END_REF]), and our definition of Dehornoy structure will be different from that in Ito's sense given above.

In Section 2 we recall some basic and preliminary definitions and results on Garside groups. We refer to Dehornoy et al. [START_REF] Dehornoy | Foundations of Garside theory[END_REF] for a full account on the theory. In Section 3 we give our (new) definition of Dehornoy structure and show how such a structure leads to a left-order on the group (see Proposition 3.1). Then we define two conditions on a Garside group, that we call Condition A and Condition B, and show that a Garside group which satisfies these two conditions has a Dehornoy structure (see Theorem 3.2).

The aim of the rest of the paper is to apply Theorem 3.2 to the Artin groups of type A, that is, the braid groups, and the Artin groups of dihedral type. In Section 4 we a = u p • • • u 2 u 1 of a over S satisfying (u p • • • u i ) ∧ R ∆ = u i for all i ∈ {1, . . . , p}. We define the left greedy normal form of an element of M in a similar way. The following two theorems contain several key results of the theory of Garside groups.

Theorem 2.1 (Dehornoy-Paris [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF], Dehornoy [5]) [START_REF] Brieskorn | Artin[END_REF] Let a ∈ M and let a = u p • • • u 2 u 1 be the greedy normal form of a. Then lg(a) = p.

(

) Let α ∈ G. There exists a unique pair (a, b) ∈ M × M such that α = ab -1 and a ∧ R b = 1. 2 
In that case we have lg(α) = lg(a) + lg(b).

The expression of α given in Theorem 2.1 ( 2) is called the (right) orthogonal form of α. The left orthogonal form of an element of G is defined in a similar way.

We say that an element

a ∈ M is unmovable if ∆ ≤ R a or, equivalently, if ∆ ≤ L a.
Theorem 2.2 (Dehornoy-Paris [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF], Dehornoy [5]) Let α ∈ G. There exists a unique pair (a, k) ∈ M × Z such that a is unmovable and α = a∆ k .

The expression of α given above is called the (right) ∆-form of α. We define the left ∆-form of an element of G in a similar way.

Definition Let δ be a balanced element of M . Denote by G δ (resp. M δ ) the subgroup of G (resp. the submonoid of M ) generated by Div(δ). We say that (G δ , M δ , δ) is a parabolic substructure of (G, M, ∆) if δ is balanced and Div(δ

) = Div(∆) ∩ M δ . In that case G δ is called a parabolic subgroup of G and M δ is called a parabolic submonoid of M .
Remark Let H be a parabolic subgroup of G. Then there exists a unique parabolic substructure (G δ , M δ , δ) of (G, M, ∆) such that H = G δ . Indeed, the above element δ should be the greatest element in H ∩ Div(∆) for the order relation ≤ R , hence δ is entirely determined by H . Similarly, if N is a parabolic submonoid of M , then there exists a unique parabolic substructure (G δ , M δ , δ) such that N = M δ , where δ is the greatest element of Div(∆) ∩ N for the order relation ≤ R . So, we can speak of a parabolic subgroup or of a parabolic submonoid without necessarily specifying the corresponding element δ or the triple (G δ , M δ , δ).

Theorem 2.3 (Godelle [START_REF] Godelle | Parabolic subgroups of Garside groups[END_REF]) Let (H, N, δ) be a parabolic substructure of (G, M, ∆).

(1) H is a Garside group with Garside structure (H, N, δ).

(2) Let a ∈ N and let a = u p • • • u 2 u 1 be the greedy normal form of a with respect to (G, M, ∆). Then u i ∈ Div(δ) for all i ∈ {1, 2, . . . , p} and a = u p • • • u 2 u 1 is the greedy normal form of a with respect to (H, N, δ).

(

) Let α, β ∈ H and γ ∈ G such that α ≤ R γ ≤ R β . Then γ ∈ H . (4) Let α, β ∈ H . Then α ∧ R β, α ∨ R β ∈ H . 3 
(5) Let α ∈ H and let α = ab -1 be the orthogonal form of α with respect to (G, M, ∆). Then a, b ∈ N and α = ab -1 is the orthogonal form of α with respect to (H, N, δ).

Example Let S be a finite set. A Coxeter matrix over S is a square matrix M = (m s,t ) s,t∈S indexed by the elements of S with coefficients in N ∪ {∞} such that m s,s = 1 for all s ∈ S and m s,t = m t,s ≥ 2 for all s, t ∈ S, s = t. If s, t are two letters and m is an integer ≥ 2 we denote by Π(s, t, m) the word sts

• • • of length m. In other words Π(s, t, m) = (st) m 2 if m is even and Π(s, t, m) = (st) m-1
2 s if m is odd. The Artin group associated with M is the group A = A M defined by the presentation A = S | Π(s, t, m s,t ) = Π(t, s, m s,t ) for s, t ∈ S, s = t and m s,t = ∞ .

The Coxeter group associated with M is the quotient W = W M of A by the relations s 2 = 1, s ∈ S. We say that A is of spherical type if W is finite. The braid groups are the star examples of Artin groups of spherical type.

We denote by A + the monoid having the following monoid presentation.

A + = S | Π(s, t, m s,t ) = Π(t, s, m s,t ) for s, t ∈ S, s = t and m s,t = ∞ + .
By Paris [START_REF] Paris | Artin monoids inject in their groups[END_REF] the natural homomorphism A + → A is injective. So, we can consider A + as a submonoid of A. It is easily checked that A + ∩ (A + ) -1 = {1}, hence we can consider the order relations ≤ R and ≤ L on A. Suppose that A is of spherical type. Then, by Brieskorn-Saito [START_REF] Brieskorn | Artin[END_REF] and Deligne [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF], for all α, β ∈ A the elements α ∧ R β and α ∨ R β exist, and (A, A + , ∆) is a Garside structure, where ∆ = ∨ R S. Let X be a subset of S and let A X be the subgroup of A generated by X . Then, again by Brieskorn-Saito [START_REF] Brieskorn | Artin[END_REF] and Deligne [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF], A X is a parabolic subgroup of A and it is an Artin group of spherical type.

The triple (G, M, ∆) denotes again an arbitrary Garside structure on a group G. Besides the greedy normal forms, we will use some other normal forms of the elements of M defined from a pair (N 2 , N 1 ) of parabolic submonoids of M . Their definition is based on the following. Proposition 2.4 (Dehornoy [START_REF] Dehornoy | Alternating normal forms for braids and locally Garside monoids[END_REF]) Let N be a parabolic submonoid of M . For each a ∈ M there exists a unique

b ∈ N such that {c ∈ N | c ≤ R a} = {c ∈ N | c ≤ R b}.
The element b of Proposition 2.4 is called the (right) N -tail of a and is denoted by b = τ N (a) = τ N,R (a). We define in a similar way the left N -tail of a, denoted by τ N,L (a). Now, assume that N 1 and N 2 are two parabolic submonoids of M such that N 2 ∪ N 1 generates M . Then each nontrivial element a ∈ M is uniquely written in the form

a = a p • • • a 2 a 1 where a p = 1, a i = τ N 1 (a p • • • a i ) if i is odd, and a i = τ N 2 (a p • • • a i ) if i is
even. This expression is called the (right) alternating form of a with respect to (N 2 , N 1 ). Note that we may have a 1 = 1, but a i = 1 for all i ∈ {2, . . . , p}. The number p is called the (N 2 , N 1 )-breadth of a and is denoted by p = bh(a) = bh N 2 ,N 1 (a). By extension we set bh(1) = 1 so that a ∈ N 1 ⇔ bh(a) = 1. Now, consider the standard Garside structure (B n+1 , B + n+1 , ∆) on the braid group B n+1 . Let S = {s 1 , s 2 , . . . , s n } be the standard generating system of B n+1 , N 1 be the submonoid of B + n+1 generated by {s 2 , . . . , s n }, and N 2 be the submonoid generated by {s 1 , . . . , s n-1 }. Then N 1 and N 2 are parabolic submonoids of B + n+1 and they are both isomorphic to B + n . Observe that N 1 ∪ N 2 generates B + n+1 , hence we can consider alternating forms with respect to (N 2 , N 1 ). The definitions of the next section are inspired by the following.

Theorem 2.5 (Fromentin-Paris [START_REF] Fromentin | A simple algorithm for finding short sigma-definite representatives[END_REF]) Let a ∈ B + n+1 and k ∈ Z. Then ∆ -k a is s 1 -negative if and only if k ≥ max{1, bh(a) -1}.

Orders on Garside groups

We consider a Garside structure (G, M, ∆) on a Garside group G and two parabolic substructures (H, N, Λ) and (G 1 , M 1 , ∆ 1 ). We assume that

N = M , M 1 = M , N ∪ M 1 generates M , ∆ is central in G, and ∆ 1 is central in G 1 .
Note that the assumption "∆ is central in G" is not so restrictive since, by Dehornoy [5], if (G, M, ∆) is a Garside structure, then (G, M, ∆ k ) is also a Garside structure for each k ≥ 1, and there exists k ≥ 1 such that ∆ k is central in G. We will consider alternating forms with respect to (N, M 1 ).

The depth of an element a ∈ M , denoted by dpt(a), is dpt(a) = bh(a)-1 2 if bh(a) is odd and is dpt(a) = bh(a) 2 if bh(a) is even. In other words, if a = a p • • • a 2 a 1 is the alternating form of a, then dpt(a) is the number of indices i ∈ {1, . . . , p} such that a i ∈ M 1 (that is, the number of even indices). Note that a ∈ M 1 if and only if dpt(a) = 0.

Definition Let α ∈ G and let α = a∆ -k be its ∆-form. We say that α is (H, G 1 )negative if k ≥ 1 and dpt(a) < dpt(∆ k ). We say that α is (H, G 1 )-positive if α -1 is (H, G 1 )-negative. We denote by P = P H,G 1 the set (H, G 1 )-positive elements and by P -1 the set of (H, G 1 )-negative elements.

Definition We say that (H, G 1 ) is a Dehornoy structure if P satisfies the following conditions:

(a) PP ⊂ P,

(b) G 1 PG 1 ⊂ P, (c) we have the disjoint union G = P ⊔ P -1 ⊔ G 1 .
Our goal in this section is to prove a criterion for (H, G 1 ) to be a Dehornoy structure. But, before, we show how the orders appear in this context. Suppose given two sequences of parabolic subgroups G 0 = G, G 1 , . . . , G n and H 1 , . . . ,

H n such that G i+1 , H i+1 ⊂ G i and (H i+1 , G i+1
) is a Dehornoy structure on G i for all i ∈ {0, 1, . . . , n -1} and G n ≃ Z. For each i ∈ {0, 1, . . . , n -1} we denote by P i the set of (H i+1 , G i+1 )-positive elements of G i . On the other hand, we choose a generator α n of G n and we set

P n = {α k n | k ≥ 1}. For each ǫ = (ǫ 0 , ǫ 1 , . . . , ǫ n ) ∈ {±1} n+1 we set P ǫ = P ǫ 0 0 ⊔ P ǫ 1 1 ⊔ • • • ⊔ P ǫn n .
Proposition 3.1 Under the above assumptions P ǫ is the positive cone for a left-order on G.

Proof We must prove that we have a disjoint union G = P ǫ ⊔ (P ǫ ) -1 ⊔ {1} and that P ǫ P ǫ ⊂ P ǫ . The fact that we have a disjoint union 

G = P ǫ ⊔ (P ǫ ) -1 ⊔
A with constant ζ if dpt(∆ k ) = ζk + 1 for all k ≥ 1.
We set θ = ∆∆ -1 1 = ∆ -1 1 ∆ ∈ M . We say that an element a ∈ M is a theta element if it is of the form a = θ k a 0 with k ≥ 1 and a 0 ∈ M 1 . We denote by Θ the set of theta elements of M and we set Θ = Θ ∪ M 1 .

Definition Let ζ ≥ 1 be an integer. Let (a, b) ∈ (M × M) \ ( Θ × Θ) such
that a, b are both unmovable. Let ab = c∆ t be the ∆-form of ab. We say that (a, b) satisfies

Condition B with constant ζ if there exists ε ∈ {0, 1} such that (a) dpt(c) = dpt(a) + dpt(b) -ζt -ε, (b) ε = 1 if either a ∈ Θ, or b ∈ Θ, or c ∈ M 1 .
We say that (H, G 1 ) satisfies Condition B with constant Let ζ ≥ 1 be an integer. From here until the end of the section we assume that (H, G 1 ) satisfies Condition A with constant ζ and Condition B with constant ζ . Our goal is then to prove that (H, G 1 ) is a Dehornoy structure, that is, to prove Theorem 3.2.

ζ if each pair (a, b) ∈ (M × M) \ ( Θ × Θ)
Let a be an unmovable element of M and let p = lg(a). Then p is the smallest integer ≥ 0 such that a ≤ R ∆ p . Let com(a) ∈ M such that a com(a) = ∆ p . Then, by El-Rifai-Morton [START_REF] El-Rifai | Algorithms for positive braids[END_REF], com(a) is unmovable, lg(com(a)) = p, and a -1 = com(a)∆ -p is the ∆-form of a -1 . Note that a com(a) = com(a) a = ∆ p since ∆ is central. In particular, com(com(a)) = a.

Lemma 3.3 (1) Let a ∈ M 1 . Then θ ∧ R a = 1 and θ ∨ R a = θa = aθ .
(2) Let a = θ k a 0 be a theta element, where k ≥ 1 and

a 0 ∈ M 1 . Then dpt(a) = ζk + 1. (3) Let a = θ k a 0 be a theta element, where k ≥ 1 and a 0 ∈ M 1 . Then a is unmovable if and only if a 0 is unmovable in M 1 (that is, if and only if ∆ 1 ≤ R a 0 ). (4) Let a be an unmovable element of M . We have a ∈ Θ if and only if com(a) ∈ Θ. (5) Let α ∈ G 1 \ M 1 . Then α has a ∆-form of the form α = a∆ -k where k ≥ 1 and a = θ k a 0 ∈ Θ with a 0 ∈ M 1 . (6) Let a ∈ Θ and b ∈ M \ Θ. Then ab ∈ M \ Θ and ba ∈ M \ Θ. Proof Part (1): Let a ∈ M 1 . Let u = a ∧ R θ . We have u ≤ R θ , hence u∆ 1 ≤ R θ∆ 1 = ∆,
and therefore u∆ 1 ∈ Div(∆). On the other hand, since u ≤ R a, we have

u ∈ M 1 , hence u∆ 1 ∈ M 1 . So, u∆ 1 ∈ Div(∆) ∩ M 1 = Div(∆ 1 ), thus u = 1. Let v = a ∨ R θ .
Since ∆ and ∆ 1 commute with a, we have θa = aθ . In particular,

v ≤ R aθ . Let x 1 ∈ M such that v = x 1 θ . Then x 1 ≤ R a and, since M 1 is a parabolic submonoid, x 1 ∈ M 1 and there exists x 2 ∈ M 1 such that x 2 x 1 = a. So, a = x 2 x 1 ≤ R v = x 1 θ = θx 1 , hence x 2 ≤ R θ , and therefore, since a ∧ R θ = 1, we have x 2 = 1. Thus x 1 = a and v = aθ = θa. Part (2): It is clear that dpt(a) = dpt(aa 0 ) for all a ∈ M and all a 0 ∈ M 1 . Let a = θ k a 0 be a theta element. Then dpt(a) = dpt(θ k ) = dpt(θ k ∆ k 1 ) = dpt(∆ k ) = ζk + 1. Part (3): Let a = θ k a 0 be a theta element. Suppose that ∆ 1 ≤ R a 0 . Let a 1 ∈ M 1 such that a 0 = a 1 ∆ 1 . Then a = θ k a 1 ∆ 1 = θ k-1 a 1 θ∆ 1 = θ k-1 a 1 ∆, hence ∆ ≤ R a. Now suppose that ∆ ≤ R a. By Part (1) we have τ M 1 (a) = a 0 . Since ∆ ≤ R a, we have ∆ 1 ≤ R a, hence ∆ 1 ≤ R τ M 1 (a) = a 0 .
Part (4): Let a be an unmovable element of M and let p = lg(a). Suppose that

a ∈ M 1 . Let b ∈ M 1 such that ab = ∆ p 1 . Then aθ p b = θ p ab = θ p ∆ p 1 = ∆ p , hence com(a) = θ p b ∈ Θ. Suppose that a = θ k a 0 where k ≥ 1 and a 0 ∈ M 1 . We have a = θ k a 0 ≤ R ∆ p = θ p ∆ p 1 hence, by Part (1), a 0 ≤ R ∆ p 1 and k ≤ p. Let b 0 ∈ M 1 such that a 0 b 0 = ∆ p 1 . Then aθ p-k b 0 = θ k a 0 θ p-k b 0 = θ p a 0 b 0 = θ p ∆ p 1 = ∆ p , hence com(a) = θ p-k b 0 ∈ Θ. So, if a ∈ Θ, then com(a) ∈ Θ. Now, since com(com(a)) = a
for each unmovable element a of M , we have a ∈ Θ if and only if com(a) ∈ Θ.

Part (5): Let α ∈ G 1 \ M 1 . Since α ∈ M 1 the ∆ 1 -form of α is of the form α = a∆ -k 1 with a ∈ M 1 , ∆ 1 ≤ R a and k ≥ 1. Then α = a(θ∆ -1 ) k = θ k a∆ -k and θ k a is unmovable by Part (3) of the lemma.
Part (6): Take a, b ∈ M . We assume that a, ab ∈ Θ and we turn to prove that b ∈ Θ. We write ab = θ t c where t ≥ 0 and c ∈ M 1 . On the other hand we know by Part (4) that com(a) ∈ Θ, hence com(a) is of the form com(a) = θ k a 0 with k ≥ 0 and

a 0 ∈ M 1 , and therefore a -1 is of the form a -1 = θ k a 0 ∆ -ℓ = θ k-ℓ a 0 ∆ -ℓ 1 where ℓ = lg(a). So, b∆ ℓ 1 = θ t+k-ℓ a 0 c. If we had t + k -ℓ < 0, then we would have θ ℓ-t-k b∆ ℓ 1 = a 0 c ∈ M 1 , hence we would have θ ℓ-t-k ∈ M 1 , which contradicts Part (1). So, t + k -ℓ ≥ 0. By Part (1) we have τ M 1 (θ t+k-ℓ a 0 c) = a 0 c, hence ∆ 1 ≤ R a 0 c. Let b 0 ∈ M 1 such that b 0 ∆ ℓ 1 = a 0 c. Then b = θ t+k-ℓ b 0 ∈ Θ.
We show in the same way that, if a, ba ∈ Θ, then b ∈ Θ. Lemma 3.4 We have P -1 P -1 ⊂ P -1 .

Proof Let α, β ∈ P -1 . Let α = a∆ -k and β = b∆ -ℓ be the ∆-forms of α and β , respectively. Since α, β ∈ P 

-1 , we have k, ℓ ≥ 1, dpt(a) ≤ dpt(∆ k ) -1 = ζk and dpt(b) ≤ dpt(∆ ℓ ) -1 = ζℓ. Let ab = c∆ t be the ∆-form of ab. Then the ∆-form of αβ is αβ = c∆ -k-ℓ+t . We must show that αβ ∈ P -1 , that is, k + ℓ -t ≥ 1 and dpt(c) ≤ dpt(∆ k+ℓ-t ) -1 = ζ(k + ℓ -t). Case 1: a, b ∈ M 1 . Then t = 0 and c = ab, hence k + ℓ -t = k + ℓ ≥ 1 and dpt(c) = 0 ≤ ζ(k + ℓ) = ζ(k + ℓ -t).
) = ζu + 1 ≤ ζℓ, hence u < ℓ. Let ab 0 = c 0 ∆ v 1 be the ∆ 1 -form of ab 0 . If v < u, then t = v and c = θ u-v c 0 , hence k + ℓ -t ≥ ℓ -v ≥ ℓ -u ≥ 1 and dpt(c) = ζ(u -v) + 1 = ζu -ζt + 1 ≤ ζℓ -ζt ≤ ζ(k + ℓ -t). If v ≥ u, then t = u and c = ∆ v-u 1 c 0 ∈ M 1 , hence k + ℓ -t = k + ℓ -u ≥ ℓ -u ≥ 1 and dpt(c) = 0 ≤ ζ(k + ℓ -t).
The case "a ∈ Θ and b ∈ M 1 " can be proved in a similar way. 

Case 3: a, b ∈ Θ. We set a = θ u a 0 and b = θ v b 0 , where u, v ≥ 1 and a 0 , b 0 ∈ M 1 . Since dpt(a) = ζu + 1 ≤ ζk, we have u < k. Similarly, we have v < ℓ. Let a 0 b 0 = c 0 ∆ w 1 be the ∆ 1 -form of a 0 b 0 . If w < u + v, then t = w and c = θ u+v-w c 0 , hence k+ℓ-t ≥ k+ℓ-(u+v) = (k-u)+(ℓ-v) ≥ 1 and dpt(c) = ζ(u+v-w)+1 = ζu + 1 + ζv -ζt ≤ ζk + ζℓ -ζt = ζ(k + ℓ -t). If w ≥ u + v, then t = u + v and c = c 0 ∆ w-u-v 1 ∈ M 1 , hence k + ℓ -t = k + ℓ -(u + v) = (k -u) + (ℓ -v) ≥ 1 and dpt(c) = 0 ≤ ζ(k + ℓ -t).
= dpt(c) = dpt(a) + dpt(b) -ζt -1 ≤ ζk + ζℓ -ζt -1 < ζ(k + ℓ -t) .

This (strict) inequality also implies that

k + ℓ -t ≥ 1. If c ∈ M 1 , then 1 ≤ dpt(c) ≤ dpt(a) + dpt(b) -ζt ≤ ζk + ζℓ -ζt = ζ(k + ℓ -t) .
Again, this inequality also implies that k + ℓt ≥ 1.

Lemma 3.5 We have G 1 P -1 G 1 ⊂ P -1 .
Proof We take α ∈ G 1 and β ∈ P -1 and we turn to prove that αβ ∈ P -1 . The proof of the inclusion βα ∈ P -1 is made in a similar way. Let α = a∆ -k and β = b∆ -ℓ be the ∆-forms of α and β , respectively. Since β ∈ P -1 we have ℓ ≥ 1 and dpt(b) ≤ dpt(∆ ℓ )-1 = ζℓ. Let ab = c∆ t be the ∆-form of ab. Then the ∆-form of αβ is αβ = c∆ -k-ℓ+t . We must show that k + ℓt ≥ 1 and dpt(c 

) ≤ ζ(k + ℓ -t). Case 1: α ∈ M 1 and b ∈ M 1 . We have k = 0, α = a, t = 0 and c = ab ∈ M 1 . Thus k + ℓ -t = ℓ ≥ 1 and 0 = dpt(c) ≤ ζ(k + ℓ -t).
0 ∈ M 1 . We also have dpt(b) = ζv+1 ≤ ζℓ, hence v < ℓ. Let ab 0 = c 0 ∆ u 1 be the ∆ 1 - form of ab 0 . If u < v, then t = u and c = θ v-u c 0 , hence k + ℓ -t = ℓ -u ≥ ℓ -v ≥ 1 and dpt(c) = ζ(v -u) + 1 = ζv + 1 -ζt ≤ ζℓ -ζt = ζ(k + ℓ -t). If u ≥ v, then t = v and c = ∆ u-v 1 c 0 ∈ M 1 , hence k + ℓ -t = ℓ -v ≥ 1 and 0 = dpt(c) ≤ ζ(k + ℓ -t).
(c) = dpt(a) + dpt(b) -ζt -ε. So, 1 ≤ dpt(c) ≤ 0 + ζℓ -ζt = ζ(k + ℓ -t) .
This inequality also implies that k + ℓt ≥ 1. 

Case 4: α ∈ M 1 and b ∈ M 1 . By Lemma 3.3 (5) we have k ≥ 1 and a = θ k a 0 with a 0 ∈ M 1 . Let a 0 b = c 0 ∆ u 1 be the ∆ 1 -form of a 0 b. If u < k, then t = u and c = θ k-u c 0 , hence k + ℓ -t ≥ ℓ ≥ 1 and dpt(c) = ζ(k -u) + 1 ≤ ζk -ζt + ζℓ ≤ ζ(k + ℓ -t). If u ≥ k, then t = k and c = c 0 ∆ u-k 1 ∈ M 1 , hence k + ℓ -t = ℓ ≥ 1 and 0 = dpt(c) ≤ ζ(k + ℓ -t).
+ ℓ -t ≥ k + v -w ≥ 1 and dpt(c) = ζ(k + v -w) + 1 = ζk + ζv + 1 -ζt ≤ ζk + ζℓ -ζt = ζ(k + ℓ -t). If w ≥ k + v, then t = k + v and c = c 0 ∆ w-k-v 1 ∈ M 1 , hence k + ℓ -t = ℓ -v ≥ 1 and 0 = dpt(c) ≤ ζ(k + ℓ -t).
∈ Θ, dpt(c) = dpt(a) + dpt(b) -ζt -1. So, 1 ≤ dpt(c) ≤ ζk + 1 + ζℓ -ζt -1 = ζ(k + ℓ -t) .
This inequality also implies that k + ℓt ≥ 1. Lemma 3. [START_REF] Dehornoy | Alternating normal forms for braids and locally Garside monoids[END_REF] We have G 1 ∩ (P ∪ P -1 ) = ∅.

Proof Let α ∈ G 1 and let α = a∆ -k be the ∆-form of α. If α ∈ M 1 , then k = 0 and α = a, thus α ∈ P -1 . If α ∈ M 1 , then, by Lemma 3.3 (5), we have k ≥ 1 and a = θ k a 0 where a 0 ∈ M 1 , hence dpt(a) = ζk + 1 = dpt(∆ k ), and therefore α ∈ P -1 . Since α -1 ∈ G 1 , we also have α -1 ∈ P -1 , hence α ∈ P. Lemma 3. [START_REF] Dehornoy | Foundations of Garside theory[END_REF] We have P ∩ P -1 = ∅.

Proof Let α ∈ P -1 and let α = a∆ -k be its ∆-form. By definition we have k ≥ 1 and dpt(a

) < dpt(∆ k ) = ζk + 1. Let ℓ = lg(a). Then the ∆-form of α -1 is α -1 = com(a)∆ k-ℓ . We are going to show that α -1 ∈ P -1 , that is, either k -ℓ ≥ 0 or dpt(com(a)) ≥ ζ(ℓ -k) + 1. Case 1: a ∈ M 1 . Let b ∈ M 1 such that ab = ∆ ℓ 1 . We have a -1 = b∆ -ℓ 1 = bθ ℓ ∆ -ℓ = θ ℓ b∆ -ℓ , hence com(a) = θ ℓ b, and therefore, dpt(com(a)) = ζℓ + 1 > ζ(ℓ -k) + 1, since k ≥ 1. So, α -1 ∈ P -1 .
Case 2: a ∈ Θ. We write a = θ u a 0 where a 0 ∈ M 1 and u ≥ 1. We have dpt(a) = ζu + 1 ≤ ζk, hence u < k. Let t ≥ 0 be the length of a 0 and let and therefore α -1 ∈ P -1 .

b 0 ∈ M 1 such that a 0 b 0 = ∆ t 1 . We have a -1 0 = b 0 ∆ -t 1 = θ t b 0 ∆ -t , hence a -1 = θ t-u b 0 ∆ -t , and therefore α -1 = θ t-u b 0 ∆ k-t . If u < t, then com(a) = θ t-u b 0 and dpt(com(a)) = ζ(t -u) + 1 > ζ(t -k) + 1, hence α -1 ∈ P -1 . If u ≥ t, then α -1 = θ -u+t b 0 ∆ k-t = b 0 ∆ u-t 1 ∆ k-t-u+t = b 0 ∆ u-t 1 ∆ k-u and k -u ≥ 1, hence α -1 ∈ P -1 .

Lemma 3.8

We have

G = P ∪ P -1 ∪ G 1 .
Proof We take α ∈ G and we assume that α ∈ (P -1 ∪ G 1 ). We are going to show that α ∈ P, that is, α -1 ∈ P -1 . Let α = a∆ k be the ∆-form of α and let ℓ be the length of a. Then the

∆-form of α -1 is com(a)∆ -k-ℓ . Case 1: a ∈ M 1 . Then k ≥ 1 because α ∈ (P -1 ∪ G 1 ). If a = 1, then α -1 = ∆ -k ∈ P -1
. So, we can assume that a = 1, and therefore

ℓ ≥ 1. Let b ∈ M 1 such that ab = ∆ ℓ 1 . We have a -1 = θ ℓ b∆ -ℓ , hence α -1 = θ ℓ b∆ -k-ℓ and com(a) = θ ℓ b. Then k + ℓ ≥ 1 and dpt(com(a)) = ζℓ + 1 ≤ ζℓ + ζk = ζ(ℓ + k), hence α -1 ∈ P -1 .
Case 2: a ∈ Θ. We write a = θ u a 0 where u ≥ 1 and a 0 ∈ M 1 . Since α ∈ P -1 we have dpt(a 

) = ζu + 1 ≥ ζ(-k) + 1, hence u ≥ -k. We also have u = -k, otherwise we would have α = a 0 ∆ -u 1 ∈ G 1 . So, u > -k. Let t be the length of a 0 and let b 0 ∈ M 1 such that a 0 b 0 = ∆ t 1 . We have a -1 0 = b 0 ∆ -t 1 , hence a -1 = θ t-u b 0 ∆ -t , and therefore α -1 = θ t-u b 0 ∆ -k-t . If u < t, then com(a) = θ t-u b 0 , k + t > k + u ≥ 1 and dpt(com(a)) = ζ(t -u) + 1 < ζ(t + k) + 1 = dpt(∆ t+k ), hence α -1 ∈ P -1 . If u ≥ t, then α -1 = b 0 ∆ u-t 1 ∆ -k-u , com(a) = b 0 ∆ u-t 1 ∈ M 1 , k + u ≥ 1, and dpt(com(a)) = 0 ≤ ζ(k + u), hence α -1 ∈ P -1 .
1 ≤ dpt(com(a)) = ζℓ + 1 -dpt(a) ≤ ζℓ + 1 + ζk -1 = ζ(ℓ + k) .
This inequality also implies that ℓ + k ≥ 1. Thus, α -1 ∈ P -1 .

Proof of Theorem 3.2 We have PP ⊂ P by Lemma 3.4, we have G 1 PG 1 ⊂ P by Lemma 3.5, and we have the disjoint union G = P ⊔ P -1 ⊔ G 1 by Lemma 3.6, Lemma 3.7 and Lemma 3.8.

Artin groups of type A

In this section we assume that G and M are the Artin group and the Artin monoid of type A n , respectively, where n ≥ 2. Recall that G is defined by the presentation G = s 1 , . . . , s n | s i s j s i = s j s i s j for |i -j| = 1, s i s j = s j s i for |i -j| ≥ 2 , and that M is the submonoid of G generated by s 1 , s 2 , . . . , s n . Recall also that G is the braid group B n+1 on n + 1 strands and M is the positive braid monoid B + n+1 . By Brieskorn-Saito [START_REF] Brieskorn | Artin[END_REF] and Deligne [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF], (G, M, Ω) is a Garside structure, where

Ω = (s 1 • • • s n ) • • • (s 1 s 2 s 3 )(s 1 s 2 )s 1 . The element Ω is not central in G but ∆ = Ω 2 = (s 1 • • • s n ) n+1 is
central and, by Dehornoy [5], (G, M, ∆) is also a Garside structure on G. The latter is the Garside structure that we consider in this section.

We denote by G 1 (resp. M 1 ) the subgroup of G (resp. the submonoid of M ) generated by s 2 , . . . , s n and we set

∆ 1 = (s 2 • • • s n ) n . Then (G 1 , M 1 , ∆ 1 ) is a parabolic substruc- ture of (G, M, ∆) and ∆ 1 is central in G 1 .
On the other hand, we denote by H (resp. N ) the subgroup of G (resp. the submonoid of M ) generated by s 1 , . . . , s n-1 and we set Λ = (s 1 • • • s n-1 ) n . Again, (H, N, Λ) is a parabolic substructure of (G, M, ∆). Observe that M 1 ∪ N generates M . The purpose of this section is to prove the following. 

1 ≤ i ≤ n -1 we set G i = s i+1 , . . . , s n , M i = s i+1 , . . . , s n + , ∆ i = (s i+1 • • • s n ) n+1-i
and H i = s i , . . . , s n-1 . By iterating Corollary 4.2 and applying Proposition 3.1 we get the following.

Corollary 4.3 (1) For each 1 ≤ i ≤ n -1 the pair (H i , G i ) is a Dehornoy structure on (G i-1 , M i-1 , ∆ i-1 )
, where (G 0 , M 0 , ∆ 0 ) = (G, M, ∆).

(2) For each 1 ≤ i ≤ n -1 we denote by P i the set of (H i , G i )-positive elements of G i-1 . Furthermore we set

P n = {s k n | k ≥ 1}. For each ǫ = (ǫ 1 , . . . , ǫ n ) ∈ {±1} n the set P ǫ = P ǫ 1 1 ⊔ • • • ⊔ P ǫn
n is the positive cone for a left-order on G.

Before proving Theorem 4.1 we show that the orders on G given in Corollary 4.3 (2) coincide with those obtained using Theorem 1.1. More precisely we prove the following.

Proposition 4. [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF] The set P = P H,G 1 of (H, G 1 )-positive elements is equal to the set of s 1 -positive elements of G = B n+1 .

Proof Let P ′ denote the set of s 1 -positive elements of G. We know by Dehornoy [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF] that we have the disjoint union G = P ′ ⊔ P ′-1 ⊔ G 1 . We also know by Corollary 4.2 that PP ⊂ P, G 1 PG 1 ⊂ P and

G = P ⊔ P -1 ⊔ G 1 . Let α ∈ P ′ . By definition α is written α = α 0 s 1 α 1 • • • s 1 α p where p ≥ 1 and α 0 , α 1 , . . . , α p ∈ G 1 . The ∆-form of s 1 is s 1 = s 1 ∆ 0 ,
hence s 1 does not lie in P -1 . The element s 1 does not lie in G 1 either, hence s 1 lies in P. Since PP ⊂ P and G 1 PG 1 ⊂ P we deduce that α lies in P. So, P ′ ⊂ P and therefore P ′-1 ⊂ P -1 . Since we have disjoint unions G = P ⊔ P -1 ⊔ G 1 and G = P ′ ⊔ P ′-1 ⊔ G 1 we conclude that P = P ′ and P -1 = P ′-1 .

The rest of the section is dedicated to the proof of Theorem 4.1. We recall once for all the expressions of ∆ and θ over the standard generators.

∆ = (s 1 s 2 • • • s n ) n+1 = (s 1 • • • s n-1 s 2 n s n-1 • • • s 1 ) • • • (s n-1 s 2 n s n-1 )s 2 n , θ = s 1 • • • s n-1 s 2 n s n-1 • • • s 1 .
Proposition 4. 5 The pair (H, G 1 ) satisfies Condition A with constant ζ = 1.

Proof Let k ≥ 1. Then, by Dehornoy [START_REF] Dehornoy | Alternating normal forms for braids and locally Garside monoids[END_REF], bh

(∆ k ) = bh(Ω 2k ) = 2k + 2, hence dpt(∆ k ) = k + 1.
It remains to show that (H, G 1 ) satisfies Condition B with constant ζ = 1 (see Proposition 4.12). This is the goal of the rest of the section.

An (N, M 1 )-expression of length p of an element a ∈ M is defined to be an expression of a of the form a = a p • • • a 2 a 1 with a i ∈ N if i is even and a i ∈ M 1 if i is odd. Proof Let a ∈ M\M 1 . It suffices to show that bh(aθ) = bh(a)+2. Let a = a p • • • a 2 a 1 be the alternating form of a. Note that, since a ∈ M 1 , we have p ≥ 2. Note also that, by Lemma 3.3 (1), we have

a 1 θ = θa 1 . Then aθ = a p • • • a 3 a 2 θa 1 = a p • • • a 3 b 4 b 3 b 2 a 1 , where b 4 = a 2 s 1 ∈ N , b 3 = s 2 • • • s n-1 s 2 n ∈ M 1 and b 2 = s n-1 • • • s 2 s 1 ∈ N . We turn to show that aθ = a p • • • a 2 b 4 b 3 b 2 a 1
is the alternating form of aθ . This will prove the lemma.

Let x = τ M 1 (a p • • • a 3 b 4 b 3 b 2 ) = τ M 1 (a p • • • a 3 a 2 θ). We know by Lemma 3.3 (1) that x ∨ R θ = θx = xθ , hence x ≤ R a p • • • a 2 , and therefore x = 1, since τ M 1 (a p • • • a 3 a 2 ) = 1. We have a p • • • a 3 b 4 b 3 = a p • • • a 3 a 2 s 1 s 2 • • • s n-1 s 2 n . It is easily checked that (s 1 • • • s n-1 s 2 n ) ∨ R s i = s i+1 (s 1 • • • s n-1 s 2 n ) for all i ∈ {1, . . . , n -1}. Thus, if there exists i ∈ {1, . . . , n-1} such that s i ≤ R a p • • • a 3 b 4 b 3 , then there exists j ∈ {2, . . . , n} such that s j ≤ R a p • • • a 3 a 2 . But, since τ M 1 (a p • • • a 3 a 2 ) = 1, such a j does not exist, hence such an i does not exist either, hence τ N (a p • • • a 3 b 4 b 3 ) = 1. We have a p • • • a 3 b 4 = a p • • • a 3 a 2 s 1 .
We have s 1 ∨ R s i = s i s 1 for all i ∈ {3, . . . , n}, and

s 1 ∨ R s 2 = s 1 s 2 s 1 . Thus, for i ∈ {2, . . . , n}, if s i ≤ R a p • • • a 3 b 4 , then s i ≤ R a p • • • a 3 a 2 .
Since such an i does not exist, we have

τ M 1 (a p • • • a 3 b 4 ) = 1. This finishes the proof that a p • • • a 3 b 4 b 3 b 2 a 1 is the alternating form of aθ since a p • • • a 3 is an alternating form and τ N (a p • • • a 3 ) = 1. Lemma 4.9 (1) Let a ∈ M 1 and b ∈ M \ M 1 . Then dpt(ab) = dpt(ba) = dpt(b).
( 

≥ 0. If a∆ -k ∈ G 1 then a ∈ Θ. Proof Let a∆ -k = a 0 ∆ -t 1 be the ∆ 1 -form of a∆ -k . We have a = a 0 ∆ -t 1 ∆ k = θ k a 0 ∆ k-t 1 . If k ≥ t then we clearly have a ∈ Θ. Suppose that k < t. Then a∆ t-k 1 = θ k a 0 , hence ∆ t-k 1 ≤ R τ M 1 (θ k a 0 ). By Lemma 3.3 (1) we have τ M 1 (θ k a 0 ) = a 0 , hence ∆ t-k 1 ≤ R a 0 . Let b 0 ∈ M 1 such that a 0 = b 0 ∆ t-k 1 . Then a = θ k b 0 ∈ Θ. Lemma 4.11 Let a, b ∈ M \ M 1 , c ∈ M 1 and k ≥ 0 such that ab = c∆ k and dpt(a) + dpt(b) = k + 2. Then (a, b) ∈ (Θ × Θ).
Proof Let p = dpt(a) and q = dpt(b). Note that, since a, b ∈ M 1 , we have p, q ≥ 1.

We have bh(a) ≥ 2p, hence bh(a) -1 > 2p -2, and therefore, by Theorem 2.5, Ω -2p+2 a = a∆ -p+1 either lies in G 1 or is s 1 -positive. Similarly, b∆ -q+1 either lies in G 1 or is s 1 -positive. If either a∆ -p+1 was s 1 -positive or b∆ -q+1 was s 1 -positive, then c = ab∆ -k = (a∆ -p+1 )(b∆ -q+1 ) would be s 1 -positive. Since c ∈ M 1 , c cannot be s 1 -positive, hence both a∆ -p+1 and b∆ -q+1 lie in G Case 3: a, b ∈ M \ Θ. Set p = dpt(a) and q = dpt(b). We have bh(a) ∈ {2p, 2p + 1} hence, by Theorem 2.5, Ω -2p a is s 1 -negative and Ω -2p+2 a either lies in G 1 or is

s 1 -positive. Similarly, Ω -2q b is s 1 -negative and Ω -2q+2 b either lies in G 1 or is s 1 -positive. So, Ω -2p-2q
ab is s 1 -negative and Ω -2p-2q+4 ab either lies in G 1 or is s 1 -positive. By Theorem 2.5 it follows that bh(ab) -1 ≤ 2p + 2q and 2p + 2q -4 < bh(ab) -1, hence 2p + 2q -2 ≤ bh(ab) ≤ 2p + 2q + 1, and therefore p + q -1 ≤ dpt(ab) ≤ p + q. So, there exists ε ∈ {0, 1} such that dpt(ab

) = p + q -ε = dpt(a) + dpt(b) -ε.
Suppose that c ∈ M 1 . By Lemma 4.9 (2), dpt(c)

+ t = dpt(c) + dpt(∆ t ) -1 = dpt(c∆ t ) = dpt(ab) = dpt(a) + dpt(b) -ε, hence dpt(c) = dpt(a) + dpt(b) -t -ε. Suppose that c ∈ M 1 . By Lemma 4.9 (1), dpt(a) + dpt(b) -ε = dpt(ab) = dpt(c∆ t ) = dpt(∆ t ) = t + 1, hence dpt(a) + dpt(b) = t + 1 + ε. Since a, b ∈ Θ Lemma 4.11 implies that ε = 0. So, dpt(c) = 0 = dpt(a) + dpt(b) -t -1.
5 Artin groups of dihedral type, the even case

Let m ≥ 4 be an integer. Recall that the Artin group of type I 2 (m) is the group

G = A I 2 (m) defined by the presentation G = s, t | Π(s, t, m) = Π(t, s, m
) . Let M be the submonoid of G generated by {s, t} and let Ω = Π(s, t, m). Then, by Brieskorn-Saito [START_REF] Brieskorn | Artin[END_REF] and Deligne [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF], the triple (G, M, Ω) is a Garside structure on G. If m is even then ∆ = Ω is central. However, if m is odd then Ω is not central but ∆ = Ω 2 is central. In both cases, by Dehornoy [5], the triple (G, M, ∆) is a Garside structure on G. In this section we study the case where m is even and in the next one we will study the case where m is odd. So, from now until the end of the section we assume that m = 2k is even and

∆ = Π(s, t, m) = (st) k = (ts) k .
Remark By setting ∆ = Ω 2 in the even case as in the odd case we could state global results valid for all m ≥ 4, but it would be still necessary to differentiate the even case from the odd case in the proofs, and this would lengthen the proofs for the even case.

We denote by G 1 (resp. M 1 ) the subgroup of G (resp. submonoid of M ) generated by t, and by H (resp. N ) the subgroup of G (resp. submonoid of M ) generated by s. We set ∆ 1 = t and Λ = s. By Brieskorn-Saito [START_REF] Brieskorn | Artin[END_REF] the triples (G 1 , M 1 , ∆ 1 ) and (H, N, Λ) are parabolic substructures of (G, M, ∆). On the other hand it is obvious that M 1 ∪ N generates M . The main result of the present section is the following. By Theorem 3.2 this implies the following.

Corollary 5. [START_REF] Burckel | The wellordering on positive braids[END_REF] The pair (H, G 1 ) is a Dehornoy structure on G.

We denote by P 1 the set of (H, G 1 )-positive elements of G and we set

P 2 = {t n | n ≥ 1}. For each ǫ = (ǫ 1 , ǫ 2 ) ∈ {±1} 2 we set P ǫ = P ǫ 1 1 ∪ P ǫ 2 2 .
Then, by Proposition 3.1, we have the following.

Corollary 5. [START_REF] Crisp | Injective maps between Artin groups, Geometric group theory down under[END_REF] The set P ǫ is the positive cone for a left-order on G.

In this section we denote by r 1 , . . . , r 2k-1 the standard generators of the braid group B 2k on 2k = m strands. By Crisp [START_REF] Crisp | Injective maps between Artin groups, Geometric group theory down under[END_REF] we have an embedding ι : G → B 2k which sends s to k-1 i=0 r 2i+1 and sends t to k-1 i=1 r 2i . In the second part of the section we will show that the orders obtained from Corollary 5.3 can be deduced from ι together with the Dehornoy order. More precisely, we show the following. Proposition 5.4 Let α ∈ G. Then α is (H, G 1 )-negative if and only if ι(α) is r 1 -negative.

The proof of Theorem 5.1 is based on the following observation whose proof is left to the reader. Lemma 5.5 Let a be an unmovable element of M . Then a is uniquely written in the form a = t up s vp • • • t u 1 s v 1 t u 0 with u 0 , u p ≥ 0, u 1 , . . . , u p-1 ≥ 1 and v 1 , . . . , v p ≥ 1. In this case dpt(a) = p.

The first part of Theorem 5.1 is a straightforward consequence of this lemma. Proof Let p ≥ 1 be an integer. We have θ = s(ts) k-1 , hence θ p = (s(ts) k-1 ) p . By Lemma 5.5 it follows that dpt(θ

p ) = p(k -1) + 1, hence dpt(∆ p ) = dpt(θ p t p ) = dpt(θ p ) = p(k -1) + 1.
If a ∈ M \ {1} is written as in Lemma 5. ( We turn now to the proof of Proposition 5.4. We denote by G ′ 1 (resp M ′ 1 ) the subgroup of B 2k (resp. the submonoid of B + 2k ) generated by r 2 , . . . , r 2k-1 and we denote by H ′ (resp. N ′ ) the subgroup of B 2k (resp. the submonoid of B + 2k ) genetared by r 1 , . . . , r 2k-2 . Note that ι(t) ∈ G ′ 1 , hence ι(G 1 ) ⊂ G ′ 1 . We denote by

Ω B = (r 1 r 2 • • • r 2k-1 ) • • • (r 1 r 2 )r 1 the standard Garside element of B 2k and by Φ : B 2k → B 2k , α → Ω B αΩ -1 B , the conjugation by Ω B . Recall that Φ(r i ) = r 2k-i for all i ∈ {1, . . . , 2k -1}. So, Φ(G ′ 1 ) = H ′ and Φ(H ′ ) = G ′ 1 .
Lemma 5.9 Let a be an unmovable element of M such that dpt(a) ≤ k -1. Then there exist b

1 ∈ M ′ 1 and b 2 ∈ N ′ such that ι(a) = b 1 b 2 .
Proof Let p = dpt(a). By Lemma 5.5, a can be written a = t u 0 s v 1 t u 1 • • • s vp t up where u 0 , u p ≥ 0, u 1 , . . . , u p-1 ≥ 1 and v 1 , . . . , v p ≥ 1. We show by induction on p that there exist b 1 ∈ M ′ 1 and b 2 ∈ r 1 , . . . , r 2p + such that ι(a) = b 1 b 2 . Since p ≤ k -1 this proves the lemma. The case p = 0 is obvious because ι(t) ∈ M ′ 1 . We assume that 1 ≤ p ≤ k -1 and that the inductive hypothesis holds. Set

a ′ = t u 0 s v 1 t u 1 • • • s v p-1 t u p-1 . By induction there exist b ′ 1 ∈ M ′ 1 and b ′ 2 ∈ r 1 , . . . , r 2p-2 + such that ι(a ′ ) = b ′ 1 b ′ 2 . Note that b ′ 2 commutes with r i for all i ≥ 2p. So, ι(a) = b ′ 1 b ′ 2 k-1 i=0 r vp 2i+1 k-1 i=1 r up 2i = b ′ 1 k-1 i=p r vp 2i+1 b ′ 2 p-1 i=0 r vp 2i+1 k-1 i=1 r up 2i = b ′ 1 k-1 i=p r vp 2i+1   k-1 i=p+1 r up 2i   b ′ 2 p-1 i=0 r vp 2i+1 p i=1 r up 2i = b 1 b 2 ,
where

b 1 = b ′ 1 k-1 i=p r vp 2i+1   k-1 i=p+1 r up 2i   ∈ M ′ 1 , b 2 = b ′ 2 p-1 i=0 r vp 2i+1 p i=1 r up 2i
∈ r 1 , . . . , r 2p + .

Proof of Proposition 5. [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF] We denote by P the set of (H, G 1 )-positive elements of G and by P ′ the set of r 1 -positive elements of B 2k . By Corollary 5.2 we have the disjoint union G = P ⊔ P -1 ⊔ G 1 and by Dehornoy [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF] we have the disjoint union

B 2k = P ′ ⊔ P ′-1 ⊔ G ′ 1 .
It suffices to show that ι(P -1 ) ⊂ P ′-1 . Indeed, suppose that ι(P -1 ) ⊂ P ′-1 . Since ι is a homomorphism we also have ι(P) ⊂ P ′ . Since we also know that ι(G 1 ) ⊂ G ′ 1 , from the disjoint unions given above follows that α ∈ P -1 if and only if ι(α) ∈ P ′-1 .

Let α be an element of P -1 . Let α = a∆ -p be the ∆-form of α. By definition we have p ≥ 1 and dpt(a) ≤ p(k -1). Suppose first that p = 1 and dpt(a) ≤ k -1. By Lemma 5.9 there exist b

1 ∈ M ′ 1 and b 2 ∈ N ′ such that ι(a) = b 1 b 2 . Moreover, by Crisp [3], ι(∆) = Ω B . Thus ι(α) = b 1 b 2 Ω -1 B = b 1 Ω -1 B Φ(b 2 ). Since b 1 , Φ(b 2 ) ∈ M ′ 1
and Ω -1 B ∈ P ′-1 , it follows that ι(α) ∈ P ′-1 . Now we consider the general case where p ≥ 1 and dpt(a) ≤ p(k -1). It is easily deduced from Lemma 5.5 that a can be written a = a 1 a 2 • • • a p where a i is an unmovable element of M such that dpt(a i ) ≤ k -1 for all i ∈ {1, . . . , p}. Note that a i may be equal to 1 in the above expression. We have α = (a 1 ∆ -1 )(a 2 ∆ -1 ) • • • (a p ∆ -1 ) and, by the above, ι(a i ∆ -1 ) ∈ P ′-1 for all i ∈ {1, . . . , p}, hence ι(α) ∈ P ′-1 .

Artin groups of dihedral type, the odd case

Let m = 2k + 1 ≥ 5 be an odd integer and let G = A I 2 (m) = s, t | Π(s, t, m) = Π(t, s, m) be the Artin group of type I 2 (m). Let M be the submonoid of G generated by {s, t} and let Ω = Π(s, t, m) = (st) k s = (ts) k t. Recall that, by Brieskorn-Saito [START_REF] Brieskorn | Artin[END_REF] and Deligne [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF], the triple (G, M, Ω) is a Garside structure on G. As pointed out in Section 5, Ω is not central but ∆ = Ω 2 is, and, by Dehornoy [5], (G, M, ∆) is also a Garside structure on G. This is the Garside structure on G that will be considered in the present section.

We denote by G 1 (resp. M 1 ) the subgroup of G (resp. submonoid of M ) generated by t, and by H (resp. N ) the subgroup of G (resp. submonoid of M ) generated by s. Set ∆ 1 = t 2 and Λ = s 2 . Then, by Brieskorn-Saito [START_REF] Brieskorn | Artin[END_REF], the triples (G 1 , M 1 , ∆ 1 ) and (H, N, Λ) are parabolic substructures of (G, M, ∆). Moreover, M 1 ∪ N obviously generates M . The main result of this section is the following. (

) Let a, b ∈ M \ {1} such that ab = Ω. Then dpt(a) + dpt(b) = k + 1 if σ(a) = s , k if σ(a) = t . 2 
(3) Let c be an Ω-unmovable element of M . Then

dpt(ϕ(c)) =    dpt(c) + 1 if c = 1 and σ(c) = τ (c) = t , dpt(c) -1 if c = 1 and σ(c) = τ (c) = s , dpt (c) otherwise . 
(4) Let c be an Ω-unmovable element of M . Then Lemma 6.9 Let a, b be two Ω-unmovable elements in M . We assume that the ∆-form of ab is in the form ab = c∆ p where c is Ω-unmovable.

dpt(cΩ) = dpt(c) + k -1 if c = 1 and τ (c) = s , dpt(c) + k otherwise . (5) Let a, b ∈ M \ {1} such that a ϕ(b) = Ω. Then dpt(a) + dpt(b) = k + 1 if τ (a) = s , k if τ (a) = t . Lemma 6.8 Let a 1 , a 2 , b 1 , b 2 be four non-trivial Ω-unmovable elements of M such that σ(a 1 ) = τ (a 2 ), τ (b 1 ) = σ(b 2 ), a 1 b 1 = Ω and a 2 ϕ(b 2 ) = Ω. Set u = |{i ∈ {1, 2} | σ(a i ) = s}| and v = |{i ∈ {1, 2} | τ (b i ) = s}|. Then dpt(a 1 ) + dpt(a 2 ) + dpt(b 1 ) + dpt(b 2 ) = 2k -1 + u + v. Proof If σ(a 1 ) = s and σ(a 2 ) = s, then τ (a 2 ) = s, τ (b 1 ) = s and τ (b 2 ) = t, hence u = 2, v = 1 and, by Lemma 6.7, dpt(a 1 ) + dpt(a 2 ) + dpt(b 1 ) + dpt(b 2 ) = 2k + 2 = 2k -1 + u + v. If σ(a 1 ) = s and σ(a 2 ) = t, then τ (a 2 ) = s, τ (b 1 ) = s and τ (b 2 ) = s, hence u = 1, v = 2 
(1) Suppose that (a, b) ∈ ( Θ × Θ). There exists ε ∈ {0, 1} such that dpt

(c) = dpt(a) + dpt(b) -p(2k -1) -ε. Moreover, ε = 1 if either a ∈ Θ or b ∈ Θ or c ∈ M 1 .
( (3) Suppose that (a, bΩ) ∈ ( Θ × Θ). There exists ε ∈ {0, 1} such that dpt(cΩ) = dpt(a) + dpt(bΩ)p(2k -1)ε. Moreover, ε = 1 if either a ∈ Θ or bΩ ∈ Θ.

(4) Suppose that (aΩ, ϕ(b) Ω) ∈ ( Θ × Θ). There exists ε ∈ {0, 1} such that • a i = 1, b i = 1, a i b i = Ω if i is odd, and a i ϕ(b i ) = Ω if i is even, for all i ∈ {1, . . . , 2p};

• c = a 2p+1 b 2p+1 ;

• Set x i = τ (a i ), x ′ i = σ(a i ), y i = σ(b i ), y ′ i = τ (b i ), for all i ∈ {1, . . . , 2p + 1}. Then x i+1 = x ′ i for all i ∈ {1, . . . , 2p -1}. We have y i = ϕ(x i ) and y ′ i = x ′ i if i is odd, and y i = x i and y ′ i = ϕ(x ′ i ) if i is even, for all i ∈ {1, . . . , 2p}. Thus, if i is odd, then y i+1 = x i+1 = x ′ i = y ′ i , and if i is even, then y i+1 = ϕ(x i+1 ) = ϕ(x ′ i ) = y ′ i , for i ∈ {1, . . . , 2p -1}. Let u = |{i ∈ {1, . . . , 2p} | x ′ i = s}|. By using Lemma 6.7 we show successively the following equalities. dpt(a) = dpt(a 2p+1 ) + 2p i=1 dpt(a i )u + ε 1,a , dpt(aΩ) = dpt(a 2p+1 ) + 2p i=1 dpt(a i )u + k + ε 2,a , where ε 1,a and ε 2,a are as follows. If p ≥ 1 and a 2p+1 = 1, then: If p ≥ 1 and a 2p+1 = 1, then:

ε 1,a = 0 if (x ′ 2p , x 2p+1 ) ∈ {(s,
ε 1,a = 0 if x ′ 2p = t , 1 if x ′ 2p = s , ε 2,a =      -1 if (x 1 , x ′ 2p ) = (s, t) , 0 if (x 1 , x ′ 2p ) ∈ {(s, s), (t, t)} , 1 if (x 1 , x ′ 2p ) = (t, s) .
If p = 0 and a = 1, then:

ε 1,a = 0 , ε 2,a = -1 if x 2p+1 = s , 0 if x 2p+1 = t .
If p = 0 and a = 1, then ε 1,a = ε 2,a = 0.

Let v = |{i ∈ {1, . . . , 2p} | y ′ i = s}|. Similarly, by using Lemma 6.7 we prove successively the following equalities. IMB UMR 5584, CNRS, Univ. Bourgogne Franche-Comté, 21000 Dijon, France IMB, UMR 5584,CNRS, Univ. Bourgogne Franche-Comté, 21000 Dijon, France arcisd@gmail.com, lparis@u-bourgogne.fr

  as above satisfies Condition B with constant ζ . Theorem 3.2 If there exists a constant ζ ≥ 1 such that (H, G 1 ) satisfies Condition A with constant ζ and Condition B with constant ζ , then (H, G 1 ) is a Dehornoy structure.

Case 2 :

 2 a ∈ M 1 and b ∈ Θ. We write b = θ u b 0 where u ≥ 1 and b 0 ∈ M 1 . By Lemma 3.3 (3) we have dpt(b

Case 4 :

 4 either a ∈ Θ, or b ∈ Θ. Since (H, G 1 ) satisfies Condition B with constant ζ , there exists ε ∈ {0, 1} such that dpt(c) = dpt(a) + dpt(b)ζtε. If c ∈ M 1 , then ε = 1 and 0

Case 2 :

 2 α ∈ M 1 and b ∈ Θ. We have k = 0, α = a and b = θ v b 0 where v ≥ 1 and b

  Case 3: α ∈ M 1 and b ∈ M \ Θ. We have k = 0 and α = a. On the other hand, by Lemma 3.3 (6), we have ab ∈ M \ Θ, hence c ∈ M 1 , and therefore dpt(c) ≥ 1. Since (H, G 1 ) satisfies Condition B with constant ζ , there exists ε ∈ {0, 1} such that dpt

Case 5 :

 5 α ∈ M 1 and b ∈ Θ. By Lemma 3.3 (5) we have k ≥ 1 and a = θ k a 0 with a 0 ∈ M 1 . On the other hand, b is written b = θ v b 0 with v ≥ 1 and b 0 ∈ M 1 . Since dpt(b) = ζv + 1 ≤ ζℓ, we have v < ℓ. Let a 0 b 0 = c 0 ∆ w 1 be the ∆ 1 -form of a 0 b 0 . If w < k + v, then t = w and c = θ k+v-w c 0 , hence k

Case 6 :

 6 α ∈ M 1 and b ∈ M \ Θ. By Lemma 3.3 (5) we have k ≥ 1 and a = θ k a 0 with a 0 ∈ M 1 . On the other hand, by Lemma 3.3 (6), we have ab ∈ M \ Θ, hence c ∈ M 1 , and therefore dpt(c) ≥ 1. Since (H, G 1 ) satisfies Condition B with constant ζ and a

Case 3 :

 3 a ∈ M \ Θ. Recall that a com(a) = ∆ ℓ . Since (H, G 1 ) satisfies Condition B with constant ζ and 1 ∈ M 1 , we have 0 = dpt(1) = dpt(a) + dpt(com(a))ζℓ -1, hence dpt(com(a)) = ζℓ + 1 -dpt(a) ≥ ζℓ + 1ζk = ζ(ℓk) + 1 ,

Case 3 :

 3 a ∈ M \ Θ. Since (H, G 1 ) satisfies Condition B with constant ζ , we have 0 = dpt(1) = dpt(a) + dpt(com(a))ζℓ -1. On the other hand, since ∆ ℓ ∈ Θ, by Lemma 3.3 (6), com(a) ∈ Θ, hence com(a) ∈ M 1 , and therefore dpt(com(a)) ≥ 1. Moreover, since α ∈ P -1 , we have dpt(a) ≥ ζ(-k) + 1. So,

Theorem 4 . 1 Corollary 4 . 2

 4142 The pair (H, G 1 ) satisfies Condition A with constant ζ = 1 and Condition B with constant ζ = 1.By applying Theorem 3.2 we deduce the following. The pair (H, G 1 ) is a Dehornoy structure.

For

  

Lemma 4 . 6 (Lemma 4 . 7

 4647 Dehornoy [6],Burckel [2]) Let a ∈ M and let a = a p • • • a 2 a 1 be an (N, M 1 )-expression of a. Then p ≥ bh(a).Let a ∈ M . Choose an expression a = s i ℓ • • • s i 2 s i 1 of a over S and set rev(a) = s i 1 s i 2 • • • s i ℓ .Since the relations that define M are symmetric, the definition of rev(a) does not depend on the choice of the expression of a. It is easily checked that rev(Ω) = Ω, rev(∆) = ∆ and rev(θ) = θ . Moreover, rev(a) ∈ M 1 for all a ∈ M 1 and rev(a) ∈ N for all a ∈ N . Let a ∈ M . Then dpt(rev(a)) = dpt(a). Proof Let a = a p • • • a 2 a 1 be the alternating form of a. If p is even, then rev(a) = rev(a 1 ) rev(a 2 ) • • • rev(a p ) 1 is a (N, M 1 )-expression of rev(a) hence, by Lemma 4.6, p + 1 ≥ bh(rev(a)), and therefore dpt(a) = p 2 ≥ dpt(rev(a)). If p is odd, then rev(a) = rev(a 1 ) rev(a 2 ) • • • rev(a p ) is a (N, M 1 )-expression of rev(a) hence, by Lemma 4.6, p ≥ bh(rev(a)), and therefore dpt(a) = p-1 2 ≥ dpt(rev(a)). So, dpt(a) ≥ dpt(rev(a)) in both cases. Since rev(rev(a)) = a, we also have dpt(rev(a)) ≥ dpt(a), hence dpt(rev(a)) = dpt(a).

Lemma 4 . 8

 48 Let a ∈ M \ M 1 and k ≥ 1. Then dpt(aθ k ) = dpt(a) + k.

  ) Let a ∈ Θ and b ∈ M \ M 1 . Then dpt(ab) = dpt(ba) = dpt(a) + dpt(b) -1. Proof Let a ∈ M 1 and b ∈ M \ M 1 . We obviously have bh(ba) = bh(b), hence dpt(ba) = dpt(b). On the other hand, since rev(a) ∈ M 1 , By Lemma 4.7 we have dpt(ab) = dpt(rev(ab)) = dpt(rev(b) rev(a)) = dpt(rev(b)) = dpt(b). Let a ∈ Θ and b ∈ M \ M 1 . Write a = θ k a 0 with a 0 ∈ M 1 and k ≥ 1. By the above and Proposition 4.5 we have dpt(a) = dpt(θ k ) = dpt(∆ k ) = k + 1. Then, by the above and Lemma 4.8, dpt(ba) = dpt(bθ k ) = dpt(b) + k = dpt(a) + dpt(b) -1. On the other hand, since rev(a) ∈ Θ, we have dpt(ab) = dpt(rev(ab)) = dpt(rev(b) rev(a)) = dpt(rev(a)) + dpt(rev(b)) -1 = dpt(a) + dpt(b) -1.Lemma 4.10 Let a ∈ M and k

1 .

 1 We conclude by Lemma 4.10 that a, b ∈ Θ, hence a, b ∈ Θ since we assumed that a, b ∈ M 1 . Now we are ready to prove the second part of Theorem 4.1. Proposition 4.12 The pair (H, G 1 ) satisfies Condition B with constant ζ = 1. Proof We take (a, b) ∈ (M × M) \ ( Θ × Θ) such that a and b are unmovable. We must show that (a, b) satisfies Condition B with constant ζ = 1. Let ab = c∆ t be the ∆-form of ab. So, we must show that there exists ε ∈ {0, 1} such that dpt(c) = dpt(a) + dpt(b)tε, and ε = 1 if either a ∈ Θ, or b ∈ Θ, or c ∈ M 1 . Case 1: a ∈ M 1 and b ∈ M \ Θ. By Lemma 3.3 (6) we have ab ∈ Θ, hence c ∈ M 1 . Then, by Lemma 4.9, dpt(a) + dpt(b) = dpt(b) = dpt(ab) = dpt(c) + t, hence dpt(c) = dpt(a) + dpt(b)t -0. The case a ∈ M \ Θ and b ∈ M 1 is proved in a similar way. Case 2: a ∈ Θ and b ∈ M \ Θ. We write a = θ k a 0 where k ≥ 1 and a 0 ∈ M 1 . Again, by Lemma 3.3 (6) we have ab ∈ Θ, hence c ∈ M 1 . Then, by Lemma 4.9, dpt(a) + dpt(b) -1 = dpt(ab) = dpt(c) + t, hence dpt(c) = dpt(a) + dpt(b)t -1. The case a ∈ M \ Θ and b ∈ Θ is proved in a similar way.

Theorem 5 . 1

 51 The pair (H, G 1 ) satisfies Condition A with constant ζ = k -1 and Condition B with constant ζ = k -1.

Proposition 5 . 6

 56 The pair (H, G 1 ) satisfies Condition A with constant ζ = k -1.

  5 we set σ(a) = t if u p = 0 and σ(a) = s if u p = 0. Similarly we set τ (a) = t if u 0 = 0 and τ (a) = s if u 0 = 0. In other words σ(a) is the first letter of a and τ (a) is the last one. The following is a straightforward consequence of Lemma 5.5. Lemma 5.7 (1) Let a, b be two unmovable elements of M such that ab is unmovable. Then dpt(ab) = dpt(a) + dpt(b) -1 if a = 1, b = 1 and τ (a) = σ(b) = s , dpt(a) + dpt(b) otherwise .

1 . 5 . 8

 158 ) Let a, b ∈ M such that ab = ∆. Then dpt(a) + dpt(b) = dpt(∆) = k. Now we can prove the second part of Theorem 5.Proposition The pair (H, G 1 ) satisfies Condition B with constant ζ = k -1. Proof We take two unmovable elements a, b ∈ M such that (a, b) ∈ Θ × Θ and we denote by ab = c∆ p the ∆-form of ab. We must show that there exists ε ∈ {0, 1} such that dpt(c) = dpt(a) + dpt(b)p(k -1)ε and that ε = 1 if either a ∈ Θ, or b ∈ Θ, or c ∈ M 1 . We write a = a p+1 a p • • • a 1 and b = b 1 • • • b p b p+1 so that: • a i = 1, b i = 1 and a i b i = ∆ for all i ∈ {1, . . . , p}; a p+1 = 1, b p+1 = t r-q b ′ and (x ′ p , y p+1 ) = (s, t), hence ε = 1. The case b ∈ Θ is proved in the same way. Suppose that c ∈ M 1 . Then p ≥ 1, since (a, b) ∈ ( Θ × Θ). If a p+1 = 1 and b p+1 = 1, then (x p+1 , y p+1 ) = (t, t), hence ε = 1. If a p+1 = 1 and b p+1 = 1, then x p+1 = t, hence ε = 1. If a p+1 = 1 and b p+1 = 1, then y p+1 = t, hence ε = 1. If a p+1 = 1 and b p+1 = 1, then ε = 1.

Theorem 6 . 1

 61 The pair (H, G 1 ) satisfies Condition A with constant ζ = 2k -1 and Condition B with constant ζ = 2k -1.

Lemma 6 . 7 ( 1 )

 671 Let a, b ∈ M such that ab is Ω-unmovable. Then dpt(ab) = dpt(a) + dpt(b) -1 if a = 1, b = 1, and τ (a) = σ(b) = s , dpt(a) + dpt(b) otherwise .

  and, by Lemma 6.7, dpt(a 1 ) + dpt(a 2 )+ dpt(b 1 ) + dpt(b 2 ) = 2k + 2 = 2k -1 + u + v. If σ(a 1 ) = t and σ(a 2 ) = s, then τ (a 2 ) = t, τ (b 1 ) = t and τ (b 2 ) = t, hence u = 1, v = 0 and, by Lemma 6.7, dpt(a 1 ) + dpt(a 2 ) + dpt(b 1 ) + dpt(b 2 ) = 2k = 2k -1 + u + v. If σ(a 1 ) = t and σ(a 2 ) = t, then τ (a 2 ) = t, τ (b 1 ) = t and τ (b 2 ) = s, hence u = 0, v =1 and, by Lemma 6.7, dpt(a 1 ) + dpt(a 2 ) + dpt(b 1 ) + dpt(b 2 ) = 2k = 2k -1 + u + v.

)

  Suppose that (aΩ, ϕ(b)) ∈ ( Θ × Θ). The exists ε ∈ {0, 1} such that dpt(cΩ) = dpt(aΩ) + dpt(ϕ(b))p(2k -1)ε. Moreover, ε = 1 if either aΩ ∈ Θ or ϕ(b) ∈ Θ.

  dpt(c) = dpt(aΩ) + dpt(ϕ(b) Ω) -(p + 1)(2k -1)ε. Moreover, ε = 1 if either aΩ ∈ Θ or ϕ(b) Ω ∈ Θ or c ∈ M 1 . Proof We write a and b in the form a = a 2p+1 a 2p • • • a 2 a 1 and b = b 1 b 2 • • • b 2p b 2p+1 so that:

  dpt(b) = dpt(b 2p+1 ) + 2p i=1 dpt(b i )v + ε 1,b , dpt(ϕ(b)) = dpt(b 2p+1 ) + 2p i=1 dpt(b i )v + ε 2,b , dpt(bΩ) = dpt(b 2p+1 ) + 2p i=1 dpt(b i )v + k + ε 3,b , dpt(ϕ(b) Ω) = dpt(b 2p+1 ) + 2p i=1 dpt(b i )v + k + ε 4,b ,where ε 1,b , ε 2,b , ε 3,b and ε 4,b are as follows. If p ≥ 1 and b 2p+1 = 1, then: ε 1,b = 0 if (y

( 2 )( 3 )

 23 Suppose that (aΩ, ϕ(b)) ∈ ( Θ × Θ). There exists ε ∈ {0, 1} such that dpt(c) = dpt(aΩ)+ dpt(ϕ(b)) -(p + 1)(2k -1)ε. Moreover, ε = 1 if either aΩ ∈ Θ or ϕ(b) ∈ Θ or c ∈ M 1 . Suppose that (a, bΩ) ∈ ( Θ × Θ). There exists ε ∈ {0, 1} such that dpt(c) = dpt(a) + dpt(bΩ) -(p + 1)(2k -1)ε. Moreover, ε = 1 if either a ∈ Θ or bΩ ∈ Θ or c ∈ M 1 . (4) Suppose that (aΩ, ϕ(b)Ω) ∈ ( Θ × Θ). There exists ε ∈ {0, 1} such that dpt(cΩ) = dpt(aΩ) + dpt(ϕ(b) Ω) -(p + 1)(2k -1)ε. Moreover, ε = 1 if either aΩ ∈ Θ or ϕ(b) Ω ∈ Θ.

  s), (t, s), (t, t)} , 1 if (x ′ 2p , x 2p+1 ) = (s, t) ,

	
	 
	ε 2,a =
	 

-1 if (x 1 , x ′ 2p , x 2p+1 ) ∈ {(s, s, s), (s, t, s), (s, t, t)} , 0 if (x 1 , x ′ 2p , x 2p+1 ) ∈ {(s, s, t), (t, s, s), (t, t, s), (t, t, t)} , 1 if (x 1 , x ′ 2p , x 2p+1 ) = (t, s, t) .

  -1 if (y 1 , y ′ 2p , y 2p+1 , y ′ 2p+1 ) ∈ {(s, s, s, s), (s, t, s, s), (s, t, t, s)} , 0 if (y 1 , y ′ 2p , y 2p+1 , y ′ 2p+1 ) ∈ {(s, s, s, t), (s, s, t, s), (s, t, s, t), (s, t, t, t), (t, s, s, s), (t, t, s, s), (t, t, t, s)} , 1 if (y 1 , y ′ 2p , y 2p+1 , y ′ 2p+1 ) ∈ {(s, s, t, t), (t, s, s, t), (t, s, t, s), (t, t, s, t), (t, t, t, t)} , 2 if (y 1 , y ′ 2p , y 2p+1 , y ′ 2p+1 ) = (t, s, t, t) ,

			
	 		
	  		
	  		
	ε 2,b =		
	  		
	   		
			
	  	-1 if (y ′ 2p , y 2p+1 , y ′ 2p+1 ) ∈ {(s, s, s), (t, s, s), (t, t, s)} ,
	ε 3,b =	0	if (y ′ 2p , y 2p+1 , y ′ 2p+1 ) ∈ {(s, s, t), (s, t, s), (t, s, t), (t, t, t)} ,
	 	1	if (y ′ 2p , y 2p+1 , y ′ 2p+1 ) = (s, t, t) ,
			
	 		
	ε 4,b =		
	 		

′ 2p , y 2p+1 ) ∈ {(s, s), (t, s), (t, t)} , 1 if (y ′ 2p , y 2p+1 ) = (s, t) , -1 if (y 1 , y ′ 2p , y 2p+1 ) ∈ {(s,

s, s), (s, t, s), (s, t, t)} , 0 if (y 1 , y ′ 2p , y 2p+1 ) ∈ {(s, s, t), (t, s, s), (t, t, s), (t, t, t)} , 1 if (y 1 , y ′ 2p , y 2p+1 ) = (t, s, t) .

* Supported by CONICYT Beca Doctorado "Becas Chile" 72130288.

• a p+1 b p+1 = c;

• We set x i = τ (a i ), x ′ i = σ(a i ), y i = σ(b i ), y ′ i = τ (b i ) for all i ∈ {1, . . . , p + 1}. Then x ′ i = x i+1 for all i ∈ {1, . . . , p -1}. We denote by ϕ : M → M the isomorphism that sends s to t and t to s. Since a i b i = ∆, we have y i = ϕ(x i ) and y ′ i = ϕ(x ′ i ) for all i ∈ {1, . . . , p}. In particular, y ′ i = ϕ(x ′ i ) = ϕ(x i+1 ) = y i+1 for all i ∈ {1, . . . , p -1}. Let u = |{i ∈ {1, . . . , p} | x ′ i = s}|. By Lemma 5.7, dpt(a) = dpt(a p+1 ) + p i=1 dpt(a i )u + ε a , where ε a is as follows. If p ≥ 1 and a p+1 = 1, then: ε a = 0 if (x ′ p , x p+1 ) ∈ {(s, s), (t, s), (t, t)} and ε a = 1 if (x ′ p , x p+1 ) = (s, t). If p ≥ 1 and a p+1 = 1, then: Finally, by Lemma 5.7 (2), we have p i=1 (dpt(a i ) + dpt(b i )) = pk. On the other hand, since y ′ i = ϕ(x ′ i ) for all i ∈ {1, . . . , p}, we have u + v = p. Set ε = ε a + ε bε c . By the above we have dpt(c) = dpt(a) + dpt(b)p(k -1)ε and ε is as follows. If p ≥ 1, a p+1 = 1 and b p+1 = 1, then: ε = 0 if (x ′ p , x p+1 , y p+1 ) ∈ {(s, s, t), (t, t, s)} and ε = 1 otherwise. If p ≥ 1, a p+1 = 1 and b p+1 = 1, then: ε = 0 if (x ′ p , x p+1 ) = (s, s) and ε = 1 otherwise. If p ≥ 1, a p+1 = 1 and b p+1 = 1, then: ε = 0 if (x ′ p , y p+1 ) = (t, s) and ε = 1 otherwise. If p ≥ 1, a p+1 = 1 and b p+1 = 1, then ε = 1. If p = 0, a = 1 and b = 1, then: ε = 0 if (x p+1 , y p+1 ) ∈ {(s, t), (t, s), (t, t)} and ε = 1 otherwise. If p = 0 and either a = 1 or

By Theorem 3.2 this implies the following.

Corollary 6. [START_REF] Burckel | The wellordering on positive braids[END_REF] The pair (H, G 1 ) is a Dehornoy structure on G.

We denote by P 1 the set of (H, G 1 )-positive elements of G and we set

Then by Proposition 3.1 we have the following. Corollary 6. [START_REF] Crisp | Injective maps between Artin groups, Geometric group theory down under[END_REF] The set P ǫ is the positive cone for a left-order on G.

Let r 1 , . . . , r 2k be the standard generators of the braid group B 2k+1 on m = 2k + 1 strands. Again, by Crisp [START_REF] Crisp | Injective maps between Artin groups, Geometric group theory down under[END_REF], we have an embedding ι : G → B 2k+1 which sends s to k-1 i=0 r 2i+1 and t to k i=1 r 2i . The proof of the following is substantially the same as the proof of Proposition 5.4, hence it is left to the reader.

We start now the proof of Theorem 6.1. We say that an element a ∈ M is Ω-unmovable if Ω ≤ L a or, equivalently, if Ω ≤ R a. The following is an observation. Lemma 6.5 [START_REF] Brieskorn | Artin[END_REF] Let a be an Ω-unmovable element of M . Then a is uniquely written in the form a = t up s vp • • • t u 1 s v 1 t u 0 , where u 0 , u p ≥ 0, u 1 , . . . , u p-1 ≥ 1 and v 1 , . . . , v p ≥ 1. In this case we have dpt(a) = p.

(2) Let a be an unmovable element of M . Then a is uniquely written in the form a = a ′ Ω ε where a ′ is Ω-unmovable and ε ∈ {0, 1}.

The first part of Theorem 6.1 is a direct consequence of this lemma.

Proposition 6. [START_REF] Dehornoy | Alternating normal forms for braids and locally Garside monoids[END_REF] The pair (H, G 1 ) satisfies Condition A with constant ζ = 2k -1.

Proof Let p ≥ 1 be an integer. We have θ = (st) k (ts) k , hence θ p = ((st) k (ts) k ) p . By Lemma 6.5 (1) it follows that dpt(

The second part of Theorem 6.1 will be much more difficult to prove. Let a ∈ M \ {1} be an Ω-unmovable element that we write as in Lemma 6.5 [START_REF] Brieskorn | Artin[END_REF]. Then we set σ(a) = t if u p = 0 and σ(a) = s if u p = 0. Similarly, we set τ (a) = t if u 0 = 1 and τ (a) = s if u 0 = 0. In other words, σ(a) is the first letter of a and τ (a) is its last one. On the other hand, we denote by ϕ : G → G the automorphism which sends s to t and t to s. Note that ϕ is the conjugation by Ω, that is, ϕ(α) = ΩαΩ -1 for all α ∈ G. The following is again a direct consequence of Lemma 6.5.

If p ≥ 1 and b 2p+1 = 1, then:

Again, by applying Lemma 6.7 we prove successively the following equalities. 

If a 2p+1 = 1 and b 2p+1 = 1, then:

From Lemma 6.8 we also get 2p i=1 (dpt

Suppose that a ∈ Θ. Then a is written a = θ q with q ≥ 1. On the other hand we write

Suppose that aΩ ∈ Θ. Then aΩ is written aΩ = θ q t with q ≥ 1, hence a = θ q-1 (st) k . On the other hand we write b = s r b ′ , where b

On the other hand we write a = a ′ s r where either a ′ = 1 or Suppose that a ∈ Θ. Then a is written a = θ q with q ≥ 1. On the other hand we write b = t r b ′ where either b ′ = 1 or σ(b ′ ) = s. If r = 0 and b ′ = 1, then p = 0,

Then bΩ is written bΩ = θ q t with q ≥ 1, hence b = θ q-1 (st) k . On the other hand we write a = a ′ t r where a ′ = 1 (since a ∈ Θ) and τ (a ′ ) = s. If Suppose that aΩ ∈ Θ. Then aΩ is written aΩ = θ q t with q ≥ 1, hence a = θ q-1 (st) k . On the other hand we write b = s r b ′ , where either b

Then ϕ(b)Ω is written ϕ(b)Ω = θ q t with q ≥ 1, hence b = (ts) k θ q-1 . On the other hand we write a = a ′ s r where either a ′ = 1 or τ (a ′ ) = t. If r = 0 and a ′ = 1, then p = 0, a = 1, b = (ts) k θ q-1 = 1 and y 2p+1 = t, hence ε = 1. If r = 0 and a ′ = 1, then p = 0, a = a ′ = 1, b = (ts) k θ q-1 = 1 and (x 2p+1 , y 2p+1 ) = (t, t), hence ε = 1. If r > 0 and a ′ = 1, then r = 2p ≤ 2(q -1),

Lemma 6.10 Let a, b be two Ω-unmovable elements of M . We assume that the ∆-form of ab is in the form ab = (cΩ)∆ p where c is an Ω-unmovable element of M and p ≥ 0.

(1) Suppose that (a, b) ∈ ( Θ × Θ). There exists ε ∈ {0, 1} such that dpt(cΩ) = dpt(a)

Proof We write a and b in the form

i for all i ∈ {1, . . . , 2p}. For i ∈ {1, . . . , 2p + 1} we have y i = ϕ(x i ) and y ′ i = x ′ i if i is odd and y i = x i and

By using Lemma 6.7 we obtain successively the following equalities.

, where ε 1,a and ε 2,a are as follows. If a 2p+2 = 1, then:

Similarly, by using Lemma 6.7 we obtain successively the following equalities.

where ε 1,b , ε 2,b , ε 3,b and ε 4,b are as follows. If b 2p+2 = 1, then:

, (t, s, s, s), (t, t, s, s), (t, t, t, s)} ,

Again, by using Lemma 6.7 we obtain the following equalities.

where ε 1,c and ε 2,c are as follows. If a 2p+2 = 1 and b 2p+2 = 1, then:

If a 2p+2 = 1 and b 2p+2 = 1, then:

If a 2p+2 = 1 and b 2p+2 = 1, then:

Finally, from Lemma 6.7 and Lemma 6.8 follows that Suppose that aΩ ∈ Θ. Then aΩ is written aΩ = θ q t with q ≥ 1, hence a = θ q-1 (st) k . On the other hand we write b = s r b ′ where b

Suppose that ϕ(b) ∈ Θ. Then ϕ(b) is written ϕ(b) = θ q with q ≥ 1, hence b = ((ts) k (st) k ) q . On the other hand we write a = a ′ s r where either a ′ = 1 or τ (a ′ ) = t.

We necessarily have r = 2p + 1 < 2q, a 2p+2 = a ′ and b 2p+2 = ((ts) k (st) k ) q-p-1 (ts) k , hence x ′ 2p+1 = s and x 2p+2 = t if a ′ = 1, and therefore ε = 1. Suppose that a ∈ Θ. Then a is written a = θ q with q ≥ 1. On the other hand we write b = t r b ′ where either b ′ = 1 or σ(b ′ ) = s. We necessarily have r = 2p+1 < 2q, hence

Suppose that bΩ ∈ Θ. Then bΩ is written bΩ = θ q t with q ≥ 1, hence b = θ q-1 (st) k .

On the other hand we write a = a ′ t r where a ′ = 1 (since a ∈ Θ) and τ (a Suppose that aΩ ∈ Θ. Then aΩ is written aΩ = θ q t with q ≥ 1, hence a = θ q-1 (st) k . On the other hand we write b = s r b ′ where either b ′ = 1 or σ(b ′ ) = t. If r ≥ 2q -1, then a 2p+2 = 1 and x ′ 2p+1 = s, hence ε = 1. If r < 2q -1, then r = 2p + 1, a 2p+2 = θ q-p-1 and b 2p+2 = b ′ , hence x ′ 2p+1 = s, x 2p+2 = s and either b 2p+2 = 1 or y 2p+2 = t, and therefore ε = 1.

Suppose that ϕ(b)Ω ∈ Θ. Then ϕ(b)Ω is written ϕ(b)Ω = θ q t with q ≥ 1, hence b = ((ts) k (st) k ) q-1 (ts) k . On other hand we write a = a ′ s r where either a ′ = 1 or τ (a ′ ) = t. If r ≥ 2q -1, then b 2p+2 = 1 and x ′ 2p+1 = s, hence ε = 1. If r < 2q -1, then r = 2p + 1, a 2p+2 = a ′ and b 2p+2 = ((ts) k (st) k ) q-p-1 , hence x ′ 2p+1 = s and y 2p+2 = t, and therefore ε = 1. Now, the second part of Theorem 6.1 is a direct consequence of the previous two lemmas.