Ordering Garside groups

Diego Arcis, Luis Paris

To cite this version:

Diego Arcis, Luis Paris. Ordering Garside groups. 2017. hal-01531275v1

HAL Id: hal-01531275
 https://hal.science/hal-01531275v1

Preprint submitted on 1 Jun 2017 (v1), last revised 5 Jun 2018 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ordering Garside groups

Diego Arcis*
Luis Paris

Abstract

We introduce a condition on Garside groups that we call Dehornoy structure. An iteration of such a structure leads to a left order on the group. We show conditions for a Garside group to admit a Dehornoy structure, and we apply these criteria to prove that the Artin groups of type A and $I_{2}(m), m \geq 4$, have Dehornoy structures. We show that the left orders on the Artin groups of type A obtained from their Dehornoy structures are the Dehornoy orders. In the case of the Artin groups of type $I_{2}(m), m \geq 4$, we show that the left orders derived from their Dehornoy structures coincide with the orders obtained from embeddings of the groups into braid groups.

20F36

1 Introduction

In this paper the braid group on n strands is defined by the presentation:

$$
\mathcal{B}_{n}=\left\langle\begin{array}{l|ll}
x_{1}, \ldots, x_{n-1} & \begin{array}{ll}
x_{i} x_{j}=x_{j} x_{i} & \text { if }|i-j| \geq 2 \\
x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j} & \text { if }|i-j|=1
\end{array}
\end{array}\right\rangle .
$$

A group G is called left orderable if there exists a total order $<$ on G which is invariant under left multiplication, that is, such that $g_{1} g_{2}<g_{1} g_{3}$ if $g_{2}<g_{3}$, for all $g_{1}, g_{2}, g_{3} \in G$. Given such an order $<$ on G, we define the positive cone of $<$ to be the set $P=P_{<}=\{g \in G \mid 1<g\}$. This satisfies the following properties:
(1) $P P \subset P$ (i.e. P is a subsemigroup).
(2) $G=P \sqcup P^{-1} \sqcup\{1\}$.

[^0]Conversely, a subset P of G which satisfies (1) and (2) determines a left order $<$ on G defined by $g_{1}<g_{2}$ if $g_{1}^{-1} g_{2} \in P$, and P is the positive cone of $<$. In the literature the left orders on groups are often defined by their positive cones, and they will be defined in this way in the present paper.

The first explicit left order on the braid group \mathcal{B}_{n} was determined by Dehornoy [8]. The fact that the braid group is left orderable is an important result, but, also, the Dehornoy order is interesting by itself, and it is used for several purposes such as in the proof of the faithfulness of some representations of the braid groups (see Shpilrain [26] and Crisp-Paris [7], for example). A complete presentation on left orders on the braid group and, in particular, on the Dehornoy order, is given in Dehornoy-Dynnikov-Rolfsen-Wiest [12]. The definition of the Dehornoy order is based on the following construction:

Let G be a group, and let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ be an ordered generating family for G. Let $i \in\{1, \ldots, k\}$. We say that a word $w \in\left(X \sqcup X^{-1}\right)^{*}$ is x_{i}-positive (resp. x_{i}-negative) if it satisfies the following condition:
$w \in\left\{x_{i}, x_{i+1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}\right\}^{*}$ (resp. $w \in\left\{x_{i}^{-1}, x_{i+1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}\right\}^{*}$), but $w \notin\left\{x_{i+1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}\right\}^{*}$.
An element $g \in G$ is called x_{i}-positive (resp. x_{i}-negative) if it has an x_{i}-positive representative (resp. x_{i}-negative representative). We denote by G_{i} the subgroup of G generated by $\left\{x_{i}, x_{i+1}, \ldots, x_{k}\right\}$, by P_{i}^{+}the set of x_{i}-positive elements of G, and by P_{i}^{-} the set of x_{i}-negative elements. The key of the definition of the Dehornoy order is the following:

Theorem 1.1 (Dehornoy [8]) Assume that $G=\mathcal{B}_{n}$ is the braid group on n strands, and that $\left\{x_{1}, \ldots, x_{n-1}\right\}$ is its standard generating set. For all $i \in\{1, \ldots, n-1\}$, we have the disjoint union $G_{i}=P_{i}^{+} \sqcup P_{i}^{-} \sqcup G_{i+1}$, where $G_{n}=\{1\}$.

Let $G=\mathcal{B}_{n}$ be the braid group on n strands. Set $P_{D}=P_{1}^{+} \sqcup P_{2}^{+} \sqcup \cdots \sqcup P_{n-1}^{+}$. Then, by Theorem 1.1, P_{D} is the positive cone of a left order on G. This order is the Dehornoy order. The order relation respective to P_{D} shall be denoted by $<_{D}$.

A careful reader may notice that Theorem 1.1 leads to more than one left order on the braid group. Indeed, for $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in\{ \pm 1\}^{n-1}$, we set:

$$
P^{\epsilon}=P_{1}^{\epsilon_{1}} \sqcup P_{2}^{\epsilon_{2}} \sqcup \cdots \sqcup P_{n-1}^{\epsilon_{n-1}} .
$$

Then, by Theorem 1.1, P^{ϵ} is the positive cone of a left order on $G=\mathcal{B}_{n}$. The case $\epsilon=(1,-1,1,-1, \ldots)$ is particularly interesting because of the following:

Theorem 1.2 (Dubrovina-Dubrovin [15]) Assume that $G=\mathcal{B}_{n}$ is the braid group on n strands, and that $\left\{x_{1}, \ldots, x_{n-1}\right\}$ is its standard generating set. Let $\epsilon=(1,-1,1,-1$, ...). Then P^{ϵ} is a finitely generated semigroup. In particular, the left order on \mathcal{B}_{n} defined by P^{ϵ} is isolated in the space of left orders on \mathcal{B}_{n}.

The goal of the present paper is to extend the Dehornoy order to some Garside groups.
A first approach would be to adopt the same definition as above. Let G be a group, and let $\left\{x_{1}, \ldots, x_{k}\right\}$ be an ordered generating set for G. We say that $\left\{x_{1}, \ldots, x_{k}\right\}$ determines a Dehornoy structure (in Ito's sense) if we have the disjoint union $G_{i}=P_{i}^{+} \sqcup P_{i}^{-} \sqcup G_{i+1}$ for all $i \in\{1, \ldots, k\}$, where $G_{k+1}=\{1\}$. In this case, as for the braid group, if $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{k}\right) \in\{ \pm 1\}^{k}$, then

$$
P^{\epsilon}=P_{1}^{\epsilon_{1}} \sqcup P_{2}^{\epsilon_{2}} \sqcup \cdots \sqcup P_{k}^{\epsilon_{k}}
$$

is the positive cone of a left order on G. This approach is actually used in Ito [25] to construct groups having isolated left orders in their spaces of left orders.

In this paper we adopt another approach based on a definition of the Dehornoy order in terms of Garside groups (see Dehornoy [10], Fromentin [16], Fromentin-Paris [17]). In Section 3 we give a (new and different) definition of a Dehornoy structure on a Garside group, and we show a criterion for a Garside group to admit such a structure. We warm the reader that our new notion of a Dehornoy structure is different and, probably, non-equivalent to the one in Ito's sense given above (see Sibert [27]). In Section 4 we prove that the braid group admits a Dehornoy structure (in the new sense), and that this structure leads to the Dehornoy order. In Sections 5 and 6 we prove that an Artin group of dihedral type admits a Dehornoy structure which leads to a left order on the group. Then, we compare the left order obtained in this way with the one obtained using some embedding of the group in a braid group defined by Crisp [5]. For technical reasons, the study of the Artin groups of dihedral type is divided into two sections, depending on the parity of the length of the Garside element. In Section 2 we give some preliminaries on Garside groups and Artin groups.

2 Preliminaries

2.1 Garside groups

The Garside groups are a generalization of the braid groups on which one can apply Garside's ideas [18]. They were introduced in Dehornoy-Paris [13]. We refer to

Dehornoy et al. [11] for a complete presentation on this theory. Here, we will just give some basic definitions and properties that will be needed for our purpose.

Let M be a monoid. We say that M is atomic if there exists a map $\nu: M \rightarrow \mathbb{N}$ such that:
(a) $\nu(g)=0$ if and only if $g=1$;
(b) $\nu\left(g g^{\prime}\right) \geq \nu(g)+\nu\left(g^{\prime}\right)$ for all $g, g^{\prime} \in M$.

Such a map $\nu: M \rightarrow \mathbb{N}$ is called a norm on M. A non-trivial element $g \in M$ is called an atom if it is indecomposable in the sense that, if $g=g_{1} g_{2}$, then either $g_{1}=1$ or $g_{2}=1$. We denote by $\mathcal{A}=\mathcal{A}_{M}$ the set of atoms.

Assume that M is atomic. Then any generating set of M contains \mathcal{A}, and \mathcal{A} generates M. In particular, M is finitely generated if and only if \mathcal{A} is finite. We can define two partial orders \leq_{L} and \leq_{R} on M as follows:

- We set $g_{1} \leq_{L} g_{2}$ if there exists $g_{3} \in M$ such that $g_{1} g_{3}=g_{2}$.
- We set $g_{1} \leq_{R} g_{2}$ if there exists $g_{3} \in M$ such that $g_{3} g_{1}=g_{2}$.

These orders are called left-divisibility order and right-divisibility order, respectively. For $g \in M$ we set:

$$
\operatorname{Div}_{L}(g)=\left\{g^{\prime} \in M \mid g^{\prime} \leq_{L} g\right\}, \quad \operatorname{Div}_{R}(g)=\left\{g^{\prime} \in M \mid g^{\prime} \leq_{R} g\right\}
$$

We say that g is balanced if $\operatorname{Div}_{L}(g)=\operatorname{Div}_{R}(g)$.
A Garside monoid is a monoid M such that:
(a) M is atomic;
(b) M is cancellative, that is, $g_{1} g g_{2}=g_{1} g^{\prime} g_{2}$ implies $g=g^{\prime}$, for all $g, g^{\prime}, g_{1}, g_{2} \in$ M;
(c) $\left(M, \leq_{L}\right)$ and $\left(M, \leq_{R}\right)$ are lattices;
(d) M contains a Garside element, that is, a balanced element Δ such that $\operatorname{Div}_{L}(\Delta)$ $=\operatorname{Div}_{R}(\Delta)$ is finite and generates M.

The lattice operations in $\left(M, \leq_{L}\right)$ (resp. $\left(M, \leq_{R}\right)$) are denoted by \wedge_{L} and \vee_{L} (resp. \wedge_{R} and \vee_{R}). For every $g, g^{\prime} \in M$ we denote by $g^{\prime} \backslash g$ and g / g^{\prime} the unique elements in M such that $g \vee_{L} g^{\prime}=g^{\prime}\left(g^{\prime} \backslash g\right)$ and $g \vee_{R} g^{\prime}=\left(g / g^{\prime}\right) g^{\prime}$.

Proposition 2.1 (Dehornoy [11]) For every g, g_{1}, g_{2} in a Garside monoid, we have:
(1) $g \vee_{R}\left(g_{2} g_{1}\right)=\left(\left(g / g_{1}\right) \vee_{R} g_{2}\right) g_{1}$.
(2) $\left(g_{1} g_{2}\right) \vee_{L} g=g_{1}\left(g_{2} \vee_{L}\left(g_{1} \backslash g\right)\right)$.
(3) $\left(g_{2} g_{1}\right) / g=\left(g_{2} /\left(g / g_{1}\right)\right)\left(g_{1} / g\right)$ and $g /\left(g_{2} g_{1}\right)=\left(g / g_{1}\right) / g_{2}$.
(4) $g \backslash\left(g_{1} g_{2}\right)=\left(g \backslash g_{1}\right)\left(\left(g_{1} \backslash g\right) \backslash g_{2}\right)$ and $\left(g_{1} g_{2}\right) \backslash g=g_{2} \backslash\left(g_{1} \backslash g\right)$.

Let M be a monoid. The enveloping group of M, denoted by $G=G(M)$, is the group presented by the generating set M and the relations $g_{1} g_{2}=g$ if $g_{1} g_{2}=g$ holds in M. There is a canonical homomorphism $M \rightarrow G(M)$ which is not injective in general. A Garside group is the enveloping group of a Garside monoid.

Remark (1) A Garside monoid M satisfies the Öre conditions, hence the canonical homomorphism $M \rightarrow G(M)$ is injective (see Dehornoy-Paris [13]). Furthermore, the orders \leq_{L} and \leq_{R} extend to lattice orders on $G(M)$ with positive cone M. These are defined by $g \leq_{L} g^{\prime}$ (resp. $g \leq_{R} g^{\prime}$) if $g^{-1} g^{\prime} \in M$ (resp. $\left.g^{\prime} g^{-1} \in M\right)$.
(2) A Garside element is never unique. For example, if Δ is a Garside element, then Δ^{k} is a Garside element for all $k \geq 1$ (see Dehornoy [9, Lemma 2.2]). We will talk about a Garside system (M, Δ) whenever we will need to indicate the Garside element.

Let M be a Garside monoid, and let Δ be a fixed Garside element. The elements of $\operatorname{Div}_{L}(\Delta)=\operatorname{Div}_{R}(\Delta)$ are called the simple elements of M, and the set of simple elements is denoted by $\operatorname{Div}(\Delta)$. By Dehornoy-Paris [13], there is an automorphism $\Phi: M \rightarrow M$, called the flip automorphism, such that $\Delta g=\Phi(g) \Delta$ for all $g \in M$. On the other hand, there is a one-to-one correspondence $\partial: \operatorname{Div}(\Delta) \rightarrow \operatorname{Div}(\Delta)$ such that $\partial(s) s=\Delta$ for all $s \in \operatorname{Div}(\Delta)$. It is easily seen that $\partial^{2}(s)=\Phi(s)$ and $s \partial^{-1}(s)=\Delta$ for all $s \in \operatorname{Div}(\Delta)$.

A pair $\left(s, s^{\prime}\right)$ of simple elements is called right-weighted (resp. left-weighted) if $s s^{\prime} \wedge_{R} \Delta=s^{\prime}\left(\right.$ resp. $\left.s s^{\prime} \wedge_{L} \Delta=s\right)$.

Proposition 2.2 (Dehornoy-Paris [13]) Every element $g \in G$ admits unique decompositions $g=s_{p} \cdots s_{1} \Delta^{d}$ and $g=\Delta^{d} s_{1}^{\prime} \cdots s_{p}^{\prime}$ such that:
(a) $s_{1}, \ldots, s_{p}, s_{1}^{\prime}, \ldots, s_{p}^{\prime} \in \operatorname{Div}(\Delta) \backslash\{1, \Delta\} ;$
(b) $\left(s_{i+1}, s_{i}\right)$ is right-weighted for all $i \in\{1, \ldots, p-1\}$;
(c) $\left(s_{i}^{\prime}, s_{i+1}^{\prime}\right)$ is left-weighted for all $i \in\{1, \ldots, p-1\}$.

The expressions $g=s_{p} \cdots s_{1} \Delta^{d}$ and $g=\Delta^{d} s_{1}^{\prime} \cdots s_{p}^{\prime}$ of Proposition 2.2 are called the right greedy normal form and the left greedy normal form of g, respectively. The integer d is called the infimum of g, and is denoted by $\inf (g)$, the integer p is called the canonical length, and is denoted by $\ell(g)$, and the integer $d+p$ is called the supremum, and is denoted by $\sup (g)$. These invariants of the greedy normal forms are frequently used in the theory of Garside groups, especially in the study of the conjugacy problem (see Gebhardt-González-Meneses [19], for example). In this paper we will need a fourth invariant, that we call the negative-infimum of g, and which is defined by:

$$
\operatorname{Ninf}(g)= \begin{cases}0 & \text { if } d \geq 0 \\ -d & \text { if } d<0\end{cases}
$$

Moreover, we set $g_{R}=s_{p} \cdots s_{1}$ and $g_{L}=s_{1}^{\prime} \cdots s_{p}^{\prime}$. Note that $g_{L}=g_{R}$ if the flip automorphism Φ is trivial.

Note that $M=\{g \in G(M) \mid \operatorname{Ninf}(g)=0\}$.
Proposition 2.3 (Gebhardt-González-Meneses [19]) Let $g \in G$.
(1) Then $\inf (g)$ is the greatest integer $d \in \mathbb{Z}$ such that $\Delta^{d} \leq_{R} g$, and $\sup (g)$ is the least integer $k \in \mathbb{Z}$ such that $g \leq_{R} \Delta^{k}$.
(2) We have $\inf \left(g^{-1}\right)=-\sup (g), \sup \left(g^{-1}\right)=-\inf (g)$, and $\ell\left(g^{-1}\right)=\ell(g)$.

We define the left complement (resp. the right complement) of an element $g \in G$ to be $\operatorname{com}_{L}(g)=\Delta^{k} g^{-1}$ (resp. $\operatorname{com}_{R}(g)=g^{-1} \Delta^{k}$), where $k=\sup (g)$. Note that, if $s \in \operatorname{Div}(\Delta) \backslash\{1, \Delta\}$, then $\operatorname{com}_{L}(s)=\partial(s)$ and $\operatorname{com}_{R}(s)=\partial^{-1}(s)$. Moreover, if $\Phi=1$, then $\operatorname{com}_{L}(g)=\operatorname{com}_{R}(g)$. The proof of the following is left to the reader:

Lemma 2.4 Let $g \in G$, let $g=s_{p} \cdots s_{1} \Delta^{d}$ be the right greedy normal form of g, and let $g=\Delta^{d} s_{1}^{\prime} \cdots s_{p}^{\prime}$ be its left greedy normal form. Then $\inf \left(\operatorname{com}_{L}(g)\right)=$ $\inf \left(\operatorname{com}_{R}(g)\right)=0$, and $\ell\left(\operatorname{com}_{L}(g)\right)=\ell\left(\operatorname{com}_{R}(g)\right)=p=\ell(g)$. Moreover,

$$
\begin{gathered}
\operatorname{com}_{L}(g)=\Phi^{p-1}\left(\partial\left(s_{1}\right)\right) \cdots \Phi\left(\partial\left(s_{p-1}\right)\right) \partial\left(s_{p}\right) \\
\operatorname{com}_{R}(g)=\partial^{-1}\left(s_{p}^{\prime}\right) \Phi^{-1}\left(\partial^{-1}\left(s_{p-1}^{\prime}\right)\right) \cdots \Phi^{-p+1}\left(\partial^{-1}\left(s_{1}^{\prime}\right)\right)
\end{gathered}
$$

Furthermore, $\operatorname{com}_{L}(g)=\Phi^{d+p}\left(\operatorname{com}_{R}(g)\right)$.
Proposition 2.5 (Dehornoy-Paris [13]) For every $h \in G$ there exists a unique pair $\left(g, g^{\prime}\right)\left(\right.$ resp. $\left.\left(g^{\prime}, g\right)\right)$ of elements in M, such that $h=g^{-1} g^{\prime}$ (resp. $\left.h=g^{\prime} g^{-1}\right)$ and $g \wedge_{L} g^{\prime}=1\left(\right.$ resp. $\left.g \wedge_{R} g^{\prime}=1\right)$.

The pair $\left(g, g^{\prime}\right)$ (resp. $\left.\left(g^{\prime}, g\right)\right)$ in Proposition 2.5 is called the left orthogonal splitting (resp. right orthogonal splitting) of h.

2.2 Parabolic subgroups

We keep the above hypothesis and notations, namely, M is a Garside monoid, Δ is a fixed Garside element, and G is the enveloping group of M. Recall that an element $\delta \in M$ is balanced if $\operatorname{Div}_{L}(\delta)=\operatorname{Div}_{R}(\delta)$. In this case, this set is denoted by $\operatorname{Div}(\delta)$. Let δ be a balanced element. We denote by $\mathcal{S}(\delta)$ the set of atoms of M that belong to $\operatorname{Div}(\delta)$, and by G_{δ} the subgroup of G generated by $\mathcal{S}(\delta)$. We say that G_{δ} is a parabolic subgroup of G (or of $(G, \Delta$), when the Garside element needs to be specified) associated with δ if $\operatorname{Div}(\delta)=\operatorname{Div}(\Delta) \cap G_{\delta}$. We list in the following proposition some results on parabolic subgroups that we will need, and refer to Godelle [20] for the proofs.

Proposition 2.6 (Godelle [20]) Let $\delta \in M$ be a balanced element such that G_{δ} is a parabolic subgroup of G.
(1) $M_{\delta}=M \cap G_{\delta}$ is a Garside monoid, and δ is a Garside element for M_{δ}. Moreover, G_{δ} is the enveloping group of M_{δ}.
(2) Let $\vee_{\delta, L}$ and $\wedge_{\delta, L}$ (resp. $\vee_{\delta, R}$ and $\wedge_{\delta, R}$) be the lattice operations on $\left(M_{\delta}, \leq_{L}\right)$ (resp. on $\left(M_{\delta}, \leq_{R}\right)$). We have $g_{1} \vee_{L} g_{2}, g_{1} \wedge_{L} g_{2} \in M_{\delta}, g_{1} \vee_{L} g_{2}=g_{1} \vee_{\delta, L} g_{2}$, and $g_{1} \wedge_{L} g_{2}=g_{1} \wedge_{\delta, L} g_{2}$, for all $g_{1}, g_{2} \in M_{\delta}$. Similarly, we have $g_{1} \vee_{R} g_{2}, g_{1} \wedge_{R} g_{2} \in$ $M_{\delta}, g_{1} \vee_{R} g_{2}=g_{1} \vee_{\delta, R} g_{2}$, and $g_{1} \wedge_{R} g_{2}=g_{1} \wedge_{\delta, R} g_{2}$, for all $g_{1}, g_{2} \in M_{\delta}$.
(3) We have $\mathcal{A} \cap M_{\delta}=\mathcal{S}(\delta)$, and this is the set of atoms of M_{δ}.
(4) If $g_{1} \leq_{L} g_{2}$ (resp. $g_{1} \leq_{R} g_{2}$) and $g_{2} \in M_{\delta}$, then $g_{1} \in M_{\delta}$, for all $g_{1}, g_{2} \in M$.

The following lemmas in this subsection will be needed in our study:
Lemma 2.7 Let $\delta_{1}, \delta_{2} \in M$ be two balanced elements such that $G_{\delta_{1}}$ and $G_{\delta_{2}}$ are parabolic subgroups, and $\mathcal{S}\left(\delta_{1}\right) \subseteq \mathcal{S}\left(\delta_{2}\right)$. Then δ_{1} is a balanced element of $M_{\delta_{2}}$, and $G_{\delta_{1}}=\left(G_{\delta_{2}}\right)_{\delta_{1}}$ is a parabolic subgroup of $G_{\delta_{2}}$.

Proof Clearly δ_{1} is balanced in $M_{\delta_{2}}$. Since $\mathcal{S}\left(\delta_{1}\right) \subseteq \mathcal{S}\left(\delta_{2}\right)$ then $M_{\delta_{1}}$ is a submonoid of $M_{\delta_{2}}$. Hence $\operatorname{Div}\left(\delta_{1}\right)=\operatorname{Div}(\Delta) \cap M_{\delta_{1}} \subseteq \operatorname{Div}(\Delta) \cap M_{\delta_{2}}=\operatorname{Div}\left(\delta_{2}\right)$. Therefore:

$$
\operatorname{Div}\left(\delta_{2}\right) \cap M_{\delta_{1}} \subseteq \operatorname{Div}(\Delta) \cap M_{\delta_{1}}=\operatorname{Div}\left(\delta_{1}\right) \subseteq \operatorname{Div}\left(\delta_{2}\right) \cap M_{\delta_{1}} .
$$

Further $\mathcal{S}(\Delta) \supseteq \mathcal{S}\left(\delta_{2}\right) \supseteq \mathcal{S}\left(\delta_{1}\right)=\mathcal{S}(\Delta) \cap \operatorname{Div}\left(\delta_{1}\right) \subseteq \operatorname{Div}\left(\delta_{1}\right)$. Hence $\mathcal{S}\left(\delta_{1}\right)=\mathcal{S}\left(\delta_{2}\right)$ $\cap \operatorname{Div}\left(\delta_{1}\right)$. Therefore $G_{\delta_{1}}=\left(G_{\delta_{2}}\right)_{\delta_{1}}$ is a parabolic subgroup of $G_{\delta_{2}}$.

Recall that, by Dehornoy [9], Δ^{k} is a Garside element for all $k \geq 1$.

Lemma 2.8 Let δ be a balanced element such that G_{δ} is a parabolic subgroup of (G, Δ). Let $k \in \mathbb{N}, k \geq 1$. Then δ^{k} is balanced, $G_{\delta^{k}}=G_{\delta}$, and $G_{\delta^{k}}$ is a parabolic subgroup of $\left(G, \Delta^{k}\right)$ associated with δ^{k}.

Proof Let $s \in \operatorname{Div}_{L}\left(\delta^{k}\right)$. Then $s \in M_{\delta}$ and $\sup (s) \leq k$, i.e. $s=s_{1} \cdots s_{t}, t \leq k$, for some $s_{1}, \ldots, s_{t} \in \operatorname{Div}(\delta)$. Hence $s \leq_{R} \delta^{t} \leq_{R} \delta^{k}$ because δ is balanced. Analogously, we obtain that if $s \in \operatorname{Div}_{R}\left(\delta^{k}\right)$, then $s \leq_{L} \delta^{k}$. Therefore δ^{k} is balanced in M. Since divisors of δ^{k} are products of divisors of δ, then $G_{\delta^{k}}=G_{\delta}$. Clearly $\operatorname{Div}\left(\delta^{k}\right) \subseteq \operatorname{Div}\left(\Delta^{k}\right)$ $\cap G_{\delta^{k}}$. Let $s \in \operatorname{Div}\left(\Delta^{k}\right) \cap G_{\delta^{k}}, s \neq 1$. Then $s=s_{1} \cdots s_{t}$ for some $s_{1}, \ldots, s_{t} \in \operatorname{Div}(\Delta)$, $t \leq k$. If $k=1$, then $s \in \operatorname{Div}(\Delta) \cap G_{\delta}=\operatorname{Div}(\delta)$. If $k>1$ we suppose that the statement is true for values less than k. If $t<k$, i.e. $s \in \operatorname{Div}\left(\Delta^{t}\right) \cap G_{\delta^{t}}$, then, the inductive hypothesis implies that $s \in \operatorname{Div}\left(\delta^{t}\right) \subseteq \operatorname{Div}\left(\delta^{k}\right)$. If $t=k$, Proposition 2.6.4 implies that $s_{1} \cdots s_{k-1} \in \operatorname{Div}\left(\Delta^{k-1}\right) \cap G_{\delta^{k-1}}$ because $s \in G_{\delta^{k}}=G_{\delta}$. So, by the inductive hypothesis, we have $s_{1} \cdots s_{k-1} \in \operatorname{Div}\left(\delta^{k-1}\right)$. Hence $s_{k}=\left(s_{1} \cdots s_{k-1}\right)^{-1} s \in G_{\delta^{k}}$, i.e. $s_{k} \in \operatorname{Div}(\Delta) \cap G_{\delta}=\operatorname{Div}(\delta)$, thus $s \in \operatorname{Div}\left(\delta^{k}\right)$. Therefore $\operatorname{Div}\left(\Delta^{k}\right) \cap G_{\delta^{k}}=\operatorname{Div}\left(\delta^{k}\right)$ which implies that $G_{\delta^{k}}$ is a parabolic subgroup of $\left(G, \Delta^{k}\right)$.

Lemma 2.9 Let $g, g^{\prime} \in M$ such that $\Delta \not \mathcal{L}_{R} g, g^{\prime}$ and $\Delta^{k} \leq_{R} g g^{\prime}$ for some $k \geq 1$. Then $g=g_{1} h$ and $g^{\prime}=\operatorname{com}_{R}(h) g_{1}^{\prime}$ for some $g_{1}, g_{1}^{\prime} \in A^{+}$and $h \in \operatorname{Div}\left(\Delta^{k}\right)$ with $\ell(h)=k$.

Proof Let $g_{0} \in M$ such that $g g^{\prime}=g_{0} \Delta^{k}$. Note that $\ell(g) \geq k$. Otherwise $\Delta \leq_{L} g^{\prime}$ which is a contradiction. Similarly $\ell\left(g^{\prime}\right) \geq k$. Let $s_{1}, \ldots, s_{k} \in \operatorname{Div}(\Delta)$ be the first k elements of the right greedy normal form of g. Then $g=g_{1} h$ where $h=s_{k} \cdots s_{1}$. We have $g_{0}=g_{1} h \Delta^{-k} \Phi^{k}\left(g^{\prime}\right)=g_{1} \operatorname{com}_{L}(h)^{-1} \Phi^{k}\left(g^{\prime}\right)$. Further $g_{1} \wedge_{R} \operatorname{com}_{L}(h)=1$ because $h=g \wedge_{R} \Delta^{k}$. Therefore $\operatorname{com}_{L}(h) \leq_{L} \Phi^{k}\left(g^{\prime}\right)$. So, by Lemma 2.4, $\operatorname{com}_{R}(h)=$ $\Phi^{-k}\left(\operatorname{com}_{L}(h)\right) \leq_{L} g^{\prime}$. Hence, there exists $g_{1}^{\prime} \in M$ such that $g^{\prime}=\operatorname{com}_{R}(h) g_{1}^{\prime}$.

2.3 Artin groups

Let S be a finite set. A Coxeter matrix over S is a square matrix $M=\left(m_{s, t}\right)_{s, t \in S}$, indexed by the elements of S, with coefficients in $\mathbb{N} \cup\{\infty\}$, and satisfying:
(a) $m_{s, s}=1$ for all $s \in S$;
(b) $m_{s, t}=m_{t, s} \geq 2$ for all $s, t \in S, s \neq t$.

A Coxeter matrix M as above is usually represented by a labeled graph, Γ, called Coxeter graph. This is defined as follows:
(a) The set of vertices of Γ is S.
(b) Two vertices $s, t \in S$ are connected by an edge if $m_{s, t} \geq 3$. This edge is labeled by $m_{s, t}$ if $m_{s, t} \geq 4$.

If a, b are two letters and m is an integer ≥ 2, we set:

$$
\operatorname{prod}(a, b: m)= \begin{cases}(a b)^{\frac{m}{2}} & \text { if } m \text { is even } \\ (a b)^{\frac{m-1}{2}} a & \text { if } m \text { is odd }\end{cases}
$$

In other words, $\operatorname{prod}(a, b: m)$ denotes the word $a b a \cdots$ of length m. Let Γ be a Coxeter graph as above. The Artin group associated with Γ is the group $A=A_{\Gamma}$ defined by the presentation:

$$
\left.A=\langle S| \operatorname{prod}\left(s, t: m_{s, t}\right)=\operatorname{prod}\left(t, s: m_{s, t}\right) \text { for all } s, t \in S, s \neq t \text { and } m_{s, t} \neq \infty\right\rangle
$$

The monoid $A^{+}=A_{\Gamma}^{+}$having the monoid presentation:

$$
\left.A^{+}=\langle S| \operatorname{prod}\left(s, t: m_{s, t}\right)=\operatorname{prod}\left(t, s: m_{s, t}\right) \text { for all } s, t \in S, s \neq t \text { and } m_{s, t} \neq \infty\right\rangle^{+}
$$

is called the Artin monoid associated with Γ. By Paris [24], the natural homomorphism $A^{+} \rightarrow A$ is injective. The Coxeter group associated with Γ, denoted by $W=W_{\Gamma}$, is the quotient of $A=A_{\Gamma}$ by the relations $s^{2}=1, s \in S$.
The reversed element of $g \in A^{+}$, denoted by $\operatorname{rev}(g)$, is the element represented by a word $x_{i_{k}} \cdots x_{i_{1}} \in S^{*}$, where $x_{i_{1}} \cdots x_{i_{k}}$ is a word representative of g. Note that $\operatorname{rev}(g)$ is well defined because relations of Artin monoids are symmetrical. Further, $\operatorname{rev}^{2}(g)=g$ for all $g \in M$.

The Artin groups were introduced by Tits [28] as extensions of Coxeter groups. There is an extensive literature on these groups, but most of the results concern only special classes. One of the most popular classes is the one of spherical type Artin groups, which is the class that concerns the present paper. We say that a Coxeter graph Γ (or an Artin group $A=A_{\Gamma}$) is of spherical type if the Coxeter group $W=W_{\Gamma}$ is finite. A classification of these groups is given in the following theorem:

Theorem 2.10 (Coxeter [4]) (1) A Coxeter graph is of spherical type if and only if all its connected components are of spherical type.
(2) A connected Coxeter graph is of spherical type if and only if it is isomorphic to one of the graphs depicted in Figure 2.1.

Note that the braid group \mathcal{B}_{n+1} is the Artin group of type A_{n}.
Let Γ be a Coxeter graph, let S be its set of vertices, let A be its associated Artin group, and let A^{+}be its associated Artin monoid. For $X \subset S$, we denote by Γ_{X} the

Figure 2.1: Spherical type Coxeter graphs.
full subgraph of Γ spanned by X, by A_{X} the subgroup of A generated by X, and by A_{X}^{+}the submonoid of A^{+}generated by X. By Van der Lek [22], the group A_{X} (resp. the monoid A_{X}^{+}) is the Artin group (resp. Artin monoid) associated with Γ_{X}. Now, Artin groups and Garside groups are related by the following:

Theorem 2.11 (Brieskorn-Saito [2], Deligne [14]) Assume that Γ is of spherical type.
(1) The monoid A^{+}is a Garside monoid, $\Delta=\vee_{L}(S)=\vee_{R}(S)$ is a Garside element of A^{+}, and A is the enveloping group of A^{+}.
(2) Let X be a subset of S, and let $\Delta_{X}=\vee_{L}(X)$. Then $\Delta_{X}=\vee_{R}(X), \Delta_{X}$ is balanced, A_{X} is a parabolic subgroup associated with Δ_{X}, and $A_{X}^{+}=A^{+} \cap A_{X}$. In particular, $A_{X}=A_{\Delta_{X}}$.
(3) We have $|\Phi| \in\{1,2\}$, and $Z(A)$ is the infinite cyclic group generated by $\Delta^{|\Phi|}$. In particular, Δ^{2} is central. Furthermore $\operatorname{rev}(\Delta)=\Delta$.

In particular, by Garside [18] and Brieskorn-Saito [2], \mathcal{B}_{n+1} is a Garside group with
the following Garside element:

$$
\Omega=\left(x_{n} \cdots x_{2} x_{1}\right) \underbrace{\left(x_{n} \cdots x_{2}\right) \cdots\left(x_{n} x_{n-1}\right) x_{n}}_{x_{2} \vee_{R} \cdots \vee_{R} x_{n}} .
$$

2.4 Alternating forms and the Dehornoy order

In this subsection we recall some definitions and results on alternating forms from Dehornoy [10] and Fromentin-Paris [17], and how one can define the Dehornoy order from this alternating forms. This is the point of view that we intend to extend in the following sections.

Proposition 2.12 (Dehornoy [10]) Let M be a Garside monoid, let N be a parabolic submonoid, and let g be an element of M. Then there exists a unique element $R_{N}(g)$ in N such that $\left\{h \in N \mid h \leq_{R} g\right\}=\left\{h \in N \mid h \leq_{R} R_{N}(g)\right\}$.

The element $R_{N}(g)$ is called the N-tale of g.
Now, we suppose given a Garside monoid M and two parabolic submonoids N_{1} and N_{2} such that $N_{1} \cup N_{2}$ generates M. Then every non-trivial element $g \in M$ can be uniquely written in the form $g=g_{p} \cdots g_{2} g_{1}$, where:

$$
g_{i}= \begin{cases}R_{N_{1}}\left(g_{p} \cdots g_{i}\right) & \text { if } i \text { is odd } \\ R_{N_{2}}\left(g_{p} \cdots g_{i}\right) & \text { if } i \text { is even }\end{cases}
$$

and $g_{p} \neq 1$. This form is called the alternating form of g (with respect to $\left(N_{2}, N_{1}\right)$). Note that we may have $g_{1}=1$, but we have $g_{i} \neq 1$ for all $i \in\{2, \ldots, p\}$. The number p is called the $\left(N_{2}, N_{1}\right)$-breadth of g and is denoted by $p=\operatorname{bh}(g)$ (or by $p=\mathrm{bh}_{N_{2}, N_{1}}(g)$ if one needs to specify the submonoids N_{1} and N_{2}).
Assume that $M=\mathcal{B}_{n+1}^{+}=A_{A_{n}}^{+}$is the positive braid monoid on $(n+1)$ strands, and that $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is the standard generating set of M. Let N_{1} be the submonoid of M generated by $\left\{x_{2}, \ldots, x_{n}\right\}$, and let N_{2} be the submonoid generated by $\left\{x_{1}, \ldots, x_{n-1}\right\}$. Note that, by Theorem 2.11, N_{1} and N_{2} are both parabolic submonoids of M, and $N_{1} \simeq \mathcal{B}_{n}^{+} \simeq N_{2}$. On the other hand, it is easily seen that $N_{1} \cup N_{2}$ generates M. In this context we have the following results:

Theorem 2.13 (Fromentin-Paris [17]) Let $g \in \mathcal{B}_{n+1}^{+}$, and let k be a positive integer. Then $\Omega^{-k} g$ is x_{1}-negative if and only if $k \geq \max \{1, \operatorname{bh}(g)-1\}$. In particular, if $g \in \mathcal{B}_{n+1}$, then g is x_{1}-negative if and only if $\operatorname{Ninf}(g) \geq \max \left\{1, \operatorname{bh}\left(g_{L}\right)-1\right\}$.

Theorem 2.14 (Dehornoy [10], Burckel [3]) Let $g, g^{\prime} \in M$, and let $\left(g_{p}, \ldots, g_{1}\right)$, $\left(g_{q}^{\prime}, \ldots, g_{1}^{\prime}\right)$ be their respective alternating forms. We have $g<_{D} g^{\prime}$, if and only if, either $p<q$, or $p=q$ and $\Phi^{k-1}\left(g_{k}\right)<_{D} \Phi^{k-1}\left(g_{k}^{\prime}\right)$, where $k=\min \left\{i \mid g_{i} \neq g_{i}^{\prime}\right\}$.

3 Orders on Garside groups

Let M be a Garside monoid, let $G(M)$ be the enveloping group of M, and let Δ be a Garside element. We assume that the flip automorphism Φ is trivial, that is, Δ is central. We take two balanced elements $\Delta_{1}, \Lambda \in \operatorname{Div}(\Delta) \backslash\{1, \Delta\}$, and we assume that $G_{1}=G_{\Delta_{1}}$ is a parabolic subgroup associated with $\Delta_{1}, H=G_{\Lambda}$ is a parabolic subgroup associated with Λ, and Δ_{1} is central in G_{1}. We set $M_{1}=G_{1} \cap M$ and $N=H \cap M$, and we assume that $M_{1} \cup N$ generates M. Such a data will be called a Dehornoy pre-structure. For convenience, we will often say that the pair $\left(H, G_{1}\right)$ is the Dehornoy pre-structure, without specifying any other data such as Δ_{1} and Λ.

We will consider alternating forms in M with respect to (N, M_{1}). Note also that M_{1} will play a different role in our study from that of N.

An element $g \in M$ is called unmovable if $\Delta \Sigma_{R} g$. Note that g is unmovable if and only if $\Delta \not Z_{L} g$. Moreover, by Proposition 2.2, for all $g \in G$, there exists a unique $d \in \mathbb{Z}$ and a unique unmovable element $g_{0} \in M$ such that $g=g_{0} \Delta^{d}$. In that case we also have $g=\Delta^{d} g_{0}$, since Δ is central. Let $g \in M$ be an unmovable element. The depth of g, denoted by $\operatorname{dpt}(g)$, is defined by

$$
\operatorname{dpt}(g)= \begin{cases}\frac{\operatorname{bh}(g)-1}{2} & \text { if } \operatorname{bh}(g) \text { is odd } \\ \frac{\operatorname{bh}(g)}{2} & \text { if } \operatorname{bh}(g) \text { is even }\end{cases}
$$

In other words, if $g=g_{p} \cdots g_{2} g_{1}$ is the alternating form of g, then $\operatorname{dpt}(g)=\mid\{i \in$ $\left.\{1, \ldots, p\} \mid g_{i} \in N\right\} \mid$. Now, take any $g \in G$, and write $g=\Delta^{d} g_{0}$, where $d \in \mathbb{Z}$ and $g_{0} \in M$ is unmovable. Then the depth of g is defined to be $\operatorname{dpt}(g)=\operatorname{dpt}\left(g_{0}\right)$.
Set $\theta=\Delta_{1}^{-1} \Delta=\Delta \Delta_{1}^{-1}$, and, for $k \geq 0$, set $q_{k}=\operatorname{dpt}\left(\theta^{k}\right)$. We say that an element $g \in G$ is $\left(H, G_{1}\right)$-positive if $g \notin G_{1}$ and $\operatorname{dpt}(g) \geq q_{k}$, where $k=\operatorname{Ninf}(g)$. We denote by $P=P_{H, G_{1}}$ the set of $\left(H, G_{1}\right)$-positive elements.

Note that $M \backslash G_{1} \subset P$ because $\operatorname{Ninf}(g)=0$ for all $g \in M$. Hence, every non $\left(H, G_{1}\right)$ positive element has a positive negative-infimum.

We say that $\left(H, G_{1}\right)$ is a Dehornoy structure if P satisfies the following conditions:
(a) $P^{2} \subset P$.
(b) $\quad G_{1} P G_{1} \subset P$.
(c) We have the disjoint union $G=P \sqcup P^{-1} \sqcup G_{1}$.

Our goal in this section is to prove a condition on $\left(H, G_{1}\right)$ that implies that it is a Dehornoy structure (see Theorem 3.2). We will apply in the next sections this criterion
to the Artin groups of type A, B, and $I_{2}(m)(m \geq 5)$. But, firstly, we show how left orders appear in this way.

Assume given two sequences of parabolic subgroups $G_{0}=G, G_{1}, \ldots, G_{n}$ and H_{1}, \ldots, H_{n} such that $G_{i}, H_{i} \subset G_{i-1}$ and $\left(H_{i}, G_{i}\right)$ is a Dehornoy structure of G_{i-1}, for all $i \in\{1, \ldots, n\}$, and $G_{n} \simeq \mathbb{Z}$. For $i \in\{1, \ldots, n\}$, we denote by P_{i} the set of $\left(H_{i}, G_{i}\right)$ positive elements in G_{i-1}. Furthermore, we choose a generator g_{n} of G_{n} and we set $P_{n+1}=\left\{g_{n}^{k} \mid k \geq 1\right\}$. For $i \in\{1, \ldots, n+1\}$ we set $P_{i}^{-1}=\left\{g^{-1} \mid g \in P_{i}\right\}$, and for $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}, \epsilon_{n+1}\right) \in\{ \pm 1\}^{n+1}$ we set:

$$
P^{\epsilon}=P_{1}^{\epsilon_{1}} \cup \cdots \cup P_{n}^{\epsilon_{n}} \cup P_{n+1}^{\epsilon_{n+1}} .
$$

Proposition 3.1 Under the above hypothesis, the set P^{ϵ} is the positive cone for a left order on G.

Proof Let $g, g^{\prime} \in P^{\epsilon}$. Then $g \in P_{i}^{\epsilon_{i}}$ and $g^{\prime} \in P_{j}^{\epsilon_{j}}$ for some $i, j \in\{1, \ldots, n+1\}$. If $i=j$, (a) implies that $g g^{\prime} \in P_{i}^{\epsilon_{i}} \subset P^{\epsilon}$. If $i \neq j$, without loss of generality we suppose that $i<j$. Hence $g^{\prime} \in G_{i+1}$. By (b), $g g^{\prime}, g^{\prime} g \in P_{i}^{\epsilon_{i}} \subset P^{\epsilon}$. Therefore P^{ϵ} is a subsemigroup of G. Since $1 \in G_{n}$, (c) implies that $1 \notin P_{i}^{ \pm 1}$ for all $i \in\{1, \ldots, n\}$. Further $1 \notin P_{n+1}^{ \pm 1}$ because $g_{n} \neq 1$ and $G_{n} \simeq \mathbb{Z}$. Hence $G=\left(P^{\epsilon} \cup P^{-\epsilon}\right) \sqcup\{1\}$. Since $P_{i} \subset G_{i-1}$ for all $i \in\{1, \ldots, n+1\}$, then, by (c), $\left(P_{i} \cup P_{i}^{-1}\right) \cap\left(P_{j} \cup P_{j}^{-1}\right)=\emptyset$ for all $i \neq j$. Finally, (c) implies that $P_{i} \cap P_{i}^{-1}=\emptyset$. Thus $G=P^{\epsilon} \sqcup\left(P^{\epsilon}\right)^{-1} \sqcup\{1\}$. Therefore P^{ϵ} is the positive cone for a left order on G.

Let $\left(H, G_{1}\right)$ be a Dehornoy pre-structure, with the above notations. We say that $\left(H, G_{1}\right)$ satisfies Condition A if there exists a constant $c \in \mathbb{N}, c \geq 1$, such that $q_{k}=k c+1$ for all $k \geq 1$.

Note that $q_{0}=0$, so the equality $q_{k}=k c+1$ is never true for $k=0$. Since in our study we will need sometimes to replace 0 by $1=0 c+1$ when $k=0$, we may use the sequence \tilde{q}_{k} defined as follows in place of q_{k} :

$$
\tilde{q}_{k}= \begin{cases}1 & \text { if } k=0 \\ q_{k} & \text { if } k \geq 1 .\end{cases}
$$

We say that an element $g \in M$ is a theta element if there exist $g_{0} \in M_{1}$ and $k \geq 1$ such that $g=\theta^{k} g_{0}$, where $\theta=\Delta_{1}^{-1} \Delta=\Delta \Delta_{1}^{-1}$. The set of theta elements is denoted by $\Theta=\Theta(G)$.

Let $g, g^{\prime} \in M$ be unmovable elements such that $\left\{g, g^{\prime}\right\} \not \subset M_{1} \cup \Theta$. We say that the pair $\left(g, g^{\prime}\right)$ satisfies Condition B if there exists $\epsilon \in\{0,1\}$ such that:
(a) $\operatorname{dpt}\left(g g^{\prime}\right)-\epsilon=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{k} \geq 0$, where $k=\inf \left(g g^{\prime}\right)$,
(b) $\epsilon=0$ if $\left\{g, g^{\prime}\right\} \cap \Theta \neq \emptyset$.

We say that (H, G_{1}) satisfies Condition B if, for all $g, g^{\prime} \in M$ unmovable such that $\left\{g, g^{\prime}\right\} \not \subset M_{1} \cup \Theta$, the pair $\left(g, g^{\prime}\right)$ satisfies Condition B.
The purpose of this section is to prove the following:
Theorem 3.2 Let $\left(H, G_{1}\right)$ be a Dehornoy pre-structure. If $\left(H, G_{1}\right)$ satisfies Conditions A and B, then $\left(H, G_{1}\right)$ is a Dehornoy structure.

The rest of the section is dedicated to the proof of Theorem 3.2.
Lemma 3.3 We have $\theta g=g \theta$ for all $g \in G_{1}$. Hence $\Delta^{k}=\theta^{k} \Delta_{1}^{k}$ for all $k \geq 1$. Furthermore $g \mathbb{Z}_{L} \theta$ and $g \not \mathbb{Z}_{R} \theta$ for all $g \in M_{1} \backslash\{1\}$.

Proof Let $g \in G_{1}$. Then $g=\Delta g \Delta^{-1}=\theta g \theta^{-1}$ because Δ is central in G, and Δ_{1} is central in G_{1}. Hence $\theta g=g \theta$. Let $g \in M_{1}$ be a right divisor of θ. Then $g \Delta_{1}$ lies in $\operatorname{Div}(\Delta) \cap M_{1}=\operatorname{Div}\left(\Delta_{1}\right)$, therefore $g=1$. Similarly we prove that $g=1$ whenever it left divides θ.

Corollary 3.4 Let $g=\theta^{k} g_{0}$ be a theta element. Then $R_{M_{1}}(g)=g_{0}$. Furthermore, if g is unmovable, then $\operatorname{dpt}(g)=q_{k}$.

Proof Lemma 3.3 implies that $g_{1} \not \mathbb{Z}_{R} \theta^{k}$ for all $g_{1} \in M_{1}$, thus $R_{M_{1}}(g)=g_{0}$. Hence $\operatorname{bh}(g)=\operatorname{bh}\left(\theta^{k}\right)$. Therefore $\operatorname{dpt}(g)=q_{k}$ if g is unmovable.

In what follows of this section we assume that Condition A holds.
Lemma 3.5 Let $g=\theta^{k} g_{0}$ be an unmovable theta element of G, and let $p=\ell\left(g_{0}\right)$. Then $\ell(g)=\max \{k, p\}, \operatorname{com}_{L}(g)=\theta^{\ell(g)-k} \Delta_{1}^{\ell(g)-p} g_{1}$, and:

$$
\operatorname{dpt}(g)+\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right)= \begin{cases}q_{k} & \text { if } p \leq k \\ q_{p}+1 & \text { if } p>k\end{cases}
$$

where $g_{1}=\Delta_{1}^{p} g_{0}^{-1}$ is the left complement of g_{0} with respect to Δ_{1}.
Proof Let $s_{p} \cdots s_{1}$ be the right greedy normal form of g_{0}. Note that $s_{i} \neq \Delta$ for all i because g is unmovable. If $p \leq k$, Lemma 3.3 implies that $g=\theta \cdots \theta \theta s_{p} \cdots \theta s_{1}$, where $\theta \cdots \theta=\theta^{k-p}$, is the right greedy normal form of g. Hence $\ell(g)=k$. Therefore $\operatorname{com}_{L}(g)=\Delta_{1}^{k-p} g_{1}$, and $\operatorname{dpt}(g)+\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right)=q_{k}$. If $p>k$, Lemma 3.3 implies that $g=s_{p} \cdots s_{k+1} \theta s_{k} \cdots \theta s_{1}$ is the right greedy normal form of g. Hence $\ell(g)=p$. Therefore $\operatorname{com}_{L}(g)=\theta^{p-k} g_{1}$, and $\operatorname{dpt}(g)+\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right)=q_{k}+q_{p-k}=q_{p}+1$.

Corollary 3.6 Let $g=\theta^{k} g_{0}$ be an unmovable theta element of G, and let $t>0$ be an integer. Then:

$$
\begin{cases}\Delta^{-t} g \in P \text { and }\left(\Delta^{-t} g\right)^{-1} \notin P & \text { if } t<k \\ \Delta^{-t} g \in G_{1} & \text { if } t=k \\ \Delta^{-t} g \notin P \text { and }\left(\Delta^{-t} g\right)^{-1} \in P & \text { if } t>k\end{cases}
$$

Furthermore $\Delta^{t^{\prime}} g \in P$ and $\left(\Delta^{t^{\prime}} g\right)^{-1} \notin P$ for all integer $t^{\prime} \geq 0$.
Proof We have $\left(\Delta^{-t} g\right)^{-1}=\Delta^{t} g^{-1}=\Delta^{t-d} \operatorname{com}_{L}(g)$, where $d=\ell(g)$. If $t<k$, then $\operatorname{dpt}\left(\theta^{k} g_{0}\right)=q_{k}>q_{t}$. Hence $\Delta^{-t} g \in P$. Lemma 3.5 implies that $d \geq k>t$, and that $\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right) \leq q_{d}+1-\operatorname{dpt}(g)=q_{d}-k c=q_{d-k}<q_{d-t}$. Thus $\left(\Delta^{-t} g\right)^{-1} \notin P$. If $t=k$, then $\Delta^{-t} g=\Delta_{1}^{-t} g_{0} \in G_{1}$. If $t>k$, then $\operatorname{dpt}\left(\theta^{k} g_{0}\right)=q_{k}<q_{t}$. Therefore $\Delta^{-t} g \notin P$. If $t \geq d$, then $\left(\Delta^{-t} g\right)^{-1} \in P$. Otherwise, Lemma 3.5 implies that $\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right) \geq q_{d}-\operatorname{dpt}(g)=(d-k) c \geq q_{d-t}$. Hence $\left(\Delta^{-t} g\right)^{-1} \in P$. We have $\left(\Delta^{t^{\prime}} g\right)^{-1}=\Delta^{-t^{\prime}-d} \operatorname{com}_{L}(g)$. Lemma 3.5 implies that $\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right) \leq q_{d}+1-\operatorname{dpt}(g)=$ $q_{d}-k c=q_{d-k}<q_{d+t^{\prime}}$. Therefore $\left(\Delta^{t^{\prime}} g\right)^{-1} \notin P$.

Lemma 3.7 Suppose that $\operatorname{dpt}(g)+\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right)=q_{k}$ for all unmovable element $g \in M \backslash \Theta$, where $k=\ell(g)$. Then $G=P \sqcup P^{-1} \sqcup G_{1}$.

Proof By definition, no (H, G_{1})-positive element belongs to G_{1}, hence $\left(P \cup P^{-1}\right) \cap$ $G_{1}=\emptyset$. We shall prove that $P^{-1}=\left(G \backslash G_{1}\right) \backslash P$. Let $g^{-1} \in P^{-1}$ for some $g=$ $\Delta^{d} g_{0} \in P$, where $d=\inf (g)$, and let $k=\ell\left(g_{0}\right)$. Suppose that $g_{0}=\theta^{t} g_{1} \in \Theta$ for some $g_{1} \in M_{1}$. If $d \geq 0$, Corollary 3.6 implies that $g^{-1} \notin P$. If $d<0$, then $t>-d$ because g is $\left(H, G_{1}\right)$-positive, hence $\operatorname{dpt}(g)=q_{t}>q_{-d}$. Then, by Corollary 3.6, $g^{-1} \notin P$. Suppose that $g_{0} \in M_{1}$. Then $d>0$ because g is $\left(H, G_{1}\right)$-positive. Hence $g^{-1}=\Delta^{-d-k} \operatorname{com}_{L}\left(g_{0}\right)$. By hypothesis, we have $\operatorname{dpt}\left(\operatorname{com}_{L}\left(g_{0}\right)\right)=q_{k}<q_{d+k}$. Therefore $g^{-1} \notin P$. Suppose that $g_{0} \in M \backslash\left(\Theta \cup M_{1}\right)$. In particular $\operatorname{dpt}\left(g_{0}\right) \geq 1$. If $d \geq 0$, then $g^{-1}=\Delta^{-d-k} \operatorname{com}_{L}\left(g_{0}\right)$. Hence, by hypothesis, $\operatorname{dpt}\left(\operatorname{com}_{L}\left(g_{0}\right)\right)=$ $q_{k}-\operatorname{dpt}\left(g_{0}\right)<q_{k} \leq q_{d+k}$. In particular, we have proved that $M^{-1} \cap P=\emptyset$. If $d<0$, i.e. $d=-t$ for some $t \geq 1$, then $g^{-1}=\Delta^{t-k} \operatorname{com}_{L}\left(g_{0}\right)$. We have $t<k$. Otherwise $g^{-1} \in M$, and so $g \notin P$, which is a contradiction. By hypothesis, we have $\operatorname{dpt}\left(\operatorname{com}_{L}\left(g_{0}\right)\right)=q_{k}-\operatorname{dpt}\left(g_{0}\right) \leq q_{k}-q_{t}<q_{k-t}$. Therefore $P^{-1} \subseteq\left(G \backslash G_{1}\right) \backslash P$. Let $g=\Delta^{-t} g_{0} \in\left(G \backslash G_{1}\right) \backslash P$ with $\inf (g)=-t$, and $\operatorname{dpt}\left(g_{0}\right)<q_{t}$. Note that $\inf (g)<0$ for all $g \in\left(G \backslash G_{1}\right) \backslash P$, because $M \subseteq P$. Suppose that $g_{0}=\theta^{d} g_{1} \in \Theta$ for some $g_{1} \in M_{1}$. Hence, $d<t$ because $q_{d}=\operatorname{dpt}\left(g_{0}\right)<q_{t}$. Corollary 3.6 implies that $g^{-1} \in P$. Suppose that $g_{0} \in M \backslash \Theta$. We have $g^{-1}=\Delta^{t-k} \operatorname{com}_{L}\left(g_{0}\right)$. If $t \geq k$, then $g^{-1} \in M \subseteq P$. If $t<k$, then, by hypothesis, $\operatorname{dpt}\left(\operatorname{com}_{L}\left(g_{0}\right)\right)=q_{k}-\operatorname{dpt}\left(g_{0}\right) \geq q_{k}-q_{t}+1=q_{k-t}$. Therefore $\left(G \backslash G_{1}\right) \backslash P \subseteq P^{-1}$.

Lemma 3.8 Condition B implies that $\operatorname{dpt}(g)+\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right)=q_{k}$ for all unmovable elements $g \in M \backslash \Theta, g \neq 1$, where $k=\ell(g)$.

Proof Let $g \in M \backslash \Theta$ be an unmovable element, and let $k=\ell(g)$. Note that $\operatorname{com}_{L}(g) \notin$ M_{1} because $g \notin \Theta$. If $g \in M_{1}$, then $\operatorname{com}_{L}(g)=\theta^{k}\left(\Delta_{1}^{k} g^{-1}\right)$. Therefore $\operatorname{dpt}(g)+$ $\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right)=q_{k}$. If $g \in M \backslash M_{1}$, Lemma 3.5 implies that $\operatorname{com}_{L}(g) \notin \Theta$. So, by Condition B, we have $0=\operatorname{dpt}\left(\Delta^{k}\right)=\operatorname{dpt}\left(\operatorname{com}_{L}(g) g\right) \geq \operatorname{dpt}\left(\operatorname{com}_{L}(g)\right)+\operatorname{dpt}(g)-\tilde{q}_{k} \geq$ 0 . Therefore $\operatorname{dpt}\left(\operatorname{com}_{L}(g)\right)+\operatorname{dpt}(g)=\tilde{q}_{k}=q_{k}$, because $k \geq 1$.

Lemma 3.9 Let $g \in G_{1} \backslash M_{1}$. Then $g_{L} \in \Theta$ and $\operatorname{dpt}(g)=q_{k}$, where $k=\operatorname{Ninf}(g)$.

Proof We have $g=\Delta_{1}^{-k} g_{0}$ for some $k \geq 1$ and $g_{0} \in M_{1}$ such that $\Delta_{1} Z_{R} g_{0}$. Note that $g=\Delta_{1}^{-k} \theta^{-k} \theta^{k} g_{0}=\Delta^{-k} \theta^{k} g_{0}$. If $\Delta \leq_{L} \theta^{k} g_{0}$, Corollary 3.4 implies that $\Delta_{1} \leq_{L} g_{0}$, which is a contradiction. Therefore $g_{L}=\theta^{k} g_{0} \in \Theta$ and $\inf (g)=-k$. By Corollary 3.4, $\operatorname{bh}\left(g_{L}\right)=\operatorname{bh}\left(\theta^{k}\right)$. Hence $\operatorname{dpt}(g)=q_{k}$.

Lemmas 3.7, 3.8 and 3.9 imply that, if Condition B holds, then:

$$
P^{-1}=\left\{g \in G \mid \operatorname{dpt}(g)<q_{k} \text { where } k=\operatorname{Ninf}(g)\right\} .
$$

Lemma 3.10 Condition B implies that P^{-1} is a subsemigroup of G.
Proof Let $g, g^{\prime} \in P^{-1}$, that is, $g=\Delta^{-t} g_{0}$ and $g^{\prime}=\Delta^{-t^{\prime}} g_{0}^{\prime}$, where $t=\operatorname{Ninf}(g)$ and $t^{\prime}=\operatorname{Ninf}\left(g^{\prime}\right)$, such that $\operatorname{dpt}\left(g_{0}\right)<q_{t}$ and $\operatorname{dpt}\left(g_{0}^{\prime}\right)<q_{t^{\prime}}$. We have $g g^{\prime}=\Delta^{-t-t^{\prime}+k} h$, where $k=\inf \left(g_{0} g_{0}^{\prime}\right)$, and $h=\left(g_{0} g_{0}^{\prime}\right)_{L}$, i.e. $h=\Delta^{-k} g_{0} g_{0}^{\prime}$. If $g_{0}, g_{0}^{\prime} \in M_{1}$, then $k=0$, and $\operatorname{dpt}(h)<q_{t+t^{\prime}}$. Hence $g g^{\prime} \in P^{-1}$. If $g_{0}, g_{0}^{\prime} \in \Theta$, that is, $g_{0}=\theta^{d} g_{1}$ and $g_{0}^{\prime}=\theta^{d^{\prime}} g_{1}^{\prime}$. Then $g_{0} g_{0}^{\prime}=\theta^{d+d^{\prime}} g_{1} g_{1}^{\prime}$ and $h=\theta^{d+d^{\prime}-k} h_{0}$ for some $h_{0} \in M_{1}$. Notice that $d<t$ and $d^{\prime}<t^{\prime}$ because $g, g^{\prime} \in P^{-1}$, therefore $k \leq d+d^{\prime}<t+t^{\prime}$. We have $\operatorname{dpt}(h)=q_{d+d^{\prime}-k} \leq \tilde{q}_{d+d^{\prime}-k}=\tilde{q}_{d}+\tilde{q}_{d^{\prime}}-\tilde{q}_{k}<\tilde{q}_{t}+\tilde{q}_{t^{\prime}}-\tilde{q}_{k}=\tilde{q}_{t+t^{\prime}-k}=q_{t+t^{\prime}-k}$. Thus $g g^{\prime} \in P^{-1}$. If $g_{0}=\theta^{d} g_{1} \in \Theta$ and $g_{0}^{\prime} \in M_{1}$, then $g_{0} g_{0}^{\prime}=\theta^{d} g_{1} g_{0}^{\prime} \in \Theta$ and $h=\theta^{d-k} h_{0}$ for some $h_{0} \in M_{1}$. Note that $d<t$ because $g \in P^{-1}$, therefore $k \leq d<t$. We have $\operatorname{dpt}(h)=q_{d-k}<q_{t-k} \leq q_{t+t^{\prime}-k}$. Thus $g g^{\prime} \in P^{-1}$. Similarly, we prove that $g g^{\prime} \in P^{-1}$ whenever $g_{0} \in M_{1}$ and $g_{0}^{\prime} \in \Theta$. If $\left\{g_{0}, g_{0}^{\prime}\right\} \nsubseteq M_{1} \cup \Theta$, Condition B implies that $\tilde{q}_{k} \leq \operatorname{dpt}\left(g_{0}\right)+\operatorname{dpt}\left(g_{0}^{\prime}\right) \leq q_{t}+q_{t^{\prime}}-2=q_{t+t^{\prime}}-1<q_{t+t^{\prime}}$, therefore $k<t+t^{\prime}$. By Condition B, we have $\operatorname{dpt}(h) \leq \operatorname{dpt}\left(g_{0}\right)+\operatorname{dpt}\left(g_{0}^{\prime}\right)-\tilde{q}_{k}+1 \leq q_{t}+q_{t^{\prime}}-\tilde{q}_{k}-1=$ $q_{t+t^{\prime}-k}-1<q_{t+t^{\prime}-k}$. Thus $g g^{\prime} \in P^{-1}$. Therefore P^{-1} is a subsemigroup of G.

Lemma 3.10 implies that, if Condition B holds, then P is a semigroup.

Lemma 3.11 Condition B implies that $G_{1} P^{-1} G_{1} \subseteq P^{-1}$.
Proof Let $g=\Delta^{-t} g_{0} \in P^{-1}$, and let $g^{\prime} \in G_{1}$. If $g^{\prime} \in M_{1}$, then $g g^{\prime}=\Delta^{-t} g_{0} g^{\prime}=$ $\Delta^{-t+k} h$, where $k=\inf \left(g_{0} g^{\prime}\right)$ and $h=\Delta^{-k} g_{0} g^{\prime}$. If $g_{0} \in M_{1}$, then $k=0$. Hence $g g^{\prime} \in P^{-1}$ because $\operatorname{dpt}(h)=0<q_{t}$. If $g_{0}=\theta^{p} g_{1} \in \Theta$, then $h=\theta^{p-k} h^{\prime}$. Note that $k \leq p<t$ because g is $\left(H, G_{1}\right)$-negative. Then $\operatorname{dpt}(h)=q_{p-k} \leq \tilde{q}_{p-k}<\tilde{q}_{t-k}$. Hence $g g^{\prime} \in P^{-1}$. If $g_{0} \in M \backslash\left(M_{1} \cup \Theta\right)$, Condition B implies that $\tilde{q}_{k} \leq \operatorname{dpt}\left(g_{0}\right)+\operatorname{dpt}\left(g^{\prime}\right)<q_{t}$. Hence $k<t$. Further, by Condition B, we have $\operatorname{dpt}(h) \leq \operatorname{dpt}\left(g_{0}\right)+\operatorname{dpt}\left(g^{\prime}\right)-$ $\tilde{q}_{k}+1 \leq q_{t}-\tilde{q}_{k}<q_{t-k}$. Therefore $g g^{\prime} \in P^{-1}$. Similarly, we can prove that $g^{\prime} g \in P^{-1}$. If $g^{\prime} \in G_{1} \backslash M_{1}$, Lemma 3.9 implies that $g^{\prime}=\Delta_{1}^{-t^{\prime}} g_{0}^{\prime}=\Delta^{-t^{\prime}} \theta^{t^{\prime}} g_{0}^{\prime}$, where $\inf \left(g^{\prime}\right)=-t^{\prime}$. Hence $g g^{\prime}=\Delta^{-t-t^{\prime}} g_{0} \theta^{t^{\prime}} g_{0}^{\prime}=\Delta^{-t-t^{\prime}+k} h$, where $k=\inf \left(g_{0} \theta^{\prime} g_{0}^{\prime}\right)$ and $h=\Delta^{-k} g_{0} \theta^{t^{\prime}} g_{0}^{\prime}$. If $g_{0} \in M_{1}$, then $h=\theta^{t^{\prime}-k} h^{\prime}$ for some $h^{\prime} \in M_{1}$. Note that $k \leq t^{\prime}<t+t^{\prime}$. Further $\operatorname{dpt}(h)=q_{t^{\prime}-k} \leq \tilde{q}_{t^{\prime}-k}<q_{t+t^{\prime}-k}$. Hence $g g^{\prime} \in P^{-1}$. If $g_{0}=\theta^{p} g_{1} \in \Theta$, then $h=\theta^{p+t^{\prime}-k} h^{\prime}$ for some $h^{\prime} \in M_{1}$. Note that $p<t$ because g is $\left(H, G_{1}\right)$-negative. Hence $k \leq p+t^{\prime}<t+t^{\prime}$. Further $\operatorname{dpt}(h)=q_{p+t^{\prime}-k} \leq \tilde{q}_{p+t^{\prime}-k}<$ $q_{t+t^{\prime}-k}$. Therefore $g g^{\prime} \in P^{-1}$. If $g_{0} \in M \backslash\left(M_{1} \cup \Theta\right)$, Condition B implies that $\tilde{q}_{k} \leq \operatorname{dpt}\left(g_{0}\right)+q_{t^{\prime}} \leq q_{t}+q_{t^{\prime}}-1=q_{t+t^{\prime}}$. Hence $k \leq t+t^{\prime}$. If $k=t+t^{\prime}$, then $g g^{\prime}=h \in M$. If $h \in M \backslash M_{1}$, Lemma 3.10 implies that $g^{\prime}=g^{-1} h \in P$ since $g^{-1} \in P$, which is a contradiction because $g^{\prime} \in G_{1}$. If $h \in M_{1}$, then $g_{0} t^{t^{\prime}} g_{0}^{\prime}=\Delta^{t+t^{\prime}} h=$ $\theta^{t+t^{\prime}} \Delta_{1}^{t+t^{\prime}} h=\theta^{t+t^{\prime}} g_{1} g_{0}^{\prime}=\theta^{t} g_{1} \theta^{t^{\prime}} g_{0}^{\prime}$ for some $g_{1} \in M_{1}$. Then $g_{0}=\theta^{t} g_{1}$, which is a contradiction because $g_{0} \notin \Theta$ and g is $\left(H, G_{1}\right)$-negative. Hence $k<t+t^{\prime}$. By Condition B, $\operatorname{dpt}(h) \leq \operatorname{dpt}\left(g_{0}\right)+q_{t^{\prime}}-\tilde{q}_{k} \leq q_{t}+q_{t^{\prime}}-\tilde{q}_{k}-1=q_{t+t^{\prime}-k}-1<q_{t+t^{\prime}-k}$ because $g_{L}^{\prime} \in \Theta$. Thus $g g^{\prime} \in P^{-1}$. Similarly, we have $g^{\prime} g \in P^{-1}$. Hence $P^{-1} G_{1} \subset$ P^{-1} and $G_{1} P^{-1} \subset P^{-1}$. Therefore $G_{1} P^{-1} G_{1} \subseteq P^{-1}$.

Lemma 3.11 implies that, if Condition B holds, then $G_{1} P G_{1} \subseteq P$.
Remark Assume that $\left(H, G_{1}\right)$ is a Dehornoy pre-structure of G. Let $g \in G$ with $\inf (g)<0$, and set $t=-\inf (g) \geq 1$. Then g is $\left(H, G_{1}\right)$-positive, if and only if, $\operatorname{bh}(g) \geq 2 \tilde{q}_{t}$. Indeed, if $\operatorname{dpt}(g) \geq \tilde{q}_{t}$, then $\operatorname{bh}(g) \geq 2 \operatorname{dpt}(g) \geq 2 \tilde{q}_{t}$. Suppose that $\operatorname{bh}(g) \geq 2 \tilde{q}_{t}$. If $\operatorname{bh}(g)$ is even, then $\operatorname{dpt}(g) \geq \tilde{q}_{t}$. If $\operatorname{bh}(g)$ is odd, then $\operatorname{bh}(g)>2 \tilde{q}_{t}$, hence $\operatorname{dpt}(g) \geq \tilde{q}_{t}$.

4 Artin groups of type A

In this section G and M denote the Artin group and the Artin monoid of type A_{n}, respectively, where $n \geq 2$. Recall that M is defined by the monoid presentation with
generating set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ and relations:

$$
\begin{array}{ll}
x_{i} x_{i+1} x_{i}=x_{i+1} x_{i} x_{i+1} & \text { if } 1 \leq i \leq n-1 \\
x_{i} x_{j}=x_{j} x_{i} & \text { if }|i-j| \geq 2
\end{array}
$$

The group G is the enveloping group of M, and it is isomorphic to the braid group \mathcal{B}_{n+1} on $n+1$ strands. By Theorem 2.11, M is a Garside monoid, and $\Omega=x_{1} \vee_{R} \cdots \vee_{R} x_{n}$ is a Garside element of M.

We have $\Omega x_{i}=x_{n+1-i} \Omega$ for all $i \in\{1, \ldots, n\}$. In particular, Ω is not central, but $\Delta=\Omega^{2}$ is central. Note that, by Dehornoy [9], Δ is a Garside element, and, by Brieskorn-Saito [2], $\Delta=\left(x_{1} \cdots x_{n}\right)^{n+1}$.

Let G_{1} be the subgroup of G generated by $\left\{x_{2}, \ldots, x_{n}\right\}$, and let H be the subgroup generated by $\left\{x_{1}, \ldots, x_{n-1}\right\}$. By Theorem 2.11 and Lemma 2.8, G_{1} and H are parabolic subgroups of (G, Δ). The subgroup G_{1} is associated with $\Delta_{1}=\left(x_{2} \vee_{R} \cdots \vee_{R}\right.$ $\left.x_{n}\right)^{2}=\left(x_{2} \cdots x_{n}\right)^{n}$, and H is associated with $\Lambda=\left(x_{1} \vee_{R} \cdots \vee_{R} x_{n-1}\right)^{2}=\left(x_{1} \cdots x_{n-1}\right)^{n}$. As ever, we set $M_{1}=G_{1} \cap M$ and $N=H \cap M$. Obviously, $M_{1} \cup N$ generates M, hence $\left(H, G_{1}\right)$ is a Dehornoy pre-structure. Note that Δ is decomposed as follows:

$$
\Delta=\underbrace{\left(x_{1} x_{2} \cdots x_{n-1} x_{n}^{2} x_{n-1} \cdots x_{2} x_{1}\right)}_{\theta=\Delta \Delta_{1}^{-1}=\Delta_{1}^{-1} \Delta} \underbrace{\left(x_{2} \cdots x_{n-1} x_{n}^{2} x_{n-1} \cdots x_{2}\right) \cdots\left(x_{n-1} x_{n}^{2} x_{n-1}\right) x_{n}^{2}}_{\Delta_{1}=\left(x_{2} \vee_{R} \cdots \vee_{R} x_{n}\right)^{2}}
$$

The main result of this section is the following:

Theorem 4.1 The pair $\left(H, G_{1}\right)$ satisfies Conditions A and B.

Applying Theorem 3.2 we get:

Corollary 4.2 The pair $\left(H, G_{1}\right)$ is a Dehornoy structure.

Since G_{1} is an Artin group of type A_{n-1} (see Theorem 2.11), iterating Corollary 4.2 and applying Proposition 3.1 we get:

Corollary 4.3 Set:

$$
G_{i}=\left\langle x_{i+1}, \ldots, x_{n}\right\rangle, H_{i}=\left\langle x_{i}, \ldots, x_{n-1}\right\rangle, \Delta_{i}=\left(x_{i+1} \cdots x_{n}\right)^{n+1-i}
$$

for $i \in\{1, \ldots, n-1\}$.
(1) The group G_{i} is a Garside group, and Δ_{i} is a Garside element of G_{i}, for all $i \in\{1, \ldots, n-1\}$.
(2) The pair $\left(H_{i}, G_{i}\right)$ is a Dehornoy structure of G_{i-1} for all $i \in\{1, \ldots, n-1\}$, where $G_{0}=G$.
(3) For $i \in\{1, \ldots, n-1\}$, we denote by P_{i} the set of $\left(H_{i}, G_{i}\right)$-positive elements of G_{i-1}. Furthermore, we set $P_{n}=\left\{x_{n}^{k} \mid k \geq 1\right\}$. Take $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in\{ \pm 1\}^{n}$, and set:

$$
P^{\epsilon}=P_{1}^{\epsilon_{1}} \sqcup \cdots \sqcup P_{n}^{\epsilon_{n}}
$$

Then P^{ϵ} is the positive cone of a left order on G.
Before proving Theorem 4.1, we show that the left order obtained from it coincides with that obtained from Theorem 1.1. More precisely, we prove the following:

Recall that the definition of an x_{1}-positive element is given in the introduction.
Proposition 4.4 The set $P=P_{\left(H, G_{1}\right)}$ is the set of x_{1}-positive elements of $G=\mathcal{B}_{n+1}$.
Proof Let g be a x_{1}-positive element of G. Then $g=g_{0} x_{1}^{k_{1}} g_{1} \cdots g_{p-1} x_{1}^{k_{p}} g_{p}$ for some $k_{1}, \ldots, k_{p} \geq 1$ and $g_{0}, \ldots, g_{p} \in G_{1}$. Note that $x_{1}^{k_{i}} \in P$ for all $i \in\{1, \ldots, p\}$. By Theorem 4.1, $G_{1} P G_{1} \subseteq P$. Therefore $g \in P$. Conversely, let $g \in P$. If $g \in M$, then g is x_{1}-positive. Otherwise $g=\Delta^{-k} g_{0}$, where $k=\operatorname{Ninf}(g)$, such that $\operatorname{dpt}\left(g_{0}\right) \geq q_{k}=c k+1 \geq k+1$. (Actually, as we will see soon, we have $\left.q_{k}=k+1.\right)$ Hence $\operatorname{bh}\left(g_{0}\right) \geq 2 \operatorname{dpt}\left(g_{0}\right) \geq 2 k+2$. Since $g \notin G_{1}$ and $g=\Omega^{-2 k} g_{0}$, Theorem 2.13 implies that g is x_{1}-positive.

The rest of the section is dedicated to the proof of Theorem 4.1.
By Dehornoy [10, Lemma 4.19], the (N, M_{1})-breadth of Δ^{k} is $2 k+2$, for all $k \geq 1$. Lemma 3.3 implies that $\operatorname{bh}\left(\theta^{k}\right)=\operatorname{bh}\left(\Delta^{k}\right)$ because $\Delta_{1}^{k} \in M_{1}$. Hence $\tilde{q}_{k}=k+1$ for all $k \geq 0$. Therefore $\left(H, G_{1}\right)$ satisfies Condition A.
In what follows we will prove that Condition B holds:
Lemma 4.5 Let $g \in M \backslash M_{1}$, and let $k \geq 1$ be an integer. Then $\operatorname{bh}\left(g \theta^{k}\right)=\operatorname{bh}(g)+2 k$.
Proof Let $\left(g_{p}, \ldots, g_{1}\right)$ be the alternating form of g. Note that $g g_{1}^{-1} \neq 1$ because $g \notin M_{1}$. Hence $x_{1} \leq_{R} g_{2}$ and $x_{t} \not Z_{R} g g_{1}^{-1}$ for all $t \geq 2$. By Lemma 3.3, $\theta g_{1}=g_{1} \theta$. Then $\left(g_{p}, \ldots, g_{3}, g_{2} x_{1}, x_{2} \cdots x_{n-1} x_{n}^{2}, x_{n-1} \cdots x_{1}, g_{1}\right)$ is an $\left(N, M_{1}\right)$-sequence of $g \theta$. If $x_{t} \leq_{R} g \theta g_{1}^{-1}=g g_{1}^{-1} \theta$ for some $t \in\{2, \ldots, n\}$, Lemma 3.3 implies that $x_{t} \leq_{R} g g_{1}^{-1}$ which is a contradiction. Hence $g_{1}=R_{M_{1}}(g \theta)$. If $x_{n-1} \leq_{R} g g_{1}^{-1} x_{1} \cdots x_{n-1} x_{n}^{2}$, then $x_{n} x_{n-1} \leq_{R} g g_{1}^{-1} x_{1} \cdots x_{n-1} x_{n}$. In particular, $x_{n-1} \leq_{R} g g_{1}^{-1} x_{1} \cdots x_{n-1} x_{n}$. Then $x_{n} \leq_{R}$ $g g_{1}^{-1}$ which is a contradiction. If $x_{k} \leq_{R} g g_{1}^{-1} x_{1} \cdots x_{n-1} x_{n}^{2}$ for some $k \in\{1, \ldots, n-2\}$, then $x_{k+1} \leq_{R} g g_{1}^{-1}$ which is a contradiction as well. Therefore $\operatorname{bh}(g \theta)=\operatorname{bh}(g)+2$. Inductively, we obtain that $\operatorname{bh}\left(g \theta^{k}\right)=\operatorname{bh}(g)+2 k$ for all $k \geq 2$.

In general, if M is a monoid, and N_{1}, N_{2} are two submonoids of $M . \mathrm{A}\left(N_{2}, N_{1}\right)$ sequence of an element $g \in M$ is a tuple $\left(g_{p}, \ldots, g_{1}\right)$ such that, $g=g_{p} \cdots g_{1}, g_{i} \in N_{1}$ when i is odd, and $g_{i} \in N_{2}$ when i is even. If M is Garside and it allows alternating decompositions with respect to $\left(N_{2}, N_{1}\right)$, we say that $\left(N_{2}, N_{1}\right)$-breadths are minimal if for all $g \in M$, its $\left(N_{2}, N_{1}\right)$-breadth is minimal in the set of lengths of all $\left(N_{2}, N_{1}\right)$ sequences of g.

Proposition 4.6 (Dehornoy [10], Burckel [3]) (N, M_{1})-breadths are minimal.

In general, if (M, Δ) is a Garside monoid, $\left(H, G_{1}\right)$ is a Dehornoy pre-structure, and $g \in M$, then we denote by $\operatorname{dpt}^{*}(g)$ the depth of the element $g R_{M_{1}}(g)^{-1}$. More specifically, we have the following result:

Lemma 4.7 Let (M, Δ) be a Garside monoid, let $\left(H, G_{1}\right)$ be a Dehornoy pre-structure, and let $g \in M$. Then:

$$
\operatorname{dpt}^{*}(g)= \begin{cases}\frac{\operatorname{bh}(g)-1}{2} & \text { if } \operatorname{bh}(g) \text { is odd } \\ \frac{\operatorname{bh}(g)}{2} & \text { if } \operatorname{bh}(g) \text { is even }\end{cases}
$$

Proof Let $g^{\prime}=g R_{M_{1}}(g)^{-1}$. If $\Delta \leq_{R} g^{\prime}$, then $\Delta_{1} \leq_{R} g^{\prime}$ because $\Delta_{1} \in \operatorname{Div}(\Delta) \backslash\{1\}$. This is impossible because $\Delta_{1} \in M_{1}$ and $h \not 又_{R} g^{\prime}$ for all $h \in M_{1} \backslash\{1\}$. Therefore g^{\prime} is unmovable. Since $R_{M_{1}}(g) \in M_{1}$, then $\operatorname{bh}(g)=\operatorname{bh}\left(g^{\prime}\right)$. This implies the equality.

We come back to the hypothesis given at the beginning of the section. In particular, now G denotes the Artin group of type A_{n}. Note that $\operatorname{rev}(g \Delta)=\operatorname{rev}(g) \Delta$ for all $g \in M$ because $\operatorname{rev}(\Delta)=\Delta$. Thus $\inf (g)=\inf (\operatorname{rev}(g))$.

Lemma 4.8 Let $g \in M \backslash M_{1}$, and let k be its infimum with respect to Δ. Let $g_{0} \in M_{1}$, and let $t \geq 1$ be an integer. Then:
(1) $\operatorname{dpt}^{*}\left(g_{0} \Delta^{t}\right)=\operatorname{dpt}^{*}\left(g_{0} \theta^{t}\right)=\operatorname{dpt}^{*}\left(\theta^{t} g_{0}\right)=\operatorname{dpt}^{*}\left(\Delta^{t} g_{0}\right)=\tilde{q}_{t}$.
(2) $\operatorname{dpt}^{*}(g)=\operatorname{dpt}(g)+k$.
(3) $\operatorname{dpt}^{*}(g)=\operatorname{dpt}^{*}(\operatorname{rev}(g))$.
(4) $\operatorname{dpt}^{*}\left(g g_{0}\right)=\operatorname{dpt}^{*}\left(g_{0} g\right)=\operatorname{dpt}^{*}(g)$.
(5) $\operatorname{dpt}^{*}\left(\Delta^{t} g\right)=\operatorname{dpt}^{*}\left(\theta^{t} g\right)=\operatorname{dpt}^{*}\left(g \theta^{t}\right)=\operatorname{dpt}^{*}\left(g \Delta^{t}\right)=\operatorname{dpt}^{*}(g)+\tilde{q}_{t}-1$.

Proof (1) It is a consequence of the fact that $g_{0}, \Delta_{1}^{t} \in M_{1}$ and Lemma 3.3. (2) Lemma 4.5 implies that $\operatorname{bh}(g)=\operatorname{bh}\left(g_{L} \Delta^{k}\right)=\operatorname{bh}\left(g_{L} \theta^{k}\right)=\operatorname{bh}\left(g_{L}\right)+2 k$. Therefore $\operatorname{dpt}^{*}(g)=\operatorname{dpt}^{*}\left(g_{L}\right)+k=\operatorname{dpt}(g)+k$. (3) Let $\left(g_{p}, \ldots, g_{1}\right)$ be the alternating form of $g^{\prime}=g \Delta^{-k}$. If p is odd, then $\left(\operatorname{rev}\left(g_{1}\right), \ldots, \operatorname{rev}\left(g_{p}\right)\right)$ is an $\left(N, M_{1}\right)-$ sequence of $\operatorname{rev}\left(g^{\prime}\right)$. Proposition 4.6 implies that $\operatorname{bh}\left(\operatorname{rev}\left(g^{\prime}\right)\right) \leq p$. Therefore $\operatorname{dpt}\left(\operatorname{rev}\left(g^{\prime}\right)\right) \leq(p-1) / 2=\operatorname{dpt}\left(g^{\prime}\right)$. If p is even, then $\left(\operatorname{rev}\left(g_{1}\right), \ldots, \operatorname{rev}\left(g_{p}\right), 1\right)$ is an $\left(N, M_{1}\right)$-sequence of $\operatorname{rev}\left(g^{\prime}\right)$. Proposition 4.6 implies that $\operatorname{bh}\left(\operatorname{rev}\left(g^{\prime}\right)\right) \leq p+1$. Hence $\operatorname{dpt}\left(\operatorname{rev}\left(g^{\prime}\right)\right) \leq p / 2=\operatorname{dpt}\left(g^{\prime}\right)$. Analogously we prove that $\operatorname{dpt}\left(g^{\prime}\right) \leq \operatorname{dpt}\left(\operatorname{rev}\left(g^{\prime}\right)\right)$ because $\operatorname{rev}^{2}\left(g^{\prime}\right)=g^{\prime}$. Hence, (2) implies that $\operatorname{dpt}^{*}(g)=\operatorname{dpt}\left(g^{\prime}\right)+k=\operatorname{dpt}\left(\operatorname{rev}\left(g^{\prime}\right)\right)+k=$ $\operatorname{dpt}^{*}(\operatorname{rev}(g))$. (4) Since $g_{0} \in M_{1}$, then $\operatorname{dpt}^{*}\left(g g_{0}\right)=\operatorname{dpt}^{*}(g)$. Further, by (3), $\operatorname{dpt}^{*}\left(g_{0} g\right)=\operatorname{dpt}^{*}\left(\operatorname{rev}\left(g_{0} g\right)\right)=\operatorname{dpt}^{*}\left(\operatorname{rev}(g) \operatorname{rev}\left(g_{0}\right)\right)=\operatorname{dpt}^{*}(\operatorname{rev}(g))=\operatorname{dpt}^{*}(g)$. (5) Lemma 4.5 implies that $\operatorname{dpt}^{*}\left(g \Delta^{t}\right)=\operatorname{dpt}^{*}\left(g \theta^{t}\right)=\operatorname{dpt}^{*}(g)+\tilde{q}_{t}-1$ and $d t^{*}\left(\operatorname{rev}(g) \theta^{t}\right)=$ $\operatorname{dpt}^{*}(\operatorname{rev}(g))+\tilde{q}_{t}-1 . \quad \mathrm{By}(4), \operatorname{dpt}^{*}\left(\Delta^{t} g\right)=\operatorname{dpt}^{*}\left(\theta^{t} g\right)$. Finally, (3) implies that $\operatorname{dpt}^{*}\left(\theta^{t} g\right)=\operatorname{dpt}^{*}\left(\operatorname{rev}(g) \theta^{t}\right)=\operatorname{dpt}^{*}(\operatorname{rev}(g))+\tilde{q}_{t}-1=\operatorname{dpt}^{*}(g)+\tilde{q}_{t}-1$.

Lemma 4.9 Let $g \in M_{1} \cup \Theta$, and let $g^{\prime} \in M$ such that either $g g^{\prime} \in \Theta$ or $g^{\prime} g \in \Theta$. Then $g^{\prime} \in M_{1} \cup \Theta$ as well.

Proof Assume that $g g^{\prime} \in \Theta$. Let $k \geq 1$ be such that $g g^{\prime}=\theta^{k} h$ for some $h \in M_{1}$. If $g \in M_{1}$, Lemma 3.3 implies that $g \leq_{L} h$ and $g^{\prime}=\theta^{k}\left(g^{-1} h\right) \in \Theta$. If $g \in \Theta$, namely $g=\theta^{p} g_{0}$ for some $p \geq 1$ and $g_{0} \in M_{1}$, Lemma 3.3 implies that $g_{0} \leq_{L} h$. Further $p \leq k$. Hence $g^{\prime}=\theta^{k-p}\left(g_{0}^{-1} h\right) \in M_{1} \cup \Theta$. If $g^{\prime} g \in \Theta$, then we show in the same way that $g^{\prime} \in M_{1} \cup \Theta$.

Lemma 4.10 Let $g \in M \backslash\left(M_{1} \cup \Theta\right)$ be an unmovable element, let $g^{\prime} \in \Theta$ be another unmovable element, and let $g_{0} \in M_{1}$. Then:
(1) $\operatorname{dpt}\left(g g_{0}\right)-1=\operatorname{dpt}(g)-\tilde{q}_{k} \geq 0$, where $k=\inf \left(g g_{0}\right)$.
(2) $\operatorname{dpt}\left(g_{0} g\right)-1=\operatorname{dpt}(g)-\tilde{q}_{k} \geq 0$, where $k=\inf \left(g_{0} g\right)$.
(3) $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{k}$, where $k=\inf \left(g g^{\prime}\right)$.
(4) $\operatorname{dpt}\left(g^{\prime} g\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{k}$, where $k=\inf \left(g^{\prime} g\right)$.

Proof (1) We have $g g_{0}=\Delta^{k} h$ for some $h \in M$ with $\operatorname{dpt}\left(g g_{0}\right)=\operatorname{dpt}(h)$. Lemma 4.9 implies that $h \notin M_{1}$ because $g \notin M_{1} \cup \Theta$. Hence $\operatorname{dpt}(h) \geq 1$. Lemma 4.8.4 implies that $\operatorname{dpt}^{*}\left(g g_{0}\right)=\operatorname{dpt}^{*}(g)=\operatorname{dpt}(g)$, and Lemma 4.8.5 implies that dpt* $\left(g g_{0}\right)=\operatorname{dpt}^{*}\left(\Delta^{k} h\right)=$ $\operatorname{dpt}^{*}(h)+\tilde{q}_{k}-1=\operatorname{dpt}\left(g g_{0}\right)+\tilde{q}_{k}-1$. Therefore $\operatorname{dpt}\left(g g_{0}\right)-1=\operatorname{dpt}(g)-\tilde{q}_{k}$. (2) By Lemma 4.8.2-3 and (1), $\operatorname{dpt}\left(g_{0} g\right)=\operatorname{dpt}^{*}\left(g_{0} g\right)-k=\operatorname{dpt}^{*}\left(\operatorname{rev}\left(g_{0} g\right)\right)-k=\operatorname{dpt}\left(\operatorname{rev}\left(g_{0} g\right)\right)$ $=\operatorname{dpt}(\operatorname{rev}(g))-\tilde{q}_{k}+1=\operatorname{dpt}(g)-\tilde{q}_{k}+1$. Further, Lemma 4.9 implies that $\operatorname{dpt}\left(g_{0} g\right) \geq 1$.
(3) Let $p \geq 1$ be such that $g^{\prime}=\theta^{p} h^{\prime}$ for some $h^{\prime} \in M_{1}$, and let $h \in M$ be an unmovable element such that $g g^{\prime}=\Delta^{k} h$. By Lemma 4.9, $h \notin M_{1}$ because $g \notin M_{1} \cup \Theta$. Lemma 4.8.4-5 implies that $\operatorname{dpt}^{*}\left(g g^{\prime}\right)=\operatorname{dpt}^{*}\left(g h^{\prime} \theta^{p}\right)=\operatorname{dpt}^{*}\left(g h^{\prime}\right)+\tilde{q}_{p}-1=\operatorname{dpt}(g)+\tilde{q}_{p}-1=$ $\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-1$ and $\operatorname{dpt}^{*}\left(g g^{\prime}\right)=\operatorname{dpt}(h)+\tilde{q}_{k}-1=\operatorname{dpt}\left(g g^{\prime}\right)+\tilde{q}_{k}-1$. Therefore $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{k}$. (4) We have $\operatorname{rev}(\Theta) \subseteq \Theta$ because $\operatorname{rev}(\theta)=\theta$. Lemma 4.8.2-3 and (3) imply that $\operatorname{dpt}\left(g^{\prime} g\right)=\operatorname{dpt}^{*}\left(g^{\prime} g\right)-k=\operatorname{dpt}^{*}\left(\operatorname{rev}\left(g^{\prime} g\right)\right)-k=$ $\operatorname{dpt}\left(\operatorname{rev}\left(g^{\prime} g\right)\right)=\operatorname{dpt}(\operatorname{rev}(g))+\operatorname{dpt}\left(\operatorname{rev}\left(g^{\prime}\right)\right)-\tilde{q}_{k}=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{k}$.

Lemma 4.11 Let $g, g^{\prime} \in M \backslash M_{1}$ be two unmovable elements such that $g g^{\prime}=\Delta^{k}$ for some integer $k \geq 1$. If $\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)=k+2$. Then $g, g^{\prime} \in \Theta$.

Proof Let $p=\operatorname{dpt}(g)-1$, and let $q=\operatorname{dpt}\left(g^{\prime}\right)-1$. Then $1=\left(g^{-1} \Delta^{p}\right)\left(\Delta^{q} g^{\prime-1}\right)$ because $g g^{\prime}=\Delta^{p+q}$. Note that $g^{-1} \Delta^{p}=\Omega^{-2 q} g^{\prime}$ and $\Delta^{q} g^{\prime-1}=\Omega^{-2 p} g$. Further, $2 q<2 \operatorname{dpt}\left(g^{\prime}\right)-1 \leq \operatorname{bh}\left(g^{\prime}\right)-1$ and $2 p<2 \operatorname{dpt}(g)-1 \leq \operatorname{bh}(g)-1$. So, Theorem 2.13 implies that $g^{-1} \Delta^{p}$ (resp. $\Delta^{q} g^{\prime-1}$) is either x_{1}-positive or belongs to G_{1}. Note that, if at least one of them is x_{1}-positive, then 1 is x_{1}-positive, which is a contradiction. Therefore $g^{-1} \Delta^{p}=h$ and $\Delta^{q} g^{\prime-1}=h^{\prime}$ for some $h, h^{\prime} \in G_{1}$. Thus $g=\theta^{p}\left(\Delta_{1}^{p} h^{-1}\right)$ and $g^{\prime}=\left(h^{\prime-1} \Delta_{1}^{q}\right) \theta^{q}$. Let $\left(h_{0}, h_{0}^{\prime}\right)$ be the left orthogonal splitting of $\Delta_{1}^{p} h^{-1}$, and let $\left(h_{1}^{\prime}, h_{1}\right)$ be the right orthogonal splitting of $h^{\prime-1} \Delta_{1}^{q}$. Then $g=\theta^{p} h_{0}^{-1} h_{0}^{\prime}$ and $g^{\prime}=$ $h_{1}^{\prime} h_{1}^{-1} \theta^{q}$. Since $h_{0} \wedge_{L} h_{0}^{\prime}=1$ and $h_{1} \wedge_{R} h_{1}^{\prime}=1$, then $h_{0} \leq_{R} \theta^{p}$ and $h_{1} \leq_{L} \theta^{q}$, because $g, g^{\prime} \in M$. Lemma 3.3 implies that $h_{0}=h_{1}=1$. Hence $g=\theta^{p} h_{0}^{\prime}$ and $g^{\prime}=$ $h_{1}^{\prime} \theta^{q}=\theta^{q} h_{1}^{\prime}$. Note that $\Delta_{1} \not Z_{R} h_{0}^{\prime}, h_{1}^{\prime}$ because $\Delta \not Z_{R} g, g^{\prime}$. Therefore $g, g^{\prime} \in \Theta$.

Lemma 4.12 Let $h, h^{\prime} \in M \backslash M_{1}$ be two unmovable elements, and let $k=\inf \left(h h^{\prime}\right)$. If $\Delta^{-k} h h^{\prime} \in M_{1}$ and $\operatorname{dpt}(h)+\operatorname{dpt}\left(h^{\prime}\right)=k+2$. Then $h, h^{\prime} \in \Theta$.

Proof By Lemma 2.9, there exist $g, g^{\prime}, g_{0}, g_{0}^{\prime} \in M$ such that $h=g_{0} g, h^{\prime}=g^{\prime} g_{0}^{\prime}$, and $g g^{\prime}=\Delta^{k}$. Then $\Delta^{-k} h h^{\prime}=g_{0} g_{0}^{\prime}$ because Δ is central, hence $g_{0}, g_{0}^{\prime} \in M_{1}$. We have $\operatorname{dpt}\left(g^{\prime}\right)=\operatorname{dpt}\left(h^{\prime}\right)$, and, by Lemma 4.8.4, $\operatorname{dpt}(g)=\operatorname{dpt}(h)$. Therefore $\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)=$ $k+2$. Lemma 4.11 implies that $g, g^{\prime} \in \Theta$, i.e. $g=\theta^{p} g_{1}$ and $g^{\prime}=\theta^{q} g_{1}^{\prime}$ for some $p, q \geq 1$ and $g_{1}, g_{1}^{\prime} \in M_{1}$. Hence $h=\theta^{p}\left(g_{0} g_{1}\right)$ and $h^{\prime}=\theta^{q}\left(g_{1}^{\prime} g_{0}^{\prime}\right)$. Note that $\Delta_{1} \not Z_{R} g_{0} g_{1}, g_{1}^{\prime} g_{0}^{\prime}$ because $\Delta \not Z_{R} h, h^{\prime}$. Therefore $h, h^{\prime} \in \Theta$.

Lemma 4.13 Let $g, g^{\prime} \in M \backslash\left(M_{1} \cup \Theta\right)$ be two unmovable elements, and let $k=$ $\inf \left(g g^{\prime}\right)$. Then $\operatorname{dpt}\left(g g^{\prime}\right)-\epsilon=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{k} \geq 0$ for some $\epsilon \in\{0,1\}$.

Proof Let $p, q \geq 1$ be the respective depths of g, g^{\prime}. Then $\operatorname{bh}(g) \in\{2 p, 2 p+1\}$ and $\operatorname{bh}\left(g^{\prime}\right) \in\{2 q, 2 q+1\}$. Theorem 2.13 implies that $\Omega^{-2 p} g$ and $\Omega^{-2 q} g^{\prime}$ are x_{1} negative, and that $\Omega^{-2 p+2} g$ and $\Omega^{-2 q+2} g^{\prime}$ are either x_{1}-positive or belong to G_{1}.

Then $\Omega^{-2 p-2 q} g g^{\prime}=\Delta^{-p-q+k} g_{0}$ is x_{1}-negative, and $\Omega^{-2 p-2 q+4} g g^{\prime}=\Delta^{-p-q+2+k} g_{0}$ is either x_{1}-positive or belongs to G_{1}, where $g_{0}=\Delta^{-k} g g^{\prime}$. Note that $k<p+q$ because $\Delta^{-p-q+k} g_{0} \notin M$. Hence $p+q-\tilde{q}_{k} \geq 0$. Theorem 2.13 implies that $2 p+2 q-2 \leq \mathrm{bh}\left(g g^{\prime}\right) \leq 2 p+2 q+1$. Therefore $p+q-1 \leq \operatorname{dpt}^{*}\left(g g^{\prime}\right) \leq p+q$. Assume that $g_{0} \in M_{1}$, then $\operatorname{dpt}^{*}\left(g g^{\prime}\right)=q_{k}$, and $k \geq 1$ because $g, g^{\prime} \notin M_{1}$. If $q_{k}=p+q-1$, i.e. $\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)=k+2$, Lemma 4.12 implies that $g, g^{\prime} \in \Theta$ which contradicts the enunciate. Therefore $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{k}$. Assume that $g_{0} \notin M_{1}$. Then, by Lemma 4.8.2, $p+q-\tilde{q}_{k}=p+q-1-k \leq \operatorname{dpt}\left(g g^{\prime}\right) \leq p+q-k=p+q-\tilde{q}_{k}+1$.

Thus, Lemmas 4.10 and 4.13 have proved that Condition B holds.

5 Artin groups of dihedral type, the even case

In this section G and M denote the Artin group and the Artin monoid of type $I_{2}(m)$, respectively, where $m=2 k$ is even and $k \geq 2$. Recall that M is defined by the monoid presentation:

$$
M=\left\langle x, y \mid(x y)^{k}=(y x)^{k}\right\rangle^{+}
$$

The group G is the enveloping group of M. By Theorem 2.11, M is a Garside monoid and $\Delta=x \vee_{R} y$ is a Garside element of M. By Brieskorn-Saito [2], Δ is central, and $\Delta=(x y)^{k}=(y x)^{k}$.

Let $G_{1}=\langle y\rangle \simeq \mathbb{Z}$ and $H=\langle x\rangle \simeq \mathbb{Z}$. By Theorem 2.11, G_{1} and H are parabolic subgroups of (G, Δ). The subgroup G_{1} is associated with $\Delta_{1}=y$, and H is associated with $\Lambda=x$. Once again, we set $M_{1}=G_{1} \cap M \simeq \mathbb{N}$ and $N=H \cap M \simeq \mathbb{N}$. Obviously, $M_{1} \cup N$ generates M, hence $\left(H, G_{1}\right)$ is a Dehornoy pre-structure.

The main result of the section is the following:

Theorem 5.1 The pair $\left(H, G_{1}\right)$ satisfies Conditions A and B.

By Theorem 3.2, this implies the following:
Corollary 5.2 The pair $\left(H, G_{1}\right)$ is a Dehornoy structure.

We denote by P_{1} the set of $\left(H, G_{1}\right)$-positive elements of G, and we set $P_{2}=\left\{y^{n} \mid n \geq\right.$ $1\}$. For $\epsilon=\left(\epsilon_{1}, \epsilon_{2}\right) \in\{ \pm 1\}^{2}$ we set $P^{\epsilon}=P_{1}^{\epsilon_{1}} \cup P_{2}^{\epsilon_{2}}$. Then, by Proposition 3.1:

Corollary 5.3 P^{ϵ} is the positive cone of a left order on G.

We denote by $z_{1}, \ldots, z_{2 k-1}$ the standard generators of the braid group $\mathcal{B}_{2 k}$. By Crisp [5], the map $\phi: S \rightarrow \mathcal{B}_{2 k}$ defined by:

$$
\phi(x)=\prod_{i=0}^{k-1} z_{2 i+1}, \quad \phi(y)=\prod_{i=1}^{k-1} z_{2 i}
$$

induces an embedding $\phi: G \hookrightarrow \mathcal{B}_{2 k}$ satisfying $\phi(M) \subseteq \mathcal{B}_{2 k}^{+}$. In a second part of the section we will show how the left orders on G obtained in Corollary 5.3 can be deduced from ϕ. More precisely, we prove the following:

Proposition 5.4 Let $g \in G$. Then g is $\left(H, G_{1}\right)$-positive if and only if $\phi(g)$ is z_{1}-positive.

The rest of the section is dedicated to the proofs of Theorem 5.1 and Proposition 5.4. Theorem 5.1 is proved in Subsection 5.1, and Proposition 5.4 is proved in Subsection 5.2.

5.1 Proof of Theorem 5.1

Note that, if $g \in M$ is unmovable, then it has a unique word representative in $\{x, y\}^{*}$.

Lemma 5.5 Let $g, g^{\prime} \in M$ be two unmovable elements such that $\inf \left(g g^{\prime}\right)=0$. Then:

$$
\operatorname{dpt}\left(g g^{\prime}\right)= \begin{cases}\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-1 & \text { if } x \leq_{R} g \text { and } x \leq_{L} g^{\prime} \\ \operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right) & \text { otherwise }\end{cases}
$$

Proof If $x \not \leq_{R} g$ or $x \not \leq_{L} g^{\prime}$ it is obvious that $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)$. If $x \leq_{R} g$ and $x \leq_{L} g^{\prime}$, let k be the greatest integer such that $x^{k} \leq_{L} g^{\prime}$. Then $g^{\prime}=x^{k} g_{0}^{\prime}$ for some $g_{0}^{\prime} \in M$ unmovable where $x \not Z_{L} g_{0}^{\prime}$. We have $\operatorname{dpt}\left(g x^{k}\right)=\operatorname{dpt}(g)$, and $\operatorname{dpt}\left(g_{0}^{\prime}\right)=\operatorname{dpt}\left(g^{\prime}\right)-1$. Hence $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}\left(g x^{k}\right)+\operatorname{dpt}\left(g_{0}^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-1$.

Note that $\theta=(x y)^{k-1} x=x(y x)^{k-1}$ because $\Delta_{1}=y$.

Lemma 5.6 Let $g_{0} \in M_{1}$, and let $g \in M \backslash M_{1}$. Then:
(1) $\operatorname{bh}\left(g_{0} \theta\right)=m$.
(2) $\operatorname{bh}(g \theta)=\operatorname{bh}(g)+m-2$.
(3) $\operatorname{bh}\left(\theta^{t}\right)=(m-2) t+2$ for all $t \geq 1$.

Proof (1) Note that $(x, y, \ldots, x, 1)$ is the alternating form of θ, and $\operatorname{bh}(\theta)=m$ because $\lg _{S}(\theta)=m-1$. Lemma 3.3 implies that $g_{0} \theta=\theta g_{0}$. Hence $\operatorname{bh}\left(g_{0} \theta\right)=\operatorname{bh}(\theta)=m$. (2) Let g_{1} be the M_{1}-tale of g, and let $g^{\prime}=g g_{1}^{-1}$. Note that $g^{\prime} \neq 1$ because $g \notin M_{1}$. By Lemma 3.3, $g \theta=g^{\prime} \theta g_{1}$, and $R_{M_{1}}(g \theta)=g_{1}$ because $y \not Z_{R} g^{\prime}$. Moreover, if $h \leq_{L} \theta$, and $a \leq_{R} h$ for some $a \in\{x, y\}$, then $b \not Z_{R} g^{\prime} h$ because $y \not \leq_{R} g^{\prime}$, where $b \in\{x, y\} \backslash\{a\}$. Therefore $\left(g_{p}, \ldots, g_{3}, g_{2} x, y, \ldots, x, g_{1}\right)$ is the alternating form of $g \theta$, where $g^{\prime}=g_{p} \cdots g_{2}$ and $\left(g_{p}, \ldots, g_{1}\right)$ is the alternating form of g. So, $\operatorname{bh}(g \theta)=\operatorname{bh}(g)-2+m$. (3) $\operatorname{By}(1), \operatorname{bh}(\theta)=(m-2)+2$. If $t>1$, we suppose that $\operatorname{bh}\left(\theta^{t-1}\right)=(m-2)(t-1)+2$. Hence, (2) implies that $\operatorname{bh}\left(\theta^{t}\right)=\operatorname{bh}\left(\theta^{t-1}\right)+m-2=$ $(m-2)(t-1)+2+m-2=(m-2) t+2$.

Lemma 5.6.3 implies that $q_{t}=(k-1) t+1$ for all $k \geq 1$, because $\operatorname{bh}\left(\theta^{t}\right)$ is even. Therefore, Condition A holds, where $\tilde{q}_{t}=t c+1$ with $c=k-1$ for all $t \geq 1$.
Note that, since $\Delta=(x y)^{k}$, then $\operatorname{dpt}(s)+\operatorname{dpt}\left(\operatorname{com}_{R}(s)\right)=q_{1}$ for all $s \in \operatorname{Div}(\Delta) \backslash\{\Delta\}$.
Since relations of Artin monoids preserve lengths, all words representing an element g of an Artin monoid A have the same length. Thus, we may consider the length of g, denoted by $\lg _{S}(g)$, defined as the length of its word representatives in S^{*}, where S is the standard generating set of A.

Lemma 5.7 Let $g, g^{\prime} \in M$ be two unmovable elements, and let h_{1}, h_{2} be two simple elements in $\operatorname{Div}(\Delta) \backslash\{1, \Delta\}$ such that $h_{2} h_{1} \leq_{R} g$ and $\operatorname{com}_{R}\left(h_{1}\right) \operatorname{com}_{R}\left(h_{2}\right) \leq_{L} g^{\prime}$. If $a \leq_{L} h_{1}$ and $b \leq_{R} \operatorname{com}_{R}\left(h_{1}\right)$, where $\{a, b\}=\{x, y\}$, then:
(1) $a \leq_{R} h_{2}$ and $b \leq_{L} \operatorname{com}_{R}\left(h_{2}\right)$.
(2) $\operatorname{dpt}\left(g h_{1}^{-1}\right)+\operatorname{dpt}\left(\operatorname{com}_{R}\left(h_{1}\right)^{-1} g^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1}+1$.

Proof (1) Since $h_{2} \operatorname{com}_{R}\left(h_{2}\right)=\Delta$, if $b \leq_{R} h_{2}$, then $a \leq_{L} \operatorname{com}_{R}\left(h_{2}\right)$. Similarly, if $a \leq_{R} \operatorname{com}_{R}\left(h_{2}\right)$, then $b \leq_{R} h_{2}$. Hence $h_{2} h_{1}$ and $\operatorname{com}_{R}\left(h_{1}\right) \operatorname{com}_{R}\left(h_{2}\right)$ are simple elements. Note that $\lg _{S}\left(h_{2} h_{1}\right)<m$ and $\lg _{S}\left(\operatorname{com}_{R}\left(h_{1}\right) \operatorname{com}_{R}\left(h_{2}\right)\right)<m$ because g, g^{\prime} are unmovable. Thus, $\lg _{S}\left(\Delta^{2}\right)=\lg _{S}\left(h_{2} h_{1} \operatorname{com}_{R}\left(h_{1}\right) \operatorname{com}_{R}\left(h_{2}\right)\right)<2 m$, which is a contradiction because $\lg _{S}\left(\Delta^{2}\right)=2 m$. Therefore $a \leq_{R} h_{2}$ and $b \leq_{L} \operatorname{com}_{R}\left(h_{2}\right)$. (2) By Lemma 5.5, we have the following:

$$
\begin{aligned}
\operatorname{dpt}\left(g h_{1}^{-1}\right) & = \begin{cases}\operatorname{dpt}(g)-\operatorname{dpt}\left(h_{1}\right) & \text { if } a=y \\
\operatorname{dpt}(g)-\operatorname{dpt}\left(h_{1}\right)+1 & \text { if } a=x\end{cases} \\
\operatorname{dpt}\left(\operatorname{com}_{R}\left(h_{1}\right)^{-1} g^{\prime}\right) & = \begin{cases}\operatorname{dpt}\left(g^{\prime}\right)-\operatorname{dpt}\left(\operatorname{com}_{R}\left(h_{1}\right)\right)+1 & b=x \\
\operatorname{dpt}\left(g^{\prime}\right)-\operatorname{dpt}\left(\operatorname{com}_{R}\left(h_{1}\right)\right) & b=y\end{cases}
\end{aligned}
$$

Therefore $\operatorname{dpt}\left(g h_{1}^{-1}\right)+\operatorname{dpt}\left(\operatorname{com}_{R}\left(h_{1}\right)^{-1} g^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1}+1$.

Lemma 5.8 Let $g, g^{\prime} \in M$ be two unmovable elements such that $\inf \left(g g^{\prime}\right)=1$. Then $\operatorname{dpt}\left(g g^{\prime}\right)-\epsilon=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1} \geq 0$ for some $\epsilon \in\{0,1\}$.

Proof Let $h \in M$ be a simple element, such that $h \leq_{R} g$ and $\operatorname{com}_{R}(h) \leq_{L} g^{\prime}$, let $g_{1}=$ $g h^{-1}$, and let $g_{1}^{\prime}=\operatorname{com}_{R}(h)^{-1} g^{\prime}$. By Lemma 5.5, if $g_{1}, g_{1}^{\prime} \neq 1$, we have:

$$
\operatorname{dpt}\left(g g^{\prime}\right)= \begin{cases}\operatorname{dpt}\left(g_{1}\right)+\operatorname{dpt}\left(g_{1}^{\prime}\right)-1 & \text { if } x \leq_{R} g_{1} \text { and } x \leq_{L} g_{1}^{\prime} \\ \operatorname{dpt}\left(g_{1}\right)+\operatorname{dpt}\left(g_{1}^{\prime}\right) & \text { otherwise }\end{cases}
$$

and:

$$
\begin{gathered}
\operatorname{dpt}\left(g_{1}\right)= \begin{cases}\operatorname{dpt}(g)-\operatorname{dpt}(h)+1 & \text { if } x \leq_{R} g_{1} \text { and } x \leq_{L} h \\
\operatorname{dpt}(g)-\operatorname{dpt}(h) & \text { otherwise }\end{cases} \\
\operatorname{dpt}\left(g_{1}^{\prime}\right)= \begin{cases}\operatorname{dpt}\left(g^{\prime}\right)-\operatorname{dpt}\left(\operatorname{com}_{R}(h)\right)+1 & \text { if } x \leq_{R} \operatorname{com}_{R}(h) \text { and } x \leq_{L} g_{1}^{\prime} \\
\operatorname{dpt}\left(g^{\prime}\right)-\operatorname{dpt}\left(\operatorname{com}_{R}(h)\right) & \text { otherwise }\end{cases}
\end{gathered}
$$

If $x \leq_{L} h$ and $g_{1}, g_{1}^{\prime} \neq 1$ we obtain the following:

$$
\operatorname{dpt}\left(g g^{\prime}\right)= \begin{cases}\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1}+1 & \text { if } x \leq_{R} g_{1} \text { and } y \leq_{L} g_{1}^{\prime} \\ \operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1} & \text { otherwise }\end{cases}
$$

If $y \leq_{L} h$ and $g_{1}, g_{1}^{\prime} \neq 1$ we obtain the following:

$$
\operatorname{dpt}\left(g g^{\prime}\right)= \begin{cases}\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1}+1 & \text { if } y \leq_{R} g_{1} \text { and } x \leq_{L} g_{1}^{\prime} \\ \operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1} & \text { otherwise }\end{cases}
$$

If $x \leq_{L} h$ and $1 \in\left\{g_{1}, g_{1}^{\prime}\right\}$ we obtain the following:

$$
\operatorname{dpt}\left(g g^{\prime}\right)= \begin{cases}\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1}+1 & \text { if } x \leq_{R} g_{1} \\ \operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1} & \text { if } x \not \leq_{R} g_{1}\end{cases}
$$

If $y \leq_{L} h$ and $1 \in\left\{g_{1}, g_{1}^{\prime}\right\}$ we obtain the following:

$$
\operatorname{dpt}\left(g g^{\prime}\right)= \begin{cases}\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1}+1 & \text { if } x \leq_{L} g_{1}^{\prime} \\ \operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1} & \text { if } x \not \leq_{L} g_{1}^{\prime}\end{cases}
$$

Therefore $\operatorname{dpt}\left(g g^{\prime}\right)-\epsilon=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1}$ for some $\epsilon \in\{0,1\}$. If $\Delta^{-1} g g^{\prime} \notin M_{1}$, then $\operatorname{dpt}\left(g g^{\prime}\right) \geq 1$. Hence $\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1} \geq 0$. If $\Delta^{-1} g g^{\prime} \in M_{1}$, then $\operatorname{dpt}(g)+$ $\operatorname{dpt}\left(g^{\prime}\right)=\operatorname{dpt}(h)+\operatorname{dpt}\left(\operatorname{com}_{R}(h)\right)=q_{1} . \operatorname{Thus} \operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{1} \geq 0$.

The following lemma proves Part (a) of Condition B:

Lemma 5.9 Let $g, g^{\prime} \in M$ be two unmovable elements with $t=\inf \left(g g^{\prime}\right)$, such that $\left\{g, g^{\prime}\right\} \nsubseteq M_{1} \cup \Theta$. Then $\operatorname{dpt}\left(g g^{\prime}\right)-\epsilon=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{t} \geq 0$ for some $\epsilon \in\{0,1\}$.

Proof If $t=0$, Lemma 5.5 implies that $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{0}+\epsilon$ for some $\epsilon \in\{0,1\}$, where $\epsilon=0$ if and only if $x \leq_{R} g$ and $x \leq_{L} g^{\prime}$. Note that $\operatorname{dpt}\left(g g^{\prime}\right)=0$ if and only if $g, g^{\prime} \in M_{1}$. Therefore $\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{0} \geq 0$. If $t=1$, the result is clear by Lemma 5.8. If $t \geq 2$, there exist simple elements h_{1}, \ldots, h_{t} such that $g=g_{1} h_{t} \cdots h_{1}$ and $g^{\prime}=\operatorname{com}_{R}\left(h_{1}\right) \cdots \operatorname{com}_{R}\left(h_{t}\right) g_{1}^{\prime}$, for some $g_{1}, g_{1}^{\prime} \in M$ such that $\inf \left(g_{1} g_{1}^{\prime}\right)=0$. Lemma 5.7 implies that $\operatorname{dpt}\left(g_{1} h_{t}\right)+\operatorname{dpt}\left(\operatorname{com}_{R}\left(h_{t}\right) g_{1}^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{t-1}+1$. So, by Lemma 5.8, $\operatorname{dpt}\left(g g^{\prime}\right)-\epsilon=\operatorname{dpt}\left(g_{1} g_{1}^{\prime}\right)-\epsilon=\operatorname{dpt}\left(g_{1} h_{t}\right)+\operatorname{dpt}\left(\operatorname{com}_{R}\left(h_{t}\right) g_{1}^{\prime}\right)-q_{1}=$ $\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{t}$ for some $\epsilon \in\{0,1\}$ with $\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-q_{t} \geq 0$.

The following lemma proves Part (b) of Condition B:

Lemma 5.10 Let $g, g^{\prime} \in M$ be two unmovable elements with $t=\inf \left(g g^{\prime}\right)$, such that $\left\{g, g^{\prime}\right\} \nsubseteq M_{1} \cup \Theta$ and $\left\{g, g^{\prime}\right\} \cap \Theta \neq \emptyset$. Then $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{t}$.

Proof Suppose that $g \in \Theta$, i.e. $g=g_{0} \theta^{s}$ for some $s \geq 1$ and $g_{0} \in M_{1}$. Note that $g_{0}=1$ because g is unmovable. Hence $g=\theta^{s}$. If $s<t$, then $y^{s} \Delta^{t-s} \leq_{L} g^{\prime}$, which is impossible because g^{\prime} is unmovable. Then $s \geq t$, and $y^{t} \leq_{L} g^{\prime}$. If $s=t$, then $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}\left(g^{\prime}\right)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{t}$. If $s>t$, Lemma 5.5 implies that $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}\left(\theta^{s-t}\right)+\operatorname{dpt}\left(g^{\prime}\right)-1=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{t}$ because $y \not L_{L} y^{-t} g^{\prime}$.

5.2 Proof of Proposition 5.4

We denote by Ω the standard Garside element of $\mathcal{B}_{2 k}$, by A_{1} the submonoid of $\mathcal{B}_{2 k}^{+}$ generated by $z_{1}, \ldots, z_{2 k-2}$, and by A_{2} the submonoid of $\mathcal{B}_{2 k}^{+}$generated by $z_{2}, \ldots, z_{2 k-1}$. Note that $\phi\left(G_{1}\right) \subseteq A_{1} \cap A_{2}$.

Proposition 5.11 (Crisp [5]) Let $g, g^{\prime} \in M$, and let $\left(g_{p}, \ldots, g_{1}\right)$ be the greedy normal form of g. Then:
(1) $g \leq_{R} g^{\prime}$ if and only if $\phi(g) \leq_{R} \phi\left(g^{\prime}\right)$.
(2) $\phi\left(g \wedge_{R} g^{\prime}\right)=\phi(g) \wedge_{R} \phi\left(g^{\prime}\right)$ and $\phi\left(g \vee_{R} g^{\prime}\right)=\phi(g) \vee_{R} \phi\left(g^{\prime}\right)$.
(3) $\left(\phi\left(g_{p}\right) \ldots, \phi\left(g_{1}\right)\right)$ is the greedy normal form of $\phi(g)$.

Lemma 5.12 We have $\phi(g) \in \mathcal{B}_{2 k} \backslash\left\langle z_{2}, \ldots, z_{2 k-1}\right\rangle$ for all $g \in G \backslash G_{1}$.

Proof Let $h \in \mathcal{B}_{2 k}$, and let $\left(h_{2}, h_{1}\right)$ be its right orthogonal splitting, that is $h=h_{1} h_{2}^{-1}$ and $h_{1} \wedge_{R} h_{2}=1$. Since $G\left(A_{2}\right)$ is a parabolic subgroup, we have $h \in G\left(A_{2}\right)$ if and only if $h_{1}, h_{2} \in A_{2}$. Let $g \in G$, and let $\left(g_{2}, g_{1}\right)$ be its right orthogonal splitting. By

Proposition 5.11, we have $\phi(g)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)^{-1}$ and $\phi\left(g_{1}\right) \wedge_{R} \phi\left(g_{2}\right)=1$. It follows that $\phi(g) \in G\left(A_{2}\right)$ if and only if $\phi\left(g_{1}\right), \phi\left(g_{2}\right) \in A_{2}$. Furthermore, we have $g \in G_{1}$ if and only if $g_{1}, g_{2} \in M_{1}$. So, we only need to prove that $\phi(g) \in \mathcal{B}_{2 k}^{+} \backslash A_{2}$ for all $g \in M \backslash M_{1}$. Let $h \in \mathcal{B}_{2 k}^{+}$, and let $\left(h_{p}, \ldots, h_{1}\right)$ be its right greedy normal form. Since $G\left(A_{2}\right)$ is a parabolic subgroup, we have $h \in A_{2}$ if and only if $h_{i} \in A_{2}$ for all $i \in\{1, \ldots, p\}$. Let $g \in M$, and let $\left(g_{p}, \ldots, g_{1}\right)$ be its right greedy normal form. By Proposition 5.11, $\phi(g)=\phi\left(g_{p}\right) \cdots \phi\left(g_{1}\right)$ is the right greedy normal form of $\phi(g)$. It follows that $\phi(g) \in A_{2}$ if and only if $\phi\left(g_{i}\right) \in A_{2}$ for all $i \in\{1, \ldots, p\}$. Furthermore, we have $g \in M_{1}$ if and only if $g_{i} \in M_{1}$ for all $i \in\{1, \ldots, p\}$. So, we only need to show that $\phi(g) \in \operatorname{Div}(\Omega) \backslash A_{2}$ for $g \in \operatorname{Div}(\Delta) \backslash M_{1}=\operatorname{Div}(\Delta) \backslash \operatorname{Div}(x)$. Let $h \in \operatorname{Div}(\Omega)$, and let $i_{1}, \ldots, i_{l} \in\{1, \ldots, 2 k-1\}$ such that $h=z_{i_{1}} \cdots z_{i_{l}}$. By Bourbaki [1], Chapter IV, Section 1.8, we have $h \in A_{2}$ if and only if $\left\{z_{i_{1}}, \ldots, z_{i}\right\} \subset\left\{z_{2}, \ldots, z_{2 k-1}\right\}$. This implies that, for $g \in \operatorname{Div}(\Delta)$, we have $\phi(g) \in A_{2}$ if and only if $g \in\{1, y\}=\operatorname{Div}(y)$.

For each $i, j \in\{0, \ldots, k-1\}$ with $j \neq 0$, and for every $t \geq 1$, we define:

$$
x_{2 i+1}^{t}=\prod_{l=i}^{k-1} z_{2 l+1}^{t}, \quad y_{2 j}^{t}=\prod_{l=j}^{k-1} z_{2 l}^{t} .
$$

In particular $x_{1}^{t}=\phi\left(x^{t}\right)=\phi(x)^{t}$ and $y_{2}^{t}=\phi\left(y^{t}\right)=\phi(y)^{t}$. Note that $y_{2 j}^{t} \in A_{1} \cap A_{2}$.
Lemma 5.13 Let $g \in M \backslash M_{1}$ be an unmovable element such that $\operatorname{dpt}(g) \leq k-1$. Then $\phi(g)$ has a $\left(A_{1}, A_{2}\right)$-sequence and a $\left(A_{2}, A_{1}\right)$-sequence of length 2.

Proof Let $d=\operatorname{dpt}(g)$. Then $g=y^{t_{d}} x^{s_{d}} \cdots y^{t_{1}} x^{s_{1}} y^{t_{0}}$, where $s_{1}, \ldots, s_{d} \geq 1, t_{0}, t_{d} \geq 0$, and $t_{1}, \ldots, t_{d-1} \geq 1$ if $d \geq 2$. Since $d \leq k-1$, then:

$$
\begin{aligned}
\phi(g) & =y_{2}^{t_{d}} x_{1}^{s_{d}} \cdots x_{1}^{s_{2}} y_{2}^{t_{1}} x_{1}^{s_{1}} \cdot y_{2}^{t_{0}} \\
& =y_{2}^{t_{2}} x_{1}^{s_{1}} \cdots x_{1}^{s_{2}} y_{2}^{t_{2}} z_{1}^{s_{1}} \cdot x_{3}^{s_{1}} y_{2}^{t_{0}} \\
& =y_{t_{d}}^{t_{1}} x_{1} \cdots x_{1}^{s_{2}} z_{1}^{t_{1}} z_{1}^{s_{1}} \cdot y_{4}^{t_{1}} x_{3}^{s_{1}} y_{0}^{t_{0}} \\
& =y_{2}^{t_{1}} x_{1}^{s_{d}} \cdots z_{3}^{s_{2}} z_{1}^{s_{1}} z_{2}^{t_{1}} z_{1}^{s_{1}} \cdot x_{5}^{s_{2}} y_{4}^{t_{1}} x_{3}^{s_{1}} y_{2}^{t_{0}} \\
& \cdots \\
& =y_{2}^{t_{d}} z_{2 d-1}^{s_{d}} \cdots z_{3}^{s_{d}} z_{1}^{s_{d}} \cdots z_{3}^{s_{2}} z_{1}^{s_{2}} z_{2}^{t_{1}} z_{1}^{s_{1}} \cdot x_{2 d+1}^{s_{d}} \cdots x_{5}^{s_{2}} y_{4}^{t_{1}} x_{3}^{s_{1}} y_{2}^{t_{0}}
\end{aligned}
$$

Let $h^{\prime}=y_{2}^{t_{d}} z_{2 d-1}^{s_{d}} \cdots z_{3}^{s_{d}} z_{1}^{s_{d}} \cdots z_{3}^{s_{2}} z_{1}^{s_{2}} z_{2}^{t_{1}} z_{1}^{s_{1}}$, and let $h=x_{2 d+1}^{s_{d}} \cdots x_{5}^{s_{2}} y_{4}^{t_{1}} x_{3}^{s_{1}} y_{2}^{t_{0}}$. Note that $h \in A_{2}$ and $h^{\prime} \in A_{1}$. Therefore $\left(h^{\prime}, h\right)$ is a $\left(A_{1}, A_{2}\right)$-sequence of $\phi(g)$. Let Φ be the flip automorphism of $\mathcal{B}_{2 k}$. Then $\phi(g)=\Phi(\phi(g))=\Phi\left(h^{\prime}\right) \Phi(h)$ because $\phi(\Delta)$ is the Garside element of $\mathcal{B}_{2 k}$. Note that $\Phi\left(h^{\prime}\right) \in A_{2}$ and $\Phi(h) \in A_{1}$. Therefore $\left(\Phi\left(h^{\prime}\right), \Phi(h)\right)$ is a (A_{2}, A_{1})-sequence of $\phi(g)$. Both sequences are of length 2 .

The limit of an unmovable element $g \in M \backslash M_{1}$, denoted by $\lim (g)$, is the unique integer $t \geq 1$ such that $\tilde{q}_{t-1}<\operatorname{dpt}(g)+1 \leq \tilde{q}_{t}$. Since $\tilde{q}_{t-1}-1<\operatorname{dpt}(g)$, then:

$$
\begin{equation*}
\lim (g)=\frac{2 \tilde{q}_{t-1}+m-4}{m-2}<\frac{2 \operatorname{dpt}(g)+m-2}{m-2} \tag{5-1}
\end{equation*}
$$

We set $\lim \left(g_{0}\right)=0$ for all $g_{0} \in M_{1}$. Thus $\operatorname{bh}_{A_{1}, A_{2}}\left(\phi\left(g_{0}\right)\right)=\lim \left(g_{0}\right)+1$.
Lemma 5.14 Let $g \in M \backslash M_{1}$ be an unmovable element. Then $\phi(g)$ has a (A_{1}, A_{2})sequence of length $\lim (g)+1$.

Proof We have $g=y^{t_{d}} x^{s_{d}} \cdots y^{t_{1}} x^{s_{1}} y^{t_{0}}$ with $d=\operatorname{dpt}(g)$, where $s_{1}, \ldots, s_{d} \geq 1, t_{0}, t_{d}$ ≥ 0, and $t_{1}, \ldots, t_{d-1} \geq 1$ if $d \geq 2$. Let $t=\lim (g)$. For every $i \in\{1, \ldots, t\}$, we define an element $g_{i} \in M$, as follows:

Note that $\operatorname{dpt}\left(g_{i}\right)=k-1$ for all $i<t$, and $\operatorname{dpt}\left(g_{t}\right) \in\{1, \ldots, k-1\}$. Lemma 5.13 implies that there are $h_{1}, \ldots, h_{t} \in A_{2}$ and $h_{1}^{\prime}, \ldots, h_{t}^{\prime} \in A_{1}$, such that $\left(h_{i}^{\prime}, h_{i}\right)$ is a $\left(A_{1}, A_{2}\right)$-sequence of g_{i} if i is odd, and $\left(h_{i}, h_{i}^{\prime}\right)$ is a $\left(A_{2}, A_{1}\right)$-sequence of g_{i} if i is even. Therefore, the following is a (A_{1}, A_{2})-sequence of $\phi(g)$:

$$
\begin{cases}\left(h_{t}^{\prime}, h_{t} h_{t-1}, \ldots, h_{3} h_{2}, h_{2}^{\prime} h_{1}^{\prime}, h_{1} y^{t_{0}}\right) & \text { if } t \text { is odd } \\ \left(h_{t}, h_{t}^{\prime} h_{t-1}^{\prime}, \ldots, h_{3} h_{2}, h_{2}^{\prime} h_{1}^{\prime}, h_{1} y^{t_{0}}\right) & \text { if } t \text { is even }\end{cases}
$$

Note that, the length of this sequence is $t+1$.
Proposition 4.6 and Lemma 5.14 imply that $\mathrm{bh}_{A_{1}, A_{2}}(\phi(g)) \leq \lim (g)+1$ for all unmovable element $g \in M \backslash M_{1}$.

Lemma 5.15 Let $g^{\prime} \in G$ such that $\phi\left(g^{\prime}\right)$ is z_{1}-positive. Then g^{\prime} is $\left(H, G_{1}\right)$-positive.
Proof Let $m=\inf \left(g^{\prime}\right)$ such that $g^{\prime}=\Delta^{m} g$ for some unmovable element $g \in M$. Note that $g^{\prime} \notin G_{1}$ because $\phi\left(g^{\prime}\right)$ is z_{1}-positive. We have $\phi\left(g^{\prime}\right)=\phi(\Delta)^{m} \phi(g)$. If $m \geq 0$, then $g^{\prime} \in M \backslash M_{1}$. Therefore g^{\prime} is $\left(H, G_{1}\right)$-positive. If $m<0$, namely $m=-t$ for some $t \geq 1$, Theorem 2.13 and Equation (5-1) imply that $t+2 \leq \mathrm{bh}_{A_{1}, A_{2}}(\phi(g)) \leq$ $\lim (g)+1<(2 \operatorname{dpt}(g)+2(m-2)) /(m-2)$. Hence $(k-1) t<\operatorname{dpt}(g)$, i.e. $\operatorname{dpt}(g) \geq q_{t}$. Therefore g^{\prime} is $\left(H, G_{1}\right)$-positive.

If $g \in G$ is $\left(H, G_{1}\right)$-positive and $\phi(g)$ is z_{1}-negative. Then $\phi(g)^{-1}$ is z_{1}-positive. So, Lemma 5.15 implies that g^{-1} is $\left(H, G_{1}\right)$-positive as well, which contradicts Corollary 5.2. This proves Proposition 5.4.

We finish this subsection with the following consequence:

Corollary 5.16 We have $\operatorname{bh}_{A_{1}, A_{2}}(\phi(g))=\lim (g)+1$ for all unmovable $g \in M \backslash M_{1}$.
Proof Let $g_{0} \in M_{1}$ be the M_{1}-tale of g, and let $g^{\prime}=g g_{0}^{-1}$. By definition, $\tilde{q}_{t-1}<$ $\operatorname{dpt}(g)=\operatorname{dpt}\left(g^{\prime}\right)$ where $t=\lim (g)$. Then $\Delta^{-t+1} g^{\prime}$ is $\left(H, G_{1}\right)$-positive. So, Proposition 5.4 implies that $\phi\left(\Delta^{-t+1} g^{\prime}\right)$ is z_{1}-positive. By Theorem 2.13 and Lemma 5.14, $t+1 \leq \operatorname{bh}_{A_{1}, A_{2}}\left(\phi\left(g^{\prime}\right)\right) \leq t+1$. Therefore $\mathrm{bh}_{A_{1}, A_{2}}(\phi(g))=\lim (g)+1$.

6 Artin groups of dihedral type, the odd case

In this section G and M denote the Artin group and the Artin monoid of type $I_{2}(m)$, respectively, where $m=2 k+1$ is odd and $k \geq 2$. Recall that M is defined by the monoid presentation

$$
M=\left\langle x, y \mid(x y)^{k} x=(y x)^{k} y\right\rangle^{+} .
$$

The group G is the enveloping group of M. By Theorem 2.11, M is a Garside monoid and $\Omega=x \vee_{R} y$ is a Garside element of M.

What makes the difference between the case m even, treated in Section 5, and the case m odd, treated in the present section, is that, now, the Garside element $\Omega=(x y)^{k} x=$ $(y x)^{k} y$ is not central. It satisfies $\Omega x=y \Omega$ and $\Omega y=x \Omega$, hence $\Delta=\Omega^{2}=(x y)^{m}$ is central. In order to apply our criteria, we will use the Garside element Δ and not Ω, making the proofs more complicated than in Section 5, although the statements are identical.

Let $G_{1}=\langle y\rangle \simeq \mathbb{Z}$, and let $H=\langle x\rangle \simeq \mathbb{Z}$. By Theorem 2.11, G_{1} and H are parabolic subgroups of (G, Δ). The subgroup G_{1} is associated with $\Delta_{1}=y^{2}$, and H is associated with $\Lambda=x^{2}$. Once again, we set $M_{1}=G_{1} \cap M \simeq \mathbb{N}$ and $N=H \cap M \simeq \mathbb{N}$. Obviously, $M_{1} \cup N$ generates M, hence $\left(H, G_{1}\right)$ is a Dehornoy pre-structure.

The main result of the section is the following:
Theorem 6.1 The pair $\left(H, G_{1}\right)$ satisfies Conditions A and B.
Then, applying Theorem 3.2 we obtain:
Corollary 6.2 The pair $\left(H, G_{1}\right)$ is a Dehornoy structure.
We denote by P_{1} the set of $\left(H, G_{1}\right)$-positive elements of G, and we set $P_{2}=\left\{y^{n} \mid n \geq\right.$ $1\}$. For $\epsilon=\left(\epsilon_{1}, \epsilon_{2}\right) \in\{ \pm 1\}^{2}$ we set $P^{\epsilon}=P_{1}^{\epsilon_{1}} \cup P_{2}^{\epsilon_{2}}$. Then, by Proposition 3.1:

Corollary 6．3 The set P^{ϵ} is the positive cone of a left order on G ．
We denote by $z_{1}, \ldots, z_{2 k}$ the standard generators of the braid group $\mathcal{B}_{2 k+1}$ ．By Crisp ［5］，the $\operatorname{map} \phi: S \rightarrow \mathcal{B}_{2 k+1}$ defined by

$$
\phi(x)=\prod_{i=0}^{k-1} z_{2 i+1}, \quad \phi(y)=\prod_{i=1}^{k} z_{2 i}
$$

induces an embedding $\phi: G \hookrightarrow \mathcal{B}_{2 k+1}$ ．As in the case m even，we will show how the left orders on G obtained in Corollary 6.3 can be deduced from ϕ ．More precisely，we will prove the following：

Proposition 6．4 Let $g \in G$ ．Then g is $\left(H, G_{1}\right)$－positive if and only if $\phi(g)$ is z_{1}－positive．

The rest of the section is dedicated to the proofs of Theorem 6.1 and Proposition 6．4． Theorem 6.1 is proved in Subsection 6．1，and Proposition 6.4 is proved in Subsection 6．2．

6．1 Proof of Theorem 6.1

The proof of Theorem 6.1 is a similar but much more complex proof of Theorem 5．1． Because of that，we will only give a sketch of this proof：

Note that，if $g \in M$ and $\Omega \not 又_{R} g$ ，then g does not contain $x \vee_{L} y$ as a subword． Therefore g has a unique word representative in $\{x, y\}^{*}$ ．We will denote by Φ the flip automorphism of G respective to Ω ．Note that，if $g \in M \backslash\{1\}$ such that $\Omega \not 又_{R} g$ ，then $\operatorname{bh}(\Phi(g))=\operatorname{bh}(g)+1$ when $y \leq_{R} g$ ，and $\operatorname{bh}(\Phi(g))=\operatorname{bh}(g)-1$ when $x \leq_{R} g$ ．

Let $g, g^{\prime} \in M$ such that $\Omega \not Z_{R} g^{\prime}, \Omega \not Z_{R} g$ ，and $\Omega \not Z_{R} g g^{\prime}$ ．As in Lemma 5．5，we have：

$$
\operatorname{bh}\left(g g^{\prime}\right)= \begin{cases}\operatorname{bh}(g)+\operatorname{bh}\left(g^{\prime}\right) & \text { if } y \leq_{R} g \text { and } x \leq_{L} g^{\prime} \tag{6-1}\\ \operatorname{bh}(g)+\operatorname{bh}\left(g^{\prime}\right)-2 & \text { if } x \leq_{R} g \text { and } x \leq_{L} g^{\prime} \\ \operatorname{bh}(g)+\operatorname{bh}\left(g^{\prime}\right)-1 & \text { otherwise }\end{cases}
$$

By using Equation（6－1）it is not hard to prove the following properties：
（1） $\operatorname{bh}\left(g_{0} \theta\right)=2(m-1)$ for all $g_{0} \in M_{1}$ ．
（2） $\operatorname{bh}(g \theta)=\operatorname{bh}(g)+2(m-2)$ for all $g \in M \backslash M_{1}$ ．
（3） $\operatorname{bh}\left(\theta^{t}\right)=2(m-2) t+2$ for all $t \geq 1$ ．
So，more generally，for all $g_{0} \in M_{1}$ and $g \in M \backslash M_{1}$ with $\Omega \not 又_{R} g$ ，we obtain：
(4) $\operatorname{bh}\left(g_{0} \Omega^{t}\right)=\operatorname{bh}\left(\Omega^{t} g_{0}\right)=\operatorname{bh}\left(g_{0}\right)+(m-2) t+1$ for all $t \geq 2$.
(5) $\operatorname{bh}\left(g \Omega^{t}\right)=\operatorname{bh}\left(\Omega^{t} g\right)=\operatorname{bh}(g)+(m-2) t$ when $t \geq 2$ is even.
(6) $\operatorname{bh}\left(g \Omega^{t}\right)=\operatorname{bh}(g)+(m-2) t+1$ when $t \geq 2$ is odd and $y \leq_{R} g$.
(7) $\operatorname{bh}\left(g \Omega^{t}\right)=\operatorname{bh}(g)+(m-2) t$ when $t \geq 2$ is odd and $g \in N$.
(8) $\operatorname{bh}\left(g \Omega^{t}\right)=\operatorname{bh}(g)+(m-2) t-1$ when $t \geq 2$ is odd, $x \leq_{R} g$ and $g \notin N$.
(9) $\mathrm{bh}\left(\Omega^{t} g\right)=\mathrm{bh}(g)+(m-2) t$ when $t \geq 2$ is odd.

Property (3) implies that $q_{t}=(m-2) t+1$ for all $k \geq 1$, because $\operatorname{bh}\left(\theta^{t}\right)$ is even. Therefore, Condition A holds, where $\tilde{q}_{t}=t c+1$ with $c=m-2$ for all $t \geq 0$.

Let $g, g^{\prime} \in M$ such that $\Omega \not Z_{R} g, g^{\prime}$ and $g g^{\prime} \neq \Omega$, and let $s, s^{\prime} \in \operatorname{Div}(\Omega) \backslash\{1, \Omega\}$ such that $s \leq_{R} g, s^{\prime} \leq_{L} g^{\prime}$, and $s s^{\prime}=\Omega$. Note that, $x \leq_{L} s$ if and only if $x \leq_{R} s^{\prime}$. Further, $x \leq_{R} s$ if and only if $y \leq_{L} s^{\prime}$. By using Equation (6-1) and Properties (1) to (9) we can prove that there is $\epsilon \in\{0,1,2,3\}$ such that:

$$
\begin{equation*}
\operatorname{bh}\left(g s^{-1}\right)+\operatorname{bh}\left(s^{\prime-1} g^{\prime}\right)=\operatorname{bh}(s)+\operatorname{bh}\left(s^{\prime}\right)-m+\epsilon \tag{6-2}
\end{equation*}
$$

Similarly to Lemma 5.7, we have the following result:
Lemma 6.5 Let $g, g^{\prime} \in M$ with $\Omega \not \leq_{R} g, g^{\prime}$, and let $s_{1}, s_{2}, s_{1}^{\prime}, s_{2}^{\prime} \in \operatorname{Div}(\Omega) \backslash\{1, \Omega\}$ such that $s_{2} s_{1} \leq_{R} g, s_{1}^{\prime} s_{2}^{\prime} \leq_{L} g^{\prime}$, and $s_{1} s_{1}^{\prime}=\Phi\left(s_{2}\right) s_{2}^{\prime}=\Omega$. Then, there is a unique $z \in\{x, y\}$ satisfying $z \leq_{L} s_{1}, s_{2}^{\prime}$ and $z \leq_{R} s_{1}^{\prime}, s_{2}$.

Proof Let z be the unique element in $\{x, y\}$ such that $z \leq_{L} s_{1}$ and $z \leq_{R} s_{1}^{\prime}$, and let $r \in\{x, y\}$ such that $r \leq_{L} s_{2}^{\prime}$. Since $\Phi\left(s_{2}\right) s_{2}^{\prime}=\Omega$, then $r \leq_{R} s_{2}$. Suppose that $r \neq z$, then $\lg _{S}\left(s_{2} s_{1}\right)<m$ and $\lg _{S}\left(s_{1}^{\prime} s_{2}^{\prime}\right)<m$ because $\Omega \not \not 又 R g, g^{\prime}$. Hence, $\lg _{S}(\Delta)=$ $\lg _{S}\left(s_{2} s_{1} s_{1}^{\prime} s_{2}^{\prime}\right)<2 m$, which is a contradiction. Therefore $r=z$.

Let $g, g^{\prime} \in M$ with $\Omega \not \mathbb{Z}_{R} g, g^{\prime}$, and let $s, s^{\prime} \in \operatorname{Div}(\Omega) \backslash\{1, \Omega\}$ such that $s \leq_{R} g$, $s^{\prime} \leq_{L} g^{\prime}$, and $s s^{\prime}=\Omega$. Let $z \in\{x, y\}$ such that $z \leq_{L} s$ and $z \leq_{R} s^{\prime}$. Assume that $z \leq_{R} g s^{-1}, z \leq_{L} s^{\prime-1} g^{\prime}$, and $\Omega \not Z_{R} \Phi\left(g s^{-1}\right) s^{\prime-1} g^{\prime}$. Then, as a consequence of Equations (6-1) and (6-2), there is $k \in\{1,2\}$ satisfying:

$$
\begin{equation*}
\operatorname{bh}\left(\Phi\left(g s^{-1}\right) s^{\prime-1} g^{\prime}\right)=\operatorname{bh}\left(\Phi^{k}(g)\right)+\operatorname{bh}\left(g^{\prime}\right)-m+2 \tag{6-3}
\end{equation*}
$$

Furthermore, if $g, g^{\prime} \in M$ such that $\Omega \not \leq_{R} \Phi(g) g^{\prime}$, and, if $s, s^{\prime} \in \operatorname{Div}(\Omega) \backslash\{1, \Omega\}$ such that $s s^{\prime}=\Omega$ and $\Omega \not Z_{R} g s, s^{\prime} g^{\prime}$. Then, by Equation (6-1) and Properties (1) to (9), we obtain that, there are $k \in\{1,2\}$ and $\epsilon \in\{0,1,2,3\}$, such that:

$$
\begin{equation*}
\operatorname{bh}\left(\Phi(g) g^{\prime}\right)=\operatorname{bh}\left(\Phi^{k}(g s)\right)+\operatorname{bh}\left(s^{\prime} g^{\prime}\right)-m+\epsilon \tag{6-4}
\end{equation*}
$$

Consequently, Equations (6-3) and (6-4) imply a kind of Part (a) of Condition B, namely, for breadths instead of depths, as follows:

Proposition 6.6 Let $g, g^{\prime} \in M$ such that $\Omega \not 又_{R} g, g^{\prime}$ and $\Omega \leq_{R} g g^{\prime}$, and let $t \geq 1$ be the maximal integer satisfying $\Omega^{t} \leq_{R} g g^{\prime}$. Then, there exists $\epsilon^{\prime} \in\{0,1,2\}$ such that:

$$
\operatorname{bh}\left(\Omega^{-t} g g^{\prime}\right)-\epsilon^{\prime}=\operatorname{bh}\left(u_{1}\left(g, g^{\prime}\right)\right)-\operatorname{bh}\left(\Omega^{t}\right) \geq 0
$$

We obtain Part (a) of Condition B as a consequence of Proposition 6.6 by passing from breadths to depths. Part (b) of Condition B is a consequence of the following lemma:

Lemma 6.7 Let $g \in M \backslash M_{1}$, and let $g^{\prime} \in \Theta$ unmovable. Then $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}(g)+$ $\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{r}$ where $r=\inf \left(g g^{\prime}\right)$.

Proof We have $g^{\prime}=\theta^{t} y^{e}$ for some $t \geq 1$ and $e \in\{0,1\}$. Let $t^{\prime} \geq 0$ be the maximal integer satisfying $y^{t^{\prime}} \leq_{R} g$. Then $g=g_{0} y^{t^{\prime}}$ for some $g_{0} \in M$ satisfying $y \not \leq_{R} g_{0}$ and $x \leq_{R} g_{0}$ because $g \notin M_{1}$. If $r=t$, then $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}(g)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{r}$. Asumme that $r<t$. If $t^{\prime}=2 r$, then $g g^{\prime}=\Delta^{r} g_{0} \theta^{t-r} y^{e}$. If $t^{\prime}=2 r+1$ and $e=0$, then $g g^{\prime}=\Delta^{r} g_{0} \theta^{t-r} y$, and, if $t^{\prime}=2 r-1$ and $e=1$, then $g g^{\prime}=\Delta^{r} g_{0} \theta^{t-r}$. So, Property (2) implies that $\operatorname{dpt}\left(g g^{\prime}\right)=\operatorname{dpt}\left(g_{0}\right)+(m-2)(t-r)=\operatorname{dpt}(g)+\operatorname{dpt}\left(g^{\prime}\right)-\tilde{q}_{r}$.

6.2 Proof of Proposition 6.4

In this subsection, we denote by $\Omega_{\mathcal{B}}$ the standard Garside element of $\mathcal{B}_{2 k+1}$, by A_{1} the submonoid of $\mathcal{B}_{2 k+1}$ generated by $z_{1}, \ldots, z_{2 k-1}$, and by A_{2} the submonoid of $\mathcal{B}_{2 k+1}$ genereted by $z_{2}, \ldots, z_{2 k}$. Note that $\phi(H) \subseteq A_{1} \backslash A_{2}$ and $\phi\left(G_{1}\right) \subseteq A_{2} \backslash A_{1}$. Further, we denote by Ω the standard Garside element of G.

Proposition 6.8 (Crisp [5]) Let $g, g^{\prime} \in M$, and let $\left(g_{p}, \ldots, g_{1}\right)$ be the greedy normal form of g. Then:
(1) $g \leq_{R} g^{\prime}$ if and only if $\phi(g) \leq_{R} \phi\left(g^{\prime}\right)$.
(2) $\phi\left(g \wedge_{R} g^{\prime}\right)=\phi(g) \wedge_{R} \phi\left(g^{\prime}\right)$ and $\phi\left(g \vee_{R} g^{\prime}\right)=\phi(g) \vee_{R} \phi\left(g^{\prime}\right)$.
(3) $\left(\phi\left(g_{p}\right), \ldots, \phi\left(g_{1}\right)\right)$ is the greedy normal form of $\phi(g)$.

Lemma 6.9 We have $\phi(g) \in \mathcal{B}_{2 k+1} \backslash\left\langle z_{2}, \ldots, z_{2 k}\right\rangle$ for all $g \in G \backslash G_{1}$.

Proof Let $h \in \mathcal{B}_{2 k+1}$, and let $\left(h_{2}, h_{1}\right)$ be its right orthogonal splitting that is $h=h_{1} h_{2}^{-1}$ and $h_{1} \wedge_{R} h_{2}=1$. Since $G\left(A_{2}\right)$ is a parabolic subgroup, we have $h \in G\left(A_{2}\right)$ if and only if $h_{1}, h_{2} \in A_{2}$. Let $g \in G$, and let $\left(g_{2}, g_{1}\right)$ be its right orthogonal splitting. By Proposition 6.8, we have $\phi(g)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)^{-1}$ and $\phi\left(g_{1}\right) \wedge_{R} \phi\left(g_{2}\right)=1$. It follows
that $\phi(g) \in G\left(A_{2}\right)$ if and only if $\phi\left(g_{1}\right), \phi\left(g_{2}\right) \in A_{2}$. Furthermore, we have $g \in G_{1}$ if and only if $g_{1}, g_{2} \in M_{1}$. So, we only need to prove that $\phi(g) \in \mathcal{B}_{2 k+1}^{+} \backslash A_{2}$ for all $g \in M \backslash M_{1}$. Let $h \in \mathcal{B}_{2 k+1}^{+}$, and let $\left(h_{p}, \ldots, h_{1}\right)$ be its greedy normal form. Since $G\left(A_{2}\right)$ is a parabolic subgroup, we have $h \in A_{2}$ if and only if $h_{i} \in A_{2}$ for all $i \in\{1, \ldots, p\}$. Let $g \in M$, and let $\left(g_{p}, \ldots, g_{1}\right)$ be its right greedy normal form. By Proposition 6.8, $\phi(g)=\phi\left(g_{p}\right) \cdots \phi\left(g_{1}\right)$ is the right greedy normal form of $\phi(g)$. It follows that $\phi(g) \in A_{2}$ if and only if $\phi\left(g_{i}\right) \in A_{2}$ for all $i \in\{1, \ldots, p\}$. Furthermore, we have $g \in M_{1}$ if and only if $g_{i} \in M_{1}$ for all $i \in\{1, \ldots, p\}$. So, we only need to show that $\phi(g) \in \operatorname{Div}\left(\Omega_{\mathcal{B}}\right) \backslash A_{2}$ if $g \in \operatorname{Div}(\Omega) \backslash M_{1}$. Let $h \in \operatorname{Div}\left(\Omega_{\mathcal{B}}\right)$, and let $i_{1}, \ldots, i_{l} \in\{1, \ldots, 2 k\}$ such that $h=z_{i_{1}} \cdots z_{i_{l}}$. By Bourbaki [1], Chapter IV, Section 1.8, we have $h \in A_{2}$ if and only if $\left\{z_{i_{1}}, \ldots, z_{i_{l}}\right\} \subset\left\{z_{2}, \ldots, z_{2 k}\right\}$. This implies that, for $g \in \operatorname{Div}(\Omega)$, we have $\phi(g) \in A_{2}$ if and only if $g \in\{1, y\}=\operatorname{Div}(y)$.

For each $i, j \in\{1, \ldots, k\}$ with $j \neq k$, and for every $t \geq 1$, we define:

$$
x_{2 i-1}^{t}=\prod_{l=i}^{k} z_{2 l-1}^{t}, \quad y_{2 j}^{t}=\prod_{l=j}^{k} z_{2 l}^{t}
$$

In particular $x_{1}^{t}=\phi\left(x^{t}\right)=\phi(x)^{t}$ and $y_{2}^{t}=\phi\left(y^{t}\right)=\phi(y)^{t}$.

Lemma 6.10 Let $g \in M \backslash M_{1}$ be an unmovable element such that $\mathrm{bh}(g) \leq 2 k$. Then $\phi(g)$ has a $\left(A_{1}, A_{2}\right)$-sequence of length 2 . Moreover, if $\mathrm{bh}(g) \neq 2 k$, then $\phi(g)$ has a $\left(A_{2}, A_{1}\right)$-sequence of length 2 .

Proof Let $b=\operatorname{bh}(g)$. Then $g=a^{t_{b}} \cdots y^{t_{3}} x^{t_{2}} y^{t_{1}}$, where $t_{1} \geq 0, t_{2}, \ldots, t_{b} \geq 1, a=x$ if b is even, and $a=y$ if b is odd. Since $b \leq 2 k$, then:

$$
\begin{aligned}
\phi(g) & =\phi(a)^{t_{b}} \cdots x_{1}^{t_{4}} y_{2}^{t_{3}} x_{1}^{t_{2}} \cdot y_{2}^{t_{1}} \\
& =\phi(a)^{t_{b}} \cdots x_{1}^{t_{4}} y_{2}^{t_{3}} z_{1}^{t_{2}} \cdot x_{3}^{t_{2}} y_{2}^{t_{1}} \\
& =\phi(a)^{t_{b}} \cdots x_{1}^{t_{4}} z_{2}^{t_{3}} z_{1}^{t_{2}} \cdot y_{4}^{t_{3}} x_{3}^{t_{2}} y_{2}^{t_{1}} \\
& =\phi(a)^{t_{b}} \cdots z_{3}^{t_{4}} z_{1}^{t_{4}} z_{2}^{t_{3}} z_{1}^{t_{2}} \cdot x_{5}^{t_{4}} y_{4}^{t_{3}} x_{3}^{t_{2}} y_{2}^{t_{1}} \\
& \cdots \\
& =\left(z_{b-1}^{t_{b}} \cdots z_{i}^{t_{b}}\right) \cdots z_{3}^{t_{4}} z_{1}^{t_{4}} z_{2}^{t_{3}} z_{1}^{t_{2}} \cdot a_{b+1}^{t_{b}} \cdots x_{5}^{t_{4}} y_{4}^{t_{3}} x_{3}^{t_{2}} y_{2}^{t_{1}}
\end{aligned}
$$

where $i=1$ if $a=x$, and $i=2$ if $a=y$. Let $h^{\prime}=\left(z_{b-1}^{t_{b}} \cdots z_{i}^{t_{b}}\right) \cdots z_{3}^{t_{4}} z_{1}^{t_{4}} z_{2}^{t_{3}} z_{1}^{t_{2}}$, and let $h=a_{b+1}^{t_{b}} \cdots x_{5}^{t_{4}} y_{4}^{t_{3}} x_{3}^{t_{2}} y_{2}^{t_{1}}$. Note that $h \in A_{2}$ and $h^{\prime} \in A_{1}$. Therefore $\left(h^{\prime}, h\right)$ is a $\left(A_{1}, A_{2}\right)$ -sequence of $\phi(g)$. If $\operatorname{bh}(g) \neq 2 k$, then $\operatorname{bh}(\Phi(g)) \leq 2 k$. As above, $\Omega_{\mathcal{B}} \phi(g) \Omega_{\mathcal{B}}^{-1}$ has a $\left(A_{1}, A_{2}\right)$-sequence $\left(h^{\prime}, h\right)$. Then $\left(\Omega_{\mathcal{B}} h^{\prime} \Omega_{\mathcal{B}}^{-1}, \Omega_{\mathcal{B}} h \Omega_{\mathcal{B}}^{-1}\right)$ is a $\left(A_{2}, A_{1}\right)$-sequence of g.

The limit of an unmovable element $g \in M \backslash M_{1}$, denoted by $\lim (g)$, is the unique integer $t \geq 1$ such that $\tilde{q}_{t-1}<\operatorname{bh}(g) \leq \tilde{q}_{t}$. Since $\tilde{q}_{t-1}<\operatorname{bh}(g)$, then:

$$
\begin{equation*}
\lim (g)=\frac{\tilde{q}_{t-1}+m-3}{m-2}<\frac{\operatorname{bh}(g)+m-3}{m-2} \tag{6-5}
\end{equation*}
$$

We set $\lim \left(g_{0}\right)=0$ for all $g_{0} \in M_{1}$. Thus $\operatorname{bh}_{A_{1}, A_{2}}\left(\phi\left(g_{0}\right)\right)=\lim \left(g_{0}\right)+1$.
Lemma 6.11 Let $g \in M \backslash M_{1}$ be an unmovable element. Then $\phi(g)$ has a $\left(A_{1}, A_{2}\right)$ sequence of length $\lim (g)+1$.

Proof Let $\left(g_{p}^{\prime}, \ldots, g_{0}^{\prime}\right)$ be the alternating form of g, and let $t=\lim (g)$. Let $g_{0}=g_{0}^{\prime}$, for each $i \in\{1, \ldots, t-1\}$ let $g_{i}=\prod_{j=1}^{m-2} g_{(m-2)(i-1)+j}^{\prime}$, and let $g_{t}=$ $g_{p}^{\prime} \cdots g_{(m-2)(t-1)+1}^{\prime}$. Let $i \in\{1, \ldots, t-1\}$. If i is odd, then $R_{M_{1}}\left(g_{i}\right)=1$ and $\operatorname{bh}\left(g_{i}\right)$ $=m-1$. Similarly, if i is even, then $R_{N}\left(g_{i}\right)=1$ and $\operatorname{bh}\left(g_{i}\right)=m-2$. Furthermore, $R_{M_{1}}\left(g_{t}\right)=1$ and $\operatorname{bh}\left(g_{t}\right) \leq m-1$ if t is odd, and $R_{N}\left(g_{t}\right)=1$ and $\operatorname{bh}\left(g_{t}\right) \leq m-2$ if t is even. Lemma 6.10 implies that there are $h_{1}, \ldots, h_{t} \in A_{2}$ and $h_{1}^{\prime}, \ldots, h_{t}^{\prime} \in A_{1}$, such that $\left(h_{i}^{\prime}, h_{i}\right)$ is a $\left(A_{1}, A_{2}\right)$-sequence of $\phi\left(g_{i}\right)$ if i is odd, and $\left(h_{i}, h_{i}^{\prime}\right)$ is a $\left(A_{2}, A_{1}\right)$-sequence of $\phi\left(g_{i}\right)$ if i is even. Therefore, the following is a $\left(A_{1}, A_{2}\right)$-sequence of $\phi(g)$:

$$
\left\{\begin{array}{cl}
\left(h_{t}^{\prime}, h_{t} h_{t-1}, \ldots, h_{3} h_{2}, h_{2}^{\prime} h_{1}^{\prime}, h_{1} g_{0}\right) & \text { if } t \text { is odd } \\
\left(h_{t}, h_{t}^{\prime} h_{t-1}^{\prime}, \ldots, h_{3} h_{2}, h_{2}^{\prime} h_{1}^{\prime}, h_{1} g_{0}\right) & \text { if } t \text { is even }
\end{array}\right.
$$

Note that the length of this sequence is $t+1$.
Lemma 6.12 Let $g \in G$, and let $t, t^{\prime} \geq 1$ such that $g=\Delta^{-t} g_{0}=\Omega^{-t^{\prime}} g_{0}^{\prime}$ for some $g_{0}, g_{0}^{\prime} \in M$, where $\Delta \not \mathbb{Z}_{R} g_{0}$ and $\Omega \not \mathbb{Z}_{R} g_{0}^{\prime}$. Then $\operatorname{bh}\left(g_{0}\right) \geq 2 \tilde{q}_{t}$ if and only if $\operatorname{bh}\left(g_{0}^{\prime}\right) \geq \operatorname{bh}\left(\Omega^{t}\right)$.

Proof If $\Omega \not Z_{R} g_{0}$ we are done because $g_{0}=g_{0}^{\prime}$ and $t^{\prime}=2 t$. Otherwise $g_{0}=\Omega g_{0}^{\prime}$ and $t^{\prime}=2 t-1$. Lemma ??.4-8 implies that $\operatorname{bh}\left(g_{0}\right)=\operatorname{bh}\left(g_{0}^{\prime}\right)+(m-2)$ when $g_{0}^{\prime} \notin M_{1}$, and $\operatorname{bh}\left(g_{0}\right)=\operatorname{bh}\left(g_{0}^{\prime}\right)+(m-1)$ when $g_{0}^{\prime} \in M_{1}$. If $\operatorname{bh}\left(g_{0}\right) \geq 2 \tilde{q}_{t}=2(m-2) t+2$, then $\operatorname{bh}\left(g_{0}^{\prime}\right) \geq(m-2)+1 \geq 2$, i.e. $g_{0}^{\prime} \notin M_{1}$. Hence $\operatorname{bh}\left(g_{0}\right)=\operatorname{bh}\left(g_{0}^{\prime}\right)+(m-2)$. So $\operatorname{bh}\left(g_{0}^{\prime}\right) \geq(m-2)(2 t-1)+2=\operatorname{bh}\left(\Omega^{t^{\prime}}\right)$. Conversely, if $\operatorname{bh}\left(g_{0}^{\prime}\right) \geq \operatorname{bh}\left(\Omega^{t^{\prime}}\right)$, then $g_{0}^{\prime} \notin M_{1}$. Therefore $\operatorname{bh}\left(g_{0}\right)=\operatorname{bh}\left(g_{0}^{\prime}\right)+(m-2) \geq \operatorname{bh}\left(\Omega^{t^{\prime}}\right)+(m-2)=2 \tilde{q}_{t}$.

Lemma 6.13 Let $g^{\prime} \in G$ such that $\phi\left(g^{\prime}\right)$ is z_{1}-positive. Then g^{\prime} is $\left(H, G_{1}\right)$-positive.
Proof Let $m \in \mathbb{Z}$ such that $g^{\prime}=\Omega^{m} g$ for some $g \in M$ with $\Omega \not \mathbb{Z}_{R} g$. Note that $g^{\prime} \notin G_{1}$ because $\phi\left(g^{\prime}\right)$ is z_{1}-positive. We have $\phi\left(g^{\prime}\right)=\Omega_{\mathcal{B}}^{m} \phi(g)$. If $m \geq 0$, then $g^{\prime} \in$ $M \backslash M_{1}$. Therefore g^{\prime} is $\left(H, G_{1}\right)$-positive. If $m<0$, namely $m=-t$ for some $t \geq 1$,

Theorem 2.13, Lemma 6.11 and Equation (6-5) imply that $t+2 \leq \mathrm{bh}_{A_{1}, A_{2}}(\phi(g)) \leq$ $\lim (g)+1<(\operatorname{bh}(g)+2 m-5) /(m-2)$. Hence $\operatorname{bh}\left(\Omega^{t}\right) \leq \operatorname{bh}(g)$. So, Lemma 6.12 implies that g^{\prime} is $\left(H, G_{1}\right)$-positive.

If $g \in G$ is $\left(H, G_{1}\right)$-positive and $\phi(g)$ is z_{1}-negative. Then $\phi(g)^{-1}$ is z_{1}-positive. So, Lemma 6.12 implies that g^{-1} is $\left(H, G_{1}\right)$-positive as well, which contradicts Corollary 6.2. This proves Proposition 6.4.

Corollary 6.14 We have $\mathrm{bh}_{A_{1}, A_{2}}(\phi(g))=\lim (g)+1$ for all unmovable $g \in M \backslash M_{1}$.

Proof Let $g_{0} \in M_{1}$ be the M_{1}-tale of g, and let $g^{\prime}=g g_{0}^{-1}$. By definition, $\tilde{q}_{t-1}<$ $\operatorname{bh}(g)=\operatorname{bh}\left(g^{\prime}\right)$ where $t=\lim (g)$. Lemma 6.12 implies that $\Omega^{-t+1} g^{\prime}$ is $\left(H, G_{1}\right)$ positive. Proposition 6.4 implies that $\Omega_{\mathcal{B}}^{-t+1} \phi\left(g^{\prime}\right)$ is z_{1}-positive. By Theorem 2.13 and Lemma 6.11, $t+1 \leq \operatorname{bh}_{A_{1}, A_{2}}\left(\phi\left(g^{\prime}\right)\right) \leq t+1$. Therefore $\mathrm{bh}_{A_{1}, A_{2}}(\phi(g))=\lim (g)+1$.

References

[1] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.
[2] E. Brieskorn, K Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271.
[3] S. Burckel, The wellordering on positive braids, J. Pure Appl. Algebra 120 (1997), no. 1, 1-17.
[4] H.S.M. Coxeter, The complete enumeration of finite groups of the form $R_{i}^{2}=$ $\left(R_{i} R_{j}\right)^{k_{i j}}=1$, J. London Math. Soc. 10 (1935), 21-25.
[5] J. Crisp, Injective maps between Artin groups, Geometric group theory down under (Canberra, 1996), 119-137, de Gruyter, Berlin, 1999.
[6] J. Crisp, Symmerical subgroups of Artin groups, Adv. Math. 152 (2000), 159-177.
[7] J. Crisp, L Paris, Representations of the braid group by automorphisms of groups, invariants of links, and Garside groups, Pacific J. Math. 221 (2005), no. 1, 1-27.
[8] P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1994), no. 1, 115-150.
[9] P. Dehornoy, Groupes de Garside, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 2, 267-306.
[10] P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212 (2008), no. 11, 2413-2439.
[11] P. Dehornoy, Foundations of Garside theory, with F. Digne, E. Godelle, D. Krammer, and J. Michel, EMS Tracts in Mathematics, 22, European Mathematical Society (EMS), Zürich, 2015.
[12] P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Mathematical Surveys and Monographs, 148, American Mathematical Society, Providence, RI, 2008.
[13] P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. (3) 79 (1999), no. 3, 569-604.
[14] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302.
[15] T. V. Dubrovina, N. I. Dubrovin, On braid groups, Mat. Sb. 192 (2001), no. 5, 53-64, translation in Sb. Math. 192 (2001), no. 5-6, 693-703.
[16] J. Fromentin, Every braid admits a short sigma-definite expression, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 6, 1591-1631.
[17] J. Fromentin, L. Paris, A simple algorithm for finding short sigma-definite representatives, J. Algebra 350 (2012), 405-415.
[18] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235-254.
[19] V. Gebhardt, J. González-Meneses, The cyclic sliding operation in Garside groups, Math. Z. 265 (2010), no. 1, 85-114.
[20] E. Godelle, Parabolic subgroups of Garside groups, J. Algebra 317 (2007), no. 1, 1-16.
[21] S. Lambropoulou, Solid torus links and Hecke algebras of B-type, Proceedings of the Conference on Quantum Topology (Manhattan, KS, 1993), World Sci. Publ., River Edge, NJ (1994), 225-245.
[22] H. Van der Lek, The homotopy type of complex hyperplane complements, Ph. D. Thesis, Nijmegen, 1983.
[23] J. Michel, A note on words in braid monoids, J. Algebra 215 (1999), 366-377.
[24] L. Paris, Artin monoids inject in their groups, Comment. Math. Helv. 77 (2002), no. 3, 609-637.
[25] T. Ito, Dehornoy-like left orderings and isolated left orderings, J. Algebra 374 (2013), 42-58.
[26] V. Shpilrain, Representing braids by automorphisms, Internat. J. Algebra Comput. 11 (2001), no. 6, 773-777.
[27] H. Sibert, Orderings on Artin-Tits groups, Internat. J. Algebra Comput. 18 (2008), no. 6, 1035-1066.
[28] J. Tits, Normalisateurs de tores. I. Groupes de Coxeter etendus, J. Algebra 4 (1966), 96-116.

IMB UMR 5584, CNRS, Univ. Bourgogne Franche-Comté, 21000 Dijon, France IMB UMR 5584, CNRS, Univ. Bourgogne Franche-Comté, 21000 Dijon, France arcisd@gmail.com, lparis@u-bourgogne.fr

[^0]: * Supported by CONICYT Beca Doctorado "Becas Chile" 72130288.

