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Ordering Garside groups

DIEGO ARCIS∗

LUIS PARIS

We introduce a condition on Garside groups that we call Dehornoy structure. An
iteration of such a structure leads to a left order on the group. We show conditions
for a Garside group to admit a Dehornoy structure, and we apply these criteria to
prove that the Artin groups of type A and I2(m), m ≥ 4, have Dehornoy structures.
We show that the left orders on the Artin groups of type A obtained from their
Dehornoy structures are the Dehornoy orders. In the case of the Artin groups of
type I2(m), m ≥ 4, we show that the left orders derived from their Dehornoy
structures coincide with the orders obtained from embeddings of the groups into
braid groups.

20F36

1 Introduction

In this paper the braid group on n strands is defined by the presentation:

Bn =

〈
x1, . . . , xn−1

∣∣∣∣ xixj = xjxi if |i− j| ≥ 2
xixjxi = xjxixj if |i− j| = 1

〉
.

A group G is called left orderable if there exists a total order < on G which is
invariant under left multiplication, that is, such that g1g2 < g1g3 if g2 < g3 , for all
g1, g2, g3 ∈ G. Given such an order < on G, we define the positive cone of < to be
the set P = P< = {g ∈ G | 1 < g}. This satisfies the following properties:

(1) P P ⊂ P (i.e. P is a subsemigroup).

(2) G = P t P−1 t {1}.

∗ Supported by CONICYT Beca Doctorado "Becas Chile" 72130288.
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Conversely, a subset P of G which satisfies (1) and (2) determines a left order < on G
defined by g1 < g2 if g−1

1 g2 ∈ P, and P is the positive cone of <. In the literature the
left orders on groups are often defined by their positive cones, and they will be defined
in this way in the present paper.

The first explicit left order on the braid group Bn was determined by Dehornoy [8].
The fact that the braid group is left orderable is an important result, but, also, the
Dehornoy order is interesting by itself, and it is used for several purposes such as in
the proof of the faithfulness of some representations of the braid groups (see Shpilrain
[26] and Crisp–Paris [7], for example). A complete presentation on left orders on the
braid group and, in particular, on the Dehornoy order, is given in Dehornoy–Dynnikov–
Rolfsen–Wiest [12]. The definition of the Dehornoy order is based on the following
construction:

Let G be a group, and let X = {x1, . . . , xk} be an ordered generating family for G. Let
i ∈ {1, . . . , k}. We say that a word w ∈ (X t X−1)∗ is xi -positive (resp. xi -negative)
if it satisfies the following condition:

w ∈ {xi, x±1
i+1, . . . , x

±1
k }
∗ (resp. w ∈ {x−1

i , x±1
i+1, . . . , x

±1
k }
∗), but w 6∈ {x±1

i+1, . . . , x
±1
k }
∗.

An element g ∈ G is called xi -positive (resp. xi -negative) if it has an xi -positive
representative (resp. xi -negative representative). We denote by Gi the subgroup of G
generated by {xi, xi+1, . . . , xk}, by P+

i the set of xi -positive elements of G, and by P−i
the set of xi -negative elements. The key of the definition of the Dehornoy order is the
following:

Theorem 1.1 (Dehornoy [8]) Assume that G = Bn is the braid group on n strands,
and that {x1, . . . , xn−1} is its standard generating set. For all i ∈ {1, . . . , n − 1}, we
have the disjoint union Gi = P+

i t P−i t Gi+1 , where Gn = {1}.

Let G = Bn be the braid group on n strands. Set PD = P+
1 tP+

2 t· · ·tP+
n−1 . Then, by

Theorem 1.1, PD is the positive cone of a left order on G. This order is the Dehornoy
order. The order relation respective to PD shall be denoted by <D .

A careful reader may notice that Theorem 1.1 leads to more than one left order on the
braid group. Indeed, for ε = (ε1, . . . , εn−1) ∈ {±1}n−1 , we set:

Pε = Pε1
1 t Pε2

2 t · · · t Pεn−1
n−1 .

Then, by Theorem 1.1, Pε is the positive cone of a left order on G = Bn . The case
ε = (1,−1, 1,−1, . . .) is particularly interesting because of the following:
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Theorem 1.2 (Dubrovina–Dubrovin [15]) Assume that G = Bn is the braid group on
n strands, and that {x1, . . . , xn−1} is its standard generating set. Let ε = (1,−1, 1,−1,
. . .). Then Pε is a finitely generated semigroup. In particular, the left order on Bn

defined by Pε is isolated in the space of left orders on Bn .

The goal of the present paper is to extend the Dehornoy order to some Garside groups.

A first approach would be to adopt the same definition as above. Let G be a group, and
let {x1, . . . , xk} be an ordered generating set for G. We say that {x1, . . . , xk} determines
a Dehornoy structure (in Ito’s sense) if we have the disjoint union Gi = P+

i tP−i tGi+1

for all i ∈ {1, . . . , k}, where Gk+1 = {1}. In this case, as for the braid group, if
ε = (ε1, . . . , εk) ∈ {±1}k , then

Pε = Pε1
1 t Pε2

2 t · · · t Pεk
k

is the positive cone of a left order on G. This approach is actually used in Ito [25] to
construct groups having isolated left orders in their spaces of left orders.

In this paper we adopt another approach based on a definition of the Dehornoy order in
terms of Garside groups (see Dehornoy [10], Fromentin [16], Fromentin–Paris [17]).
In Section 3 we give a (new and different) definition of a Dehornoy structure on a
Garside group, and we show a criterion for a Garside group to admit such a structure.
We warm the reader that our new notion of a Dehornoy structure is different and,
probably, non-equivalent to the one in Ito’s sense given above (see Sibert [27]). In
Section 4 we prove that the braid group admits a Dehornoy structure (in the new sense),
and that this structure leads to the Dehornoy order. In Sections 5 and 6 we prove that an
Artin group of dihedral type admits a Dehornoy structure which leads to a left order on
the group. Then, we compare the left order obtained in this way with the one obtained
using some embedding of the group in a braid group defined by Crisp [5]. For technical
reasons, the study of the Artin groups of dihedral type is divided into two sections,
depending on the parity of the length of the Garside element. In Section 2 we give
some preliminaries on Garside groups and Artin groups.

2 Preliminaries

2.1 Garside groups

The Garside groups are a generalization of the braid groups on which one can apply
Garside’s ideas [18]. They were introduced in Dehornoy–Paris [13]. We refer to
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Dehornoy et al. [11] for a complete presentation on this theory. Here, we will just give
some basic definitions and properties that will be needed for our purpose.

Let M be a monoid. We say that M is atomic if there exists a map ν : M → N such
that:

(a) ν(g) = 0 if and only if g = 1;

(b) ν(gg′) ≥ ν(g) + ν(g′) for all g, g′ ∈ M .

Such a map ν : M → N is called a norm on M . A non-trivial element g ∈ M is called
an atom if it is indecomposable in the sense that, if g = g1g2 , then either g1 = 1 or
g2 = 1. We denote by A = AM the set of atoms.

Assume that M is atomic. Then any generating set of M contains A, and A generates
M . In particular, M is finitely generated if and only if A is finite. We can define two
partial orders ≤L and ≤R on M as follows:

• We set g1 ≤L g2 if there exists g3 ∈ M such that g1g3 = g2 .

• We set g1 ≤R g2 if there exists g3 ∈ M such that g3g1 = g2 .

These orders are called left-divisibility order and right-divisibility order, respectively.
For g ∈ M we set:

DivL(g) = {g′ ∈ M | g′ ≤L g} , DivR(g) = {g′ ∈ M | g′ ≤R g} .

We say that g is balanced if DivL(g) = DivR(g).

A Garside monoid is a monoid M such that:

(a) M is atomic;

(b) M is cancellative, that is, g1gg2 = g1g′g2 implies g = g′ , for all g, g′, g1, g2 ∈
M ;

(c) (M,≤L) and (M,≤R) are lattices;

(d) M contains a Garside element, that is, a balanced element ∆ such that DivL(∆)
= DivR(∆) is finite and generates M .

The lattice operations in (M,≤L) (resp. (M,≤R)) are denoted by ∧L and ∨L (resp.
∧R and ∨R ). For every g, g′ ∈ M we denote by g′\g and g/g′ the unique elements in
M such that g ∨L g′ = g′(g′\g) and g ∨R g′ = (g/g′)g′ .

Proposition 2.1 (Dehornoy [11]) For every g, g1, g2 in a Garside monoid, we have:

(1) g ∨R (g2g1) = ((g/g1) ∨R g2)g1 .
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(2) (g1g2) ∨L g = g1(g2 ∨L (g1\g)).

(3) (g2g1)/g = (g2/(g/g1))(g1/g) and g/(g2g1) = (g/g1)/g2 .

(4) g\(g1g2) = (g\g1)((g1\g)\g2) and (g1g2)\g = g2\(g1\g).

Let M be a monoid. The enveloping group of M , denoted by G = G(M), is the group
presented by the generating set M and the relations g1 g2 = g if g1g2 = g holds in M .
There is a canonical homomorphism M → G(M) which is not injective in general. A
Garside group is the enveloping group of a Garside monoid.

Remark (1) A Garside monoid M satisfies the Öre conditions, hence the canonical
homomorphism M → G(M) is injective (see Dehornoy–Paris [13]). Further-
more, the orders ≤L and ≤R extend to lattice orders on G(M) with positive
cone M . These are defined by g ≤L g′ (resp. g ≤R g′ ) if g−1g′ ∈ M (resp.
g′g−1 ∈ M ).

(2) A Garside element is never unique. For example, if ∆ is a Garside element,
then ∆k is a Garside element for all k ≥ 1 (see Dehornoy [9, Lemma 2.2]). We
will talk about a Garside system (M,∆) whenever we will need to indicate the
Garside element.

Let M be a Garside monoid, and let ∆ be a fixed Garside element. The elements
of DivL(∆) = DivR(∆) are called the simple elements of M , and the set of simple
elements is denoted by Div(∆). By Dehornoy–Paris [13], there is an automorphism
Φ : M → M , called the flip automorphism, such that ∆ g = Φ(g) ∆ for all g ∈ M . On
the other hand, there is a one-to-one correspondence ∂ : Div(∆)→ Div(∆) such that
∂(s) s = ∆ for all s ∈ Div(∆). It is easily seen that ∂2(s) = Φ(s) and s ∂−1(s) = ∆

for all s ∈ Div(∆).

A pair (s, s′) of simple elements is called right-weighted (resp. left-weighted) if
ss′ ∧R ∆ = s′ (resp. ss′ ∧L ∆ = s).

Proposition 2.2 (Dehornoy–Paris [13]) Every element g ∈ G admits unique decom-
positions g = sp · · · s1∆d and g = ∆ds′1 · · · s′p such that:

(a) s1, . . . , sp, s′1, . . . , s
′
p ∈ Div(∆) \ {1,∆};

(b) (si+1, si) is right-weighted for all i ∈ {1, . . . , p− 1};

(c) (s′i, s
′
i+1) is left-weighted for all i ∈ {1, . . . , p− 1}.
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The expressions g = sp · · · s1∆d and g = ∆ds′1 · · · s′p of Proposition 2.2 are called
the right greedy normal form and the left greedy normal form of g, respectively. The
integer d is called the infimum of g, and is denoted by inf(g), the integer p is called the
canonical length, and is denoted by `(g), and the integer d + p is called the supremum,
and is denoted by sup(g). These invariants of the greedy normal forms are frequently
used in the theory of Garside groups, especially in the study of the conjugacy problem
(see Gebhardt–González-Meneses [19], for example). In this paper we will need a
fourth invariant, that we call the negative-infimum of g, and which is defined by:

Ninf(g) =

{
0 if d ≥ 0 ,
−d if d < 0 .

Moreover, we set gR = sp · · · s1 and gL = s′1 · · · s′p . Note that gL = gR if the flip
automorphism Φ is trivial.

Note that M = {g ∈ G(M) | Ninf(g) = 0}.

Proposition 2.3 (Gebhardt–González-Meneses [19]) Let g ∈ G.

(1) Then inf(g) is the greatest integer d ∈ Z such that ∆d ≤R g, and sup(g) is the
least integer k ∈ Z such that g ≤R ∆k .

(2) We have inf(g−1) = − sup(g), sup(g−1) = − inf(g), and `(g−1) = `(g).

We define the left complement (resp. the right complement) of an element g ∈ G
to be comL(g) = ∆kg−1 (resp. comR(g) = g−1∆k ), where k = sup(g). Note that,
if s ∈ Div(∆)\{1,∆}, then comL(s) = ∂(s) and comR(s) = ∂−1(s). Moreover, if
Φ = 1, then comL(g) = comR(g). The proof of the following is left to the reader:

Lemma 2.4 Let g ∈ G, let g = sp · · · s1∆d be the right greedy normal form of
g, and let g = ∆ds′1 · · · s′p be its left greedy normal form. Then inf(comL(g)) =

inf(comR(g)) = 0, and `(comL(g)) = `(comR(g)) = p = `(g). Moreover,

comL(g) = Φp−1(∂(s1)) · · ·Φ(∂(sp−1)) ∂(sp) ,

comR(g) = ∂−1(s′p) Φ−1(∂−1(s′p−1)) · · ·Φ−p+1(∂−1(s′1)) .

Furthermore, comL(g) = Φd+p(comR(g)).

Proposition 2.5 (Dehornoy–Paris [13]) For every h ∈ G there exists a unique pair
(g, g′) (resp. (g′, g)) of elements in M , such that h = g−1g′ (resp. h = g′g−1 ) and
g ∧L g′ = 1 (resp. g ∧R g′ = 1).

The pair (g, g′) (resp. (g′, g)) in Proposition 2.5 is called the left orthogonal splitting
(resp. right orthogonal splitting) of h.
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2.2 Parabolic subgroups

We keep the above hypothesis and notations, namely, M is a Garside monoid, ∆

is a fixed Garside element, and G is the enveloping group of M . Recall that an
element δ ∈ M is balanced if DivL(δ) = DivR(δ). In this case, this set is denoted
by Div(δ). Let δ be a balanced element. We denote by S(δ) the set of atoms of M
that belong to Div(δ), and by Gδ the subgroup of G generated by S(δ). We say that
Gδ is a parabolic subgroup of G (or of (G,∆), when the Garside element needs to
be specified) associated with δ if Div(δ) = Div(∆) ∩ Gδ . We list in the following
proposition some results on parabolic subgroups that we will need, and refer to Godelle
[20] for the proofs.

Proposition 2.6 (Godelle [20]) Let δ ∈ M be a balanced element such that Gδ is a
parabolic subgroup of G.

(1) Mδ = M∩Gδ is a Garside monoid, and δ is a Garside element for Mδ . Moreover,
Gδ is the enveloping group of Mδ .

(2) Let ∨δ,L and ∧δ,L (resp. ∨δ,R and ∧δ,R ) be the lattice operations on (Mδ,≤L)
(resp. on (Mδ,≤R)). We have g1∨L g2, g1∧L g2 ∈ Mδ , g1∨L g2 = g1∨δ,L g2 , and
g1∧L g2 = g1∧δ,L g2 , for all g1, g2 ∈ Mδ . Similarly, we have g1∨R g2, g1∧R g2 ∈
Mδ , g1 ∨R g2 = g1 ∨δ,R g2 , and g1 ∧R g2 = g1 ∧δ,R g2 , for all g1, g2 ∈ Mδ .

(3) We have A ∩Mδ = S(δ), and this is the set of atoms of Mδ .

(4) If g1 ≤L g2 (resp. g1 ≤R g2 ) and g2 ∈ Mδ , then g1 ∈ Mδ , for all g1, g2 ∈ M .

The following lemmas in this subsection will be needed in our study:

Lemma 2.7 Let δ1, δ2 ∈ M be two balanced elements such that Gδ1 and Gδ2 are
parabolic subgroups, and S(δ1) ⊆ S(δ2). Then δ1 is a balanced element of Mδ2 , and
Gδ1 = (Gδ2)δ1 is a parabolic subgroup of Gδ2 .

Proof Clearly δ1 is balanced in Mδ2 . Since S(δ1) ⊆ S(δ2) then Mδ1 is a submonoid
of Mδ2 . Hence Div(δ1) = Div(∆) ∩Mδ1 ⊆ Div(∆) ∩Mδ2 = Div(δ2). Therefore:

Div(δ2) ∩Mδ1 ⊆ Div(∆) ∩Mδ1 = Div(δ1) ⊆ Div(δ2) ∩Mδ1 .

Further S(∆) ⊇ S(δ2) ⊇ S(δ1) = S(∆) ∩ Div(δ1) ⊆ Div(δ1). Hence S(δ1) = S(δ2)
∩ Div(δ1). Therefore Gδ1 = (Gδ2)δ1 is a parabolic subgroup of Gδ2 .

Recall that, by Dehornoy [9], ∆k is a Garside element for all k ≥ 1.
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Lemma 2.8 Let δ be a balanced element such that Gδ is a parabolic subgroup of
(G,∆). Let k ∈ N, k ≥ 1. Then δk is balanced, Gδk = Gδ , and Gδk is a parabolic
subgroup of (G,∆k) associated with δk .

Proof Let s ∈ DivL(δk). Then s ∈ Mδ and sup(s) ≤ k , i.e. s = s1 · · · st , t ≤ k , for
some s1, . . . , st ∈ Div(δ). Hence s ≤R δ

t ≤R δ
k because δ is balanced. Analogously,

we obtain that if s ∈ DivR(δk), then s ≤L δ
k . Therefore δk is balanced in M . Since

divisors of δk are products of divisors of δ , then Gδk = Gδ . Clearly Div(δk) ⊆ Div(∆k)
∩Gδk . Let s ∈ Div(∆k)∩Gδk , s 6= 1. Then s = s1 · · · st for some s1, . . . , st ∈ Div(∆),
t ≤ k . If k = 1, then s ∈ Div(∆)∩Gδ = Div(δ). If k > 1 we suppose that the statement
is true for values less than k . If t < k , i.e. s ∈ Div(∆t) ∩ Gδt , then, the inductive
hypothesis implies that s ∈ Div(δt) ⊆ Div(δk). If t = k , Proposition 2.6.4 implies
that s1 · · · sk−1 ∈ Div(∆k−1) ∩ Gδk−1 because s ∈ Gδk = Gδ . So, by the inductive
hypothesis, we have s1 · · · sk−1 ∈ Div(δk−1). Hence sk = (s1 · · · sk−1)−1s ∈ Gδk , i.e.
sk ∈ Div(∆) ∩ Gδ = Div(δ), thus s ∈ Div(δk). Therefore Div(∆k) ∩ Gδk = Div(δk)
which implies that Gδk is a parabolic subgroup of (G,∆k).

Lemma 2.9 Let g, g′ ∈ M such that ∆ 6≤R g, g′ and ∆k ≤R gg′ for some k ≥ 1.
Then g = g1h and g′ = comR(h)g′1 for some g1, g′1 ∈ A+ and h ∈ Div(∆k) with
`(h) = k .

Proof Let g0 ∈ M such that gg′ = g0∆k . Note that `(g) ≥ k . Otherwise ∆ ≤L g′

which is a contradiction. Similarly `(g′) ≥ k . Let s1, . . . , sk ∈ Div(∆) be the first k
elements of the right greedy normal form of g. Then g = g1h where h = sk · · · s1 .
We have g0 = g1h∆−kΦk(g′) = g1comL(h)−1Φk(g′). Further g1 ∧R comL(h) = 1
because h = g ∧R ∆k . Therefore comL(h) ≤L Φk(g′). So, by Lemma 2.4, comR(h) =

Φ−k(comL(h)) ≤L g′ . Hence, there exists g′1 ∈ M such that g′ = comR(h)g′1 .

2.3 Artin groups

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (ms,t)s,t∈S ,
indexed by the elements of S , with coefficients in N ∪ {∞}, and satisfying:

(a) ms,s = 1 for all s ∈ S;

(b) ms,t = mt,s ≥ 2 for all s, t ∈ S , s 6= t .

A Coxeter matrix M as above is usually represented by a labeled graph, Γ, called
Coxeter graph. This is defined as follows:
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(a) The set of vertices of Γ is S .

(b) Two vertices s, t ∈ S are connected by an edge if ms,t ≥ 3. This edge is labeled
by ms,t if ms,t ≥ 4.

If a, b are two letters and m is an integer ≥ 2, we set:

prod(a, b : m) =

{
(ab)

m
2 if m is even ,

(ab)
m−1

2 a if m is odd .

In other words, prod(a, b : m) denotes the word aba · · · of length m. Let Γ be a
Coxeter graph as above. The Artin group associated with Γ is the group A = AΓ

defined by the presentation:

A = 〈S | prod(s, t : ms,t) = prod(t, s : ms,t) for all s, t ∈ S, s 6= t and ms,t 6=∞〉 .

The monoid A+ = A+
Γ having the monoid presentation:

A+ = 〈S | prod(s, t : ms,t) = prod(t, s : ms,t) for all s, t ∈ S, s 6= t and ms,t 6=∞〉+

is called the Artin monoid associated with Γ. By Paris [24], the natural homomorphism
A+ → A is injective. The Coxeter group associated with Γ, denoted by W = WΓ , is
the quotient of A = AΓ by the relations s2 = 1, s ∈ S .

The reversed element of g ∈ A+ , denoted by rev(g), is the element represented by a
word xik · · · xi1 ∈ S∗ , where xi1 · · · xik is a word representative of g. Note that rev(g) is
well defined because relations of Artin monoids are symmetrical. Further, rev2(g) = g
for all g ∈ M .

The Artin groups were introduced by Tits [28] as extensions of Coxeter groups. There
is an extensive literature on these groups, but most of the results concern only special
classes. One of the most popular classes is the one of spherical type Artin groups,
which is the class that concerns the present paper. We say that a Coxeter graph Γ (or
an Artin group A = AΓ ) is of spherical type if the Coxeter group W = WΓ is finite. A
classification of these groups is given in the following theorem:

Theorem 2.10 (Coxeter [4]) (1) A Coxeter graph is of spherical type if and only
if all its connected components are of spherical type.

(2) A connected Coxeter graph is of spherical type if and only if it is isomorphic to
one of the graphs depicted in Figure 2.1.

Note that the braid group Bn+1 is the Artin group of type An .

Let Γ be a Coxeter graph, let S be its set of vertices, let A be its associated Artin
group, and let A+ be its associated Artin monoid. For X ⊂ S , we denote by ΓX the
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4

An, n ≥ 1 Bn, n ≥ 2

Dn, n ≥ 4 E6

E7 E8

4 5

F4 H3

5 m

H4 I2(m), m ≥ 5

Figure 2.1: Spherical type Coxeter graphs.

full subgraph of Γ spanned by X , by AX the subgroup of A generated by X , and by
A+

X the submonoid of A+ generated by X . By Van der Lek [22], the group AX (resp.
the monoid A+

X ) is the Artin group (resp. Artin monoid) associated with ΓX . Now,
Artin groups and Garside groups are related by the following:

Theorem 2.11 (Brieskorn–Saito [2], Deligne [14]) Assume that Γ is of spherical
type.

(1) The monoid A+ is a Garside monoid, ∆ = ∨L(S) = ∨R(S) is a Garside element
of A+ , and A is the enveloping group of A+ .

(2) Let X be a subset of S , and let ∆X = ∨L(X). Then ∆X = ∨R(X), ∆X is
balanced, AX is a parabolic subgroup associated with ∆X , and A+

X = A+ ∩ AX .
In particular, AX = A∆X .

(3) We have |Φ| ∈ {1, 2}, and Z(A) is the infinite cyclic group generated by ∆|Φ| .
In particular, ∆2 is central. Furthermore rev(∆) = ∆.

In particular, by Garside [18] and Brieskorn–Saito [2], Bn+1 is a Garside group with
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the following Garside element:

Ω = (xn · · · x2x1) (xn · · · x2) · · · (xnxn−1)xn︸ ︷︷ ︸
x2∨R···∨Rxn

.

2.4 Alternating forms and the Dehornoy order

In this subsection we recall some definitions and results on alternating forms from
Dehornoy [10] and Fromentin–Paris [17], and how one can define the Dehornoy order
from this alternating forms. This is the point of view that we intend to extend in the
following sections.

Proposition 2.12 (Dehornoy [10]) Let M be a Garside monoid, let N be a parabolic
submonoid, and let g be an element of M . Then there exists a unique element RN(g)
in N such that {h ∈ N | h ≤R g} = {h ∈ N | h ≤R RN(g)}.

The element RN(g) is called the N -tale of g.

Now, we suppose given a Garside monoid M and two parabolic submonoids N1 and
N2 such that N1 ∪ N2 generates M . Then every non-trivial element g ∈ M can be
uniquely written in the form g = gp · · · g2g1 , where:

gi =

{
RN1(gp · · · gi) if i is odd ,
RN2(gp · · · gi) if i is even ,

and gp 6= 1. This form is called the alternating form of g (with respect to (N2,N1)).
Note that we may have g1 = 1, but we have gi 6= 1 for all i ∈ {2, . . . , p}. The number
p is called the (N2,N1)-breadth of g and is denoted by p = bh(g) (or by p = bhN2,N1(g)
if one needs to specify the submonoids N1 and N2 ).

Assume that M = B+
n+1 = A+

An
is the positive braid monoid on (n+1) strands, and that

S = {x1, . . . , xn} is the standard generating set of M . Let N1 be the submonoid of M
generated by {x2, . . . , xn}, and let N2 be the submonoid generated by {x1, . . . , xn−1}.
Note that, by Theorem 2.11, N1 and N2 are both parabolic submonoids of M , and
N1 ' B+

n ' N2 . On the other hand, it is easily seen that N1 ∪ N2 generates M . In this
context we have the following results:

Theorem 2.13 (Fromentin–Paris [17]) Let g ∈ B+
n+1 , and let k be a positive integer.

Then Ω−kg is x1 -negative if and only if k ≥ max{1, bh(g) − 1}. In particular, if
g ∈ Bn+1 , then g is x1 -negative if and only if Ninf(g) ≥ max{1, bh(gL)− 1}.

Theorem 2.14 (Dehornoy [10], Burckel [3]) Let g, g′ ∈ M , and let (gp, . . . , g1),
(g′q, . . . , g

′
1) be their respective alternating forms. We have g <D g′ , if and only if,

either p < q, or p = q and Φk−1(gk) <D Φk−1(g′k), where k = min{i | gi 6= g′i}.
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3 Orders on Garside groups

Let M be a Garside monoid, let G(M) be the enveloping group of M , and let ∆ be
a Garside element. We assume that the flip automorphism Φ is trivial, that is, ∆ is
central. We take two balanced elements ∆1,Λ ∈ Div(∆)\{1,∆}, and we assume
that G1 = G∆1 is a parabolic subgroup associated with ∆1 , H = GΛ is a parabolic
subgroup associated with Λ, and ∆1 is central in G1 . We set M1 = G1 ∩ M and
N = H ∩M , and we assume that M1 ∪ N generates M . Such a data will be called a
Dehornoy pre-structure. For convenience, we will often say that the pair (H,G1) is
the Dehornoy pre-structure, without specifying any other data such as ∆1 and Λ.

We will consider alternating forms in M with respect to (N,M1). Note also that M1

will play a different role in our study from that of N .

An element g ∈ M is called unmovable if ∆ 6≤R g. Note that g is unmovable if and
only if ∆ 6≤L g. Moreover, by Proposition 2.2, for all g ∈ G, there exists a unique
d ∈ Z and a unique unmovable element g0 ∈ M such that g = g0∆d . In that case we
also have g = ∆dg0 , since ∆ is central. Let g ∈ M be an unmovable element. The
depth of g, denoted by dpt(g), is defined by

dpt(g) =

{
bh(g)−1

2 if bh(g) is odd ,
bh(g)

2 if bh(g) is even .

In other words, if g = gp · · · g2g1 is the alternating form of g, then dpt(g) = |{i ∈
{1, . . . , p} | gi ∈ N}|. Now, take any g ∈ G, and write g = ∆dg0 , where d ∈ Z and
g0 ∈ M is unmovable. Then the depth of g is defined to be dpt(g) = dpt(g0).

Set θ = ∆−1
1 ∆ = ∆∆−1

1 , and, for k ≥ 0, set qk = dpt(θk). We say that an element
g ∈ G is (H,G1)-positive if g 6∈ G1 and dpt(g) ≥ qk , where k = Ninf(g). We denote
by P = PH,G1 the set of (H,G1)-positive elements.

Note that M\G1 ⊂ P because Ninf(g) = 0 for all g ∈ M . Hence, every non (H,G1)-
positive element has a positive negative-infimum.

We say that (H,G1) is a Dehornoy structure if P satisfies the following conditions:

(a) P2 ⊂ P.

(b) G1PG1 ⊂ P.

(c) We have the disjoint union G = P t P−1 t G1 .

Our goal in this section is to prove a condition on (H,G1) that implies that it is a
Dehornoy structure (see Theorem 3.2). We will apply in the next sections this criterion
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to the Artin groups of type A, B, and I2(m) (m ≥ 5). But, firstly, we show how left
orders appear in this way.

Assume given two sequences of parabolic subgroups G0 = G,G1, . . . ,Gn and H1, . . . ,

Hn such that Gi,Hi ⊂ Gi−1 and (Hi,Gi) is a Dehornoy structure of Gi−1 , for all
i ∈ {1, . . . , n}, and Gn ' Z. For i ∈ {1, . . . , n}, we denote by Pi the set of (Hi,Gi)-
positive elements in Gi−1 . Furthermore, we choose a generator gn of Gn and we set
Pn+1 = {gk

n | k ≥ 1}. For i ∈ {1, . . . , n + 1} we set P−1
i = {g−1 | g ∈ Pi}, and for

ε = (ε1, . . . , εn, εn+1) ∈ {±1}n+1 we set:

Pε = Pε1
1 ∪ · · · ∪ Pεn

n ∪ Pεn+1
n+1 .

Proposition 3.1 Under the above hypothesis, the set Pε is the positive cone for a left
order on G.

Proof Let g, g′ ∈ Pε . Then g ∈ Pεi
i and g′ ∈ Pεj

j for some i, j ∈ {1, . . . , n + 1}.
If i = j, (a) implies that gg′ ∈ Pεi

i ⊂ Pε . If i 6= j, without loss of generality we
suppose that i < j. Hence g′ ∈ Gi+1 . By (b), gg′, g′g ∈ Pεi

i ⊂ Pε . Therefore Pε is
a subsemigroup of G. Since 1 ∈ Gn , (c) implies that 1 6∈ P±1

i for all i ∈ {1, . . . , n}.
Further 1 6∈ P±1

n+1 because gn 6= 1 and Gn ' Z. Hence G = (Pε ∪ P−ε) t {1}. Since
Pi ⊂ Gi−1 for all i ∈ {1, . . . , n + 1}, then, by (c), (Pi ∪ P−1

i ) ∩ (Pj ∪ P−1
j ) = ∅ for all

i 6= j. Finally, (c) implies that Pi ∩P−1
i = ∅. Thus G = Pε t (Pε)−1 t {1}. Therefore

Pε is the positive cone for a left order on G.

Let (H,G1) be a Dehornoy pre-structure, with the above notations. We say that (H,G1)
satisfies Condition A if there exists a constant c ∈ N, c ≥ 1, such that qk = kc + 1 for
all k ≥ 1.

Note that q0 = 0, so the equality qk = kc + 1 is never true for k = 0. Since in our
study we will need sometimes to replace 0 by 1 = 0 c + 1 when k = 0, we may use
the sequence q̃k defined as follows in place of qk :

q̃k =

{
1 if k = 0 ,
qk if k ≥ 1 .

We say that an element g ∈ M is a theta element if there exist g0 ∈ M1 and k ≥ 1
such that g = θkg0 , where θ = ∆−1

1 ∆ = ∆∆−1
1 . The set of theta elements is denoted

by Θ = Θ(G).

Let g, g′ ∈ M be unmovable elements such that {g, g′} 6⊂ M1 ∪ Θ. We say that the
pair (g, g′) satisfies Condition B if there exists ε ∈ {0, 1} such that:
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(a) dpt(gg′)− ε = dpt(g) + dpt(g′)− q̃k ≥ 0, where k = inf(gg′),

(b) ε = 0 if {g, g′} ∩Θ 6= ∅.

We say that (H,G1) satisfies Condition B if, for all g, g′ ∈ M unmovable such that
{g, g′} 6⊂ M1 ∪Θ, the pair (g, g′) satisfies Condition B.

The purpose of this section is to prove the following:

Theorem 3.2 Let (H,G1) be a Dehornoy pre-structure. If (H,G1) satisfies Conditions
A and B, then (H,G1) is a Dehornoy structure.

The rest of the section is dedicated to the proof of Theorem 3.2.

Lemma 3.3 We have θg = gθ for all g ∈ G1 . Hence ∆k = θk∆k
1 for all k ≥ 1.

Furthermore g 6≤L θ and g 6≤R θ for all g ∈ M1\{1}.

Proof Let g ∈ G1 . Then g = ∆g∆−1 = θgθ−1 because ∆ is central in G, and ∆1

is central in G1 . Hence θg = gθ . Let g ∈ M1 be a right divisor of θ . Then g∆1 lies in
Div(∆) ∩M1 = Div(∆1), therefore g = 1. Similarly we prove that g = 1 whenever
it left divides θ .

Corollary 3.4 Let g = θkg0 be a theta element. Then RM1(g) = g0 . Furthermore, if
g is unmovable, then dpt(g) = qk .

Proof Lemma 3.3 implies that g1 6≤R θ
k for all g1 ∈ M1 , thus RM1(g) = g0 . Hence

bh(g) = bh(θk). Therefore dpt(g) = qk if g is unmovable.

In what follows of this section we assume that Condition A holds.

Lemma 3.5 Let g = θkg0 be an unmovable theta element of G, and let p = `(g0).
Then `(g) = max{k, p}, comL(g) = θ`(g)−k∆`(g)−p

1 g1 , and:

dpt(g) + dpt(comL(g)) =

{
qk if p ≤ k
qp + 1 if p > k

where g1 = ∆p
1g−1

0 is the left complement of g0 with respect to ∆1 .

Proof Let sp · · · s1 be the right greedy normal form of g0 . Note that si 6= ∆ for all
i because g is unmovable. If p ≤ k , Lemma 3.3 implies that g = θ · · · θ θsp · · · θs1 ,
where θ · · · θ = θk−p , is the right greedy normal form of g. Hence `(g) = k . Therefore
comL(g) = ∆k−p

1 g1 , and dpt(g) + dpt(comL(g)) = qk . If p > k , Lemma 3.3 implies
that g = sp · · · sk+1 θsk · · · θs1 is the right greedy normal form of g. Hence `(g) = p.
Therefore comL(g) = θp−kg1 , and dpt(g) + dpt(comL(g)) = qk + qp−k = qp + 1.
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Corollary 3.6 Let g = θkg0 be an unmovable theta element of G, and let t > 0 be
an integer. Then: 

∆−tg ∈ P and (∆−tg)−1 6∈ P if t < k
∆−tg ∈ G1 if t = k
∆−tg 6∈ P and (∆−tg)−1 ∈ P if t > k

Furthermore ∆t′g ∈ P and (∆t′g)−1 6∈ P for all integer t′ ≥ 0.

Proof We have (∆−tg)−1 = ∆tg−1 = ∆t−dcomL(g), where d = `(g). If t < k , then
dpt(θkg0) = qk > qt . Hence ∆−tg ∈ P. Lemma 3.5 implies that d ≥ k > t , and that
dpt(comL(g)) ≤ qd + 1 − dpt(g) = qd − kc = qd−k < qd−t . Thus (∆−tg)−1 6∈ P. If
t = k , then ∆−tg = ∆−t

1 g0 ∈ G1 . If t > k , then dpt(θkg0) = qk < qt . Therefore
∆−tg 6∈ P. If t ≥ d , then (∆−tg)−1 ∈ P. Otherwise, Lemma 3.5 implies that
dpt(comL(g)) ≥ qd − dpt(g) = (d − k)c ≥ qd−t . Hence (∆−tg)−1 ∈ P. We have
(∆t′g)−1 = ∆−t′−dcomL(g). Lemma 3.5 implies that dpt(comL(g)) ≤ qd+1−dpt(g) =

qd − kc = qd−k < qd+t′ . Therefore (∆t′g)−1 6∈ P.

Lemma 3.7 Suppose that dpt(g) + dpt(comL(g)) = qk for all unmovable element
g ∈ M\Θ, where k = `(g). Then G = P t P−1 t G1 .

Proof By definition, no (H,G1)-positive element belongs to G1 , hence (P ∪ P−1) ∩
G1 = ∅. We shall prove that P−1 = (G\G1)\P. Let g−1 ∈ P−1 for some g =

∆dg0 ∈ P, where d = inf(g), and let k = `(g0). Suppose that g0 = θtg1 ∈ Θ for
some g1 ∈ M1 . If d ≥ 0, Corollary 3.6 implies that g−1 6∈ P. If d < 0, then
t > −d because g is (H,G1)-positive, hence dpt(g) = qt > q−d . Then, by Corollary
3.6, g−1 6∈ P. Suppose that g0 ∈ M1 . Then d > 0 because g is (H,G1)-positive.
Hence g−1 = ∆−d−kcomL(g0). By hypothesis, we have dpt(comL(g0)) = qk < qd+k .
Therefore g−1 6∈ P. Suppose that g0 ∈ M\(Θ ∪ M1). In particular dpt(g0) ≥ 1.
If d ≥ 0, then g−1 = ∆−d−kcomL(g0). Hence, by hypothesis, dpt(comL(g0)) =

qk − dpt(g0) < qk ≤ qd+k . In particular, we have proved that M−1 ∩ P = ∅. If
d < 0, i.e. d = −t for some t ≥ 1, then g−1 = ∆t−kcomL(g0). We have t < k .
Otherwise g−1 ∈ M , and so g 6∈ P, which is a contradiction. By hypothesis, we have
dpt(comL(g0)) = qk − dpt(g0) ≤ qk − qt < qk−t . Therefore P−1 ⊆ (G\G1)\P. Let
g = ∆−tg0 ∈ (G\G1)\P with inf(g) = −t , and dpt(g0) < qt . Note that inf(g) < 0 for
all g ∈ (G\G1)\P, because M ⊆ P. Suppose that g0 = θdg1 ∈ Θ for some g1 ∈ M1 .
Hence, d < t because qd = dpt(g0) < qt . Corollary 3.6 implies that g−1 ∈ P. Suppose
that g0 ∈ M\Θ. We have g−1 = ∆t−kcomL(g0). If t ≥ k , then g−1 ∈ M ⊆ P. If
t < k , then, by hypothesis, dpt(comL(g0)) = qk − dpt(g0) ≥ qk − qt + 1 = qk−t .
Therefore (G\G1)\P ⊆ P−1 .
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Lemma 3.8 Condition B implies that dpt(g) + dpt(comL(g)) = qk for all unmovable
elements g ∈ M\Θ, g 6= 1, where k = `(g).

Proof Let g ∈ M\Θ be an unmovable element, and let k = `(g). Note that comL(g) 6∈
M1 because g 6∈ Θ. If g ∈ M1 , then comL(g) = θk(∆k

1g−1). Therefore dpt(g) +

dpt(comL(g)) = qk . If g ∈ M\M1 , Lemma 3.5 implies that comL(g) 6∈ Θ. So, by
Condition B, we have 0 = dpt(∆k) = dpt(comL(g)g) ≥ dpt(comL(g)) + dpt(g)− q̃k ≥
0. Therefore dpt(comL(g)) + dpt(g) = q̃k = qk , because k ≥ 1.

Lemma 3.9 Let g ∈ G1\M1 . Then gL ∈ Θ and dpt(g) = qk , where k = Ninf(g).

Proof We have g = ∆−k
1 g0 for some k ≥ 1 and g0 ∈ M1 such that ∆1 6≤R g0 .

Note that g = ∆−k
1 θ−kθkg0 = ∆−kθkg0 . If ∆ ≤L θ

kg0 , Corollary 3.4 implies that
∆1 ≤L g0 , which is a contradiction. Therefore gL = θkg0 ∈ Θ and inf(g) = −k . By
Corollary 3.4, bh(gL) = bh(θk). Hence dpt(g) = qk .

Lemmas 3.7, 3.8 and 3.9 imply that, if Condition B holds, then:

P−1 = {g ∈ G | dpt(g) < qk where k = Ninf(g)} .

Lemma 3.10 Condition B implies that P−1 is a subsemigroup of G.

Proof Let g, g′ ∈ P−1 , that is, g = ∆−tg0 and g′ = ∆−t′g′0 , where t = Ninf(g) and
t′ = Ninf(g′), such that dpt(g0) < qt and dpt(g′0) < qt′ . We have gg′ = ∆−t−t′+kh,
where k = inf(g0g′0), and h = (g0g′0)L , i.e. h = ∆−kg0g′0 . If g0, g′0 ∈ M1 , then
k = 0, and dpt(h) < qt+t′ . Hence gg′ ∈ P−1 . If g0, g′0 ∈ Θ, that is, g0 = θdg1 and
g′0 = θd′g′1 . Then g0g′0 = θd+d′g1g′1 and h = θd+d′−kh0 for some h0 ∈ M1 . Notice
that d < t and d′ < t′ because g, g′ ∈ P−1 , therefore k ≤ d + d′ < t + t′ . We have
dpt(h) = qd+d′−k ≤ q̃d+d′−k = q̃d + q̃d′− q̃k < q̃t + q̃t′− q̃k = q̃t+t′−k = qt+t′−k . Thus
gg′ ∈ P−1 . If g0 = θdg1 ∈ Θ and g′0 ∈ M1 , then g0g′0 = θdg1g′0 ∈ Θ and h = θd−kh0

for some h0 ∈ M1 . Note that d < t because g ∈ P−1 , therefore k ≤ d < t . We have
dpt(h) = qd−k < qt−k ≤ qt+t′−k . Thus gg′ ∈ P−1 . Similarly, we prove that gg′ ∈ P−1

whenever g0 ∈ M1 and g′0 ∈ Θ. If {g0, g′0} 6⊆ M1 ∪ Θ, Condition B implies that
q̃k ≤ dpt(g0) + dpt(g′0) ≤ qt + qt′ − 2 = qt+t′ − 1 < qt+t′ , therefore k < t + t′ . By
Condition B, we have dpt(h) ≤ dpt(g0) + dpt(g′0) − q̃k + 1 ≤ qt + qt′ − q̃k − 1 =

qt+t′−k − 1 < qt+t′−k . Thus gg′ ∈ P−1 . Therefore P−1 is a subsemigroup of G.

Lemma 3.10 implies that, if Condition B holds, then P is a semigroup.
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Lemma 3.11 Condition B implies that G1P−1G1 ⊆ P−1 .

Proof Let g = ∆−tg0 ∈ P−1 , and let g′ ∈ G1 . If g′ ∈ M1 , then gg′ = ∆−tg0g′ =

∆−t+kh, where k = inf(g0g′) and h = ∆−kg0g′ . If g0 ∈ M1 , then k = 0. Hence
gg′ ∈ P−1 because dpt(h) = 0 < qt . If g0 = θpg1 ∈ Θ, then h = θp−kh′ . Note that
k ≤ p < t because g is (H,G1)-negative. Then dpt(h) = qp−k ≤ q̃p−k < q̃t−k . Hence
gg′ ∈ P−1 . If g0 ∈ M\(M1∪Θ), Condition B implies that q̃k ≤ dpt(g0)+dpt(g′) < qt .
Hence k < t . Further, by Condition B, we have dpt(h) ≤ dpt(g0) + dpt(g′) −
q̃k + 1 ≤ qt − q̃k < qt−k . Therefore gg′ ∈ P−1 . Similarly, we can prove that
g′g ∈ P−1 . If g′ ∈ G1\M1 , Lemma 3.9 implies that g′ = ∆−t′

1 g′0 = ∆−t′θt′g′0 , where
inf(g′) = −t′ . Hence gg′ = ∆−t−t′g0θ

t′g′0 = ∆−t−t′+kh, where k = inf(g0θ
t′g′0)

and h = ∆−kg0θ
t′g′0 . If g0 ∈ M1 , then h = θt′−kh′ for some h′ ∈ M1 . Note that

k ≤ t′ < t + t′ . Further dpt(h) = qt′−k ≤ q̃t′−k < qt+t′−k . Hence gg′ ∈ P−1 . If
g0 = θpg1 ∈ Θ, then h = θp+t′−kh′ for some h′ ∈ M1 . Note that p < t because g is
(H,G1)-negative. Hence k ≤ p + t′ < t + t′ . Further dpt(h) = qp+t′−k ≤ q̃p+t′−k <

qt+t′−k . Therefore gg′ ∈ P−1 . If g0 ∈ M\(M1 ∪ Θ), Condition B implies that
q̃k ≤ dpt(g0) + qt′ ≤ qt + qt′ − 1 = qt+t′ . Hence k ≤ t + t′ . If k = t + t′ , then
gg′ = h ∈ M . If h ∈ M\M1 , Lemma 3.10 implies that g′ = g−1h ∈ P since g−1 ∈ P,
which is a contradiction because g′ ∈ G1 . If h ∈ M1 , then g0θ

t′g′0 = ∆t+t′h =

θt+t′∆t+t′
1 h = θt+t′g1g′0 = θtg1θ

t′g′0 for some g1 ∈ M1 . Then g0 = θtg1 , which is
a contradiction because g0 6∈ Θ and g is (H,G1)-negative. Hence k < t + t′ . By
Condition B, dpt(h) ≤ dpt(g0) + qt′ − q̃k ≤ qt + qt′ − q̃k − 1 = qt+t′−k − 1 < qt+t′−k

because g′L ∈ Θ. Thus gg′ ∈ P−1 . Similarly, we have g′g ∈ P−1 . Hence P−1G1 ⊂
P−1 and G1P−1 ⊂ P−1 . Therefore G1P−1G1 ⊆ P−1 .

Lemma 3.11 implies that, if Condition B holds, then G1PG1 ⊆ P.

Remark Assume that (H,G1) is a Dehornoy pre-structure of G. Let g ∈ G with
inf(g) < 0, and set t = − inf(g) ≥ 1. Then g is (H,G1)-positive, if and only if,
bh(g) ≥ 2q̃t . Indeed, if dpt(g) ≥ q̃t , then bh(g) ≥ 2dpt(g) ≥ 2q̃t . Suppose that
bh(g) ≥ 2q̃t . If bh(g) is even, then dpt(g) ≥ q̃t . If bh(g) is odd, then bh(g) > 2q̃t ,
hence dpt(g) ≥ q̃t .

4 Artin groups of type A

In this section G and M denote the Artin group and the Artin monoid of type An ,
respectively, where n ≥ 2. Recall that M is defined by the monoid presentation with
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generating set S = {x1, . . . , xn} and relations:

xixi+1xi = xi+1xixi+1 if 1 ≤ i ≤ n− 1 ,
xixj = xjxi if |i− j| ≥ 2 .

The group G is the enveloping group of M , and it is isomorphic to the braid group Bn+1

on n + 1 strands. By Theorem 2.11, M is a Garside monoid, and Ω = x1 ∨R · · · ∨R xn

is a Garside element of M .

We have Ω xi = xn+1−i Ω for all i ∈ {1, . . . , n}. In particular, Ω is not central, but
∆ = Ω2 is central. Note that, by Dehornoy [9], ∆ is a Garside element, and, by
Brieskorn–Saito [2], ∆ = (x1 · · · xn)n+1 .

Let G1 be the subgroup of G generated by {x2, . . . , xn}, and let H be the subgroup
generated by {x1, . . . , xn−1}. By Theorem 2.11 and Lemma 2.8, G1 and H are
parabolic subgroups of (G,∆). The subgroup G1 is associated with ∆1 = (x2∨R · · ·∨R

xn)2 = (x2 · · · xn)n , and H is associated with Λ = (x1∨R · · ·∨R xn−1)2 = (x1 · · · xn−1)n .
As ever, we set M1 = G1 ∩ M and N = H ∩ M . Obviously, M1 ∪ N generates M ,
hence (H,G1) is a Dehornoy pre-structure. Note that ∆ is decomposed as follows:

∆ = (x1x2 · · · xn−1x2
nxn−1 · · · x2x1)︸ ︷︷ ︸

θ=∆∆−1
1 =∆−1

1 ∆

(x2 · · · xn−1x2
nxn−1 · · · x2) · · · (xn−1x2

nxn−1)x2
n︸ ︷︷ ︸

∆1=(x2∨R···∨Rxn)2

.

The main result of this section is the following:

Theorem 4.1 The pair (H,G1) satisfies Conditions A and B.

Applying Theorem 3.2 we get:

Corollary 4.2 The pair (H,G1) is a Dehornoy structure.

Since G1 is an Artin group of type An−1 (see Theorem 2.11), iterating Corollary 4.2
and applying Proposition 3.1 we get:

Corollary 4.3 Set:

Gi = 〈xi+1, . . . , xn〉 , Hi = 〈xi, . . . , xn−1〉 , ∆i = (xi+1 · · · xn)n+1−i ,

for i ∈ {1, . . . , n− 1}.

(1) The group Gi is a Garside group, and ∆i is a Garside element of Gi , for all
i ∈ {1, . . . , n− 1}.



Ordering Garside groups 19

(2) The pair (Hi,Gi) is a Dehornoy structure of Gi−1 for all i ∈ {1, . . . , n − 1},
where G0 = G.

(3) For i ∈ {1, . . . , n− 1}, we denote by Pi the set of (Hi,Gi)-positive elements of
Gi−1 . Furthermore, we set Pn = {xk

n | k ≥ 1}. Take ε = (ε1, . . . , εn) ∈ {±1}n ,
and set:

Pε = Pε1
1 t · · · t Pεn

n .

Then Pε is the positive cone of a left order on G.

Before proving Theorem 4.1, we show that the left order obtained from it coincides
with that obtained from Theorem 1.1. More precisely, we prove the following:

Recall that the definition of an x1 -positive element is given in the introduction.

Proposition 4.4 The set P = P(H,G1) is the set of x1 -positive elements of G = Bn+1 .

Proof Let g be a x1 -positive element of G. Then g = g0xk1
1 g1 · · · gp−1xkp

1 gp for
some k1, . . . , kp ≥ 1 and g0, . . . , gp ∈ G1 . Note that xki

1 ∈ P for all i ∈ {1, . . . , p}.
By Theorem 4.1, G1PG1 ⊆ P. Therefore g ∈ P. Conversely, let g ∈ P. If
g ∈ M , then g is x1 -positive. Otherwise g = ∆−kg0 , where k = Ninf(g), such that
dpt(g0) ≥ qk = ck + 1 ≥ k + 1. (Actually, as we will see soon, we have qk = k + 1.)
Hence bh(g0) ≥ 2dpt(g0) ≥ 2k + 2. Since g 6∈ G1 and g = Ω−2kg0 , Theorem 2.13
implies that g is x1 -positive.

The rest of the section is dedicated to the proof of Theorem 4.1.

By Dehornoy [10, Lemma 4.19], the (N,M1)-breadth of ∆k is 2k + 2, for all k ≥ 1.
Lemma 3.3 implies that bh(θk) = bh(∆k) because ∆k

1 ∈ M1 . Hence q̃k = k + 1 for
all k ≥ 0. Therefore (H,G1) satisfies Condition A.

In what follows we will prove that Condition B holds:

Lemma 4.5 Let g ∈ M\M1 , and let k ≥ 1 be an integer. Then bh(gθk) = bh(g) + 2k .

Proof Let (gp, . . . , g1) be the alternating form of g. Note that gg−1
1 6= 1 because

g 6∈ M1 . Hence x1 ≤R g2 and xt 6≤R gg−1
1 for all t ≥ 2. By Lemma 3.3, θg1 = g1θ .

Then (gp, . . . , g3, g2x1, x2 · · · xn−1x2
n, xn−1 · · · x1, g1) is an (N,M1)-sequence of gθ . If

xt ≤R gθg−1
1 = gg−1

1 θ for some t ∈ {2, . . . , n}, Lemma 3.3 implies that xt ≤R gg−1
1

which is a contradiction. Hence g1 = RM1(gθ). If xn−1 ≤R gg−1
1 x1 · · · xn−1x2

n , then
xnxn−1 ≤R gg−1

1 x1 · · · xn−1xn . In particular, xn−1 ≤R gg−1
1 x1 · · · xn−1xn . Then xn ≤R

gg−1
1 which is a contradiction. If xk ≤R gg−1

1 x1 · · · xn−1x2
n for some k ∈ {1, . . . , n−2},

then xk+1 ≤R gg−1
1 which is a contradiction as well. Therefore bh(gθ) = bh(g) + 2.

Inductively, we obtain that bh(gθk) = bh(g) + 2k for all k ≥ 2.
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In general, if M is a monoid, and N1,N2 are two submonoids of M . A (N2,N1)-
sequence of an element g ∈ M is a tuple (gp, . . . , g1) such that, g = gp · · · g1 , gi ∈ N1

when i is odd, and gi ∈ N2 when i is even. If M is Garside and it allows alternating
decompositions with respect to (N2,N1), we say that (N2,N1)-breadths are minimal
if for all g ∈ M , its (N2,N1)-breadth is minimal in the set of lengths of all (N2,N1)-
sequences of g.

Proposition 4.6 (Dehornoy [10], Burckel [3]) (N,M1)-breadths are minimal.

In general, if (M,∆) is a Garside monoid, (H,G1) is a Dehornoy pre-structure, and
g ∈ M , then we denote by dpt∗(g) the depth of the element gRM1(g)−1 . More
specifically, we have the following result:

Lemma 4.7 Let (M,∆) be a Garside monoid, let (H,G1) be a Dehornoy pre-structure,
and let g ∈ M . Then:

dpt∗(g) =

{
bh(g)−1

2 if bh(g) is odd ,
bh(g)

2 if bh(g) is even .

Proof Let g′ = gRM1(g)−1 . If ∆ ≤R g′ , then ∆1 ≤R g′ because ∆1 ∈ Div(∆)\{1}.
This is impossible because ∆1 ∈ M1 and h 6≤R g′ for all h ∈ M1\{1}. Therefore g′ is
unmovable. Since RM1(g) ∈ M1 , then bh(g) = bh(g′). This implies the equality.

We come back to the hypothesis given at the beginning of the section. In particular,
now G denotes the Artin group of type An . Note that rev(g∆) = rev(g)∆ for all
g ∈ M because rev(∆) = ∆. Thus inf(g) = inf(rev(g)).

Lemma 4.8 Let g ∈ M\M1 , and let k be its infimum with respect to ∆. Let g0 ∈ M1 ,
and let t ≥ 1 be an integer. Then:

(1) dpt∗(g0∆t) = dpt∗(g0θ
t) = dpt∗(θtg0) = dpt∗(∆tg0) = q̃t .

(2) dpt∗(g) = dpt(g) + k .

(3) dpt∗(g) = dpt∗(rev(g)).

(4) dpt∗(gg0) = dpt∗(g0g) = dpt∗(g).

(5) dpt∗(∆tg) = dpt∗(θtg) = dpt∗(gθt) = dpt∗(g∆t) = dpt∗(g) + q̃t − 1.
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Proof (1) It is a consequence of the fact that g0,∆
t
1 ∈ M1 and Lemma 3.3. (2)

Lemma 4.5 implies that bh(g) = bh(gL∆k) = bh(gLθ
k) = bh(gL) + 2k . There-

fore dpt∗(g) = dpt∗(gL) + k = dpt(g) + k . (3) Let (gp, . . . , g1) be the alternat-
ing form of g′ = g∆−k . If p is odd, then (rev(g1), . . . , rev(gp)) is an (N,M1)-
sequence of rev(g′). Proposition 4.6 implies that bh(rev(g′)) ≤ p. Therefore
dpt(rev(g′)) ≤ (p − 1)/2 = dpt(g′). If p is even, then (rev(g1), . . . , rev(gp), 1) is an
(N,M1)-sequence of rev(g′). Proposition 4.6 implies that bh(rev(g′)) ≤ p + 1. Hence
dpt(rev(g′)) ≤ p/2 = dpt(g′). Analogously we prove that dpt(g′) ≤ dpt(rev(g′)) be-
cause rev2(g′) = g′ . Hence, (2) implies that dpt∗(g) = dpt(g′)+k = dpt(rev(g′))+k =

dpt∗(rev(g)). (4) Since g0 ∈ M1 , then dpt∗(gg0) = dpt∗(g). Further, by (3),
dpt∗(g0g) = dpt∗(rev(g0g)) = dpt∗(rev(g)rev(g0)) = dpt∗(rev(g)) = dpt∗(g). (5)
Lemma 4.5 implies that dpt∗(g∆t) = dpt∗(gθt) = dpt∗(g)+q̃t−1 and dpt∗(rev(g)θt) =

dpt∗(rev(g)) + q̃t − 1. By (4), dpt∗(∆tg) = dpt∗(θtg). Finally, (3) implies that
dpt∗(θtg) = dpt∗(rev(g)θt) = dpt∗(rev(g)) + q̃t − 1 = dpt∗(g) + q̃t − 1.

Lemma 4.9 Let g ∈ M1 ∪ Θ, and let g′ ∈ M such that either gg′ ∈ Θ or g′g ∈ Θ.
Then g′ ∈ M1 ∪Θ as well.

Proof Assume that gg′ ∈ Θ. Let k ≥ 1 be such that gg′ = θkh for some h ∈ M1 . If
g ∈ M1 , Lemma 3.3 implies that g ≤L h and g′ = θk(g−1h) ∈ Θ. If g ∈ Θ, namely
g = θpg0 for some p ≥ 1 and g0 ∈ M1 , Lemma 3.3 implies that g0 ≤L h. Further
p ≤ k . Hence g′ = θk−p(g−1

0 h) ∈ M1 ∪Θ. If g′g ∈ Θ, then we show in the same way
that g′ ∈ M1 ∪Θ.

Lemma 4.10 Let g ∈ M\(M1 ∪Θ) be an unmovable element, let g′ ∈ Θ be another
unmovable element, and let g0 ∈ M1 . Then:

(1) dpt(gg0)− 1 = dpt(g)− q̃k ≥ 0, where k = inf(gg0).

(2) dpt(g0g)− 1 = dpt(g)− q̃k ≥ 0, where k = inf(g0g).

(3) dpt(gg′) = dpt(g) + dpt(g′)− q̃k , where k = inf(gg′).

(4) dpt(g′g) = dpt(g) + dpt(g′)− q̃k , where k = inf(g′g).

Proof (1) We have gg0 = ∆kh for some h ∈ M with dpt(gg0) = dpt(h). Lemma 4.9
implies that h 6∈ M1 because g 6∈ M1∪Θ. Hence dpt(h) ≥ 1. Lemma 4.8.4 implies that
dpt∗(gg0) = dpt∗(g) = dpt(g), and Lemma 4.8.5 implies that dpt∗(gg0) = dpt∗(∆kh) =

dpt∗(h) + q̃k − 1 = dpt(gg0) + q̃k − 1. Therefore dpt(gg0)− 1 = dpt(g)− q̃k . (2) By
Lemma 4.8.2-3 and (1), dpt(g0g) = dpt∗(g0g)−k = dpt∗(rev(g0g))−k = dpt(rev(g0g))
= dpt(rev(g))−q̃k+1 = dpt(g)−q̃k+1. Further, Lemma 4.9 implies that dpt(g0g) ≥ 1.
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(3) Let p ≥ 1 be such that g′ = θph′ for some h′ ∈ M1 , and let h ∈ M be an unmovable
element such that gg′ = ∆kh. By Lemma 4.9, h 6∈ M1 because g 6∈ M1 ∪Θ. Lemma
4.8.4-5 implies that dpt∗(gg′) = dpt∗(gh′θp) = dpt∗(gh′) + q̃p−1 = dpt(g) + q̃p−1 =

dpt(g) + dpt(g′)− 1 and dpt∗(gg′) = dpt(h) + q̃k − 1 = dpt(gg′) + q̃k − 1 . Therefore
dpt(gg′) = dpt(g) + dpt(g′) − q̃k . (4) We have rev(Θ) ⊆ Θ because rev(θ) = θ .
Lemma 4.8.2-3 and (3) imply that dpt(g′g) = dpt∗(g′g) − k = dpt∗(rev(g′g)) − k =

dpt(rev(g′g)) = dpt(rev(g)) + dpt(rev(g′))− q̃k = dpt(g) + dpt(g′)− q̃k .

Lemma 4.11 Let g, g′ ∈ M\M1 be two unmovable elements such that gg′ = ∆k for
some integer k ≥ 1. If dpt(g) + dpt(g′) = k + 2. Then g, g′ ∈ Θ.

Proof Let p = dpt(g) − 1, and let q = dpt(g′) − 1. Then 1 = (g−1∆p)(∆qg′−1)
because gg′ = ∆p+q . Note that g−1∆p = Ω−2qg′ and ∆qg′−1 = Ω−2pg. Further,
2q < 2dpt(g′)− 1 ≤ bh(g′)− 1 and 2p < 2dpt(g)− 1 ≤ bh(g)− 1. So, Theorem 2.13
implies that g−1∆p (resp. ∆qg′−1 ) is either x1 -positive or belongs to G1 . Note that,
if at least one of them is x1 -positive, then 1 is x1 -positive, which is a contradiction.
Therefore g−1∆p = h and ∆qg′−1 = h′ for some h, h′ ∈ G1 . Thus g = θp(∆p

1h−1)
and g′ = (h′−1∆q

1)θq . Let (h0, h′0) be the left orthogonal splitting of ∆p
1h−1 , and let

(h′1, h1) be the right orthogonal splitting of h′−1∆q
1 . Then g = θph−1

0 h′0 and g′ =

h′1h−1
1 θq . Since h0 ∧L h′0 = 1 and h1 ∧R h′1 = 1, then h0 ≤R θp and h1 ≤L θq ,

because g, g′ ∈ M . Lemma 3.3 implies that h0 = h1 = 1. Hence g = θph′0 and g′ =

h′1θ
q = θqh′1 . Note that ∆1 6≤R h′0, h

′
1 because ∆ 6≤R g, g′ . Therefore g, g′ ∈ Θ.

Lemma 4.12 Let h, h′ ∈ M\M1 be two unmovable elements, and let k = inf(hh′). If
∆−khh′ ∈ M1 and dpt(h) + dpt(h′) = k + 2. Then h, h′ ∈ Θ.

Proof By Lemma 2.9, there exist g, g′, g0, g′0 ∈ M such that h = g0g, h′ = g′g′0 , and
gg′ = ∆k . Then ∆−khh′ = g0g′0 because ∆ is central, hence g0, g′0 ∈ M1 . We have
dpt(g′) = dpt(h′), and, by Lemma 4.8.4, dpt(g) = dpt(h). Therefore dpt(g)+dpt(g′) =

k + 2. Lemma 4.11 implies that g, g′ ∈ Θ, i.e. g = θpg1 and g′ = θqg′1 for some
p, q ≥ 1 and g1, g′1 ∈ M1 . Hence h = θp(g0g1) and h′ = θq(g′1g′0). Note that
∆1 6≤R g0g1, g′1g′0 because ∆ 6≤R h, h′ . Therefore h, h′ ∈ Θ.

Lemma 4.13 Let g, g′ ∈ M\(M1 ∪ Θ) be two unmovable elements, and let k =

inf(gg′). Then dpt(gg′)− ε = dpt(g) + dpt(g′)− q̃k ≥ 0 for some ε ∈ {0, 1}.

Proof Let p, q ≥ 1 be the respective depths of g, g′ . Then bh(g) ∈ {2p, 2p + 1}
and bh(g′) ∈ {2q, 2q + 1}. Theorem 2.13 implies that Ω−2pg and Ω−2qg′ are x1 -
negative, and that Ω−2p+2g and Ω−2q+2g′ are either x1 -positive or belong to G1 .
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Then Ω−2p−2qgg′ = ∆−p−q+kg0 is x1 -negative, and Ω−2p−2q+4gg′ = ∆−p−q+2+kg0

is either x1 -positive or belongs to G1 , where g0 = ∆−kgg′ . Note that k < p + q
because ∆−p−q+kg0 6∈ M . Hence p + q − q̃k ≥ 0. Theorem 2.13 implies that
2p+2q−2 ≤ bh(gg′) ≤ 2p+2q+1. Therefore p+q−1 ≤ dpt∗(gg′) ≤ p+q. Assume
that g0 ∈ M1 , then dpt∗(gg′) = qk , and k ≥ 1 because g, g′ 6∈ M1 . If qk = p + q− 1,
i.e. dpt(g)+dpt(g′) = k +2, Lemma 4.12 implies that g, g′ ∈ Θ which contradicts the
enunciate. Therefore dpt(gg′) = dpt(g) + dpt(g′)− qk . Assume that g0 6∈ M1 . Then,
by Lemma 4.8.2, p+q−q̃k = p+q−1−k ≤ dpt(gg′) ≤ p+q−k = p+q−q̃k +1.

Thus, Lemmas 4.10 and 4.13 have proved that Condition B holds.

5 Artin groups of dihedral type, the even case

In this section G and M denote the Artin group and the Artin monoid of type I2(m),
respectively, where m = 2k is even and k ≥ 2. Recall that M is defined by the monoid
presentation:

M = 〈x, y | (xy)k = (yx)k〉+ .

The group G is the enveloping group of M . By Theorem 2.11, M is a Garside monoid
and ∆ = x ∨R y is a Garside element of M . By Brieskorn–Saito [2], ∆ is central, and
∆ = (xy)k = (yx)k .

Let G1 = 〈y〉 ' Z and H = 〈x〉 ' Z. By Theorem 2.11, G1 and H are parabolic
subgroups of (G,∆). The subgroup G1 is associated with ∆1 = y, and H is associated
with Λ = x . Once again, we set M1 = G1∩M ' N and N = H∩M ' N. Obviously,
M1 ∪ N generates M , hence (H,G1) is a Dehornoy pre-structure.

The main result of the section is the following:

Theorem 5.1 The pair (H,G1) satisfies Conditions A and B.

By Theorem 3.2, this implies the following:

Corollary 5.2 The pair (H,G1) is a Dehornoy structure.

We denote by P1 the set of (H,G1)-positive elements of G, and we set P2 = {yn | n ≥
1}. For ε = (ε1, ε2) ∈ {±1}2 we set Pε = Pε1

1 ∪ Pε2
2 . Then, by Proposition 3.1:

Corollary 5.3 Pε is the positive cone of a left order on G.
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We denote by z1, . . . , z2k−1 the standard generators of the braid group B2k . By Crisp
[5], the map φ : S→ B2k defined by:

φ(x) =

k−1∏
i=0

z2i+1 , φ(y) =

k−1∏
i=1

z2i ,

induces an embedding φ : G ↪→ B2k satisfying φ(M) ⊆ B+
2k . In a second part of the

section we will show how the left orders on G obtained in Corollary 5.3 can be deduced
from φ. More precisely, we prove the following:

Proposition 5.4 Let g ∈ G. Then g is (H,G1)-positive if and only if φ(g) is
z1 -positive.

The rest of the section is dedicated to the proofs of Theorem 5.1 and Proposition 5.4.
Theorem 5.1 is proved in Subsection 5.1, and Proposition 5.4 is proved in Subsection
5.2.

5.1 Proof of Theorem 5.1

Note that, if g ∈ M is unmovable, then it has a unique word representative in {x, y}∗ .

Lemma 5.5 Let g, g′ ∈ M be two unmovable elements such that inf(gg′) = 0. Then:

dpt(gg′) =

{
dpt(g) + dpt(g′)− 1 if x ≤R g and x ≤L g′

dpt(g) + dpt(g′) otherwise

Proof If x 6≤R g or x 6≤L g′ it is obvious that dpt(gg′) = dpt(g) + dpt(g′). If x ≤R g
and x ≤L g′ , let k be the greatest integer such that xk ≤L g′ . Then g′ = xkg′0
for some g′0 ∈ M unmovable where x 6≤L g′0 . We have dpt(gxk) = dpt(g), and
dpt(g′0) = dpt(g′)−1. Hence dpt(gg′) = dpt(gxk)+dpt(g′0) = dpt(g)+dpt(g′)−1.

Note that θ = (xy)k−1x = x(yx)k−1 because ∆1 = y.

Lemma 5.6 Let g0 ∈ M1 , and let g ∈ M\M1 . Then:

(1) bh(g0θ) = m.

(2) bh(gθ) = bh(g) + m− 2.

(3) bh(θt) = (m− 2)t + 2 for all t ≥ 1.
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Proof (1) Note that (x, y, . . . , x, 1) is the alternating form of θ , and bh(θ) = m because
lgS(θ) = m − 1. Lemma 3.3 implies that g0θ = θg0 . Hence bh(g0θ) = bh(θ) = m.
(2) Let g1 be the M1 -tale of g, and let g′ = gg−1

1 . Note that g′ 6= 1 because
g 6∈ M1 . By Lemma 3.3, gθ = g′θg1 , and RM1(gθ) = g1 because y 6≤R g′ . Moreover,
if h ≤L θ , and a ≤R h for some a ∈ {x, y}, then b 6≤R g′h because y 6≤R g′ ,
where b ∈ {x, y}\{a}. Therefore (gp, . . . , g3, g2x, y, . . . , x, g1) is the alternating
form of gθ , where g′ = gp · · · g2 and (gp, . . . , g1) is the alternating form of g. So,
bh(gθ) = bh(g)− 2 + m. (3) By (1), bh(θ) = (m− 2) + 2. If t > 1, we suppose that
bh(θt−1) = (m− 2)(t − 1) + 2. Hence, (2) implies that bh(θt) = bh(θt−1) + m− 2 =

(m− 2)(t − 1) + 2 + m− 2 = (m− 2)t + 2.

Lemma 5.6.3 implies that qt = (k − 1)t + 1 for all k ≥ 1, because bh(θt) is even.
Therefore, Condition A holds, where q̃t = tc + 1 with c = k − 1 for all t ≥ 1.

Note that, since ∆ = (xy)k , then dpt(s) + dpt(comR(s)) = q1 for all s ∈ Div(∆)\{∆}.

Since relations of Artin monoids preserve lengths, all words representing an element
g of an Artin monoid A have the same length. Thus, we may consider the length of g,
denoted by lgS(g), defined as the length of its word representatives in S∗ , where S is
the standard generating set of A.

Lemma 5.7 Let g, g′ ∈ M be two unmovable elements, and let h1, h2 be two simple
elements in Div(∆)\{1,∆} such that h2h1 ≤R g and comR(h1)comR(h2) ≤L g′ . If
a ≤L h1 and b ≤R comR(h1), where {a, b} = {x, y}, then:

(1) a ≤R h2 and b ≤L comR(h2).

(2) dpt(gh−1
1 ) + dpt(comR(h1)−1g′) = dpt(g) + dpt(g′)− q1 + 1.

Proof (1) Since h2comR(h2) = ∆, if b ≤R h2 , then a ≤L comR(h2). Similarly,
if a ≤R comR(h2), then b ≤R h2 . Hence h2h1 and comR(h1)comR(h2) are simple
elements. Note that lgS(h2h1) < m and lgS(comR(h1)comR(h2)) < m because g, g′

are unmovable. Thus, lgS(∆2) = lgS(h2h1comR(h1)comR(h2)) < 2m, which is a
contradiction because lgS(∆2) = 2m. Therefore a ≤R h2 and b ≤L comR(h2). (2) By
Lemma 5.5, we have the following:

dpt(gh−1
1 ) =

{
dpt(g)− dpt(h1) if a = y
dpt(g)− dpt(h1) + 1 if a = x

dpt(comR(h1)−1g′) =

{
dpt(g′)− dpt(comR(h1)) + 1 b = x
dpt(g′)− dpt(comR(h1)) b = y

Therefore dpt(gh−1
1 ) + dpt(comR(h1)−1g′) = dpt(g) + dpt(g′)− q1 + 1.
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Lemma 5.8 Let g, g′ ∈ M be two unmovable elements such that inf(gg′) = 1. Then
dpt(gg′)− ε = dpt(g) + dpt(g′)− q1 ≥ 0 for some ε ∈ {0, 1}.

Proof Let h ∈ M be a simple element, such that h ≤R g and comR(h) ≤L g′ , let g1 =

gh−1 , and let g′1 = comR(h)−1g′ . By Lemma 5.5, if g1, g′1 6= 1, we have:

dpt(gg′) =

{
dpt(g1) + dpt(g′1)− 1 if x ≤R g1 and x ≤L g′1
dpt(g1) + dpt(g′1) otherwise

and:

dpt(g1) =

{
dpt(g)− dpt(h) + 1 if x ≤R g1 and x ≤L h
dpt(g)− dpt(h) otherwise

dpt(g′1) =

{
dpt(g′)− dpt(comR(h)) + 1 if x ≤R comR(h) and x ≤L g′1
dpt(g′)− dpt(comR(h)) otherwise

If x ≤L h and g1, g′1 6= 1 we obtain the following:

dpt(gg′) =

{
dpt(g) + dpt(g′)− q1 + 1 if x ≤R g1 and y ≤L g′1
dpt(g) + dpt(g′)− q1 otherwise

If y ≤L h and g1, g′1 6= 1 we obtain the following:

dpt(gg′) =

{
dpt(g) + dpt(g′)− q1 + 1 if y ≤R g1 and x ≤L g′1
dpt(g) + dpt(g′)− q1 otherwise

If x ≤L h and 1 ∈ {g1, g′1} we obtain the following:

dpt(gg′) =

{
dpt(g) + dpt(g′)− q1 + 1 if x ≤R g1

dpt(g) + dpt(g′)− q1 if x 6≤R g1

If y ≤L h and 1 ∈ {g1, g′1} we obtain the following:

dpt(gg′) =

{
dpt(g) + dpt(g′)− q1 + 1 if x ≤L g′1
dpt(g) + dpt(g′)− q1 if x 6≤L g′1

Therefore dpt(gg′)− ε = dpt(g) + dpt(g′)− q1 for some ε ∈ {0, 1}. If ∆−1gg′ 6∈ M1 ,
then dpt(gg′) ≥ 1. Hence dpt(g) + dpt(g′)− q1 ≥ 0. If ∆−1gg′ ∈ M1 , then dpt(g) +

dpt(g′) = dpt(h) + dpt(comR(h)) = q1 . Thus dpt(g) + dpt(g′)− q1 ≥ 0.

The following lemma proves Part (a) of Condition B:

Lemma 5.9 Let g, g′ ∈ M be two unmovable elements with t = inf(gg′), such that
{g, g′} 6⊆ M1∪Θ. Then dpt(gg′)− ε = dpt(g) + dpt(g′)− q̃t ≥ 0 for some ε ∈ {0, 1}.



Ordering Garside groups 27

Proof If t = 0, Lemma 5.5 implies that dpt(gg′) = dpt(g) + dpt(g′)− q̃0 + ε for some
ε ∈ {0, 1}, where ε = 0 if and only if x ≤R g and x ≤L g′ . Note that dpt(gg′) = 0 if
and only if g, g′ ∈ M1 . Therefore dpt(g)+dpt(g′)− q̃0 ≥ 0. If t = 1, the result is clear
by Lemma 5.8. If t ≥ 2, there exist simple elements h1, . . . , ht such that g = g1ht · · · h1

and g′ = comR(h1) · · · comR(ht)g′1 , for some g1, g′1 ∈ M such that inf(g1g′1) = 0.
Lemma 5.7 implies that dpt(g1ht) + dpt(comR(ht)g′1) = dpt(g) + dpt(g′) − qt−1 + 1.
So, by Lemma 5.8, dpt(gg′)−ε = dpt(g1g′1)−ε = dpt(g1ht)+dpt(comR(ht)g′1)−q1 =

dpt(g) + dpt(g′)− qt for some ε ∈ {0, 1} with dpt(g) + dpt(g′)− qt ≥ 0.

The following lemma proves Part (b) of Condition B:

Lemma 5.10 Let g, g′ ∈ M be two unmovable elements with t = inf(gg′), such that
{g, g′} 6⊆ M1 ∪Θ and {g, g′} ∩Θ 6= ∅. Then dpt(gg′) = dpt(g) + dpt(g′)− q̃t .

Proof Suppose that g ∈ Θ, i.e. g = g0θ
s for some s ≥ 1 and g0 ∈ M1 . Note

that g0 = 1 because g is unmovable. Hence g = θs . If s < t , then ys∆t−s ≤L g′ ,
which is impossible because g′ is unmovable. Then s ≥ t , and yt ≤L g′ . If s = t ,
then dpt(gg′) = dpt(g′) = dpt(g) + dpt(g′) − q̃t . If s > t , Lemma 5.5 implies that
dpt(gg′) = dpt(θs−t) + dpt(g′)− 1 = dpt(g) + dpt(g′)− q̃t because y 6≤L y−tg′ .

5.2 Proof of Proposition 5.4

We denote by Ω the standard Garside element of B2k , by A1 the submonoid of B+
2k

generated by z1, . . . , z2k−2 , and by A2 the submonoid of B+
2k generated by z2, . . . , z2k−1 .

Note that φ(G1) ⊆ A1 ∩ A2 .

Proposition 5.11 (Crisp [5]) Let g, g′ ∈ M , and let (gp, . . . , g1) be the greedy
normal form of g. Then:

(1) g ≤R g′ if and only if φ(g) ≤R φ(g′).

(2) φ(g ∧R g′) = φ(g) ∧R φ(g′) and φ(g ∨R g′) = φ(g) ∨R φ(g′).

(3) (φ(gp) . . . , φ(g1)) is the greedy normal form of φ(g).

Lemma 5.12 We have φ(g) ∈ B2k\〈z2, . . . , z2k−1〉 for all g ∈ G\G1 .

Proof Let h ∈ B2k , and let (h2, h1) be its right orthogonal splitting, that is h = h1h−1
2

and h1 ∧R h2 = 1. Since G(A2) is a parabolic subgroup, we have h ∈ G(A2) if and
only if h1, h2 ∈ A2 . Let g ∈ G, and let (g2, g1) be its right orthogonal splitting. By
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Proposition 5.11, we have φ(g) = φ(g1)φ(g2)−1 and φ(g1)∧Rφ(g2) = 1. It follows that
φ(g) ∈ G(A2) if and only if φ(g1), φ(g2) ∈ A2 . Furthermore, we have g ∈ G1 if and
only if g1, g2 ∈ M1 . So, we only need to prove that φ(g) ∈ B+

2k\A2 for all g ∈ M\M1 .
Let h ∈ B+

2k , and let (hp, . . . , h1) be its right greedy normal form. Since G(A2) is a
parabolic subgroup, we have h ∈ A2 if and only if hi ∈ A2 for all i ∈ {1, . . . , p}.
Let g ∈ M , and let (gp, . . . , g1) be its right greedy normal form. By Proposition
5.11, φ(g) = φ(gp) · · ·φ(g1) is the right greedy normal form of φ(g). It follows that
φ(g) ∈ A2 if and only if φ(gi) ∈ A2 for all i ∈ {1, . . . , p}. Furthermore, we have
g ∈ M1 if and only if gi ∈ M1 for all i ∈ {1, . . . , p}. So, we only need to show that
φ(g) ∈ Div(Ω)\A2 for g ∈ Div(∆)\M1 = Div(∆)\Div(x). Let h ∈ Div(Ω), and let
i1, . . . , il ∈ {1, . . . , 2k − 1} such that h = zi1 · · · zil . By Bourbaki [1], Chapter IV,
Section 1.8, we have h ∈ A2 if and only if {zi1 , . . . , zil} ⊂ {z2, . . . , z2k−1}. This implies
that, for g ∈ Div(∆), we have φ(g) ∈ A2 if and only if g ∈ {1, y} = Div(y).

For each i, j ∈ {0, . . . , k − 1} with j 6= 0, and for every t ≥ 1, we define:

xt
2i+1 =

k−1∏
l=i

zt
2l+1 , yt

2j =
k−1∏
l=j

zt
2l .

In particular xt
1 = φ(xt) = φ(x)t and yt

2 = φ(yt) = φ(y)t . Note that yt
2j ∈ A1 ∩ A2 .

Lemma 5.13 Let g ∈ M\M1 be an unmovable element such that dpt(g) ≤ k − 1.
Then φ(g) has a (A1,A2)-sequence and a (A2,A1)-sequence of length 2.

Proof Let d = dpt(g). Then g = ytd xsd · · · yt1xs1yt0 , where s1, . . . , sd ≥ 1, t0, td ≥ 0,
and t1, . . . , td−1 ≥ 1 if d ≥ 2. Since d ≤ k − 1, then:

φ(g) = ytd
2 xsd

1 · · · x
s2
1 yt1

2 xs1
1 · y

t0
2

= ytd
2 xsd

1 · · · x
s2
1 yt1

2 zs1
1 · x

s1
3 yt0

2
= ytd

2 xsd
1 · · · x

s2
1 zt1

2 zs1
1 · y

t1
4 xs1

3 yt0
2

= ytd
2 xsd

1 · · · z
s2
3 zs2

1 zt1
2 zs1

1 · x
s2
5 yt1

4 xs1
3 yt0

2
· · ·
= ytd

2 zsd
2d−1 · · · z

sd
3 zsd

1 · · · z
s2
3 zs2

1 zt1
2 zs1

1 · x
sd
2d+1 · · · x

s2
5 yt1

4 xs1
3 yt0

2

Let h′ = ytd
2 zsd

2d−1 · · · z
sd
3 zsd

1 · · · z
s2
3 zs2

1 zt1
2 zs1

1 , and let h = xsd
2d+1 · · · x

s2
5 yt1

4 xs1
3 yt0

2 . Note that
h ∈ A2 and h′ ∈ A1 . Therefore (h′, h) is a (A1,A2)-sequence of φ(g). Let Φ be the
flip automorphism of B2k . Then φ(g) = Φ(φ(g)) = Φ(h′)Φ(h) because φ(∆) is the
Garside element of B2k . Note that Φ(h′) ∈ A2 and Φ(h) ∈ A1 . Therefore (Φ(h′),Φ(h))
is a (A2,A1)-sequence of φ(g). Both sequences are of length 2.
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The limit of an unmovable element g ∈ M\M1 , denoted by lim(g), is the unique integer
t ≥ 1 such that q̃t−1 < dpt(g) + 1 ≤ q̃t . Since q̃t−1 − 1 < dpt(g), then:

(5–1) lim(g) =
2q̃t−1 + m− 4

m− 2
<

2dpt(g) + m− 2
m− 2

.

We set lim(g0) = 0 for all g0 ∈ M1 . Thus bhA1,A2(φ(g0)) = lim(g0) + 1.

Lemma 5.14 Let g ∈ M\M1 be an unmovable element. Then φ(g) has a (A1,A2)-
sequence of length lim(g) + 1.

Proof We have g = ytd xsd · · · yt1xs1yt0 with d = dpt(g), where s1, . . . , sd ≥ 1, t0, td
≥ 0, and t1, . . . , td−1 ≥ 1 if d ≥ 2. Let t = lim(g). For every i ∈ {1, . . . , t}, we
define an element gi ∈ M , as follows:

gi =

{
yti(k−1)xsi(k−1) · · · yt(i−1)(k−1)+1xs(i−1)(k−1)+1 if i < t
ytd xsd · · · yt(t−1)(k−1)+1xs(t−1)(k−1)+1 if i = t

Note that dpt(gi) = k − 1 for all i < t , and dpt(gt) ∈ {1, . . . , k − 1}. Lemma 5.13
implies that there are h1, . . . , ht ∈ A2 and h′1, . . . , h

′
t ∈ A1 , such that (h′i, hi) is a

(A1,A2)-sequence of gi if i is odd, and (hi, h′i) is a (A2,A1)-sequence of gi if i is even.
Therefore, the following is a (A1,A2)-sequence of φ(g):{

(h′t, htht−1, . . . , h3h2, h′2h′1, h1yt0) if t is odd
(ht, h′th

′
t−1, . . . , h3h2, h′2h′1, h1yt0) if t is even

Note that, the length of this sequence is t + 1.

Proposition 4.6 and Lemma 5.14 imply that bhA1,A2(φ(g)) ≤ lim(g) + 1 for all unmov-
able element g ∈ M\M1 .

Lemma 5.15 Let g′ ∈ G such that φ(g′) is z1 -positive. Then g′ is (H,G1)-positive.

Proof Let m = inf(g′) such that g′ = ∆mg for some unmovable element g ∈ M .
Note that g′ 6∈ G1 because φ(g′) is z1 -positive. We have φ(g′) = φ(∆)mφ(g). If
m ≥ 0, then g′ ∈ M\M1 . Therefore g′ is (H,G1)-positive. If m < 0, namely m = −t
for some t ≥ 1, Theorem 2.13 and Equation (5–1) imply that t + 2 ≤ bhA1,A2(φ(g)) ≤
lim(g) + 1 < (2dpt(g) + 2(m−2))/(m−2). Hence (k−1)t < dpt(g), i.e. dpt(g) ≥ qt .
Therefore g′ is (H,G1)-positive.

If g ∈ G is (H,G1)-positive and φ(g) is z1 -negative. Then φ(g)−1 is z1 -positive. So,
Lemma 5.15 implies that g−1 is (H,G1)-positive as well, which contradicts Corollary
5.2. This proves Proposition 5.4.

We finish this subsection with the following consequence:
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Corollary 5.16 We have bhA1,A2(φ(g)) = lim(g) + 1 for all unmovable g ∈ M\M1 .

Proof Let g0 ∈ M1 be the M1 -tale of g, and let g′ = gg−1
0 . By definition, q̃t−1 <

dpt(g) = dpt(g′) where t = lim(g). Then ∆−t+1g′ is (H,G1)-positive. So, Proposition
5.4 implies that φ(∆−t+1g′) is z1 -positive. By Theorem 2.13 and Lemma 5.14,
t + 1 ≤ bhA1,A2(φ(g′)) ≤ t + 1. Therefore bhA1,A2(φ(g)) = lim(g) + 1.

6 Artin groups of dihedral type, the odd case

In this section G and M denote the Artin group and the Artin monoid of type I2(m),
respectively, where m = 2k + 1 is odd and k ≥ 2. Recall that M is defined by the
monoid presentation

M = 〈x, y | (xy)kx = (yx)ky〉+ .

The group G is the enveloping group of M . By Theorem 2.11, M is a Garside monoid
and Ω = x ∨R y is a Garside element of M .

What makes the difference between the case m even, treated in Section 5, and the case
m odd, treated in the present section, is that, now, the Garside element Ω = (xy)kx =

(yx)ky is not central. It satisfies Ωx = yΩ and Ωy = xΩ, hence ∆ = Ω2 = (xy)m

is central. In order to apply our criteria, we will use the Garside element ∆ and not
Ω, making the proofs more complicated than in Section 5, although the statements are
identical.

Let G1 = 〈y〉 ' Z, and let H = 〈x〉 ' Z. By Theorem 2.11, G1 and H are parabolic
subgroups of (G,∆). The subgroup G1 is associated with ∆1 = y2 , and H is associated
with Λ = x2 . Once again, we set M1 = G1∩M ' N and N = H∩M ' N. Obviously,
M1 ∪ N generates M , hence (H,G1) is a Dehornoy pre-structure.

The main result of the section is the following:

Theorem 6.1 The pair (H,G1) satisfies Conditions A and B.

Then, applying Theorem 3.2 we obtain:

Corollary 6.2 The pair (H,G1) is a Dehornoy structure.

We denote by P1 the set of (H,G1)-positive elements of G, and we set P2 = {yn | n ≥
1}. For ε = (ε1, ε2) ∈ {±1}2 we set Pε = Pε1

1 ∪ Pε2
2 . Then, by Proposition 3.1:
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Corollary 6.3 The set Pε is the positive cone of a left order on G.

We denote by z1, . . . , z2k the standard generators of the braid group B2k+1 . By Crisp
[5], the map φ : S→ B2k+1 defined by

φ(x) =

k−1∏
i=0

z2i+1 , φ(y) =

k∏
i=1

z2i ,

induces an embedding φ : G ↪→ B2k+1 . As in the case m even, we will show how the
left orders on G obtained in Corollary 6.3 can be deduced from φ. More precisely, we
will prove the following:

Proposition 6.4 Let g ∈ G. Then g is (H,G1)-positive if and only if φ(g) is
z1 -positive.

The rest of the section is dedicated to the proofs of Theorem 6.1 and Proposition 6.4.
Theorem 6.1 is proved in Subsection 6.1, and Proposition 6.4 is proved in Subsection
6.2.

6.1 Proof of Theorem 6.1

The proof of Theorem 6.1 is a similar but much more complex proof of Theorem 5.1.
Because of that, we will only give a sketch of this proof:

Note that, if g ∈ M and Ω 6≤R g, then g does not contain x ∨L y as a subword.
Therefore g has a unique word representative in {x, y}∗ . We will denote by Φ the flip
automorphism of G respective to Ω. Note that, if g ∈ M\{1} such that Ω 6≤R g, then
bh(Φ(g)) = bh(g) + 1 when y ≤R g, and bh(Φ(g)) = bh(g)− 1 when x ≤R g.

Let g, g′ ∈ M such that Ω 6≤R g′ , Ω 6≤R g, and Ω 6≤R gg′ . As in Lemma 5.5, we have:

(6–1) bh(gg′) =


bh(g) + bh(g′) if y ≤R g and x ≤L g′

bh(g) + bh(g′)− 2 if x ≤R g and x ≤L g′

bh(g) + bh(g′)− 1 otherwise

By using Equation (6–1) it is not hard to prove the following properties:

(1) bh(g0θ) = 2(m− 1) for all g0 ∈ M1 .

(2) bh(gθ) = bh(g) + 2(m− 2) for all g ∈ M\M1 .

(3) bh(θt) = 2(m− 2)t + 2 for all t ≥ 1.

So, more generally, for all g0 ∈ M1 and g ∈ M\M1 with Ω 6≤R g, we obtain:
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(4) bh(g0Ωt) = bh(Ωtg0) = bh(g0) + (m− 2)t + 1 for all t ≥ 2.

(5) bh(gΩt) = bh(Ωtg) = bh(g) + (m− 2)t when t ≥ 2 is even.

(6) bh(gΩt) = bh(g) + (m− 2)t + 1 when t ≥ 2 is odd and y ≤R g.

(7) bh(gΩt) = bh(g) + (m− 2)t when t ≥ 2 is odd and g ∈ N .

(8) bh(gΩt) = bh(g) + (m− 2)t − 1 when t ≥ 2 is odd, x ≤R g and g 6∈ N .

(9) bh(Ωtg) = bh(g) + (m− 2)t when t ≥ 2 is odd.

Property (3) implies that qt = (m − 2)t + 1 for all k ≥ 1, because bh(θt) is even.
Therefore, Condition A holds, where q̃t = tc + 1 with c = m− 2 for all t ≥ 0.

Let g, g′ ∈ M such that Ω 6≤R g, g′ and gg′ 6= Ω, and let s, s′ ∈ Div(Ω)\{1,Ω} such
that s ≤R g, s′ ≤L g′ , and ss′ = Ω. Note that, x ≤L s if and only if x ≤R s′ . Further,
x ≤R s if and only if y ≤L s′ . By using Equation (6–1) and Properties (1) to (9) we
can prove that there is ε ∈ {0, 1, 2, 3} such that:

(6–2) bh(gs−1) + bh(s′−1g′) = bh(s) + bh(s′)− m + ε.

Similarly to Lemma 5.7, we have the following result:

Lemma 6.5 Let g, g′ ∈ M with Ω 6≤R g, g′ , and let s1, s2, s′1, s
′
2 ∈ Div(Ω)\{1,Ω}

such that s2s1 ≤R g, s′1s′2 ≤L g′ , and s1s′1 = Φ(s2)s′2 = Ω. Then, there is a unique
z ∈ {x, y} satisfying z ≤L s1, s′2 and z ≤R s′1, s2 .

Proof Let z be the unique element in {x, y} such that z ≤L s1 and z ≤R s′1 , and
let r ∈ {x, y} such that r ≤L s′2 . Since Φ(s2)s′2 = Ω, then r ≤R s2 . Suppose that
r 6= z, then lgS(s2s1) < m and lgS(s′1s′2) < m because Ω 6≤R g, g′ . Hence, lgS(∆) =

lgS(s2s1s′1s′2) < 2m, which is a contradiction. Therefore r = z.

Let g, g′ ∈ M with Ω 6≤R g, g′ , and let s, s′ ∈ Div(Ω)\{1,Ω} such that s ≤R g,
s′ ≤L g′ , and ss′ = Ω. Let z ∈ {x, y} such that z ≤L s and z ≤R s′ . Assume
that z ≤R gs−1 , z ≤L s′−1g′ , and Ω 6≤R Φ(gs−1)s′−1g′ . Then, as a consequence of
Equations (6–1) and (6–2), there is k ∈ {1, 2} satisfying:

(6–3) bh(Φ(gs−1)s′−1g′) = bh(Φk(g)) + bh(g′)− m + 2.

Furthermore, if g, g′ ∈ M such that Ω 6≤R Φ(g)g′ , and, if s, s′ ∈ Div(Ω)\{1,Ω} such
that ss′ = Ω and Ω 6≤R gs, s′g′ . Then, by Equation (6–1) and Properties (1) to (9), we
obtain that, there are k ∈ {1, 2} and ε ∈ {0, 1, 2, 3}, such that:

(6–4) bh(Φ(g)g′) = bh(Φk(gs)) + bh(s′g′)− m + ε.

Consequently, Equations (6–3) and (6–4) imply a kind of Part (a) of Condition B,
namely, for breadths instead of depths, as follows:
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Proposition 6.6 Let g, g′ ∈ M such that Ω 6≤R g, g′ and Ω ≤R gg′ , and let t ≥ 1 be
the maximal integer satisfying Ωt ≤R gg′ . Then, there exists ε′ ∈ {0, 1, 2} such that:

bh(Ω−tgg′)− ε′ = bh(u1(g, g′))− bh(Ωt) ≥ 0 .

We obtain Part (a) of Condition B as a consequence of Proposition 6.6 by passing from
breadths to depths. Part (b) of Condition B is a consequence of the following lemma:

Lemma 6.7 Let g ∈ M\M1 , and let g′ ∈ Θ unmovable. Then dpt(gg′) = dpt(g) +

dpt(g′)− q̃r where r = inf(gg′).

Proof We have g′ = θtye for some t ≥ 1 and e ∈ {0, 1}. Let t′ ≥ 0 be the maximal
integer satisfying yt′ ≤R g. Then g = g0yt′ for some g0 ∈ M satisfying y 6≤R g0 and
x ≤R g0 because g 6∈ M1 . If r = t , then dpt(gg′) = dpt(g) = dpt(g) + dpt(g′) − q̃r .
Asumme that r < t . If t′ = 2r , then gg′ = ∆rg0θ

t−rye . If t′ = 2r + 1 and e = 0, then
gg′ = ∆rg0θ

t−ry, and, if t′ = 2r − 1 and e = 1, then gg′ = ∆rg0θ
t−r . So, Property

(2) implies that dpt(gg′) = dpt(g0) + (m− 2)(t − r) = dpt(g) + dpt(g′)− q̃r .

6.2 Proof of Proposition 6.4

In this subsection, we denote by ΩB the standard Garside element of B2k+1 , by A1 the
submonoid of B2k+1 generated by z1, . . . , z2k−1 , and by A2 the submonoid of B2k+1

genereted by z2, . . . , z2k . Note that φ(H) ⊆ A1\A2 and φ(G1) ⊆ A2\A1 . Further, we
denote by Ω the standard Garside element of G.

Proposition 6.8 (Crisp [5]) Let g, g′ ∈ M , and let (gp, . . . , g1) be the greedy normal
form of g. Then:

(1) g ≤R g′ if and only if φ(g) ≤R φ(g′).

(2) φ(g ∧R g′) = φ(g) ∧R φ(g′) and φ(g ∨R g′) = φ(g) ∨R φ(g′).

(3) (φ(gp), . . . , φ(g1)) is the greedy normal form of φ(g).

Lemma 6.9 We have φ(g) ∈ B2k+1\〈z2, . . . , z2k〉 for all g ∈ G\G1 .

Proof Let h ∈ B2k+1 , and let (h2, h1) be its right orthogonal splitting that is h = h1h−1
2

and h1 ∧R h2 = 1. Since G(A2) is a parabolic subgroup, we have h ∈ G(A2) if and
only if h1, h2 ∈ A2 . Let g ∈ G, and let (g2, g1) be its right orthogonal splitting. By
Proposition 6.8, we have φ(g) = φ(g1)φ(g2)−1 and φ(g1) ∧R φ(g2) = 1. It follows
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that φ(g) ∈ G(A2) if and only if φ(g1), φ(g2) ∈ A2 . Furthermore, we have g ∈ G1

if and only if g1, g2 ∈ M1 . So, we only need to prove that φ(g) ∈ B+
2k+1\A2 for

all g ∈ M\M1 . Let h ∈ B+
2k+1 , and let (hp, . . . , h1) be its greedy normal form.

Since G(A2) is a parabolic subgroup, we have h ∈ A2 if and only if hi ∈ A2 for all
i ∈ {1, . . . , p}. Let g ∈ M , and let (gp, . . . , g1) be its right greedy normal form. By
Proposition 6.8, φ(g) = φ(gp) · · ·φ(g1) is the right greedy normal form of φ(g). It
follows that φ(g) ∈ A2 if and only if φ(gi) ∈ A2 for all i ∈ {1, . . . , p}. Furthermore,
we have g ∈ M1 if and only if gi ∈ M1 for all i ∈ {1, . . . , p}. So, we only need
to show that φ(g) ∈ Div(ΩB)\A2 if g ∈ Div(Ω)\M1 . Let h ∈ Div(ΩB), and let
i1, . . . , il ∈ {1, . . . , 2k} such that h = zi1 · · · zil . By Bourbaki [1], Chapter IV, Section
1.8, we have h ∈ A2 if and only if {zi1 , . . . , zil} ⊂ {z2, . . . , z2k}. This implies that, for
g ∈ Div(Ω), we have φ(g) ∈ A2 if and only if g ∈ {1, y} = Div(y).

For each i, j ∈ {1, . . . , k} with j 6= k , and for every t ≥ 1, we define:

xt
2i−1 =

k∏
l=i

zt
2l−1, yt

2j =
k∏

l=j

zt
2l .

In particular xt
1 = φ(xt) = φ(x)t and yt

2 = φ(yt) = φ(y)t .

Lemma 6.10 Let g ∈ M\M1 be an unmovable element such that bh(g) ≤ 2k . Then
φ(g) has a (A1,A2)-sequence of length 2. Moreover, if bh(g) 6= 2k , then φ(g) has a
(A2,A1)-sequence of length 2.

Proof Let b = bh(g). Then g = atb · · · yt3xt2yt1 , where t1 ≥ 0, t2, . . . , tb ≥ 1, a = x
if b is even, and a = y if b is odd. Since b ≤ 2k , then:

φ(g) = φ(a)tb · · · xt4
1 yt3

2 xt2
1 · y

t1
2

= φ(a)tb · · · xt4
1 yt3

2 zt2
1 · x

t2
3 yt1

2
= φ(a)tb · · · xt4

1 zt3
2 zt2

1 · y
t3
4 xt2

3 yt1
2

= φ(a)tb · · · zt4
3 zt4

1 zt3
2 zt2

1 · x
t4
5 yt3

4 xt2
3 yt1

2
· · ·
= (ztb

b−1 · · · z
tb
i ) · · · zt4

3 zt4
1 zt3

2 zt2
1 · a

tb
b+1 · · · x

t4
5 yt3

4 xt2
3 yt1

2

where i = 1 if a = x , and i = 2 if a = y. Let h′ = (ztb
b−1 · · · z

tb
i ) · · · zt4

3 zt4
1 zt3

2 zt2
1 , and let

h = atb
b+1 · · · x

t4
5 yt3

4 xt2
3 yt1

2 . Note that h ∈ A2 and h′ ∈ A1 . Therefore (h′, h) is a (A1,A2)
-sequence of φ(g). If bh(g) 6= 2k , then bh(Φ(g)) ≤ 2k . As above, ΩBφ(g)Ω−1

B has a
(A1,A2)-sequence (h′, h). Then (ΩBh′Ω−1

B ,ΩBhΩ−1
B ) is a (A2,A1)-sequence of g.
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The limit of an unmovable element g ∈ M\M1 , denoted by lim(g), is the unique integer
t ≥ 1 such that q̃t−1 < bh(g) ≤ q̃t . Since q̃t−1 < bh(g), then:

(6–5) lim(g) =
q̃t−1 + m− 3

m− 2
<

bh(g) + m− 3
m− 2

.

We set lim(g0) = 0 for all g0 ∈ M1 . Thus bhA1,A2(φ(g0)) = lim(g0) + 1.

Lemma 6.11 Let g ∈ M\M1 be an unmovable element. Then φ(g) has a (A1,A2)-
sequence of length lim(g) + 1.

Proof Let (g′p, . . . , g
′
0) be the alternating form of g, and let t = lim(g). Let

g0 = g′0 , for each i ∈ {1, . . . , t − 1} let gi =
∏m−2

j=1 g′(m−2)(i−1)+j , and let gt =

g′p · · · g′(m−2)(t−1)+1 . Let i ∈ {1, . . . , t − 1}. If i is odd, then RM1(gi) = 1 and bh(gi)
= m − 1. Similarly, if i is even, then RN(gi) = 1 and bh(gi) = m − 2. Furthermore,
RM1(gt) = 1 and bh(gt) ≤ m− 1 if t is odd, and RN(gt) = 1 and bh(gt) ≤ m− 2 if t is
even. Lemma 6.10 implies that there are h1, . . . , ht ∈ A2 and h′1, . . . , h

′
t ∈ A1 , such that

(h′i, hi) is a (A1,A2)-sequence of φ(gi) if i is odd, and (hi, h′i) is a (A2,A1)-sequence
of φ(gi) if i is even. Therefore, the following is a (A1,A2)-sequence of φ(g):{

(h′t, htht−1, . . . , h3h2, h′2h′1, h1g0) if t is odd
(ht, h′th

′
t−1, . . . , h3h2, h′2h′1, h1g0) if t is even

Note that the length of this sequence is t + 1.

Lemma 6.12 Let g ∈ G, and let t, t′ ≥ 1 such that g = ∆−tg0 = Ω−t′g′0 for
some g0, g′0 ∈ M , where ∆ 6≤R g0 and Ω 6≤R g′0 . Then bh(g0) ≥ 2q̃t if and only if
bh(g′0) ≥ bh(Ωt).

Proof If Ω 6≤R g0 we are done because g0 = g′0 and t′ = 2t . Otherwise g0 = Ωg′0
and t′ = 2t−1. Lemma ??.4-8 implies that bh(g0) = bh(g′0)+ (m−2) when g′0 6∈ M1 ,
and bh(g0) = bh(g′0) + (m − 1) when g′0 ∈ M1 . If bh(g0) ≥ 2q̃t = 2(m − 2)t + 2,
then bh(g′0) ≥ (m − 2) + 1 ≥ 2, i.e. g′0 6∈ M1 . Hence bh(g0) = bh(g′0) + (m − 2).
So bh(g′0) ≥ (m − 2)(2t − 1) + 2 = bh(Ωt′). Conversely, if bh(g′0) ≥ bh(Ωt′), then
g′0 6∈ M1 . Therefore bh(g0) = bh(g′0) + (m− 2) ≥ bh(Ωt′) + (m− 2) = 2q̃t .

Lemma 6.13 Let g′ ∈ G such that φ(g′) is z1 -positive. Then g′ is (H,G1)-positive.

Proof Let m ∈ Z such that g′ = Ωmg for some g ∈ M with Ω 6≤R g. Note that
g′ 6∈ G1 because φ(g′) is z1 -positive. We have φ(g′) = Ωm

Bφ(g). If m ≥ 0, then g′ ∈
M\M1 . Therefore g′ is (H,G1)-positive. If m < 0, namely m = −t for some t ≥ 1,
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Theorem 2.13, Lemma 6.11 and Equation (6–5) imply that t + 2 ≤ bhA1,A2(φ(g)) ≤
lim(g) + 1 < (bh(g) + 2m − 5)/(m − 2). Hence bh(Ωt) ≤ bh(g). So, Lemma 6.12
implies that g′ is (H,G1)-positive.

If g ∈ G is (H,G1)-positive and φ(g) is z1 -negative. Then φ(g)−1 is z1 -positive. So,
Lemma 6.12 implies that g−1 is (H,G1)-positive as well, which contradicts Corollary
6.2. This proves Proposition 6.4.

Corollary 6.14 We have bhA1,A2(φ(g)) = lim(g) + 1 for all unmovable g ∈ M\M1 .

Proof Let g0 ∈ M1 be the M1 -tale of g, and let g′ = gg−1
0 . By definition, q̃t−1 <

bh(g) = bh(g′) where t = lim(g). Lemma 6.12 implies that Ω−t+1g′ is (H,G1)-
positive. Proposition 6.4 implies that Ω−t+1

B φ(g′) is z1 -positive. By Theorem 2.13 and
Lemma 6.11, t+1 ≤ bhA1,A2(φ(g′)) ≤ t+1. Therefore bhA1,A2(φ(g)) = lim(g)+1.
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Zürich, 2015.

[12] P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Mathematical
Surveys and Monographs, 148, American Mathematical Society, Providence, RI, 2008.

[13] P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalisations of
Artin groups, Proc. London Math. Soc. (3) 79 (1999), no. 3, 569–604.

[14] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972),
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