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Navier-Stokes equations in the whole space with an eddy

viscosity

Roger Lewandowski∗

Abstract

We study the Navier-Stokes equations with an extra eddy viscosity term in the
whole space IR3. We introduce a suitable regularized system for which we prove the
existence of a regular solution defined for all time. We prove that when the regularizing
parameter goes to zero, the solution of the regularized system converges to a turbulent
solution of the initial system.

MCS Classification: 35Q30, 35D30, 76D03, 76D05.
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In memory of Jean Leray

1 Introduction

Let us consider the incompressible Navier-Stokes Equations (NSE) in the whole space IR3

with an extra eddy viscosity term:

(1.1)

{
∂tu + u · ∇u− ν∆u− div(A(t,x)∇u) +∇p = 0, (i)

div u = 0, (ii)

where u = u(t,x) = (u1(t,x), u2(t,x), u3(t,x)) denotes the velocity, p = p(t,x) the pres-
sure, t ≥ 0, x ∈ IR3, ν > 0 is the kinetic viscosity and A = A(t,x) is an eddy viscosity. In
this paper, A is a scalar function.
This PDE system arises from turbulence modeling, the purpose of which is the calculation
of averaged or filtered fields associated to a given turbulent flow. Eddy viscosities are
usually introduced to model the Reynolds stress of such flows, according to the Boussinesq
assumption (see for instance [11, 35]).
This system was already studied in the case of bounded domains with various boundary
conditions (see in [11], chapters 6 to 8 for a comprehensive presentation). However, so
far we know, it has never been investigated before in the case of the whole space, which
motivates the present study.
We prove in this paper the existence of a turbulent solution to the NSE (1.1), global in
time, through a suitable variational formulation on the basis of the assumptions:

i) u0 ∈ L2(IR3)3, div u0 = 0,

ii) A ≥ 0, A ∈ Cb(IR+,W
1,∞(IR3)) and is of compact support in IR3 uniformly in time.

∗IRMAR, UMR 6625, Université Rennes 1, and Fluminance team, INRIA, Campus
Beaulieu, 35042 Rennes cedex FRANCE; Roger.Lewandowski@univ-rennes1.fr, http://perso.univ-
rennes1.fr/roger.lewandowski/
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This main result is Theorem 2.3 in section 2, stated after giving necessary definitions.
One of the key features of this solution is that it satisfies an energy inequality. The notion
of turbulent solution was initially introduced by J. Leray [27] when A = 0, what makes our
result a generalization of Leray’s result. However, one part of Leray’s program does not
directly apply to the case A 6= 0, since the eddy viscosity term brings unexpected issues.
Indeed, Leray was first looking for “strong” solutions of the NSE, that are shown to
exist on a time interval [0, T ?[ when u0 ∈ L∞(IR3) × H1(IR3), in the case A = 01. The
argument is based on the Oseen’s representation Theorem [33, 34] (see also section 3.3
below). The NSE in Leray’s work are treated as Stokes equations, where the nonlinear
term u·∇u = div(u⊗u) is considered as a source term. This leads to an integral inequality
satisfied by ||u(t)||∞ to get an estimate, which is one of the main building block of Leray’s
theory. We have first tried to generalize Oseen’s theory to the equation

(1.2)

{
∂tu− ν∆u− div(A(t,x)∇u) +∇p = f , (i)

div u = 0. (ii)

Unfortunately we have failed, which remains a difficult open problem. This is why we
decided to treat the eddy diffusion term −div(A(t,x)∇u) as a source term as well. The
consequence is that terms depending on derivatives of u appear in the integral inequality
satisfied by ||u(t)||∞, which can no longer yields an estimate. Therefore, we cannot directly
pursue this strategy. In particular, we are not able to prove the existence of a strong
solution to (1.1) on a time interval [0, T ?[ when A 6= 0, whatever the choice of u0 and the
assumptions satisfied by A. This is why things must be reconsidered, which motivates our
developments that do not appear in Leray’s paper. We provide in subsection 7.1 further
technical details about this issue.
In this paper, the turbulent solution is constructed as a limit of regular solutions when
ε→ 0 of the regularized NSE,

(1.3)

 ∂tu + u · ∇u− ν∆u− div (A∇u) +∇p = 0,
div u = 0,
ut=0 = u0,

where ψ = ρε ? ψ for a given mollifier ρ, and ρε = ε−3ρ(x/ε). The regularized convection
term u · ∇u was initially introduced by J. Leray. He was able to show that the theory
about strong solutions mentioned above, directly applies to the regularized system, and
that one can take T ? =∞ in this case, which does not apply when A 6= 0.
The novelty is the introduction in section 3 of the regularized eddy viscosity term−div (A∇u),
chosen in order to preserve the dissipation feature of the eddy viscosity. .
A large part of the paper is devoted to study the regularized NSE (1.3). We prove in
section 3 that the Oseen representation formula applies to this system. However, the
building block of this study is the section 4, where we show a series of a priori estimates
satisfied by any regular solutions (u, p) of (1.3) and its derivatives. In particular, we derive
from (1.3) estimates global in time for the L∞ and L2 norms of Dmu, that is ||Dmu(t)||0,∞
and ||Dmu(t)||0,2, in terms of the L2 norm of the initial data and ε. This derivation is
divided in four main steps.

� By the Oseen representation formula [33, 34], we show that t → ||Dmu(t)||0,∞ and
t→ ||Dmu(t)||0,2 verify non linear integral inequalities,

1The big issue is to know if there is a solution such that ||u(t)||∞ →∞ as t→ T ?, t < T ? <∞...
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� By generalizing to non linear cases principles based on Volterra’s equations, which we
have called the “V-maximum principle” (see section B.3 in appendix B), we get local in

time estimates for ||Dmu(t)||0,∞ and ||Dmu(t)||0,2 over a time interval [0, t
(m)
ε (||u0||0,2)].

In particular, we show that the application x→ t
(m)
ε (x) is non increasing.

� We prove local in time estimates for derivatives of the pressure, ||Dmp(t)||0,∞ and
||Dmp(t)||0,2, by the Calderón-Zygmund Theorem.

� We show that u satisfy the energy balance, which, combined with the monotonicity of

x→ t
(m)
ε (x), allows us to extend the local in time estimates to all t ∈ [0,∞[.

This analysis, combined with a fixed point procedure, yields (section 5) the existence of a
unique regular solution to System (1.3), global in time, which means a solution of class C∞

in time and space defined for t ∈ [0,∞[, with no singularity, the Hm norms of which are
driven by the L2 norm of u0, ε, the shape of ρ and its derivatives. This solution satisfies
the energy balance, which provides valuable estimates that do not depend on ε.
We then show that the solution of the regularized NSE (1.3) converges to a turbulent
solution of the NSE (1.1) when ε→ 0 in section 6. The proof makes use of an estimate of
the solution of (1.3) for large values of |x|, uniform in ε, which allows to apply standard
compactness arguments on bounded domains. The assumption “A is of compact support
uniformly in t” plays a role at this stage, and it is likely that it could be replaced by a
suitable decay assumption of A for large values of |x|.
We conclude the paper in section 7 by a series of remarks and additional open problems.
We also make natural connections between the present work and models such as Bardina
(see Layton-Lewandowski [24, 25], Cao-Lunasin-Titi [10]) and Leray-α (see Cheskidov-
Holm-Olson-Titi [14]).
Finally, the appendice A aims to prove the basic estimates about the Oseen’s tensor. The
appendice B is devoted to the non linear Volterra equations and the V-maximum principle.

Acknowledgement. I thank my colleagues Christophe Cheverry and Taoufik Hmidi of the
Institute of Mathematical Reasearch of Rennes (IRMAR) for many stimulating discussions
about the Navier-Stokes equations.
I am gratefull to Paul Alphonse and Adrien Laurent, students at the Ecole Normale
Supérieure de Rennes, who have attended my master course about the Navier-Stokes
Equations at the University of Rennes 1, during the academic year 2016-2017. Their
remarks and comments have been very useful to improve my course, and they have entirely
written the Appendice A included in this paper.
Finally, I warmly thank Luc Tartar for the very smart proof of the V-maximum principle
reported in Appendice B, and more generally for many valuable discussions on Leray’s
1934 paper and fluid mechanics over the past years.

2 Regular and turbulent solutions

2.1 Regular solutions

Let α = (α1, α2, α3) ∈ IN3, |α| = α1 + α2 + α3,

Dαu = (Dαu1, D
αu2, D

αu3), Dαui =
∂|α|ui

∂xα1
1 ∂xα2

2 ∂xα3
3

.
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For any given m ∈ IN, when we write Dmu we assume that Dαu is well defined whatever
α such that |α| = m, and in practical calculations

|Dmu| = sup
|α|=m

|Dαu|.

The standard Sobolev space Wm,p(IR3) is equipped with the norm

||w||m,p =
m∑
j=0

||Djw||Lp(IR3),

Hm(IR3) = Wm,2(IR3). In this section, we assume temporarily that u0 ∈ C1(IR3) ∩
H1(IR3) ∩ L∞(IR3) and satisfies div u0 = 0, and A ∈ C(IR+, C

1(IR)).

Definition 2.1. We say that (u, p) is a regular solution of the NSE (1.1) over the time
interval [0, T [, if

i) u, ∂tu,∇u, D2u, p,∇p are well defined and continuous in t and x for (t,x) ∈ ]0, T [×IR3,
and satisfy the relations (1.1.i) and (1.1.ii) in IR3 at all t ∈ ]0, T [,

ii) ∀ τ < T , u ∈ L∞([0, τ ], L2(IR3)3) ∩ L∞([0, τ ]× IR3)3,

iii) (u(t, ·))t>0 uniformly converges to u0 and in H1(IR3)3 as t→ 0.

The pressure at any time t is solution of the elliptic equation

∆p = div[div(−u⊗ u +A∇u)],

which gives p once u is calculated. This is why the velocity u is sometimes referred to as
the solution of the NSE instead of (u, p), for which we set:

W (t) =

∫
IR3

|u(t,x)|2dx = ||u(t, ·)||20,2,(2.1)

J(t) = ||∇u(t, ·)||0,2,(2.2)

V (t) = sup
x∈IR3

|u(t,x)| = ||u(t, ·)||0,∞,(2.3)

Vm(t) = sup
x∈IR3

|Dmu(t,x)| = ||Dmu(t, ·)||0,∞.(2.4)

At this stage, one of these quantities could be infinite at some date t. We also set

(2.5) KA(t) =

(∫
IR3

A(t,x)|∇u(t,x)|2dx
) 1

2

= ||
√
A(t, ·)∇u(t, ·)||0,2.

Definition 2.2. We say that the solution becomes singular at T if V (t)→∞ when t→ T ,
t < T .

We already know from J. Leray [27]:

Theorem 2.1. Assume A = 0. Then there exists T = O(νV −2(0)) such that the NSE
(1.1) have a unique regular solution (u, p) over the time interval [0, T [, which satisfies in
addition, u ∈ L2([0, T ], H1(IR3)3)∩C([0, T ], L2(IR3)3), and verifies the energy equality for
any t ∈ [0, T [,

(2.6)
1

2
W (t) + ν

∫ t

0
J2(t′)dt′ =

1

2
W (0).

Finally, if ν−3W (0)V (0) or ν−4W (0)J2(0) is small enough, the solution has no singularity
and can be extended for all t ∈ [0,∞[.
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J. Leray also proved that the regular solution is of class C∞ is space and time in the
interval ]0, T [, the quantities ||u(t, ·)||m,2 and Vm(t) being controled by W (0), V (0) and
J(0). Unfortunately, we are not able to generalize these results when A 6= 0 (see aditional
comments in subsection 7.1).

Remark 2.1. Since J. Leray, various definitions of regular solutions to the NSE when A =
0 and results of local strong solutions have been established by many different techniques.
See for instance Fujita-Kato [17] and Kato [23], as well as Meyer-Cannone [9], Chemin
[12] and Chemin-Gallagher [13] for further developements and references inside.

2.2 Turbulent solutions

The notion of turbulent solution is based on a variational formulation and the energy
inequality. The choice of the test vector fields space is essential. Within our framework,
the space Eσ specified below seems natural:

(2.7)
Eσ =

{
w ∈ L1

loc(IR+, H
3(IR3)3) s.t. w ∈ C(IR+, L2(IR3)3),

∇w ∈ L∞(IR, Cb(IR
3)3),

∂w

∂t
∈ L1

loc(IR+, L
2(IR3)3), div w = 0

}
.

This choice will be clear by the end of the paper. As usual, to find out the variational
formulation, we take the dot product of the equation with a vector test field w ∈ Eσ
and we apply the Stokes formula, if the a priori solution (u, p) and its derivatives satisfy
suitable integrability conditions, what we assume at this stage. The time derivative ∂tu
also adresses an issue. In our formulation, it is considered in the sense of the distribution.
Then we formally get at a given time t:

(2.8)



∫
IR3

u0(x) ·w(0,x)dx =

∫
IR3

u(t,x) ·w(t,x)dx

+

∫ t

0

∫
IR3

[u(t′,x)⊗ u(t′,x)] : ∇w(t′,x)dxdt′

−
∫ t

0

∫
IR3

u(t′,x) ·
[
div((ν +A(t′,x))∇w(t′,x)) +

∂w(t′,x)

∂t′

]
dxdt′.

Notice that as (∇p,w) = 0 because div w = 0, the pressure is missing from this variational
formulation, only involving the velocity u, which is standard in NSE’s framework.

Definition 2.3. Let u0 ∈ L2(IR3)3 such that div u0 = 0. We say that u = u(t,x) is a
turbulent solution to the NSE (1.1) with u0 as initial datum, if the following conditions
are fulfilled:

i) For all t ≥ 0, u(t, ·) ∈ L2(IR3)3,

ii) u ∈ L2(IR+, H
1(IR3)3) and the following energy inequality holds:

(2.9)
1

2
W (t) + ν

∫ t

0
J2(t′)dt′ +

∫ t

0
KA(t′)dt′ ≤ 1

2
W (0),

iii) For all t ≥ 0, and for all w ∈ Eσ, equality (2.8) holds.
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It is easily checked that when u satisfies the items i) and ii) in Definition 2.3, then all the
integrals in (2.8) are well defined for whatever w ∈ Eσ.

Assumption 2.1. To avoid repetition, we will assume throughout the rest of the paper
that u0 ∈ L2(IR3)3 and div u0 = 0.

Theorem 2.2. (J. Leray [27]) Assume A = 0. Then there exists a turbulent solu-
tion to the NSE (1.1). Moreover the turbulent solution becomes regular on the interval
]CW (0)2/ν5,∞[, for some constant C.

Remark 2.2. Leray was considering a test vector field made of C∞ vector field in space
and time, which does not change much.

The main result of this paper, which will be proved by the end of the paper, is the following:

Theorem 2.3. Assume

i) A ≥ 0 a.e in IR+ × IR3,

ii) A ∈ Cb(IR+,W
1,∞(IR3)),

iii) A is with compact support in space uniformly in t, which means that there exists
R0 > 0, such that ∀ t ≥ 0, ∀x ∈ IR3 s.t. |x| ≥ R0, A(t,x) = 0.

Then the NSE (1.1) have a turbulent solution.

In the statement above, Cb refers to as continuous bounded functions. The proof is based
on regularizing the NSE by means of mollifiers sized by a parameter ε > 0, then taking
the limit when ε→ 0.

Remark 2.3. We do not know if the turbulent solution becomes regular after a given time
T when A 6= 0 (see section 7.1 for additional comments).

Remark 2.4. Solutions based on a variational formulation like (2.8) are sometimes re-
ferred to as “very weak solutions” (see Lions-Masmoudi [30]).

3 Regularized system

3.1 Mollifier

Let ρ ∈ C∞(IR3) denotes a non negative function with compact support such that∫
IR3

ρ(x)dx = 1,

and let

ρε(x) =
1

ε3
ρ
(x

ε

)
.

Any U ∈ L1
loc(IR

3) being given, we set

U(x) = ρε ? U(x) =

∫
IR3

ρε (x− y)U(y)dy.
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It is well known that U is of class C∞ and when U ∈ Lp(IR3), 1 ≤ p <∞, then U converges
to U in Lp(IR3) when ε→ 0. We will need the following formal estimates:

||U ||0,∞ ≤ ||U ||0,∞,(3.1)

||DmU ||0,∞ ≤
Cm

ε3/2+m
||U ||0,2,(3.2)

||U − U ||m,2 ≤ Cm ε ||U ||m−1,2,(3.3)

where Cm is a constant that only depends on m, the shape of ρ and its derivatives. These
estimates as well as many others properties about regularization by convolution can be
found for instance in [7, 27, 31].

Finally, we assume that the kernel ρ is an even function, so that the regularization operator
U → U is self adjoint in L2.

3.2 Approximated system

We regularize the convection and the eddy viscosity terms as follows:

i) Following J. Leray, the convective term u · ∇u is approximated by u · ∇u,

ii) The eddy viscosity term −div(A∇u) is approximated by −div (A∇u).

This way of regularizing the eddy viscosity term provides the advantage that it preserves
its dissipative feature. Indeed, we formally have by the self adjointness of the bar operator:

(3.4) (−div (A∇u),u) = (−div (A∇u),u) = (A∇u,∇u) =

∫
IR3

A|∇u|2 ≥ 0,

as A ≥ 0, and where (·, ·) denotes the scalar product in L2.
According to Assumption 2.1, the initial datum also needs to be regularized. Thus, we
recall what is the regularized NSE, already written in the introduction:

(3.5)


∂tu + u · ∇u− ν∆u− div (A∇u) +∇p = 0, (i)
div u = 0, (ii)
ut=0 = u0. (iii)

We adopt for the regularized NSE (3.5), the notion of regular solution given by Definition
2.1. By the end of the next section, we will have proved:

Theorem 3.1. Assume A ≥ 0, A ∈ Cb(IR+, L
∞(IR3)3). Then the regularized NSE (3.5)

have a unique regular solution (u, p) ∈ C(IR+, H
m(IR3)3 × Hm(IR3)), ∀m ∈ IN, which

satisfies the energy balance

(3.6)
1

2
W (t) + ν

∫ t

0
J2(t′)dt′ +

∫ t

0
K2
A,ε(t

′)dt′ =
1

2
Wε(0).

Recall that W (t) = ||u(t, ·)||20,2 and J(t) = ||∇u(t, ·)||0,2 were initially defined by (2.1) and

(2.2). The quantity Wε(0) = ||u0||20,2 verifies

(3.7) Wε(0) ≤W (0) =

∫
IR3

|u0(x)|2dx.
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We also have set

(3.8) KA,ε(t) =

(∫
IR3

A(t,x)|∇u(t,x)|2dx
) 1

2

.

A similar result is in Leray’s paper [27] when A = 0, section 26. His argument, based on
the control of V (t) = ||u(t, ·)||0,∞, does not work when A 6= 0 (the main reason is detailed
in section 7.1). This is why we had to write an original proof of Theorem 3.1 when A 6= 0,
based this time on the control of the Hm norms of the velocity, i.e. ||u(t, ·)||m,2, for any
m ≥ 0. To do so, we will find out sharp estimates, the control parameters of which are
the L2 norm of u0 and ε. This led us to make improvements in the understanding of
the equivalence between the equations and the integral representation, as well as in the
processing of the pressure by modern regularity results, Sobolev spaces and the Calderón-
Zygmund Theorem [38], which was not known as J. Leray was writing his paper.

Remark 3.1. The assumption “A is with compact support in space uniformly in time”
is not needed in this statement. Note that no further information about its gradient is
required at this stage.

Assumption 3.1. Throughout the rest of the paper, we will assume at least that A ≥ 0,
A ∈ Cb(IR+, L

∞(IR3)).

3.3 Oseen representation

The proof of Theorem 3.1 is based on an integral formulation of the regularized NSE (3.5)
by a suitable Kernel known as the Oseen’s potential, recalled in this subsection.

Let us consider the evolutionary Stokes problem with a continuous source term f and a
continuous initial datum v0:

(3.9)


∂tu− ν∆u +∇p = f ,
div u = 0,
ut=0 = v0.

C. Oseen [33, 34] shown that there exists a tensor T = (Tij)1≤i,j≤3 such that if (u, p) is a
regular solution of (3.9), then the velocity u solution of (3.9) verifies

(3.10) u(t,x) = (Q ? v0)(t,x) +

∫ t

0

∫
IR3

T(t− t′,x− y) · f(t′,y) dy,

where

(3.11) Q(t,x) =
1

(4πνt)3/2
e−
|x|2
4νt ,

is the heat kernel and

(Q ? v0)(t,x) =

∫
IR3

Q(t,x− y)v0(y)dy.

The components of T can be specified as follows. Let

G(t, x) =
1

|x|

∫ |x|
0

e−
ρ2

4νt

√
t

dρ.
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The function G satisfies the PDE

(3.12) ∆ (∂tG+ ν∆G) = 0,

and the Oseen’s tensor is given by

(3.13) ∀ i 6= j 6= k, Tii = −∂
2G

∂x2j
− ∂2G

∂x2k
, ∀ i 6= j, Tij =

∂2G

∂xj∂xi
.

This tensor satisfies the inverse Euler system, where Li = (Ti1, Ti2, Ti3),

(3.14)

 ∂tLi + ν∆Li −∇
∂

∂xi
(∂tG+ ν∆G) = 0,

divLi = 0.

In Appendice A, the following estimates are proved:

|T(t,x)| ≤ C

(|x|2 + νt)
3
2

,(3.15)

∀m ≥ 0, |DmT(t,x)| ≤ Cm

(|x|2 + νt)
m+3

2

,(3.16)

C and Cm being some constants. We start with the following regularity result.

Lemma 3.1. For all T > 0, m ≥ 0, DmT ∈ Lp([0, T ], Lq(IR3), for exponents (p, q) such
that q > 3/(m+ 3) and p < (3/2)q′, where 1/q + 1/q′ = 1.

Proof. By the estimate (3.16) we get

(3.17)

∫
IR3

|DmT(t,x)|qdx ≤ C
∫ ∞
0

r2dr

(r2 + νt)
q(m+3)

2

=
1

(νt)
q(m+3)−3

2

∫ ∞
0

ρ2dρ

(ρ2 + 1)
q(m+3)

2

.

Therefore, DmT ∈ Lp([0, T ], Lq(IR3) for (p, q) such that

q(m+ 3)− 2 > 1,
p(q(m+ 3)− 3)

2q
< 1,

hence the result.

In particular, for m = 1, we have the following corollary:

Corollary 3.1. Let t > 0. Then t′ → ||∇T(t− t′, ·)||0,1 ∈ L1([0, t]) and,

(3.18) ||∇T(t− t′, ·)||0,1 ≤
C√

ν(t− t′)
.

Before stating the next result, we must specify some notations. Let V = (Vij)1≤i,j≤3,
W = (Wij)1≤i,j≤3 two tensors, V ·W = (VijWjk)1≤i,k≤3 their product . The vector divV
is given component by component by:

(3.19) [divV ]i = ∂jVij ,

where ∂j = ∂/∂xj . The vector ∇V : W is given by

(3.20) [∇V : W ]i = ∂kVijWjk.

Finally

(3.21) div2V = ∂i∂jVij .
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Lemma 3.2. Let (u, p) be a regular solution of the regularized NSE (3.5) over the time
interval [0, T [ for a given T > 0. Then the velocity u satisfies for all t ∈ [0, T [,

(3.22)


u(t,x) = (Q ? u0)(t,x)

+

∫ t

0

∫
IR3

∇T(t− t′,x− y) : [u(t′,y)⊗ u(t′,y)−A∇u(t′,y)] dydt′,

and the pressure p is deduced from the velocity u by the formula:

(3.23) p(t,x) =
1

4π
div2

∫
IR3

u(t,y)⊗ u(t,y)−A∇u(t,y)

|x− y|
dy,

Proof. Let

(3.24) X(t, x) = u(t,x)⊗ u(t,x)−A∇u(t,x),

so that the regularized NSE (3.5) can be written in the form

(3.25)


∂tu− ν∆u +∇p = −divX,
div u = 0,
ut=0 = u0.

The proof is divided in two steps:

Step 1) We first study the regularity of X in order to obtain the formula (3.23) and
the formula: ∀ t ∈ [0, t[,

(3.26) u(t,x) = (Q ? u0)(t,x) + div

∫ t

0

∫
IR3

T(t− t′,x− y) ·X(t′,y)dt′.

Step 2) We prove that we can switch the integral and the derivative in the formula
(3.26).

Step 1) On one hand we have

||u(t′, ·)⊗ u(t′, ·)||0,2 ≤ ||u(t, ·)||0,∞||u(t, ·)||0,2,

and by (3.2),

||u(t, ·)||0,∞ ≤ Cε−
3
2 ||u(t, ·)||0,2,

which leads to

(3.27) ||u(t′, ·)⊗ u(t′, ·)||0,2 ≤ Cε−
3
2W (t).

On an other hand, similar calculus inequalities lead to

(3.28) ||A∇u(t′, ·)||0,2 ≤ C||NA||∞ε−1
√
W (t),

where we have set

(3.29) NA(t) = ||A(t, ·)||0,∞.

Therefore,

(3.30) ||X(t, ·)||0,2 ≤ Cε−1
[
ε−

1
2W (t) + ||NA||∞

√
W (t)

]
.
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Then according to the item ii) in the definition (2.1),

(3.31) ∀ τ ∈ [0, T [, X ∈ L∞([0, τ ], L2(IR3)9).

By (3.2) combined with (4.10), we obtain

(3.32) ||A(t′, ·)∇u(t, ·)||0,∞ ≤ Cε−5/2||NA||∞
√
W (t),

and by (3.1), we finally have

(3.33) ||X(t, ·)||0,∞ ≤ V (t)2 + Cε−5/2||NA||∞
√
W (t).

Then, again by the item ii) in the definition (2.1), for any τ < T ,

(3.34) ∀ τ ∈ [0, T [, X ∈ L∞([0, τ ]× IR3)9.

Moreover, DαX is continuous whatever |α| = 2, in view of item i) of Definition 2.1 and
the regularizing effect of the bar operator. Therefore, (3.31) and (3.34) being satisfied, we
can apply the lemma 8 in [27] and we get (3.23) as well as (3.26).

Step 2)2 In what follows we set

(3.35) Nτ,X = ||X||L∞([0,τ ]×IR3).

Let

(3.36) V (t,x) =

∫ t

0

∫
IR3

T(t− t′,x− y) ·X(t′,y)dt′.

Let hi = hei, for i = 1, 2, 3. Let Vh(t,x) denotes the function

Vh(t,x) =
1

h
[V (t,x + hi)− V (t,x)] .

on one hand we have,

(3.37) ∂iV (t,x) = lim
h→0

Vh(t,x),

and on the other hand,

(3.38) Vh(t,x) =

∫ t

0

∫
IR3

1

h
[T(t− t′,x− y + hi)−T(t− t′,x− y)] : X(t′,y)dt′.

Let Uh(t, t′; x,y) denotes the function

Uh(t, t′; x,y) =
1

h
[T(t− t′,x− y + hi)−T(t− t′,x− y)] : X(t′,y),

so that

Vh(t,x) =

∫ t

0

∫
IR3

Uh(t, t′; x,y)dydt′.

2Leray states his Lemma 8 as a consequence of a uniqueness result. If the uniqueness result is entirely
proved, there is in his paper [27] no proof of this lemma 8, although it is quite reasonnable. In this
present step 2), we are kniting things backward and we indirectly more or less prove this lemma 8, without
considering the uniqueness argument, based on the L2 integrabilities of X and u, which holds in our case.
This proof mainly explains the underlying machine for the derivation of the following Hm estimates.
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We will pass to the limit in this integral for h→ 0, by two consecutive applications of the
Lebesgue’s theorem. By definition, for any given 0 ≤ t′ ≤ t, x,y ∈ IR3,

(3.39) lim
h→0

Uh(t, t′; x,y) = ∂iT(t− t′,x− y) : X(t′,y).

We write the standard formula:

(3.40)
1

h
[T(t− t′,x− y + hi)−T(t− t′,x− y)] =

∫ 1

0
∂iT(t− t′,x− y + shi)ds.

By consequence, by (3.16), we have for any fixed 0 ≤ t′ < t, x ∈ IR3, and any h such that
|h| ≤ 1/2,

|Uh(t, t′; x,y)| ≤ CNt,X

[
1IB(x,1)

ν2(t− t′)2
+

1IB(x,1)c

(|x− y|2/4 + ν(t− t′))2

]
= H(t, t′; x,y),

and we observe that H(t, t′; x,y) ∈ L1
y(IR3) for any given (t, t′; x). Then by Lebesgue’s

Theorem,

(3.41) lim
h→0

∫
IR3

Uh(t, t′; x,y)dy =

∫
IR3

∂iT(t− t′,x− y) : X(t′,y)dy = v(t, t′; x),

for all 0 ≤ t′ < t, x ∈ IR3. Let

vh(t, t′; x) =

∫
IR3

Uh(t, t′; x,y)dy.

In other words, we have proved that for any fixed (t,x) ∈ ]0, T [×IR3,

∀ t′ ∈ [0, t[, lim
h→0

vh(t, t′; x) = v(t, t′; x).

Notice that ∫ t

0
vh(t, t′; x)dt′ = Vh(t,x),

so that we must take the limit in the integral above when h→ 0. By using (3.40) combined
with (3.16) once again, we obtain by Fubini’s Theorem,

(3.42) |vh(t, t′; x)| ≤ CNt,X

∫ 1

0
ds

∫
IR3

dy

(|x− y + shi|2 + ν(t− t′))2
,

which leads to, by the same calculation as that in the proof of Lemma 3.1,

(3.43) |vh(t, t′; x)| ≤
CNt,X√
ν(t− t′)

∈ L1([0, t]).

Then, by Lebesgue’s Theorem once again,

(3.44) lim
h→0

∫ t

0
vh(t, t′; x)dt′ = lim

h→0
Vh(t,x) =

∫ t

0
v(t, t′; x)dt′,

which means by (3.37) and (3.41),

∂i

∫ t

0

∫
IR3

T(t− t′,x− y) ·X(t′,y)dt′ =

∫ t

0

∫
IR3

∂iT(t− t′,x− y) ·X(t′,y)dt′,

hence formula (3.22) by (3.26).

Remark 3.2. By a similar reasonning based on Lebesgue’s Theorem, we also can prove
that u ∈ C([0, T [, L2(IR3)3) ∩ C([0, T [, L∞(IR3)3). More generally, the time continuity of
the velocity in Hm will be proved in Lemma 4.6 below by directly using the equation.
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4 A priori estimates and energy balance

We derive from the integral representation (3.22) a prioriHm andWm,∞ estimates satisfied
by the velocity part of any regular solution of the regularized NSE (1.3). We start with
local in time estimates which we afterwards extend for all time. We also focus on the
obtention of energy equalities, which requires estimates for the pressure.
The constants involved in the inequalities of this section, depend on those involved in the
inequality (3.16), on the shape of ρ and its derivatives, which will be not systematically
mentioned.
Throughout this section 4, (u, p) denotes a regular solution of the regularized NSE (3.5).
Moreover, Assumption 2.1 and Assumption 3.1 hold.

4.1 Local time L2 and L∞ estimates

We recall that the definition of a regular solution requires that the velocity satisfies ∀ τ < T ,
u ∈ L∞([0, τ ], L2(IR3)3) ∩ L∞([0, τ ] × IR3)3. As we saw it in the previous section, this
information led to the integral representation formula (3.22). The aim of this section is to
show that the L∞(L2) and L∞(L∞) norms of u are entirely driven by the initial kinetic
energy, namely the quantity W (0), which will be derived from this integral representation
formula (3.22) combined with the V-maximum principle set out in Appendice B.

Lemma 4.1. There exists tε(W (0)) > 0 such that ∀ t ∈ [0, tε(W (0))],

W (t) ≤ 4W (0).(4.1)

V (t) ≤ 2Cε−
3
2

√
W (0).(4.2)

Moreover the function x→ tε(x) is a non increasing function of x.

Proof. We start by proving (4.1) over a time interval [0, t1,ε(W (0))]. The field u is a
regular solution to the regularized NSE, therefore as we already have said, it belongs to
L∞([0, T/2], L2(IR3)3). Let

WT/2 = sup
t∈[0,T/2]

W (t) <∞.

Assume that

(4.3) 4W (0) < WT/2,

otherwise take t1,ε(W (0)) = T/2. Starting from this and working on the time interval
[0, T/2], we deduce from the integral representation (3.22) combined with the Young’s
inequality,

(4.4)
√
W (t) ≤

√
W (0) +

∫ t

0
||∇T(t− t′, ·)||0,1||X(t′, ·)||0,2dt′,

where X is defined by (3.24). Therefore, by (3.18),

(4.5)
√
W (t) ≤

√
W (0) + C

∫ t

0

||X(t′, ·)||0,2√
ν(t− t′)

dt′.

The estimate (3.30) yields

(4.6)
√
W (t) ≤

√
W (0) + Cε−1

∫ t

0

ε−1/2W (t′) + ||NA||∞
√
W (t′)√

ν(t− t′)
dt′.
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Let P (f) be defined by

(4.7)


P (f) = 0 if f ≤ 0,

P (f) = Cε−1[ε−1/2f2 + ||NA||∞f ] if 0 ≤ f ≤
√
WT/2,

P (f) = Cε−1[ε−1/2WT/2 + ||NA||∞
√
WT/2] if f ≤

√
WT/2.

As t ∈ [0, T/2] and W (t) ≤ WT/2, the inequality (4.6) shows that t →
√
W (t) is a

subsolution of the non linear Volterra equation (see Appendix B)

(4.8) f(t) =
√
W (0) +

∫ t

0

P (f)(t′)√
ν(t− t′)

dt′,

with the kernel

K(t) =
1√
νt
∈ L1([0, T ]).

In this equation, P is indeed a non decreasing Lipchitz continuous function. As 4W (0) <
WT/2, the constant function g(t) = 2

√
W (0) is a supersolution of Equation (4.8) over the

time interval [0, tε(W (0))], where

(4.9) t1,ε(x) = inf

(
νε2

4C2(||NA||∞ + ε−1/2
√
x)2

,
T

2

)
.

We then deduce from the V-maximum principle proved in Lemma B.4, that

(4.10) ∀ t ∈ [0, t1,ε(W (0))],
√
W (t) ≤ 2

√
W (0).

Notice that the function x→ t1,ε(x) given by (4.9) is non increasing.

Let us now prove (4.2). Take t, t′ ∈ [0, t1,ε(W (0))]. Combining (3.32) with (4.10), we
obtain

(4.11) ||A(t′, ·)∇u(t′, ·)||0,∞ ≤ Cε−5/2||NA||∞
√
W (0).

Moreover, repeating the combination of (3.2) with (4.1) gives

||u(t, ·)||0,∞ ≤ Cε−
3
2 ||u(t, ·)||0,2 ≤ Cε−

3
2

√
W (0),

hence

(4.12) ||u(t′, ·)⊗ u(t′, ·)||0,∞ ≤ Cε−
3
2

√
W (0)V (t′),

which improves the first estimate (3.33) of ||X(t′, ·)||0,∞ by giving

(4.13) ||X(t′, ·)||0,∞ ≤ Cε−
3
2

√
W (0)

[
V (t′) + ε−1||NA||∞

]
.

Finally, as

(4.14) Vε(0) = ||u0||0,∞ ≤ Cε−
3
2 ||u||0,2 = Cε−

3
2

√
W (0),

we get

(4.15) ||Q ? u0(t,x)||0,∞ ≤ Vε(0) ≤ Cε−
3
2

√
W (0).
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We combine (4.13) and (4.15) with the formula (3.22) and (3.18), which yields for any
t ∈ [0, t1,ε],

(4.16) V (t) ≤ Cε−
3
2

√
W (0)

(
1 +

∫ t

0

V (t′) + ε−1||NA||∞√
ν(t− t′)

dt′

)
.

Therefore, using the V-maximum principle again gives (we skip the details)

∀ t ∈ [0, tε(W (0))], V (t) ≤ 2Cε−
3
2

√
W (0),

where, after a straighforward calculation,

tε(x) = inf

(
2εν

(ε−
1
2 ||NA||∞ + 4C

√
x)2

, t1,ε

)
.

The function x→ tε(x) is indeed non increasing.

4.2 Local time Hm and W 1,∞ estimates

To get Hm estimates, uniform in time, we will argue by induction in taking consecutive
derivatives of the integral formula (3.22), which comes back to the issue of switching
integrals and derivatives. The first lemma of this section is the basis to justify the first
switching, then initializing the induction.

Lemma 4.2. Recall that V1(t) = ||Du(t, ·)||0,∞. Then, ∀ t ∈ [0, tε(W (0))],

(4.17) V1(t) ≤ Cν−
3
2 ε−

5
3

√
W (0)

[
ε−

1
3

√
W (0) + 1

]√
t+ C ′ε−

3
2

√
W (0).

Proof. We can apply to this case the inequality (2.14) page 213 in Leray [27], which yields:
∀ t ∈ [0, tε(W (0))], ∀x,y ∈ IR3,

(4.18)

|u(t,x)− u(t,y)| ≤ C|x− y|
1
2

∫ t

0

||(u⊗ u)(t′, ·)||0,∞ + ||A∇u(t′, ·)||0,∞
[ν(t− t′)]

3
4

dt′+

|Q ? u0(x)−Q ? u0(y)|.

Hence, by (3.2), (4.2), (4.11) and (4.12),

(4.19)
|u(t,x)− u(t,y)| ≤ Cν−

3
4 ε−

5
3

√
W (0)

[
ε−

1
3

√
W (0) + 1

]
|x− y|

1
2 t

1
4 +

C ′ε−
3
2

√
W (0).

.

Therefore, the inequality (2.16) page 214 in Leray [27] leads to

(4.20) V1(t) ≤ Cν−
3
2 ε−

5
3

√
W (0)

[
ε−

1
3

√
W (0) + 1

] ∫ t

0

(t′)
1
4

(t− t′)
3
4

dt′ + C ′ε−
3
2

√
W (0),

which gives (4.17).

This result allows us to prove:
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Lemma 4.3. There exists t
(1)
ε (W (0)) such that ∀ t ∈ [0, t

(1)
ε (W (0))],

(4.21) J(t) ≤ 2Cε−1
√
W (0), V1(t) ≤ 2Cε−

5
2

√
W (0).

Moreover, the function x→ t
(1)
ε (x) is non increasing.

Proof. Let t ≤ tε(W (0)). On one hand we have

(4.22) ∀α = (α1, α2, α3) ∈ IN3, Dα(Q ? u0) = Q ? Dαu0.

On a second hand, we deduce from (3.2), (4.1), (4.2) and the estimate (4.17) in Lemma
4.2 above, that

∇X ∈ L∞([0, tε(W (0))]× IR3)27 ∩ L∞([0, tε(W (0))], L2(IR3)27).

This information combined with the estimates (3.16) and (3.18), leads to: ∀ t ∈ [0, tε(W (0))],

(4.23) ∇u(t,x) = Q ?∇u0 +

∫ t

0

∫
IR3

∇T(t− t′,x− y) : ∇X(t′,y) dydt′.

The reasoning is very close to that of step ii) of Lemma 3.2’s proof so that it is not necessary
to repeat it. From (4.23), by combining Young’s inequality and (3.18) once again, we have

(4.24) J(t) ≤ ||∇u0||0,2 + C

∫ t

0

dt′√
ν(t− t′)

(
||∇(u(t, ·)⊗ u(t, ·))||0,2 + ||∇A∇u(t, ·)||0,2

)
.

It remains to evaluate each term in the r.h.s of (4.24) one after another, in terms of J(t),
without calling on (4.17), that has only served to get (4.23). To begin with, notice that

(4.25) ||∇u0||0,2 ≤ Cε−1
√
W (0),

Furthermore,

||∇(u(t, ·)⊗ u(t, ·))||0,2 ≤ ||∇u(t, ·)||0,∞||u(t, ·)||0,2 + ||u(t, ·)||0,∞J(t)

≤ Cε−3/2
√
W (t)J(t) ≤ Cε−3/2

√
W (0)J(t),

by using W (t) ≤ 4W (0) since t ≤ tε(W (0)). Similarly, for the same reason, we also have

||∇A∇u(t, ·)||0,2 ≤ Cε−2||NA||∞
√
W (0).

Therefore we get

(4.26) J(t) ≤ Cε−1
√
W (0)

[
1 +

∫ t

0

ε−1||NA||∞ + ε−1/2J(t′)√
ν(t− t′)

dt′

]
.

Using the V-maximum principle once again, we deduce from (4.26) that

(4.27) ∀ t ∈ [0, t(1)ε (W (0))], J(t) ≤ 2Cε−1
√
W (0),

where

(4.28) t(1)ε (x) = inf

(
νε2[

||NA||∞ + 2Cε−1/2
√
x
]2 , tε(x)

)
.

We note that x→ t
(1)
ε (x) is non increasing. Once J(t) is under control, we control V1(t) as

in the proof of Lemma 4.1. The estimate (4.21) is now uniform in time and substancially
improves (4.17).
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This result yields by induction:

Lemma 4.4. Let m ≥ 1. There exists t
(m)
ε (W (0)) such that ∀ t ∈ [0, t

(m)
ε (W (0))],

(4.29) ||u(t, ·)||m,2 ≤ Cmε−m
√
W (0), ||u(t, ·)||m,∞ ≤ Cmε−(m+ 3

2
)
√
W (0).

Moreover, the function x→ t
(m)
ε (x) is non increasing.

Proof. Let m ≥ 1. The property is already proved in the case m = 1 in lemma 4.3. Let
m ≥ 2. For the simplicity, we denote by C the constants instead of Ck (k = 1, · · · ,m).

Assume by induction that for any 1 ≤ k ≤ m− 1 there exists t
(k)
ε (W (0)) > 0 such that

0 < t(m−1)ε (W (0)) ≤ · · · ≤ t(k)ε (W (0)) · · · ≤ tε(W (0)),

and ∀ t ∈ [0, t
(k)
ε (W (0))],

(4.30)
||u(t, ·)||k,2 ≤ Cε−k

√
W (0),

||u(t, ·)||k,∞ ≤ Cε−(k+ 3
2)√W (0),

and ∀ 1 ≤ k ≤ m− 1, the function x→ t
(k)
ε (x) is non increasing. We first derive a bound

for ||u(t, ·)||m,2. Before all, we note that:

(4.31) ||Dmu0||0,2 ≤ Cε−m
√
W (0).

Let t ∈ [0, t
(m−1)
ε (W (0))]. The same arguments as those developed in the proof of Lemma

4.2 yield by induction to
Vm(t) ≤ ϕ(t),

where t→ ϕ(t) is a continuous function. Let α = (α1, α2, α3), |α| = m. From this, we get

DαX ∈ L∞([0, t(1)ε (W (0))]× IR3)9 ∩ L∞([0, t(1)ε (W (0))], L2(IR3)9),

which gives by arguments already set out,

Dαu(t,x) = Q ?∇u0 +

∫ t

0

∫
IR3

∇T(t− t′,x− y) : DαX(t′,y) dydt′.

It remains to derive from the induction hypothesis a sharp estimate of ||DαX(t′,y)||0,2 in
order to use the V-maximum principle to control ||Dαu(t′,y)||0,2. According to Lemma
4.1, the choice of t and usual results about convolution, we have

(4.32) ||DαA∇u(t, ·)||0,2 ≤ C||NA||∞ε−(m+1)
√
W (t) ≤ 2C||NA||∞ε−(m+1)

√
W (0).

Furthermore, the Leibnitz formula gives,

(4.33) Dα(u⊗ u) = u⊗Dαu +
∑

β=(p,q,r)
|β|<|α|

Cpα1
Cqα2

Crα3
Dβu⊗Dα−βu.

We deduce from (3.2) and Lemma 4.1,

||Dα(u⊗ u)||0,2 ≤ Cε−3/2
√
W (0)

||Dαu||0,2 +
∑
|β|<|α|

ε−|β|||Dα−βu||0,2

 .
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The induction hypothesis yields

(4.34) ||Dα(u⊗ u)||0,2 ≤ Cε−3/2
√
W (0)

[
||Dαu||0,2 +mε−2m

√
W (0)

]
.

Notice that we have not optimized things above, and this last estimate could be substan-
cially improved. However, this is not essential. Now, by combining (3.16), (3.18), (4.31),
(4.32) and (4.34) we obtain

(4.35)

||Dαu(t, ·)||0,2 ≤ C
√
W (0) [ε−m+

∫ t

0

ε−3/2||Dαu(t′, ·)||0,2 + ε−(m+1)||NA||∞ +mε−(2m+ 3
2
)
√
W (0)√

ν(t− t′)
dt′

]
.

By the V-maximum principle, we deduce from (4.35) that

(4.36) ∀ t ∈ [0, t(m)
ε (W (0))], ||Dαu(t, ·)||0,2 ≤ 2Cε−m

√
W (0),

where

(4.37) t(m)
ε (x) = inf

(
νε2[

||NA||∞ + Cε−1/2(1 +mε−m)
√
x
]2 , t(m−1)ε (x)

)
,

and x→ t
(m)
ε (x) is clearly non increasing. By a similar process, we also found the bound

for Vm(t), therefore ||u(t, ·)||m,∞.

Remark 4.1. We observe that t
(m)
ε (x) → 0 as ε → 0, for fixed x and m. Moreover, the

only estimate which does not blow up when ε→ 0, is the estimate (4.2) about W (t). This
is in coherence with all former known results about the Navier-Stokes equations.

In the following, we set
Iε,m = [0, t(m)

ε (W (0))].

4.3 Energy balance and transition from local to global time

The transition from local to global time is based on the energy balance, which remains to
be justifed. To do so, we must find additional estimates about the pressure to check that
it satisfies right integrability conditions. The pressure satisfies the elliptic equation:

(4.38) ∆p = div[div(−u⊗ u +A∇u)].

Therefore, we can write:

(4.39) p(t,x) =
1

4π

∫
IR3

∇2

(
1

r

)
[−u⊗ u +A∇u](t,y)dy,

where ∇2 = (∂i∂j)1≤i,j≤3, r = |x− y|. This expression must be understood as a singular
integral operator, with a δ-function for i = j. By the Calderón-Zygmund Theorem (see
in E. Stein [38] and also in P. Galdi [18], chapters 2 and 3) and Lemma 4.1, we see that
p ∈ C([0, tε(W (0))], L2(IR3)) and the L2 bound is uniform in t. From this, the differential
quotient method due to L. Nirenberg [32] and the standard elliptic theory (see also in
Brezis [7], section IX.6), combined with Lemma 4.4 allows to write by induction that
∀m ≥ 0, ∀ t ∈ Iε,m+2,

(4.40) ||p(t, ·)||m,2 ≤ C(W (0), ||NA||∞, ε,m).

Having said that, we can be more specific:
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Lemma 4.5. Let m ≥ 4, t ∈ Iε,m+4. Then

(4.41) ||p(t, ·)||m,2 ≤ Cmε−m
√
W (0)

[
ε−1||NA||∞ + ε−m

√
W (0)

]
,

where we recall that NA(t) = ||A(t, ·)||0,∞.

Proof. Let t ∈ Iε,m+4, α = (α1, α2, α3) such that |α| ≤ m. As H4(IR3) ↪→ C2(IR3),
then Dαu(t, ·), Dαp(t, ·) ∈ C2(IR3), which allows to derive the regularized Navier-Stokes
equations up to order α. In particular, we have at time t:

(4.42) ∂tD
αu− ν∆Dαu +∇Dαp = −Dα(u⊗ u) +Dα(A∇u).

Subsequently, from divDαu = 0 we get,

(4.43) Dαp(t,x) =
1

4π

∫
IR3

∇2

(
1

r

)
[Dα(u⊗ u)(t,y)−Dα(A∇u)(t,y)]dy.

As m ≥ 4, Hm(IR3) is an algebra, hence by (4.29)

(4.44) ||(u⊗ u)(t, ·)||m,2 ≤ C||u(t, ·)||m,2||u(t, ·)||m,2 ≤ Cmε−2mW (0).

Therefore, combining this inequality with (4.32) and Calderòn-Zigmung Theorem, we ob-
tain

(4.45)

||Dαp(t, ·)||0,2 ≤ C(||Dα(u⊗ u)(t, ·)||0,2 + ||DαA∇u(t, ·)||0,2)

≤ Cmε−m
√
W (0)

[
ε−m

√
W (0) + ε−1||NA||∞

]
= Pm,ε.

Therefore, p(t, ·) ∈ Hm(IR3) for all t ∈ Iε,m+4 and

(4.46) ||p(t, ·)||m,2 ≤ mPm,ε,

giving (4.41).

Lemma 4.6. Let m ≥ 4. Then u ∈ C(Iε,m+4, H
m(IR3)3) and for all α such that |α| ≤ m,

the following energy balance holds:

(4.47)
1

2

∫
IR3

|Dαu(t,x)|2dx =
1

2

∫
IR3

|Dαu0(x)|2dx +

∫ t

0

[
I1(t

′) + I2(t
′) + I3(t

′)
]
dt′,

where 

I1(t
′) = −

∫
IR3

Dα(u⊗ u)(t′,x) : ∇Dαu(t′,x)dx,

I2(t
′) = −ν

∫
IR3

|∇Dαu(t′,x)|2dx,

I3(t
′) = −

∫
IR3

DαA∇u(t′,x) · ∇Dαu(t′,x)dx.

In particular, we have ∀ t ∈ Iε,m+4,

(4.48)
1

2
W (t) + ν

∫ t

0
J2(t′)dt′ +

∫ t

0
K2
A,ε(t

′)dt′ =
1

2
Wε(0),

for all t ∈ [0, T [, where W (t) and J(t) were initially defined by (2.1) and (2.2), and KA,ε

by (3.8).
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Proof. We deduce from the equation (4.42),

(4.49) Dα(∂tu) = −div(Dα(u⊗ u)) + ν∆Dαu + divDαA∇u−∇Dαp.

Therefore, by (4.29) and (4.41), we get

(4.50)
||Dα(∂tu)(t, ·)||0,2 ≤

Cm+1ε
−(m+1)

√
W (0)

[√
W (0)(1 + ε−m) + ε−1(ν + ||NA||∞)

]
.

By consequence, u, ∂tu ∈ L∞(Iε,m+4, H
m(IR3)3) ⊂ L2(Iε,m+4, H

m(IR3)3). Therefore,
by a well known result of functional analysis (see in Temam [42] for example), u ∈
C(Iε,m+4, H

m(IR3)3) and

(∂tu(t, ·),u(t, ·))m =
d

2dt
||u(t, ·)||2m,2.

Following the usual process, we form the dot product of the equation (4.49) with Dαu.
We integrate over IR3 by using the Stokes formula, which is possible by the integrabilty
properties of Dαu and Dαp. In particular, since divDαu = 0, we get

(∇Dαp,Dαu) = 0.

We get the energy balance (4.47) after integrating in time over [0, t]. In the special case
α = 0, we obtain (4.48) by noting that in addition: (u · ∇u,u) = 0.

Theorem 4.1. Let T > 0. Then3 ∀m ≥ 4, (u, p) ∈ C([0, T ], Hm(IR3) × Hm(IR3)), the
energy balance (4.48) holds for all t ∈ [0, T ] as well as the estimates (4.29) and (4.41).

Proof. The energy balance (4.48) combined with the inequality (3.7), shows that for all
t ∈ Iε,m+4, we haveW (t) ≤W (0), improving substancially the estimate (4.1). In particular
we can write

(4.51) W (δt(m)
ε (W (0)) ≤W (0), where δt(m)

ε (x) = t(m+4)
ε (x).

Let (t
(m)
n,ε )n≥1 be the sequence given by

(4.52) t
(m)
1,ε = δt(m)

ε (W (0)), t(m)
n,ε = t

(m)
n−1,ε + δt(m)

ε (W (tn−1,ε)).

Assume that for a given n, t
(m)
n,ε is constructed such that u ∈ C([0, t

(m)
n,ε ], Hm(IR3)), which

holds when n = 1 by Lemma 4.4 since t
(m+4)
ε ≤ t

(m)
ε . In particular the energy balance

holds over [0, t
(m)
n,ε ], and W (t

(m)
n,ε ) ≤ W (0), which yields δt

(m)
ε (W (t

(m)
n,ε )) ≥ δt

(m)
ε (W (0)) by

the decrease of the function x→ t
(m+4)
ε (x). Therefore, we can reproduce the arguments of

the section 4.1 and the lemma 4.5 and 4.6 from the time t
(m)
n,ε , by the continuity in time,

thus validating the iteration n+ 1 of (4.52) by the inductive hypothesis. In particular we
have

t
(m)
n+1,ε =

n∑
k=1

δt(m)
ε (W (t

(m)
k,ε )) ≥ nδt(m)

ε (W (0)),

which is larger than T for n large enough, concluding the proof.

3we take m ≥ 4 to be in coherence with the arguments set out in Lemma 4.6. However, what can do
more can do less, and the result holds for m = 0, 1, 2, 3.
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Remark 4.2. The estimates obtained in this section prove that for any m ≥ 0,

(4.53) ||u(t, ·)− u0||m,2 ≤ Cmε−(2m+ 3
2
)

√
t

ν
.

Remark 4.3. The continuity in time ensures that any regular solution to the regularized
NSE (3.5) satisfies the following semi-group like property: ∀ t0 ∈]0, T [, ∀ t ∈ [t0, T [,

(4.54)


u(t,x) = (Q ? u(t0, ·))(t,x)

+

∫ t

t0

∫
IR3

∇T(t− t′,x− y) : [u(t′,y)⊗ u(t′,y)−A∇u(t′,y)] dydt′.

This what is implicitely used in the proof of Theorem 4.1.

Once the regularity result of Theorem 4.1 is established, following the standard routine
yields the uniqueness result:

Theorem 4.2. The regularized NSE (3.5) have at the most one regular soution (u, p).

5 Existence of solution for the regularized NSE

The aim of this section is the proof of the existence result stated in Theorem 3.1. The
solution of the regularized NSE (3.5) is constructed by a standard Picard iteration process
based on the Oseen integral representation.

5.1 Iterations

Let us put

(5.1) u1(t,x) = (Q ? u0)(t,x),

and for all n > 0,

(5.2)


un+1(t,x) = (Q ? u0)(t,x)

+

∫ t

0

∫
IR3

∇T(t− t′,x− y) : [(un ⊗ un)(t′,y)−A∇un(t′,y)] dydt′.

The first result of this section aims to check that the sequence (un)n∈IN makes sense and
to get estimates about un, similar to the estimates (4.29).

Lemma 5.1. for all m ≥ 0, n ≥ 1, un ∈ C(Iε,m, H
m(IR3))3, where Iε,m = [0, t

(m)
ε (W (0))],

t
(m)
ε (x) is given by (4.37). Moreover, we have, ∀m ≥ 0, ∀ t ∈ [0, t

(m)
ε (W (0))], ∀n ∈ IN:

(5.3) ||un(t, ·)||m,2 ≤ Cmε−m
√
W (0), ||un(t, ·)||m,∞ ≤ Cmε−(m+ 3

2
)
√
W (0).

Proof. By recycling the proof of Lemma 4.1, we get the inequality

(5.4)
√
Wn+1(t) ≤

√
W (0) + Cε−1

∫ t

0

ε−1/2Wn(t′) +
√
Wn(t′)√

ν(t− t′)
dt′.

A straightforward inductive reasonning yields

(5.5) ∀ t ∈ [0, tε(W (0))], ∀n ∈ IN, Wn(t) ≤ 4W (t),
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where tε(x) is specified by the formula (4.9), in which we take T = ∞. Following the
proofs of Lemma 4.3 and 4.4 we obtain (5.3). We skip the details. The continuity in
time is obtained in the same way as in the item 2) of the proof of Lemma 3.2, based on
∇T ∈ L1

t,x.

Lemma 5.2. Let m ≥ 4, n ≥ 0. There exists pn+1 ∈ C(Iε,m+4, H
m(IR3)) such that

(un+1, pn+1) satisfies over Iε,m+4 × IR3 the evolutionary Stokes equation:

(5.6)


∂tun+1 − ν∆un+1 +∇pn+1 = −div(un ⊗ un −A∇un),
div un+1 = 0,
un+1|t=0 = u0.

Proof. Let Xn = un ⊗ un −A∇un, and consider the evolutionary Stokes problem

(5.7)


∂tv − ν∆v +∇pn+1 = −divXn,
div v = 0,
v|t=0 = u0.

According to Lemma 5.1 and because m ≥ 4, we have at least Xn ∈ L2(Iε,m+4, H
3(IR3)).

Then by Theorem 1.1 and Proposition 1.2 in Chapter 3 in Temam [42], we know the
existence of a unique weak solution to the Stokes problem (5.7) such that

∂tu ∈ L2(Iε,m+4, H
3(IR3)), u ∈ L2(Iε,m+4, H

5(IR3)), pn+1 ∈ L2(Iε,m+4, H
4(IR3)),

which is constructed by the Galerkin method. Therefore, the conditions for the application
of Lemma 8 in Leray [27] are fulfiled, and

(5.8)


v(t,x) = (Q ? u0)(t,x)

+

∫ t

0

∫
IR3

∇T(t− t′,x− y) : [(un ⊗ un)(t′,y)−A∇un(t′,y)] dydt′,

hence v = un+1 because the solution of (5.7) is unique. From there, the regularity of pn+1

is obtained by the same argument as in the proof of (4.41).

5.2 Contraction property

In what follows, we set

Wn(t) =

∫
IR3

|un(t,x)|2dx = ||un(t, ·)||20,2,(5.9)

Vn(t) = ||un(t, ·)||0,∞,(5.10)

Jn(t) = ||∇un(t, ·)||0,2,(5.11)

Vm,n(t) = sup
x∈IR3

|Dmu(t,x)| = ||Dmu(t, ·)||0,∞.(5.12)

We prove in this section that there exists τ
(m)
ε (W (0)) > 0 such that the sequence (un)n∈IN

satisfies a contraction property over [0, τ
(m)
ε (W (0))]. Given any time τ > 0, we equip the

space C([0, τ ], Hm(IR3)) with the natural uniform norm

(5.13) ||w||τ ;m,2 = sup
t∈[0,τ ]

||w(t, ·)||m,2,

making C([0, τ ], Hm(IR3)) a Banach space. We show in this subsection the following
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Lemma 5.3. For all m ≥ 0, there exists a time τ
(m)
ε (W (0)) such that

(5.14) ∀n ∈ IN, ||un+1 − un||τ (m)
ε (W (0));m,2

≤ 1

2
||un − un−1||τ (m)

ε (W (0));m,2
.

Moreover, the function x→ τ
(m)
ε (x) is non increasing.

Proof. Letm ≥ 0. From now, we are working on the time interval Iε,m+4 = [0, t
(m+4)
ε (W (0))].

Let n ≥ 1, α = (α1, α2, α3) such that |α| ≤ m, and wn,α(t) defined by

(5.15) wn,α(t) = ||Dαun(t, ·)−Dαun−1(t, ·)||0,2.

We first evaluate wn+1,0(t) in terms of wn,0(t). To do so, let

∆n,0(t
′) = ||(un ⊗ un)(t′, ·)− (un−1 ⊗ un−1)(t

′, ·)||0,2,

and observe that at any time t′, we have

(5.16) ∆n,0(t
′) ≤ ||un(t′, ·)||0,∞wn,0(t′) + ||un−1(t′, ·)||0,∞||(un − un−1)(t

′, ·)||0,2,

which leads by (5.3) to

(5.17) ∆n,0(t
′) ≤ C

√
W (0)wn,0(t

′).

Similarly, we also have

(5.18) ||A∇un(t′, ·)−A∇un−1(t
′, ·)||0,2 ≤ C||NA||∞ε−1wn,0(t′).

Inequalities (5.17) and (5.18) combined with the relation (5.2) and arguments used many
times before lead to

(5.19) wn+1,0(t) ≤ C(
√
W (0) + ε−1||NA||∞)

∫ t

0

wn,0(t
′)√

t− t′
dt′.

The same procedure leads to: ∀α = (α1, α2, α3) such that |α| ≤ m,

(5.20) wn+1,α(t) ≤ Cn,α,ε(
√
W (0) + ||NA||∞)

∫ t

0

||un(t′, ·)− un−1(t
′, ·)||m,2√

ν(t− t′)
dt′.

To see this, we must first estimate ∆n,α(t′), where

∆n,α(t′) = ||Dα(un ⊗ un)(t′, ·)−Dα(un−1 ⊗ un−1)(t
′, ·)||0,2.

By the Leibnitz formula, we have

Dα(un ⊗ un)−Dα(un−1 ⊗ un−1) =∑
β=(p,q,r)
|β|≤|α|

Cpα1
Cqα2

Crα3
(Dβun+1 ⊗Dα−βun+1 −Dβun ⊗Dα−βun).

We deduce from inequality (5.3) that

(5.21)

||(Dβun+1 ⊗Dα−βun+1)(t
′, ·)− (Dβun ⊗Dα−βun)(t′, ·)||0,2 ≤√

W (0)
[
Cβε

−|β|wn,α−β(t′) + Cα−βε
−(|α|−|β|)wn,β(t′)

]
.
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Furthermore,

(5.22) ||DαA∇un(t′, ·)−DαA∇un−1(t
′, ·)||0,2 ≤ C||NA||∞ε−(|α|+1)wn,0(t

′).

By noting that ∀β s.t. |β| ≤ m,

wn,β(t′) ≤ ||un(t′, ·)− un−1(t
′, ·)||m,2,

we get (5.20) by combining (5.21), (5.22) and (5.2).

Summing (5.20) over α for 0 ≤ |α| ≤ m, yields for all t ∈ Iε,m,

||un+1(t, ·)− un(t, ·)||m,2 ≤

Cn,α,ε(
√
W (0) + ||NA||∞)

∫ t

0

||un(t′, ·)− un−1(t
′, ·)||m,2√

ν(t− t′)
dt′,

hence ∀ τ ∈ Iε,m, ∀ t ∈ [0, τ ],

||un+1(t, ·)− un(t, ·)||m,2 ≤

Cn,α,ε(
√
W (0) + ||NA||∞) sup

t′∈[0,τ ]
||un(t′, ·)− un−1(t

′, ·)||m,2
√
τ

ν
.

Consequently, (5.14) holds by taking

(5.23) τ (m)
ε (x) = inf

(
ν

2Cn,α,ε(
√
x+ ||NA||∞)2

, tm+4,ε(x)

)
.

which is indeed a non increasing function of x.

5.3 Concluding proof

We are now capable of proving Theorem 3.1. Let m ≥ 4, so that Hm(IR3) ↪→ C2(IR3).

For the simplicity we write τ instead of τ
(m)
ε (W (0)). Lemma 5.3 shows that the sequence

(un)n∈IN converges to some u in C([0, τ ], Hm(IR3)3). We aim to prove that u satisfies the
Oseen integral relation (3.22). Let t ∈ [0, τ ], and consider

(5.24)
vn(t,x; t′) =

∫
IR3

∇T(t− t′,x− y) : [(un ⊗ un)(t′,y)−A∇un(t′,y)] dy,

v(t,x; t′) =

∫
IR3

∇T(t− t′,x− y) : [(u⊗ u)(t′,y)−A∇u(t′,y)] dy.

The inequality (3.16) leads to, for t′ < t,

|vn(t,x; t′)− v(t,x; t′)| ≤

C

[ν(t− t′)]2

∫
IR3

[
|(un ⊗ un − u⊗ u)(t′,y)|+ |(A∇un −A∇u)(t′,y)|

]
dy,

which ensures, by the uniform convergence of (un(t′, ·))n∈IN to u(t′, ·) in Hm(IR3)3, that
for any fixed (t,x) ∈ [0, τ ]× IR3, any t′ ∈ [0, t[,

vn(t,x; t′)→ v(t,x; t′) as n→∞.

Moreover, the inequality

(5.25) |vn(t,x; t′)| ≤
(
Vn,0(t

′)2 + ||NA||∞Vn,1(t′)
)
||∇T(t′, ·)||0,1,
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gives by (3.18) and (5.3),

|vn(t,x; t′)| ≤ Cε−3/2[W (0) + ε−1||NA||∞]√
ν(t− t′)

∈ L1([0, t]).

Therefore, Lebesgue’s Theorem applies and we have∫ t

0
vn(t,x; t′)dt′ →

∫ t

0
v(t,x; t′)dt′ as n→∞,

in other words, u satisfies the integral relation (3.22) and the regularity results of Section
4 apply for u. By the same proof as that of Lemma 5.2, we see that there exists a scalar
field p such that (u, p) is a regular solution to the regularized NSE (1.3), over the time

interval [0, τ
(m)
ε (W (0))]. The transition from local to global time is like in Theorem 4.1’s

proof, by the decrase of the function x → τ
(m)
ε (x), the time continuity of the trajectories

in Hm and the energy balance. The proof of Theorem 3.1 is now completed. �

5.4 Behavior at infinity

In order to take the limit in the regularized NSE when ε → 0, we need to know how the
kinetic energy of the velocity field u behaves for large values of |x|. From now, we assume
that A is of compact support uniformly in t, which means that there exists R0 verifying:

(5.26) ∀x ∈ IR3 s.t. |x| ≥ R0, ∀ t ≥ 0, A(t,x) = 0.

We prove in this subsection:

Lemma 5.4. There exists a non increasing continous function of t, ϕ = ϕ(t), such that
for any R1 > 0, R2 > 0, R1 < R2,

(5.27)
1

2

∫
|x|≥R2

|u(t,x)|2dx ≤ 1

2

∫
|x|≥R1

|u0(x)|2dx +
1

R2 −R1
ϕ(t).

Proof. Let R1, R2, 0 < R1 < R2, and f = f(x) be the function defined by

(5.28)

f(x) = 0 if |x| ≤ R1,

f(x) =
|x| −R1

R2 −R1
if R1 ≤ |x| ≤ R2,

f(x) = 1 if |x| ≥ R2.

Taking f(x)u(t,x) as test in (3.5.i) and integrating by parts by using div u = 0, yields at
each time t,
(5.29)

1

2

∫
IR3

f(x)|u(t,x)|2dx + ν

∫ t

0

∫
IR3

f(x)|∇u(t′,x)|2dxdt′ =

1

2

∫
IR3

f(x)|u0(x)|2dx− ν
∫ t

0

∫
IR3

∇u(t′,x) · ∇f(x) · u(t′,x) dxdt′+

∫ t

0

∫
IR3

u(t′,x) · ∇f(x) p(t′,x)dxdt′ +
1

2

∫ t

0

∫
IR3

u(t′,x) · ∇f(x) |u(t′,x)|2dxdt′−

−
∫ t

0

∫
IR3

A(t′,x)∇u(t′,x) : ∇(f(x)u(t′,x))dxdt′
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Taking R1 ≥ R0 where R0 is specified in (5.30), leads to

(5.30)

∫ t

0

∫
IR3

A(t′,x)∇u(t′,x) : ∇(f(x)u(t′,x))dxdt′ = 0.

From there, the calculations carried out in Leray [27], section 27, pages 232-234, can be
directly reused, and the conclusion follows.

Remark 5.1. The assumption ”A is with compact support” is consistent with the idea
that no turbulence occurs for large values of |x|, which is in agreement with the results of
Caffarelli-Kohn-Nirenberg [8] about the singularitie’s location (if any) of NSE’s solutions
without eddy viscosity, so far we believe that turbulence and singularities are connected.
We conjecture that this is not needed, which is leaved as an open question.

6 Passing to the limit in the equations

6.1 Aim

from now, ε > 0 being given, (uε, pε) denotes the solution to the regularized NSE (3.5).
The aim of this section is to show that we can extract from (uε, pε)ε>0 a subsequence that
converges to a turbulent solution of the NSE (1.1) (see Definition 2.3), which will prove
Theorem 2.3. We follow roughly speaking the frame set out by J. Leray to pass to the
limit. We have filled in the blanks, refreshed and customized this frame by using modern
tools of analysis, taking into account the eddy viscosity term that is not in Leray’s work.

Recall that the assumptions about A are given by items i)), ii)) and ii)) in the statement
of Theorem 2.3. We also recall that the space of test vector fields Eσ we are considering
is given by

(6.1)
Eσ =

{
w ∈ L1

loc(IR+, H
3(IR3)3) s.t. w ∈ C(IR+, L2(IR3)3),

∇w ∈ L∞(IR, Cb(IR
3)3),

∂w

∂t
∈ L1

loc(IR+, L
2(IR3)3), div w = 0

}
.

Let w ∈ Eσ. We form the scalar product of w with the momentum equation (3.5.i) and
integrate by parts, which is legitimate by the regularities of uε, pε and w. We get:

(6.2)



∫
IR3

u0(x) ·w(0,x)dx =

∫
IR3

uε(t,x) ·w(t,x)dx

−
∫ t

0

∫
IR3

uε(t
′,x) ·

[
ν∆w(t′,x) + div(A∇w)(t′,x)) +

∂w

∂t′
(t′,x)

]
dxdt′

+

∫ t

0

∫
IR3

[uε(t
′,x)⊗ uε(t

′,x)] : ∇w(t′,x) dxdt′,

where also have used:∫
IR3

div(A∇u) ·w = −
∫
IR3

A∇u : ∇w = −
∫
IR3

A∇u : w =

−
∫
IR3

∇u : Aw =

∫
IR3

u · div(Aw).

The goal is to study how to pass to the limit in (6.2) when ε → 0. We note that the
only avaible estimates which do not depend on ε are those given by the energy balance
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(3.6), which shows that the sequence (uε)ε>0 is bounded in L∞(IR+, L
2(IR3)3) as well as

in L2(IR+, H
1(IR3)3. A little bit more can be said:

Lemma 6.1. i) The function t→Wε(t) is uniformly bounded, namely ∀ ε > 0, ∀ t ≥ 0,

(6.3) Wε(t) ≤Wε(0) ≤W (0),

ii) For any ε > 0, t→Wε(t) is a non increasing function of t.

It results from Helly’s Theorem (see for instance in [29]):

Corollary 6.1. There exists (εn)n∈IN that goes to zero when n → ∞, a non increasing

function W̃ (t) such that for all t ≥ 0, Wεn(t)→ W̃ (t) as n→∞.

From now we will consider this sequence (εn)n∈IN. Let us write the identity (6.2) under
the form

(6.4)

∫
IR3

u0(x) ·w(0,x)dx =

∫
IR3

uεn(t,x) ·w(t,x)dx + I1,εn(t,w) + I2,εn(t,w).

We will prove in this section the following results, which will complete the proof of Theorem
2.3.

Lemma 6.2. There exists a nondecreasing sequence (nj)j∈IN such that for all t ≥ 0, for
all w ∈ Eσ, the sequences (I1,εnj (t,w))j∈IN and (I2,εnj (t,w))j∈IN are convergent sequences.

Lemma 6.3. For each fixed time t, there exists u(t, ·) ∈ L2(IR3)3 such that (uεnj (t, ·))n∈IN
weakly converges to u in L2(IR3)3.

Lemma 6.4. There exists a set A ⊂ IR+ the complementary of which is a zero measure
set and such that for all t ∈ A, the sequence (uεnj (t, ·))n∈IN strongly converges to u(t, ·) in

L2(IR3)3.

Lemma 6.5. The field u = u(t,x) is a turbulent solution to the NSE (1.1).

This program is divided into two subsections. The first is devoted to prove Lemma
6.2, divided in turn into two sub-subsections, one considering (I1,εnj (t,w))j∈IN, the other

(I2,εnj (t,w))j∈IN. In the second subsection we prove Lemma 6.3, 6.4 and 6.5 one after
another.

6.2 Weak convergence and measures

In all what follows, w is any given field of Eσ, t ∈ IR+.

6.2.1 Convergence of I1,εn(t,w)

As (uεn)n∈IN is bounded in L∞(IR+, L
2(IR3)3) = (L1(IR+, L

2(IR3)3))′, we can extract
from the sequence (uεn)n∈IN a subsequence which converges to a field ũ = ũ(t,x) ∈
L∞(IR+, L

2(IR3)3) for the weak ? topology of L∞(IR+, L
2(IR3)3). We still denote this

subsequence (uεn)n∈IN for the simplicity. We show in what follows:

(6.5)

lim
n→∞

I1,εn(t,w) =∫ t

0

∫
IR3

ũ(t′,x) ·
[
ν∆w(t′,x) + div(A∇w)(t′,x) +

∂w

∂t′
(t′,x)

]
dxdt′.
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From the definition of Eσ (see (6.1)), ∆w,
∂w

∂t
∈ L1(IR+, L

2(IR3)3), thereby

(6.6)

lim
n→∞

∫ t

0

∫
IR3

uεn(t′,x) ·
[
ν∆w(t′,x) +

∂w

∂t′
(t′,x)

]
dxdt′ =

∫ t

0

∫
IR3

ũ(t′,x) ·
[
ν∆w(t′,x) +

∂w

∂t′
(t′,x)

]
dxdt′.

It remains to pass to the limit in the term∫ t

0

∫
IR3

uεn(t′,x) div(A∇w)(t′,x)dxdt′.

Let ∆εn denotes the difference

∆εn =

∫ t

0

∫
IR3

uεn(t′,x) div(A∇w)(t′,x)dxdt′ −
∫ t

0

∫
IR3

ũ(t′,x) div(A∇w)(t′,x)dxdt′,

that we split as

∆εn =

∫ t

0

∫
IR3

(uεn(t′,x)− ũ(t′,x)) div(A∇w)(t′,x)dxdt′+

+

∫ t

0

∫
IR3

(uεn(t′,x)(div(A∇w)(t′,x)− div(A∇w)(t′,x))dxdt′

= ∆εn,1 + ∆εn,2.

As w ∈ Eσ and A ∈ Cb(IR+,W
1,∞(IR3)), then div(A∇w) ∈ L1(IR+, L

2(IR3)3), leading to
∆εn,1 → 0 as n → ∞. Moreover, the Cauchy-Schwarz inequality and the energy balance
yield

|∆εn,2| ≤
√
W (0)

∫ t

0
||div(A∇w)(t′, ·)− div(A∇w)(t′, ·))||0,2dt′.

By (3.3) and algebraic calculations, we get

||div(A∇w)(t′, ·)− div(A∇w)(t′, ·))||0,2 ≤ Cεn||A||1,∞||w||3,2,

hence4 ∆εn,2 → 0 as n→∞, again becauseA ∈ Cb(IR+,W
1,∞(IR3)) and w ∈ L1

loc(IR+, H
3(IR3)3).

In conclusion, we obtain

(6.7)
lim
n→∞

∫ t

0

∫
IR3

uεn(t′,x) div(A∇w)(t′,x)dxdt′ =∫ t

0

∫
IR3

ũ(t′,x) div(A∇w)(t′,x)dxdt′,

hence (6.5). In the following, we shall denote by I1(t,w) the limit of (I1,εn(t,w))n∈IN,
where (I1,εn(t,w))n∈IN is given by (6.2) and (6.4).

4This is where we need∇A ∈ L∞(IR+×IR3). It is likely that there is a way to do without this hypothesis.
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6.2.2 Convergence of I2,εn(t,w)

We show below step by step that I2,εn(t,w) converges to a limit denoted by I2(t,w),
which is not well identified at this stage. Indeed, for now we still do not know whether
(uεn)n∈IN is compact in any Lp space, since standard compactness results do not seem to
apply in this case. Therefore, we are not able to directly take the limit in the convective
term, that we treat in this section as a sequence of measures, denoted by (µn)n∈IN. As we
are working in the whole space by using a very weak formulation, we are led to consider
restrictions of the µn’s over balls Bk centered at the origin and of radius k ∈ IN, in which
standard compactness results apply. Then we use the valuable estimate (5.27) to select the
appropriate radius k to be able to pass to the limit. This convergence analysis is divided
into three steps:

a) Definition of the convective measures,

b) Compactness on balls Bk,

c) Passing to the limit.

a) The Convective measures are defined by

(6.8) µn = uεn ⊗ uεn .

Let us fix a given time T > 0. We will study the sequence (µn)n∈IN on [0, T ] for technical
conveniences, which is not restrictive since T may be chosen as large as we want. The
energy balance yields

∀ t′ ∈ [0, T ],

∫
IR3

|µn(t′,x)|dxdt′ ≤W (0),

hence (µn)n∈IN is bounded in L∞([0, T ], L1(IR3)9), which suggests to treat each component
of µn as measures.

b) Compactness. Let k ∈ IN, Bk = B(O, k) ⊂ IR3 be the ball centered at the origin O
of radius k. We denote by M(Bk) the set of radon measures over Bk. Therefore, the
considerations above show that any k being fixed,

the sequence (µn)n∈IN is bounded in L∞([0, T ],M(Bk)
9) = (L1([0, T ], C(Bk)

9))′.

Let µkn denotes the restriction of µn to the ball Bk,

(6.9) µkn = µn|Bk .

We deduce from the Banach-Aloaglu theorem combined with the Cantor diagonal argu-
ment that there exists a sequence (nj)j∈IN such that each sequence of measures (µknj )j∈IN

converges to a measure µk in L∞([0, T ],M(Bk)
9) weak ?. Moreover,

∀ k < k′, µk
′ |Bk = µk.

c) Passing to the limit. We show the convergence of the sequence (I2,εnj (t,w))j∈IN by the

Cauchy criterion in using the estimate (5.27) of Lemma 5.4, which guarantees that the
µn’s have low mass distributions at infinity. Let a = a(t,x) ∈ L1([0, T ], Cb(IR

3)9), where
Cb(IR

3) denotes the space of bounded continuous functions on IR3, t ∈ [0, T ]. Let

λn(t,a) =

∫ t

0

∫
IR3

µn(t′x) : a(t′,x) dxdt′,

29



η > 0, and k ∈ IN, the choice of which will be decided later. We have

(6.10)

|λnp(t,a)− λnq(t,a)| ≤
∫ t

0
||a(t′, ·)||0,∞

(∫
|x|≥k

|µnp(t′,x)− µnq(t′,x)|dx

)
dt′

+

∣∣∣∣∫ t

0

∫
Bk

(µnp(t
′,x)− µnq(t′,x)) : a(t′,x) dxdt′

∣∣∣∣ .
The function ϕ involved in (5.27) being non increasing, we get by (5.27) for k ≥ 2R0,

(6.11)

∫ t

0
||a(t′, ·)||0,∞

(∫
|x|≥k

|µnp(t′,x)− µnq(t′,x)|dx

)
dt′ ≤

(∫
|x|≥k/2

|u0(x)|2dx +
4ϕ(T )

k

)∫ T

0
||a(t′, ·)||0,∞dt′.

As u0 ∈ L2(IR3), we can fix k ≥ R0 such that the r.h.s of (6.11) is less than η/2. Further-
more, for this k and by the definition (6.9) of the µkn’s:∣∣∣∣∫ t

0

∫
Bk

(µnp(t
′,x)− µnq(t,x)) : a(t′,x) dxdt′

∣∣∣∣ =

∣∣∣∣∫ t

0

∫
Bk

(µknp(t
′,x)− µknq(t

′,x)) : a(t′,x) dxdt′
∣∣∣∣ = Jkp,q.

From the weak convergence of the sequence (µknj )j∈IN, we deduce that there exists j0

(depending on a) such that for any p, q ≥ j0, we have Jkp,q ≤ η/2. Therefore, (6.10) gives
for such p, q,

|λnp(t,a)− λnq(t,a)| ≤ η.

Then the sequence (λnj (t,a))j∈IN is a Cauchy sequence in IR, thus convergent. Let λ(t,a)
denotes its limit. In view of the choice of the space Eσ, for any t > 0 and any w ∈ Eσ,
∇w ∈ L1([0, t], Cb(IR

3)9). Therefore

(6.12) lim
j→∞

I2,εnj (t,w) = λ(t,∇w).

This concludes the proof of Lemma 6.2. In the following, we set I2(t,w) = λ(t,∇w). �

According to the equality (6.4), the lemma 6.2 admits the following corollary.

Corollary 6.2. For all w ∈ Eσ, all t ∈ IR+, the sequence(∫
IR3

uεnj (t,x) ·w(t,x)dx

)
j∈IN

has a limit uniquelly determined, namely

(6.13) lim
j→∞

∫
IR3

uεnj (t,x) ·w(t,x)dx =

∫
IR3

u0(x) ·w(0,x)dx− I1(t,w)− I2(t,w).

Remark 6.1. It would not be surprising that what is done above has something to do
with the Young measures (see in [3, 39, 43]). There also could be connections with the
H-measures, initially introduced by L. Tartar (see [40, 41]) as well as with the work by A.
Majda and R. DiPerna [15]. All of this remains to be clarified.
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6.3 Transition from weak to strong convergence: conclusion

Proof of Lemma 6.3. Consider
a ∈

⋂
m≥0

Hm(IR3)3,

such that div a = 0. Let t > 0, ϕ = ϕ(t′) be a non negative function of class C∞ less than
1 such that ϕ(t′) = 1 when t′ ∈ [0, t+1], ϕ(t′) = 0 when t′ ∈ [t+2,∞[. It is easely checked
that

w(t′,x) = ϕ(t′)a(x) ∈ Eσ.

As w(t,x) = a(x), Corollary 6.2 implies that the sequence(∫
IR3

uεnj (t,x) · a(x)dx

)
j∈IN

has a limit uniquely determined. We recall that ||uεnj (t, ·)||0,2 ≤
√
W (0). By Lemma 7

page 209 in [27], we can conclude that the sequence (uεnj (t, ·))j∈IN has a weak limit in

L2(Ω)2, denoted by u(t, ·). This weak convergence also leads to:

(6.14)

∫
IR3

|u(t,x)|2dx ≤ W̃ (t),

where W̃ is introduced in Corollary 6.1. �

For the simplicity, we write from now ε instead of εnj , ε→ 0 instead of j →∞.

Proof of Lemma 6.4. We recall the energy balance satisfied by uε

(6.15)
1

2
Wε(t) + ν

∫ t

0
J2
ε (t′)dt′ +

∫ t

0
K2
A,ε(t

′)dt′ =
1

2
Wε(0) ≤ 1

2
W (0),

where

(6.16)


Wε(t) =

∫
IR3

|uε(t,x)|2dx,

J2
ε (t) =

∫
IR3

|∇uε(t,x)|2dx,

K2
A,ε(t) =

∫
IR3

A(t,x)|∇uε(t,x)|2dx.

We next deduce from Fatou’s Lemma and (6.15),

(6.17) ν

∫ ∞
0

(lim inf
ε→0

Jε(t
′))2dt′ ≤ 1

2
W (0).

Therefore, t → lim inf
ε→0

Jε(t) ∈ L1([0,∞[). Then there exists a set A ⊂ [0,∞[, such that

meas(Ac) = 0 and

(6.18) ∀ t ∈ A, lim inf
ε→0

Jε(t) <∞.

Let t ∈ A∩ [0, T ] be fixed. There is a sequence (εn)n∈IN going to zero when n→∞ (which
could depend on t) and such that the sequence (Jεn(t))n∈IN is bounded. In particular,
(uεn)n∈IN is bounded in H1(IR3).
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Let η > 0 be given. We know from Lemma 5.4 that there exists R > 0 (which depends on
T , u0 and η) and such that

(6.19)

∫
|x|≥R

|uεn(t,x)|2dx ≤ η.

Furthermore, as the sequence (uεn)n∈IN is bounded in H1(IR3) and has a unique adherence
value in L2(BR)3 for the weak topology, the Rellich-Kondrachov theorem applies: the
sequence (uεn)n∈IN converges to u strongly in L2(BR). Then (6.19) gives

(6.20) lim sup
n→∞

Wεn(t) ≤
∫
BR

|u(t,x)|2dx + η ≤
∫
IR3

|u(t,x)|2dx + η,

which holds for any η > 0. Therefore, combining (6.20) with the definition of the function

W̃ and the inequality (6.14), we get:

(6.21)

∫
IR3

|u(t,x)|2dx ≤ W̃ (t) = lim sup
n→∞

Wεn(t) ≤
∫
IR3

|u(t,x)|2dx,

hence the convergence of (||uε(t, ·)||0,2)ε>0 to ||u(t, ·)||0,2 and the conlusion of the proof,
because we already know that (uε(t, ·))ε>0 weakly converges to u(t, ·) in L2(IR3)3. �

Proof of Lemma 6.5. In order to prove that u is a turbulent solution to the NSE, it remains
to:

1) Check that ũ = u, where ũ was introduced in subsection 6.2 as the weak star limit
of (uε)ε>0 in L∞(IR+, L

2(IR3)3),

2) Show that

(6.22) ∀ t ∈ IR+, ∀w ∈ Eσ, I2(t,w) =

∫ t

0

∫
IR3

u(t′,x)⊗ u(t′,x) : ∇w(t,x)dxdt′,

where I2(t,w) was defined by (6.12),

3) Check that u satifies the energy inequality,

which is done in the following each item after another.

1) Weak star limit identification. Let a ∈ L1(IR+, L
2(IR3)3), and consider

ϕε(t) =

∫
IR3

uε(t,x) · a(t,x)dx.

According to Lemma 6.4,

∀ t ∈ A, lim
ε→0

ϕε(t) = ϕ(t) =

∫
IR3

u(t,x) · a(t,x)dx.

Moreover, the Cauchy-Schwarz inequality combined with the inequality (6.3) gives

|ϕε(t)| ≤
√
Wε(t)||a(t, ·)||0,2 ≤

√
W (0)||a(t, ·)||0,2 ∈ L1(IR+).

Because meas(AC) = 0, we deduce from Lebesgue Theorem that

lim
ε→0

∫ ∞
0

ϕε(t)dt =

∫ ∞
0

ϕ(t)dt,
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hence ũ = u.

2) Limit in the convective term. Let w ∈ Eσ, and

ψε(t) =

∫
IR3

uε(t,x)⊗ uε(t,x) : ∇w(t,x)dx.

Let t ∈ A. Obviously uε(t, ·) → u(t, ·) strongly in L2(IR3)3. As ∇w is bounded in space
and time, we deduce that for all t ∈ A,

ψε(t)→ ψ(t) =

∫
IR3

u(t,x)⊗ u(t,x) : ∇w(t,x)dx as ε→ 0,

and by the energy balance

|ψε(t)| ≤ CW (0)||∇w(t, ·)||∞ ∈ L1([0,∞[).

Then, as meas(Ac) = 0, we have by Lebesgue’s Theorem,

∀ t ∈ IR+, lim
ε→0

∫ t

0
ψε(t

′)dt′ =

∫ t

0
ψ(t′)dt′,

hence (6.22)

3) Energy inequality. It is easily checked that ∀ t ∈ A, uε(t, ·)→ u(t, ·) weakly in H1(IR3)3.
Therefore, (∫

IR3

|∇u(t,x)|2dx
)1/2

= J(t) ≤ lim inf
ε→0

Jε(t),

and as A ∈ L∞(IR+ × IR3) and is non negative, a convexity argument yields

KA(t) ≤ lim inf
ε→0

KA,ε(t).

All these inequalities hold for almost all t ∈ A. Then, by taking the limit in the energy
balance (6.15) we get by (6.14) and Fatou’s Lemma,

(6.23)
1

2
W (t) + ν

∫ t

0
J2(t′)dt′ +

∫ t

0
KA(t′)dt′ ≤ 1

2
W (0),

as expected, which finishes the proof. �

7 Additional remarks and open questions

7.1 Case A = 0 and obstruction to generalizations

Let us recall one main Leray’s argument when A = 0, written in our framework. In this
case, any regular solution to the NSE (1.1) over the time interval [0, T [ satisfies, according
to (3.15),

(7.1) V (t) ≤ V (0) + C

∫ t

0

V 2(t′)√
ν(t− t′)

dt′.

where V (t) is defined by (2.4). The function g(t) = 2V (0) is a supersolution to the non
linear Volterra equation,

f(t) ≤ V (0) + C

∫ t

0

f2(t′)√
ν(t− t′)

dt′,
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over the time interval I = [0, 4νV −2(0)C−1]. Therefore, by the V-maximum principle5

∀ t ∈ I, V (t) ≤ 2V (0).

From this, it is possible to control all the norms of any regular solutions. This is why Leray
was able to construct a regular solution to the NSE (1.1) over [0, T ] where T = O(νV −2(0)),
by a fixed point process in a space equipped with the uniform norm in space. He also
reported that when a singularity occurs at time T , then when t → T (see section 19 in
[27]),

V (t) ≥ C
√

ν

T − t
.

The fact that the regular solution can be extended to [0,∞[ when ν−3W (0)V (0) is small
enough (see Theorem 2.1) is a tricky combination of such arguments, generalized as much
as possible, as well as the fact that the turbulent solution becomes regular up to a time
O(W (0)2/ν5).

When A 6= 0, this does not work anymore, since we get, because of the eddy viscosity
term,

(7.2) V (t) ≤ V (0) + C

∫ t

0

V 2(t′) + ||NA||∞V1(t′)√
ν(t− t′)

dt′.

where V1(t
′) = ||∇u(t′, ·)||0,∞. Thereby, to control V (t), we must control V1(t), which

involves V2(t) and so on, and we do not know how to close this sequence of inequalities.
This is why Leray’s program cannot be recycled turnkey. Ideally, Oseen’s work should be
rewritten for the generalized Stokes problem:

(7.3)

{
∂tu− ν∆u− div(A∇u) +∇p = f,
div u = 0,

which is not done already so far we know.

In the case of the approximated system (3.5) when A = 0, inequality (7.1) becomes

(7.4) V (t) ≤ V (0) + Cε−3/2
√
W (0)

∫ t

0

V (t′)√
ν(t− t′)

dt′.

Hence, by the V-maximum principle,

V (t) ≤ f(t),

where f(t) is the unique continuous solution to the linear Volterra equation defined over
[0,∞[,

f(t) = V (0) + Cε−3/2
√
W (0)

∫ t

0

f(t′)√
ν(t− t′)

dt′.

From there, the analysis developed by J. Leray to estimate the time of existence of a
strong solution for the NSE applies, and in this case yields the existence of a unique
strong solutions to the approximated system (3.5) global in time, which does not work
anymore when A 6= 0. This is why, everything was to be reconsidered from the beginning.

5To be stringent, we should discuss as in Lemma 4.1’s proof to be in the framework for the application
of the V-maximum principle. At this stage this is not essential and we skip here the details.
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7.2 Leray-α, Bardina and others

The idea of regularizing the convection term by u ·∇u led to the actual concept of Leray-α
model, and many other close models (NS-α, LANS-α, Clark-α, NS-Voigt, Bardina...), con-
sidered as Large Eddy Simulation models (LES) for simulating turbulent flows, although
LES emerged in the 60’s with Smagorinsky’s work [37].
Surprisingly, Leray has planted a seed that germinates these last two decades in the field
of modern LES. See for instance in Ali [1, 2], Berselli-Iliescu-Layton [6], Foias-Holm-Titi
[16], Gibbon-Holm [20, 21], Geurt-Holm [19], llyin-Lunasin-Titi [22], Layton-Rebholz [26],
Rebholz [36], this list being non exhaustive.
These models are based on a regularization calculated by the Helmholz filter determined
by:

(7.5) − α2∆ψ + ψ = ψ in IR3,

where in this framework the regularizing parameter is named α instead of ε. The models
are usually considered with periodic boundary conditions, more rarely in a bounded domain
with the no-slip condition. The case of an unbounded domain and/or the full space was
not considered before so far we know.
In Berselli-Lewandowski [5], we have investigated the simplified Bardina model in the
whole space. Initially introduced by Bardina-Ferziger- Reynolds [4] for weather forecast,
this model was studied in [10, 24, 25] in the case of periodic boundary conditions. In its
simplified version, this model is given by the system

(7.6)


∂tu +∇ · (u⊗ u)− ν∆u +∇p = 0 in IR3,

∇ · u = 0 in IR3,
ut=0 = u0,

in which the bar operator is specified by the Helmholz filter (7.5). We prove in [5] the
existence of a unique regular solution to (7.6), global in time, that converges to a turbulent
solution to the NSE. Attention must be paided with the initial data and the meaning of
“regular solution”, since the regularizing effect of the Helmholz filter is lower than that
given by a molifier.
What is done in [5] is in the same spirit as what is done in the present paper, inspired by
Leray’work. It remains to proceed to the same analysis for the other LES models of this
α-class mentioned above.

7.3 Towards the NS-TKE model

The result of Theorem 2.3 still holds when A ∈ L∞(IR+, L
∞(IR3)). Indeed, we can ap-

proach A by a sequence (Aε)ε>0, where Aε ∈ Cb(IR+,W
1,∞(IR3)), and then pass to the

limit in the formulation (6.2) when ε → 0. We also can consider the NSE (1.1) with a
source term f that satisfies a suitable decay condition at infinity. However, we lose the
benefit provided by the monotocity of the function t→W (t) and we must find out what is

the right function to be considered to replace t→ W̃ (t) introduced in Corollary 6.1. It is
not clear that the best choice is t→ lim supε→0W (t). This point remains to be discussed,
though it is not intractable. We have not considered these issues to avoid making the text
more cumbersome.

However, this is the right track to tackle the problem of the NS-TKE model in the whole
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space:
∂tu + u · ∇u− div

[
(2ν + Cu`|k|1/2)∇u

]
+∇p = 0,

div u = 0,

∂tk + u · ∇k − div((µ+ Ck`|k|1/2)∇k) = Cu`|k|1/2|∇u|2 − `−1k|k|1/2,
(u, k)t=0 = (u0, k0),

which is the basic ”Reynolds Averaged Navier Stokes“ model of turbulence (see in [11]).
In this system, (u, p) is the mean flow field, and k the turbulent kinetic energy, that
measures the intensity of the turbulence in a turbulent flow. The function (t,x)→ `(t,x)
is the Prandlt mixing lenght, at this stage a given non negative function, Cu Ck are
experimental constants. This problem was initially studied in [28] in a bounded domain
Ω ⊂ IR3, with homogeneous boundary conditions. The case of IR3 yields a very hard
mathematical problem.

Appendices

A Estimates for the Oseen tensor

This appendice has entirely been written by Paul Alphonse and Adrien Laurent.

Theorem A.1. For t ∈ IR+∗ and |x| > 0, let

G(t, x) =
1

|x|

∫ |x|
0

e−
ρ2

4νt

√
t

dρ.

Let

Tii = −∂
2G

∂x2j
− ∂2G

∂x2k
and Tij =

∂2G

∂xi∂xj

be the Oseen tensor. Then the followig estimates are verified :

|T (t, x)| ≤ C

(|x|2 + νt)
3
2

,

|DmT (t, x)| ≤ Cm

(|x|2 + νt)
m+3

2

.

Proof. The function G can be extended on |x| = 0 as a C∞ function. We have

∂G

∂xi
(t, x) =

xi

|x|2

e− |x|24νt

√
t
−G(t, x)

 .

Integrating by part G yields

G(t, x) =
e−
|x|2
4νt

√
t

+
1

2νt
3
2 |x|

∫ |x|
0

ρ2
e−

ρ2

4νt

√
t

dρ.

Thus

∂G

∂xi
(t, x) = − xi

2νt
3
2 |x|3

∫ |x|
0

ρ2
e−

ρ2

4νt

√
t

dρ.
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With this same trick, one finds

∂2G

∂xi∂xj
(t, x) = − 1

6νt
3
2

e−
|x|2
4νt δij +

(
xixj

4ν2t
5
2 |x|5

− 1

12ν2t
5
2 |x|3

δij

)∫ |x|
0

ρ4e−
ρ2

4νtdρ.

And by a change of variables,

∂2G

∂xi∂xj
(t, x) = − 1

6νt
3
2

e−
|x|2
4νt δij +

(
8ν

1
2xixj

|x|5
− 8ν

1
2

3 |x|3
δij

)∫ |x|
2
√
νt

0
ρ4e−ρ

2
dρ.

We then have

|Tij | .
1

t
3
2

e−
|x|2
4νt +

1

|x|3

∫ |x|
2
√
νt

0
ρ4e−ρ

2
dρ.

Finally, by denoting y = |x|
2
√
νt

, we have

(|x|2 + νt)
3
2 |Tij | . (1 + y2)

3
2 e−y

2
+ (1 +

1

y2
)
3
2

∫ y

0
ρ4e−ρ

2
dρ.

The first term of the inequality is bounded for all y ∈ IR+. We then denote ϕ(y) the
function corresponding to the second term of the inequality. The function ϕ is continuous
on IR+∗ and verifies

lim
y→+∞

ϕ(y) =

∫ +∞

0
ρ4e−ρ

2
dρ < +∞.

For the case y → 0, we notice by integrals comparison that∫ y

0
ρ4e−ρ

2
dρ ∼

y→0

y5

5
.

Then

ϕ(y) ∼
y→0

y2

5
,

and ϕ is bounded on IR+. This work gives us that

|T (t, x)| ≤ C

(|x|2 + νt)
3
2

.

For the estimates on the derivatives, one can show by induction that∣∣∣∣ ∂m

∂xi1 ...∂xim

∂2G

∂xi∂xj

∣∣∣∣ (t, x) . Pm(y)
1

t
m+3

2

e−y
2

+
1

|x|m+3

∫ y

0
ρ4+2me−ρ

2
dρ,

where Pm is a polynomial of degree m. Adapting the same method as before yields the
estimate on DmT .

B Non linear Volterra equations and V-maximum principle

The results of this section about the non linear Volterra equations and the V-maximum
principle are due to Luc Tartar.
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B.1 Framework

Let a ∈ IR+, T ∈ IR?
+, K ∈ L1([0, T ]), k ≥ 0 a.e. in [0, T ], P a continuous non increasing

real valued function. We consider the following functional equation,

(B.1) f(t) = a+

∫ t

0
K(t− t′)P (f(t′))dt′.

When P (f) = f , this equation is a Volterra equation. As we have seen in this paper, we
have to consider P that are not linear, and this is why we call this equation a generalized
non linear Volterra equation. The aim of this appendix is to prove a maximum principle
which states that subsolutions of (B.1) are below supersolutions.
In this section, we define the notions of sub and super solutions, and we show how to
construct solutions from these sub-super solutions. In the following, we set for any f ∈
L∞([0, T ]), a ≥ 0,

(B.2) S[a, f ](t) = a+

∫ t

0
K(t− t′)P (f(t′))dt′, t ∈ [0, T ].

We first note that as P is non increasing and K ≥ 0, when f ≤ g, then S[a, f ] ≤ S[a, g].
Moreover, when f ∈ L∞([0, T ], then S[a, f ] ∈ C([0, T ]).

Definition B.1. We say that f ∈ L∞([0, T ]) is a subsolution of (B.1) if f ≤ S[a, f ]. We
say that g ∈ L∞([0, T ]) is a supersolution of (B.1) if S[a, g] ≤ g.

Remark B.1. We remark that f = 0 is always a subsolution of (B.1). However,it is
important to note that the solution of (B.1) may be not defined over [0, T ]. Take for
instance K = 1, P (z) = z2. Then (B.1) becomes the differential equation f ′ = f2,
f(0) = 0, whose solution is f(t) = a(1− at)−1, which blows up at a time less than T when
aT > 1. In such case, there is no supersolution over [0, T ].

As a consequence of the assumption K ∈ L1([0, T ]), the following result is straightforward.

Lemma B.1. Let G > a. Then there exists τ ∈]0, T ] such that g(t) = G is a supersolution
of (B.1) over [0, τ ].

Assume now that there exists a supersolution g ≥ 0 of (B.1) over [0, T ], and let (gn)n∈IN
be the sequence defined by

g0 = g, gn+1 = S[a, gn].

We obvioulsy have 0 ≤ gn+1 ≤ gn for all n, and

Lemma B.2. The sequence (gn)n∈IN uniformly converges to a solution of (B.1).

Proof. We first observe that gn is continuous for n ≥ 1. By monotonicity and since gn ≥ 0,
(gn)n∈IN simply converges to some f+ ∈ L∞([0, T ]). As for n ≥ 1

|K(t− t′)P (gn(t′))| ≤ K(t− t′) max(|P (0)|, |P (max
[0,T ]

g1)|) ∈ L1([0, t]),

and P is continous, we deduce from Lebesgue’s Theorem that for all t ∈ [0, T ], S[a, gn](t)
converges to S[a, f+](t). The inequalities gn+1 ≤ gn yields that f+ is a solution of (B.1),
hence f+ is continuous and by Dini’s Theorem, the convergence of the sequence (gn)n∈IN
is uniform. We also notice that f+ ≤ gn for all n.
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B.2 Uniqueness

The solution to (B.1) may be not unique. For instance, take K = 1 and P (z) =
√
z, a = 0.

Therefore (B.1) becomes the differential equation f ′ =
√
f , f(0) = 0, whose solutions are

f(t) = 0 and f(t) = t2/4. However, when P is Lipchitz, uniqueness occurs in some sense,
which is the aim of this section.
Assume that (B.1) has a subsolution f and a supersolution g that verify f ≤ g, both
being continuous. Arguing as in lemma B.2, we see in this case that the sequence (fn)n∈IN
defined by f0 = f , fn+1 = S[a, fn], uniformly converges to a solution f− of (B.1), that
also satisfies f− ≤ f+.

Remark B.2. As 0 is a subsolution, according to Lemma B.2, we have shown that there
exists τ > 0 such that the nonlinear Volterra equation (B.1) has a solution over [0, τ ]

Our uniqueness result is phrased as follows.

Lemma B.3. Assume that P is a non increasing Lipschitz continuous function, K ∈
L1([0, T ]). Then f+ = f− over [0, T ].

Proof. Let L denotes the Lipchitz constant of P . Then we have

(B.3) ∀ t ∈ [0, T ], 0 ≤ f+(t)− f−(t) ≤ L
∫ t

0
K(t− t′)(f+(t′)− f−(t′))dt′.

We first assume that K is bounded by a constant M . Therefore, (B.3) yields

(B.4) ∀ t ∈ [0, T ], 0 ≤ f+(t)− f−(t) ≤ LM
∫ t

0
(f+(t′)− f−(t′))dt′,

from which we easely deduce

(B.5) ∀ t ∈ [0, T ], ∀m ≥ 2, 0 ≤ f+(t)− f−(t) ≤ (LMt)m

m!
sup

t′∈[0,T ]
(f+(t′)− f−(t′)),

hence f+ = f−. For K ∈ L1([0, T ]), we rephrase (B.3) as

0 ≤ ε ≤ Φ(ε),

by writting ε = f+ − f−, and

Φ(u)(t) = L

∫ t

0
K(t− t′)u(t′)dt′.

The operator Φ is a linear operator, the kernel of which is equal to K̃(t) = K(t)1I[0,t]. The

kernel of the operator Φ2 is equal to K̃ ? K̃, which is continuous, then bounded on the
compact [0, T ], which yields a similar inequality as (B.5) and the conclusion f+ = f−.

Remark B.3. With the assumptions of Lemma B.3, When P is linear, that is P (f) =
α1 + α2f (αi ≥ 0), it easy checked that the solution of (B.1) can be extended over [0,∞[.
In this case, (B.1) is referred to as linear Volterra equation.
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B.3 V-maximum principle

The aim of this section is to prove the following result. We still assume K ∈ L1([0, T ])
and that P is a non increasing Lipchitz-continuous function.

Lemma B.4. Let f be a subsolution of (B.1) and g a supersolution of (B.1) over [0, T ].
Then

(B.6) ∀ t ∈ [0, T ], f(t) ≤ g(t).

Proof. By considering S[a, f ] instead of f , we can assume that f is continuous without
loss of generality. Similarly, by considering the sequence (gn)n∈IN as in Lemma B.2, we
can assume that g is a solution of (B.1) instead being a supersolution.
Assume that (B.6) do not hold, and let

(B.7) τ = sup{t ∈ [0, T [, s.t.∀ t′ ∈ [0, t], f(t′) ≤ g(t′)}

Our assumption yiels τ < T and there exists a sequence (tn)n∈N that converges to τ , such
that tn > τ for each n and f(tn) > g(tn). We may have τ = 0.
Given η > 0, let k = k(t) be the function defined by

(B.8) k(t) =

{
g(t), t ∈ [0, τ ],
g(t) + η, t ∈ ]τ, T ].

We claim that there exists S > τ such that k is a supersolution of (B.1) over [0, S] and
f ≤ k over [0, S]. Indeed, as P is Lipchitz continuous and non increasing,

(B.9) ∀ t′ ∈ [τ, T ], 0 ≤ P (k(t′))− P (g(t′)) ≤ Lη.

Therefore, since g is a solution of (B.1), k is a supersolution of (B.1) over [0, S] for all
S > τ that satisfy

(B.10) ∀ t ∈ [τ, S], Lη

∫ t

τ
K(t− t′)dt′ ≤ η.

As K ∈ L1([0, T ]) there exists S0 > τ such that for all S ∈ ]τ, S0], (B.10) holds. Further-
more, as f is continuous, there exists S ∈ ]τ, S0] such that

∀ t ∈ [τ, S], f(t) ≤ k(t).

We consider the sequences, over [0, S]

f0 = f, fn+1 = S[a, fn], k0 = k, kn+1 = S[a, kn].

we have over [0, S] and for all n,

f ≤ fn ≤ kn ≤ k.

According to Lemma B.2, (kn)n∈IN and (fn)n∈IN converge to a solution of (B.1) over [0, S]
which is above f over [0, T ]. By the uniqueness result of Lemma B.3, this solution is the
restriction of h to [0, S], which contradicts the definition of τ and concludes the proof.
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pages 1–70. Birkhäuser, Basel, 2000.

[19] B.-J. Geurts and D.-D. Holm. Leray and LANS-α modelling of turbulent mixing. J.
Turbul., 7:Paper 10, 33, 2006.

[20] J. D. Gibbon and D. D. Holm. Length-scale estimates for the LANS-α equations in
terms of the Reynolds number. Phys. D, 220(1):69–78, 2006.

[21] J. D. Gibbon and D. D. Holm. Estimates for the LANS-α, Leray-α and Bardina mod-
els in terms of a Navier-Stokes Reynolds number. Indiana Univ. Math. J., 57(6):2761–
2773, 2008.

[22] A.-A. Ilyin, E.-M. Lunasin, and E.-S. Titi. A modified-Leray-α subgrid scale model
of turbulence. Nonlinearity, 19(4):879–897, 2006.

[23] T. Kato. Nonstationary flows of viscous and ideal fluids in R3. J. Functional Analysis,
9:296–305, 1972.

[24] W. Layton and R. Lewandowski. A simple and stable scale-similarity model for large
eddy simulation: energy balance and existence of weak solutions. Appl. Math. Lett.,
16(8):1205–1209, 2003.

[25] W. Layton and R. Lewandowski. On a well-posed turbulence model. Discrete Contin.
Dyn. Syst. Ser. B, 6(1):111–128, 2006.

[26] W.-J. Layton and L.-G. Rebholz. Approximate deconvolution models of turbulence,
volume 2042 of Lecture Notes in Mathematics. Springer, Heidelberg, 2012. Analysis,
phenomenology and numerical analysis.

[27] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math.,
63(1):193–248, 1934.

[28] R. Lewandowski. The mathematical analysis of the coupling of a turbulent kinetic
energy equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear
Anal., 28(2):393–417, 1997.

[29] P.-L. Lions. The concentration-compactness principle in the calculus of variations.
The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(2):109–145,
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