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Abstract—This paper addresses the problem of multichan-
nel audio source separation in under-determined convolutive
mixtures. We target a semi-blind scenario assuming that the
mixing filters are known. The convolutive mixing process is
exactly modeled using the time-domain impulse responses of the
mixing filters. We propose a Student’s ¢ time-frequency source
model based on non-negative matrix factorization (NMF). The
Student’s ¢ distribution being heavy-tailed with respect to the
Gaussian, it provides some flexibility in the modeling of the
sources. We also study a simpler Student’s ¢ sparse source
model within the same general source separation framework.
The inference procedure relies on a variational expectation-
maximization algorithm. Experiments show the advantage of
using an NMF model compared with the sparse source model.
While the Student’s # NMF source model leads to slightly better
results than our previous Gaussian one, we demonstrate the
superiority of our method over two other approaches from the
literature.

Index Terms—Under-determined audio source separation, mul-
tichannel convolutive mixture, Student’s ¢ distribution, non-
negative matrix factorization, variational inference.

I. INTRODUCTION

Multichannel audio source separation aims to recover a set
of audio source signals from several observed mixtures. We
consider an under-determined scenario where the number of
sources is greater than the number of microphones. Moreover
we focus on modeling reverberant (or convolutive) mixtures.
This problem involves two modeling steps: modeling the
source signals and the way they are mixed together.

Source modeling is commonly achieved in a time-frequency
(TF) domain because it provides a meaningful and sparse rep-
resentation of the source signals. Sparse component analysis
[1] and variance modeling frameworks [2] are two important
trends in audio source separation [3]. Within the variance
modeling framework, non-negative matrix factorization (NMF)
techniques are popular to represent the spectro-temporal char-
acteristics of the sources [4], [5], [6], [7], [8].

Convolutive mixtures are frequently approximated as being
instantaneous in the short-time Fourier transform (STFT)
domain [9], [10] or modeled by means of a spatial covariance
matrix [11], [12]. A less common approximation relies on a
subband filtering model [13], which has recently demonstrated
its potential for reverberant audio source separation [14], [15].

In this paper we focus on exact time-domain convolutive
mixture modeling. We target a semi-blind scenario assuming
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that the mixing filters are known. Other approaches relying
on the same exact convolutive modeling were focusing on
sparse TF source models [16], [17]. Note that these methods
were also considering a semi-blind setting. Here we propose to
incorporate within a same framework a sparse and an NMF-
based source model relying on the Student’s ¢ distribution.
A multichannel Student’s ¢ source separation method has
recently been proposed in [18], but only the likelihood was
Student’s ¢, not the source model. Moreover the convolutive
mixing process was approximated in the STFT domain.

Building on our previous Gaussian model [19], the source
coefficients in the Modified Discrete Cosine Transform
(MDCT) domain are modeled as centered Student’s ¢ random
variables. For one given source, the scale parameters of these
random variables are either considered to be equal, leading
to a sparsity based model, or TF-dependent but structured
by means of an NMF model. We then use the time-domain
observations to infer the TF latent source variables. The infer-
ence relies on a variational expectation-maximization (VEM)
algorithm [20]. Experiments demonstrate the superiority of the
Student’s + NMF model over the sparse one and other state-
of-the-art methods.

The models are introduced in section II. The variational in-
ference is presented in section III. Experiments are conducted
in section IV and we finally draw conclusions in section V.

II. MODELS
We denote s;(t) €e R, t =0,...,Ls — 1,5 =1,..,J, the
j-th source signal and a;;(t) € R, t =0,...,Lq, i = 1,...,1,
the mixing filter between source j and microphone i. Let us
define T'= L+ L, — 1. The signal x;(t) recorded by the i-th
microphone is represented for ¢ = 0,...,7 — 1 as:

J
i(t) = Zyij(w +bi(t), (1)

where y;;(t) = [a;; * s;](t) is referred to as a source image,
with x the discrete convolution operator, and b;(¢) is a white
Gaussian additive noise:

bi(t) ~ N(0,02). )

Each signal s;(t) is represented by a set of TF synthesis
coefficients {s; s € R}(sn)es with B = {0,...,F — 1} x
{0,..., N —1}:

Z 5j,f71,¢er(t)- (3)

(fm)eB

sj(t) =



We define the source model in the MDCT domain such that
the synthesis atom 7, (t) € R, ¢t =0, ..., Ly — 1, is given by:

7/)fn(t):\/§ (t—nH) cos (iu(t nH+ + )

4)
where w(t) is a sine-window defined by w(t) =
sin(m(t+0.5)/L,,) if 0 < ¢t < L, —1, 0 otherwrse,
H = L, /2 is the hop size and F' = L,,/2 is the number
of frequency bins. We choose the MDCT because it is criti-
cally sampled; it involves less TF coefficients than the STFT
which is redundant. Using the MDCT thus allows us to limit
the number of source TF coefficients to be estimated, and
consequently it also limits the computational load. With this
TF representation, a source image can be further written as:

yis(t) = > Simgiigm®), O

(f,n)eB

with gij rn(t) = lai; * Yral(t).
We assume that the TF synthesis coefficients s; r,, indepen-
dently follow a Student’s ¢ distribution (see Appendix A):

8j.fn ~ Tal0,Aj n)- (6)

a and A ¢, are respectively the shape parameter (also called
degrees of freedom) and the scale parameter. This distribution
approaches the Gaussian one as « goes to infinity. Smaller
values of « yield heavier tails. The particular case o = 1
leads to the Cauchy distribution.

Model (6) can be shown to be equivalent to the following
hierarchical one:

~ N(0,v;, fn)

Sj.fn Vs fn
22

Vj, fn ~ Ig ( 7, fn) )
where N denotes the Gaussian distribution and ZG the Inverse-
Gamma distribution (see Appendix A). In the following we
will consider two particular cases of this source model:
1) Sparse source model: The TF synthesis coefficients for
one given source are assumed to be identically distributed, i.e.
for all f,n

[azj * s;](t) =

)

A =A% (8)

J.fn —

When the shape parameter « is set to a sufficiently small value,
this model assumes that the sources are sparse in the MDCT
domain. This sparse Student’s # source model has already been
used for source separation in [21] but for instantaneous and
not for convolutive mixtures.

2) NMF source model: The squared scale parameters /\j n
are structured by means of an NMF model:

A?,f’n - [W iH; }fm (9)

with W; = [w; salye € RO and Hy = [hjgnlem €
Rfj “N K ; 1s the rank of the factorization. Note that a similar
but not equivalent source model has recently been proposed
in [22]. In this paper a source was modeled by a sum of

Gaussian components in the STFT domain. The TF-dependent

variances of one component were assumed to follow inverse-
gamma priors, whose scale parameters were constrained by a
rank-1 NMF model. Here the j-th source is Student’s ¢ in
the MDCT domain with a rank-K; NMF model on the scale
parameters.

III. VARIATIONAL INFERENCE

Let x = {x;(t)};: denote the set of observed variables,
z=1{s={Sj fn}jfmV=1vjn}jsn} the setof latent vari-
ables and 0 = {0 = {07}i,A = {\ ;. }sn} the pa-
rameters to be estimated. We recall that the mixing filters
{ai;(t)};,;,+ are assumed to be known. We would like to infer
the latent variables according to their posterior mean, using
a maximum likelihood estimation of the model parameters.
However, exact posterior inference with the proposed model
is analytically intractable. We thus resort to variational infer-
ence. Let F be a set of probability density functions (pdfs)
over the latent Variables z For any pdf q € F and any
function f(z), we note (f(z)); = [ f(z)q(z)dz. Then for
any ¢ € F and parameter set 9 the log- hkehhood can be de-
composed as Inp(x; 0) = L(q; 0) + Dxr(q||p(z|x; 0)), where
L(g:0) = (in(p(x,2:0)/q(z))), and Dic(q|lp(zlx;0)) =
(In(q(z)/p(z[x:0))), is the Kullback-Leibler (KL) diver-
gence between ¢ and the posterior distribution p(z|x;8).
L(q; 0) is called the variational free energy and can be further
decomposed as L(q;0) = E(q;0) + H(q) where

E(q;0) = (Inp(x,2;0)),,

and H(q) = —(lng¢(z)), is the entropy of the variational
distribution ¢. Since the KL divergence is always non-negative,
the variational free energy is a lower bound of the log-
likelihood. The VEM algorithm [20] consists in iterating
two steps until convergence: the E-step where we compute
q* = argmax, ¢ r £(q;0ca) and the M-step where we com-
pute O = argmaxy L(g*;0) = arg maxgy E(q¢*; 0).

In this work we will use the mean-field approximation
assuming that the pdf ¢ can be factorized as:

(10)

J

0@2) =] TI @a(sirn)@iin(vssn)-

J=1(fmn)enB

(11

For simplicity of notations we will drop the sug)erscript and
the indices when referring to the distributions 4 Under the
mean-field approximation it can be shown that the pdf over
a latent variable z € z which maximizes the variational free
energy satisfies [20]:

Ing*(z) =

where = denotes equality up to an additive constant and z\ z
denotes the set of all latent variables but z.

(1np(x,z;9)>q(z\z), (12)

A. Source Estimate Under the Variational Approximation

Under the mean-field approximation, the j-th TF source
estimate is given by:
13)

85.fn = (Sj.fn)q-



Algorithm 1: E-step

Algorithm 2: M-step

1

1: 6 = ot

2
2: for all j, f,n do
3: Bj,fn:(a/2) jfn ( ffn—’_’YJ,fn)/Q L

)
50 djpn = SJ,fn‘S/ﬂJ,fn
I 1 —1 J
> o > Gign(t) (fﬂz'(t) -3 Z?z‘j'(t))
. R =1 ' t=0 j'=1

6 8jn <= 8j.fn — Vigndj fn

The time-domain source estimate §;(t) is then reconstructed
by inverse MDCT and the source image ¢;;(t) is obtained by
convolution of §;(¢) with the associated mixing filter a;;(¢).

B. Complete-data Log-likelihood

From (1), (2) and (7), the complete data log-likelihood
Inp(x,2;0) = Inp(x|z; o) + lnp(s|v) + Inp(v; X) writes:
Inp(x,z;0) = ZZ[ln

R EUEEICS w0
Ty

o 1 o
- l n(vj, fn) <2 1 2) InT 5
J=1(fm)eB

" 1 oz)\ ?,fn +ozl 2
U —— 1,
Vi fn \ 2 it Ty 2 aX? .

(14)

I T-1

where I'(-) denotes the Gamma function.

C. E-Step

From (11), (12) and (14) we can identify the varia-
tional distribution that maximizes the variational free energy:
q*(rvj,fn) = IG(évﬁj,fn) and q*(sj,fn) = N(gj,fn»'yj,fn),
where IG and N are the pdfs of the Inverse-Gamma and
Gaussian distributions respectively, defined in Appendix A.
The E-Step consists in updating the parameters of these
distributions as given in Algorithm 1. It can be shown that
dj fn = 0(—L(q*;0))/(05;,§n) where L(¢*; 0) is given in the
next section. The updates in lines 5 and 6 of Algorithm 1 thus
correspond to a coordinate-wise minimization of the negative
variational free energy. For the sake of computational effi-
ciency we will rather use the preconditioned conjugate gradi-
ent (PCG) method for updating all the parameters {5; ¢ };, f.n
at once. The PCG method being very similar to the one
described in [19], it is not detailed here.

D. Variational Free Energy

Using the results from the E-step, we can compute the
variational free energy L£(¢*;0) = E(q¢*;0) + H(¢*). From

1: for all i, j do
2:  switch source model do

3: case sparse
F-1N-1 ) !
. _ g, fn
v ()
f=0 n=0
5: case NMF L
W; «~W; 0o [W,H,] H;
W g
WT [W,H;]®” 1
7: Hj — Hj —T -1
Wi (B;/9)
8 ol=+ Zf 0 ! e;(t), with e;(t) defined in (16)

equations (10) and (14), the energy term writes:

B0 -1 Y [mw?) e

1) « 52 +’Y] fn o 2
+ R R L :
Bi.fn (2 » 2 X} g,

5)

where dil'(-) = TI'(-)/I'(-) is the digamma function and
ei(t) = ((zi(t) — Z}I:1 yij(t))2>q* can be developed from
(5) and (11) as follows:

2 J
ei(t) _( Zyw ) +Z Z Vo i (2)-
(16)

J=1(fmn)eB
From the mean-field approximation (11), the entropy of the
variational distribution writes:

H(g*) = JFEN[§ — (1+ 5) dil'(8) + In (T (8))]

53>

J=1(fmn)eB

ln (Vign) +In(Bj )| AT

E. M-step

The M-step aims to maximize (or only increase) the energy
E(g*; 0) in equation (15) with respect to the parameter set 6.
The resulting updates are given in Algorithm 2. The updates
for A% and o} are obtained by zeroing the derivative of
E(g*;0). Interestingly, for the sparse source model, )\? is
updated according to the harmonic mean of {3; f,,/d} ¢ ., thus
providing a kind of robustness to outliers. The multiplicative
NMF update rules in lines 6 and 7 (where B; = [3; tn]fn €
RiXN ) are obtained by using a majorization-minimization
approach (see Appendix B for details). Note that they can
be repeated several times within the M-Step. Moreover, as
explained in Appendix B, these updates differ from what one
can usually find in the NMF literature.
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Fig. 1. Average SDR in dB as a function of the shape parameter «.

IV. EXPERIMENTS

Our experiments are conducted from audio tracks provided
by the Musical Audio Signal Separation (MASS) dataset [23].
We consider 8 stereo mixtures sampled at 16 kHz and obtained
by simulating mixing filters with the Roomsimove toolbox
[24]. The mixtures duration ranges from 12 to 28 seconds. The
reverberation time' is set to 256 ms. The number of sources per
mixture ranges from 3 to 5. The omnidirectional microphone
spacing was set to 1 m, and the distance between the source
and the center of the microphone pair to 2 m. The sources
are spatially disjoint and their directions of arrival range from
-45° to 45°. We evaluate the source separation performance in
terms of reconstructed monophonic sources. We use standard
energy ratios: the Signal-to-Distortion Ratio (SDR), Signal-to-
Interference Ratio (SIR) and Signal-to-Artifact Ratio (SAR).
These criteria expressed in decibels (dB) are defined in [25].
We used the BSS Eval Toolbox available at [26] to compute
these measures. For all the methods compared in this section,
we used a half-overlapping TF analysis/synthesis sine window
of 128 ms. For the NMF-based methods, the factorization rank
was arbitrarily fixed to K; = 10 for every source. For all
experiments the source parameters are blindly initialized while
the mixing filters are fixed to the true ones.

We start by comparing the Student’s ¢ sparse and NMF-
based source models. Fig. 1 represents the SDR averaged
over all the sources in the dataset as a function of the shape
parameter « for the two approaches. We notice that the sparse
source model requires a Student’s ¢ distribution with heavier
tails than the NMF source model. We also clearly observe the
advantage of modeling the spectro-temporal characteristics of
the sources by means of an NMF model.

We then compare the proposed methods with three other
ones from the literature in the same semi-blind setting: (M1)
the Gaussian NMF-based method [10] where the convolutive
mixing process is approximated as being instantaneous in the
STFT domain®. Since the impulse responses of the mixing
filters are longer than the STFT analysis window, they are
truncated before computing the frequency responses required
by this method; (M2) the Lasso method [16] with ¢; regu-
larization on the source TF coefficients; (M3) our previous

I'The reverberation time is defined as the time it takes for the sound energy
to decrease by 60 dB after extinction of the source.

2The NMF parameters are actually updated as in [27] using multiplicative
update rules.

| SDR SIR SAR

M1 [10] 1.7 8.5 4.9

M2 [16] 5.5 11.7 8.8

M3 [19] 6.7 12.5 9.5
Student’s ¢ sparse (o = 0.4) 3.8 11.8 59
Student’s t NMF (o = 14) 6.7 12.7  10.0

TABLE I
AVERAGE SOURCE SEPARATION RESULTS IN DB.

method [19] with Gaussian NMF source modeling in the
MDCT domain. M2 and M3 both rely on exact time-domain
convolutive mixture modeling.

As can be seen in Table I, M1 performs the worst due to
the STFT approximation of the convolutive mixing process.
We observe that the two sparsity based methods, M2 and the
proposed Student’s ¢ one, lead to the same performance in
terms of interferences. However M2 is superior in terms of
artifacts rejection and global quality. We finally notice that the
the proposed Student’s #f NMF method performs the best, even
though the improvement compared with our previous Gaussian
approach M3 is small. Matlab code for the proposed VEM
algorithm and audio examples are available at [28].

V. CONCLUSION

This paper introduced a multichannel audio source separa-
tion method based on exact convolutive mixture modeling and
Student’s ¢ source modeling. Within this framework we com-
pared a sparse and an NMF-based source model. The semi-
blind experimental evaluation demonstrated the importance of
modeling the spectro-temporal characteristics of the sources
instead of only assuming sparsity. Future work will focus on
developing a fully blind source separation method that exploits
priors on the impulse response of the mixing filters. We could
for example consider similar priors as in [29] for promoting
sparsity and exponentially decaying envelop.

APPENDIX A
STANDARD PROBABILITY DISTRIBUTIONS
Let 7, (i, \) denote the Student’s 7 distribution over a real-
valued random variable (r.v.). v, u, A are respectively the
shape, location and scale parameters. Its probability density
function (pdf) is given by:
_v41l

1 I%ff)<1+1($—uV :
Vime T(3) U TR |
(18)

where I'(-) denotes the Gamma function.

Let N (u,0?) denote the Gaussian distribution over a real-
valued r.v. Its pdf is given by:
@—uf)

1
. 2y — _ LAV
N(ZC, H, o ) - \/W €xp < 20_2
Let ZG(«, B) denote the Inverse-Gamma distribution over
a positive r.v., its pdf is given by:

The Inverse-Gamma distribution has the following properties:

E[ln(z)] = In(B) — dil'(«) Ez~Y =2

/87

T, (w5 1, A) =

19)

(20)

and



where dil’(-) = T”(-)/T'(+) is the digamma function.

APPENDIX B
M-STEP FOR THE STUDENT’S t NMF SOURCE MODEL
When )2 5.pn = [W;H;] it can be shown that maximizing

E(q*; 0) with respect to (w.r.t) W;, H; under a non-negativity
constraint is equivalent to minimizing the following cost
function under the same constraint:

3 (WiH,l,

C(W;,Hj) = —
(B Bj.fn/6

~n ([W;H,] )

2y
Interestingly, up to an additive constant independent of the
NMF parameters, C(W;, H;) is equal to drs (W;H;,B;/0)
where d;s denotes the Itakura-Saito (IS) divergence [4] and
B, = [Bj.tnlfn € RY*N. Note that compared with standard
IS-NMF [4], the NMF term here appears in the first argument
of the IS divergence (which is not symmetric) instead of the
second one. Based on Jensen s inequality, we can show that
for any set {c;x,n € [0, 1]}k 1 such that Zk 1 Cjk,fn = 1t

—ln([WH )_ Zc]kfn1n< f"hﬂk”), (22)

Cik,fn
where equality holds if and only if cji n =
wj, fehj kn/ [W]-Hj]fn. It follows from (21) and (22):
C N e nln(j’fj’>.
W Z BJ fn/ kz;: e Cjk,fn

(23)
Letting the partial derivatives of this upper bound w.r.t w; rx
and h;n, be zero, and replacing cjy, f,, With the expression
that equalizes the cost and its upper bound, we obtain the mul-
tiplicative update rules given in lines 6 and 7 of Algorithm 2.
® denotes entry-wise operation and division is taken entry-
wise. The non-negativity constraint is satisfied provided that
the NMF parameters are initialized with non-negative entries.
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