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Abstract—Low-rank tensor approximation algorithms are
building blocks in tensor methods for signal processing. In
particular, approximations of low multilinear rank (mrank) are of
central importance in tensor subspace analysis. This paper pro-
poses a novel non-iterative algorithm for computing a low-mrank
approximation, termed sequential low-rank approximation and
projection (SeLRAP). Our algorithm generalizes sequential rank-
one approximation and projection (SeROAP), which aims at the
rank-one case. For third-order mrank-(1,R,R) approximations,
SeLRAP’s outputs are always at least as accurate as those of
previously proposed methods. Our simulation results suggest
that this is actually the case for the overwhelmingly majority
of random third- and fourth-order tensors and several different
mranks. Though the accuracy improvement is often small, we
show it can make a large difference when repeatedly computing
approximations, as happens, e.g., in an iterative hard threshold-
ing algorithm for tensor completion.

Index Terms—Multilinear rank, low-rank approximation, ten-
sor, tensor completion.

I. INTRODUCTION

Tensor methods have rapidly become widespread in the sig-
nal processing community. A key task in these methods is the
computation of low-rank tensors approximations. For instance,
low-rank canonical polyadic decompositions of real-world data
tensors are always approximative, due to noise and model
mismatches [1]. Another recurrent example concerns approxi-
mations having low multilinear rank (mrank), a concept which
is closely related to the Tucker decomposition. Because low-
mrank approximation (LMA) is useful for subspace analysis
and dimensionality reduction, applications abound, ranging
from multidimensional harmonic retrieval [2] to biomedical
signal classification [3]; see [4] for more examples. Both
low-rank and low-mrank approximations reduce to the same
one for matrices, in which case the truncated singular value
decomposition (SVD) provides the optimal solution in the
least-squares (LS) sense. In the case of higher-order tensors,
they are equivalent only for rank one and are NP-hard [5].

Low-mrank approximation methods fall into two classes.
The first class encompasses iterative algorithms which typi-
cally address a (nonlinear) LS problem [6], [4], [7]. Methods
of the second class are non-iterative and focus on finding a
reasonable, but suboptimal, low-mrank approximation within
a finite number of steps. They are therefore more suitable
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when some error is tolerated and/or computing cost is a
limiting factor. In particular, they are useful for initializing
methods of the first class and also for plugging into iterative
algorithms which repeatedly resort to LMAs, such as iterative
hard thresholding (IHT) schemes for tensor completion (TC)
[8], [9]. The best-known method of this class is the truncated
higher-order singular value decomposition (THOSVD), which
projects each modal unfolding of the tensor onto its dominant
subspace computed via an SVD [10]. Though it is suboptimal,
its error is bounded by a multiple of the optimal value. The
alternative proposed in [11], which we refer to as sequentially
optimal modal projections (SeMP), proceeds similarly but
computes the modal projectors in a sequential fashion. This
leads to the same error bound, but at a smaller cost due to the
reduced size of the SVDs. In particular, for mrank-(1, R,R)
approximations it was shown to perform at least as well
as THOSVD. Simulation results performed in [11] suggest
that this superiority holds in most cases. For the particular
case of rank-one approximations, [12] has come up with a
two-stage algorithm called sequential rank-one approximation
and projection (SeROAP), which first reduces dimensionality
just like SeMP and then performs a sequence of projections
for refining the approximation. For third-order tensors, [12]
proved it performs at least as well as SeMP and, consequently,
as THOSVD too.

This paper proposes a generalization of SeROAP, called
sequential low-rank approximation and projection (SeLRAP),
which handles arbitrary mrank. We show SeLRAP performs
at least as well as SeMP for mrank-(1, R,R) approximations.
Such a superiority was also observed in the overwhelming
majority of our simulations for several other cases.
Notation: Vectors, matrices and tensors are denoted by bold
lowercase, bold uppercase and calligraphic uppercase letters,
respectively (e.g., x, X, X). The symbols •n, ⊗ and � stand
for the mode-n, tensor and Kronecker products, respectively.
Vector inequalities x ≤ y are meant entry-wise. X〈n〉 =
(X)〈n〉 denotes the mode-n (flat) matrix unfolding of X, and
X:,1:R denotes the submatrix of X composed by its first R
columns. IM stands for the M ×M identity matrix.

II. STATE OF THE ART

The mrank of an N th-order tensor Y ∈ ⊗N
n=1 CIn can

be defined as the tuple r = (R1, . . . , RN ) such that Rn =



rank(Y〈n〉). The numbers Rn are the smallest ones satis-
fying Y ∈ ⊗N

n=1 Un with dim(Un) = Rn. Given a tensor
X
⊗N

n=1 CIn , we consider the approximation problem:

min
X̂∈

⊗N
n=1 Un

‖X− X̂‖2F subj. to

{
Un ⊆ CIn

dim (Un) = Rn.
(1)

Below, we recapitulate the existing non-iterative approximate
solutions to (1).

A. Truncated HOSVD
An equivalent formulation of (1) is

min
P̂(n)∈CIn×In

∥∥∥X−X
N•
n=1

P̂(n)
∥∥∥2

F
,

where P̂(n) is an orthogonal projection onto an Rn-
dimensional subspace Un. Introducing a telescoping sum in-
side the norm, this problem can be rewritten as [11]

min
P̂(n)∈CIn×In

N∑
n=1

∥∥∥X n−1•
m=1

P̂(m) •n P̂
(n)
⊥

∥∥∥2

F
, (2)

where P̂
(n)
⊥ projects onto the orthogonal complement of Un.

As orthogonal projections are nonexpansive, the cost function
of (2) is upper bounded by

N∑
n=1

∥∥∥X •n P̂
(n)
⊥

∥∥∥2

F
=

N∑
n=1

∥∥∥P̂(n)
⊥ X〈n〉

∥∥∥2

F
. (3)

It follows from the Eckart–Young theorem that (3) is min-
imized by projectors satisfying P(n) = U

(n)
:,1:Rn

(U
(n)
:,1:Rn

)H ,
where U(n) is the matrix of left singular vectors of X〈n〉. One
can thus approximate the solution of (2) by these projectors.
This is equivalent to computing the HOSVD of X, given by
X = S •Nn=1 U(n), and then truncating each factor U(n) at the
Rnth column (and S accordingly). This is the idea behind the
THOSVD approach [10].

Now, because this choice gives projectors which are optimal
when considered separately (but not jointly), any solution X?

of (1) satisfies ‖P̂(n)
⊥ X〈n〉‖2F ≤ ‖X〈n〉 − X?

〈n〉‖2F . Plugging
this expression into (3) shows the THOSVD yields LS error
no greater than N times the optimal one.

Assuming the SVD of an I×M matrix requires φ(I,M) =
O(IM min{I,M}) operations, then THOSVD has cost1∑N
n=1 φ(In,Mn) +

∑N
n=1O(LnRnIn) +

∑N
n=1O(JnRnIn),

where Mn ,
∏
m6=n Im, Ln , R1 . . . Rn−1In+1 . . . IN and

Jn , I1 . . . In−1Rn+1 . . . RN . The second and third summa-
tions correspond to the calculation of S and X̂, respectively.

B. Sequentially optimal modal projections
Another way of approximately solving (2) is by seeking for

its optimizers in a sequential fashion. This leads to the SeMP
solution [11], which chooses projectors satisfying

P(n) = arg min
P̂(n)∈CIn×In

∥∥∥X n−1•
m=1

P(m) •n P̂
(n)
⊥

∥∥∥2

F
.

1We assume that the contractions needed to calculate S and X̂ are performed
in the order n = 1, . . . , N . This simplifies the comparison with the other
algorithms.

This is accomplished by computing SVDs of the unfoldings
W

(n)
〈n〉 of tensors W(n) ∈

(⊗n−1
m=1 CRn

)
⊗
(⊗N

m=nCIn
)

given by W(1) = X and W(n) = W(n−1) •n−1 U
(n−1)H

for n = 2, . . . , N , where U
(n)

holds the first Rn left sin-
gular vectors of W

(n)
〈n〉. Then, X̂ = W

(N) •Nn=1 U
(m)

, where

W
(N)

= W(N) •N U
(N)H

.
These SVD problems have smaller size than in the

THOSVD, because the dimensions of the tensors W(n) are
gradually reduced. Thus, SeMP has smaller cost, given by∑N

n=1 [φ(In, Ln) +O(LnRnIn)] +
∑N
n=1O(JnRnIn).

Furthermore, its error is still subject to the same upper bound
as the THOSVD [11].

It should be noted that the modes can be of course processed
in any other order, which in general leads to different results.

C. Sequential rank-one approximation and projection

The SeROAP algorithm [12] handles the case R1 = · · · =
RN = 1 by proceeding as follows:
1. Order reduction stage: Let w(1) , vec (X) ∈ CIN ...I1 . For
n = 2, . . . , N , recursively compute w(n) ∈ CIN ...In via

min
λ̂∈R, û(n)∈CIn−1

ŵ(n)∈CIN ...In

∥∥∥w(n−1) − λ̂
(
ŵ(n)

)∗
� û(n)

∥∥∥2

2
,

whose solution is the dominant singular triplet of an In−1×
IN . . . In matrix obtained by “unvectorizing” w(n−1).

2. Projection stage: Let z(N−1) , w(N)∗�u(N) ∈ CININ−1 .
For n = N − 2, . . . , 1, compute the orthogonal projection

z(n) = P(n)w(n) ∈ CIN ...In , (4)

where P(n) , ‖z(n+1)‖−2
2

[
z(n+1)∗z(n+1)T

]
� IIn .

Finally, the result X̂ is such that vec(X̂) = z(1) ∈ CIN ...I1 .

III. SEQUENTIAL LOW-MULTILINEAR-RANK
APPROXIMATION AND PROJECTION

A. Algorithm

A generalization of SeROAP to any multilinear rank r =
(R1, . . . , RN ) goes along the following lines:
1. Dimension reduction stage: In this stage, a sequence of ten-

sors W(n) ∈
(⊗n−1

m=1 CRn

)
⊗
(⊗N

m=nCIn
)

is computed
in exactly the same way as in SeMP.

2. Projection stage: Here, one recursively obtains tensors Z(n)

of same dimensions as W(n) by performing a sequence of
orthogonal projections. Specifically, this calculation begins
with Z(N) = W

(N) •N U
(N)

, and for n = N − 1, . . . , 1,

Z
(n)
〈n〉= W

(n)
〈n〉Z

(n+1)
〈n〉

H
(

Z
(n+1)
〈n〉 Z

(n+1)
〈n〉

H
)−1

Z
(n+1)
〈n〉 . (5)

The desired mrank-(R1, . . . , RN ) approximation is X̂ = Z(1).
The projection stage of SeLRAP can be seen as an attempt

of refining the approximation computed by SeMP. Also, it is
not hard to check that the above procedure reduces to SeROAP



when R1 = . . . = RN = 1. In this particular case, the vectors
w(n) and z(n) of Sec. II-C are vectorized versions of W(n)

and Z(n), respectively, and (4) is equivalent to (5).
In practice, (5) can be performed with the aid of an

orthonormal basis for the row space of Z
(n+1)
〈n〉 , obtained from

a QR decomposition or an SVD. The constructed projector
must have the same rank as Z

(n+1)
〈n〉 , which can be smaller

than Rn. This corresponds to replacing the inverse matrix of
(5) by the Moore-Penrose pseudo-inverse. Computing the basis
costs O(LnR

2
n) flops (assuming Ln ≥ Rn), since Z

(n+1)
〈n〉 has

dimensions Rn × Ln, while performing the projection costs
O(LnInRn). Thus, SeLRAP has the overall complexity∑N

n=1 [φ(In, Ln) +O(LnInRn)] +O(LNRNIN ) + φproj,

where φproj =
∑N−1
n=1 [O(LnR

2
n) +O(LnInRn)].

B. Fulfillment of rank constraint
We now show that the approximation delivered by SeLRAP

actually meets the desired mrank constraint.

Lemma 1. Let X ∈ ⊗N
m=1 CKm and define the tensor P ∈(⊗n−1

m=1 CKm

)
⊗CRn⊗

(⊗N
m=n+1 CKm

)
, for some n ∈ NN .

If mrank(P) = (R1, . . . , RN ), then

Y〈n〉 = X〈n〉P
H
〈n〉(P〈n〉P

H
〈n〉)
−1P〈n〉

can be assimilated to the mode-n unfolding of Y ∈⊗N
m=1 CKm satisfying mrank(Y) ≤ (R1, . . . , RN ).

Proof. Since mrank(P) = (R1, . . . , RN ), there exist G ∈⊗N
m=1 CRm and U(m) ∈ CKm×Rm for m ∈ NN \{n} such

that U(m) has orthonormal columns and P〈n〉 = G〈n〉U
T ,

where U , U(N) � . . . � U(n+1) � U(n−1) � . . . �
U(1). Hence, Y〈n〉 = X〈n〉U

∗GH
〈n〉(G〈n〉G

H
〈n〉)
−1G〈n〉U

T ,
which implies rank(Y〈n〉) ≤ Rn. Defining C ∈(⊗n−1

m=1 CRm

)
⊗ CKn ⊗

(⊗N
m=n+1 CRm

)
as C〈n〉 =

X〈n〉U
∗GH
〈n〉(G〈n〉G

H
〈n〉)
−1G〈n〉, it follows that Y =

C •m6=n U(m), implying mrank(Y) ≤ (R1, . . . , RN ).

Proposition 2. The approximation X̂ produced by SeLRAP
satisfies mrank(X̂) ≤ r = (R1, . . . , RN ).

Proof. The definition of Z(N) implies mrank(Z(N)) ≤ r.
From (5), it thus follows that mrank(Z(n)) ≤ r for all n,
due to Lemma 1. As X̂ = Z(1), we have mrank(X̂) ≤ r.

C. Comparison with SeMP
In the following, we analytically compare the quadratic

errors incurred by SeMP and SeLRAP for third-order tensors.
Let r = (R1, R2, R3) and denote by X̂SeMP = S •3n=1 U

(n)
the

approximation delivered by SeMP, where U
(n)

is as defined in

Sec. II-B. Because S = X •3n=1 U
(n)H

, the resulting quadratic
error can be written as

εSeMP , ‖X− X̂SeMP‖2F = ‖X‖2F −
∥∥∥∥X 3•

n=1
U

(n)H
∥∥∥∥2

F

= ‖X‖2F −
∥∥∥∥U(1)H

X〈1〉

(
U

(3)∗
�U

(2)∗)∥∥∥∥2

F

.

Since U
(1)

holds the first R1 left singular vectors of X〈1〉,

εSeMP = ‖X‖2F −
∥∥∥∥Σ(1)

V
(1)H

(
U

(3)∗
�U

(2)∗)∥∥∥∥2

F

,

where the columns of V
(n)

are the first Rn right singular vec-
tors of X〈1〉 = W

(1)
〈1〉, while Σ

(1)
contains the corresponding

singular values in its diagonal. This is a direct generalization
of the expression derived in [12] for the case r = (1, 1, 1).

A similar expression can be derived for SeLRAP. First,
define the orthogonal projector

P , Z
(2)
〈1〉

H
(

Z
(2)
〈1〉Z

(2)
〈1〉

H
)−1

Z
(2)
〈1〉.

Using this definition along with (5) and the identities
(X̂SeLRAP)〈1〉 = Z

(1)
〈1〉 and X〈1〉 = W

(1)
〈1〉, we derive

εSeLRAP , ‖X− X̂SeLRAP‖2F = ‖X‖2F −
∥∥∥W(1)

〈1〉P
∥∥∥2

F
. (6)

Writing W
(n)
〈n〉 = U

(n)
Σ

(n)
V

(n)H

+ E(n), the second norm
in (6) can be rewritten as∥∥∥W(1)

〈1〉P
∥∥∥2

F
= Tr

{
PW

(1)
〈1〉

H
W

(1)
〈1〉P

}
=

∥∥∥∥Σ(1)
V

(1)H

P

∥∥∥∥2

F

+
∥∥∥E(1)P

∥∥∥2

F
.

Plugging the result into (6), we have

εSeLRAP = ‖X‖2F −
∥∥∥∥Σ(1)

V
(1)H

P

∥∥∥∥2

F

−
∥∥∥E(1)P

∥∥∥2

F

≤ ‖X‖2F −
∥∥∥∥Σ(1)

V
(1)H

P

∥∥∥∥2

F

.

Thus, a sufficient condition for having εSeLRAP ≤ εSeMP is∥∥∥∥Σ(1)
V

(1)H

P

∥∥∥∥2

F

≥
∥∥∥∥Σ(1)

V
(1)H

(
U

(3)∗
�U

(2)∗)∥∥∥∥2

F

. (7)

In turns out, though, that a general explicit expression for P is
quite complicated. We thus focus on the case where R1 = 1,
which implies R2 = R3 = R. This can be easily seen from
the mode-2 and mode-3 unfoldings of an mrank-(1, R2, R3)
Tucker model. For this case, the following result holds.

Theorem 3. Let X ∈⊗3
n=1 CIn and denote by X̂SeLRAP and

X̂SeMP the mrank-(1, R,R) approximations of X produced by
SeLRAP and SeMP, respectively, by processing the modes in
the natural order (1,2,3). Then,∥∥∥X− X̂SeLRAP

∥∥∥2

F
≤
∥∥∥X− X̂SeMP

∥∥∥2

F
. (8)

Proof. First, SeLRAP computes the SVDs

W
(1)
〈1〉 = σ(1)u(1)v(1)H + E(1) ∈ CI1×I3I2 ,

W
(2)
〈2〉 = U

(2)
Σ

(2)
V

(2)H

+ E(2) ∈ CI2×I3 ,



where W
(2)
〈1〉 = σ(1)v(1)H . Observe that, for R1 = 1,

vec
(
W

(2)
〈1〉

)
= σ(1)v(1)∗ = vec

(
W

(2)
〈2〉

)
(9)

= vec

(
U

(2)
Σ

(2)
V

(2)H

+ E(2)

)
(10)

and W
(3)
〈3〉 = W

(3)
〈2〉

T
= W

(2)
〈2〉

T
U

(2)∗
. Hence, the SVD of

W
(3)
〈3〉 comes “for free,” being given by W

(3)
〈3〉 = V

(2)∗
Σ

(2)
=

U
(3)

Σ
(3)

, i.e., U
(3)

= V
(2)∗

. Now, in the projection stage,

Z
(3)
〈3〉 = W

(3)
〈3〉 = U

(3)
Σ

(3) ∈ CI3×R, (11)

because rank(W
(3)
〈3〉) ≤ R. Furthermore, Z

(3)
〈2〉 = Z

(3)
〈3〉

T
. Thus,

plugging (11) into (5) for n = 2 we obtain

Z
(2)
〈2〉 = W

(2)
〈2〉V

(2)
V

(2)H

= U
(2)

Σ
(2)

V
(2)H ∈ CI2×I3 .

Since Z
(2)
〈1〉 = vec

(
Z

(2)
〈2〉

)T
, using the property vec(ABCT ) =

(C�A) vec(B) we have

Z
(2)
〈1〉 = vec

(
Σ

(2)
)T (

U
(3)
�U

(2)
)T
∈ C1×I3I2 ,

which implies P = ‖σ(2)‖−2
2 U∗ σ(2) σ(2)T UT , where

σ(2) , vec
(
Σ

(2)
)

and U , U
(3)
� U

(2)
. Applying these

definitions to (9)–(10), we have also

σ(1)v(1)∗ = Uσ(2) + vec
(
E(2)

)
. (12)

Finally, in view of the derived expressions, computing the left-
hand side of (7) for r = (1, R,R) yields∥∥∥σ(1)v(1)HP

∥∥∥2

2
=
(
σ(1)

)2

v(1)HPv(1)

=
(
σ(1)

)2

‖σ(2)‖−2
2

∣∣∣σ(2)TUTv(1)
∣∣∣2 .(13)

Due to (12), UTv(1) =
(
σ(1)

)−1
[
σ(2) + UT vec

(
E(2)

)∗]
.

But, by definition of the SVD, the column space of E(2)

is orthogonal to U
(2)

while its row space is orthogonal to
V

(2)∗
= U

(3)
. Thus, it turns out that UT vec

(
E(2)

)∗
= 0,

leading to UTv(1) =
(
σ(1)

)−1
σ(2). Substituting this expres-

sion into (13) yields
∥∥∥σ(1)v(1)HP

∥∥∥2

2
= ‖σ(2)‖22. On the other

hand, for R1 = 1 the right-hand side of (7) is given by(
σ(1)

)2 ∥∥∥v(1)HU∗
∥∥∥2

2
= ‖σ(2)‖22. Therefore, (7) holds with

equality, implying (8).

Note that, for r = (1, R,R), W
(2)
〈2〉 is an I2× I3 is a matrix

whose best rank-R approximation is computed by both SeMP
and SeLRAP. Since this (vectorized) approximation might
be correlated with the rows of E(1), the projection stage of
SeLRAP might improve the approximation accuracy. At worst,
there is no such correlation and the error stays the same.

Theorem 3 generalizes Theorem 1 of [12]. Furthermore,
together with Theorem 7.2 of [11], it implies the following.

TABLE I
STATISTICS OF ∆ AND VALUES OF Ψ FOR TENSORS OF ORDER 3 AND 4

THOSVD SeMP
Scenario µ∆ σ∆ Ψ µ∆ σ∆ Ψ

1) 3.37e-02 5.83e-03 0.21 1.34e-03 7.74e-04 0.88
2) 4.98e-02 5.87e-03 0.50 1.43e-03 7.14e-04 0.92
3) 2.80e-02 7.07e-03 0.71 1.60e-02 5.43e-03 1.03
4) 4.41e-02 6.19e-03 1.00 3.48e-02 4.74e-03 1.20
5) 2.65e-02 1.78e-03 0.82 6.53e-03 4.78e-04 1.11
6) 1.29e-02 7.40e-04 0.20 8.93e-04 1.51e-04 0.74
7) 2.11e-02 1.43e-03 0.45 1.49e-03 1.80e-04 0.86
8) 9.56e-03 8.19e-04 0.69 6.37e-03 5.37e-04 1.18
9) 1.33e-02 1.48e-03 0.97 6.80e-03 5.03e-04 1.29

10) 5.72e-03 3.27e-04 0.71 6.63e-04 3.91e-05 1.12

Corollary 4. Let X ∈ ⊗3
n=1 CIn and denote by X̂SeLRAP,

X̂SeMP and X̂THOSVD the mrank-(1, R,R) approximations of
X produced by SeLRAP, SeMP and THOSVD, respectively.
Suppose that the modes are processed in the natural order
(1,2,3) by both SeLRAP and SeMP. Then,∥∥∥X− X̂SeLRAP

∥∥∥2

F
≤
∥∥∥X− X̂SeMP

∥∥∥2

F
≤
∥∥∥X− X̂THOSVD

∥∥∥2

F
.

The same results evidently apply to the cases r = (R, 1, R)
and r = (R,R, 1), as long as the mode associated with the
component Rn = 1 be the first one to be processed.

IV. NUMERICAL RESULTS

In the following experiments, the modes are always pro-
cessed in the natural order in SeLRAP and SeMP, for simplic-
ity. The reported computing times were measured in Matlab
R2013a running on a Intel Xeon ES-2630v2 2.60 GHz with
32 GB RAM 1866 MHz. For conciseness, the notation i =
(I1, . . . , IN ) specifies the tensor dimensions in each scenario.

A. Performance comparison

Following [12], we compare SeLRAP with THOSVD and
SeMP by computing

∆ = 1− ‖X− X̂SeLRAP‖F ‖X− X̂Alg‖−1
F ,

with Alg ∈ {THOSVD,SeMP}, for 105 realizations of third-
and fourth-order tensors having entries whose real and imagi-
nary parts are drawn from (−1, 1). This is done in 10 different
scenarios: 1) i = (4, 8, 20), r = (1, 2, 2); 2) i = (4, 8, 20),
r = (2, 4, 8); 3) i = (20, 8, 4), r = (2, 2, 1); 4) i = (20, 8, 4),
r = (8, 4, 2); 5) i = (20, 20, 20), r = (10, 10, 10); 6)
i = (4, 8, 16, 20), r = (1, 2, 4, 5); 7) i = (4, 8, 16, 20),
r = (2, 4, 8, 10); 8) i = (20, 16, 8, 4), r = (5, 4, 2, 1); 9)
i = (20, 16, 8, 4), r = (10, 8, 4, 2); 10) i = (20, 20, 20, 20),
r = (10, 10, 10, 10). Table I displays the mean (µ∆) and
standard deviation (σ∆) of ∆, and also the ratio of SeLRAP’s
flop count to each other method’s count, denoted by Ψ. In all
these scenarios except for 3), ∆ was always positive for both
THOSVD and SeMP. Note that Corollary 4 only guarantees
that for scenario 1). Moreover, with respect to THOSVD, ∆
was negative for only 0.01% of the realizations in scenario
3), while for SeMP that proportion was of 0.30%. Finally,
THOSVD’s flop count is always higher than SeLRAP’s, except



for scenario 4), while this is true for SeMP in the scenarios
where In < In+1 for all n ∈ NN−1.

B. Application to low-rank tensor completion

One way of performing tensor completion under a low-
mrank assumption is by minimizing (1) only over the observed
entries of X. In an IHT scheme, at each iteration one updates
the current estimate with a gradient step and then computes
a low-mrank approximation of the result. Here, we compare
three IHT schemes: (i) TIHT [8] uses THOSVD, (ii) SeMPIHT
[9] uses SeMP and (iii) SeLRAPIHT uses SeLRAP. The
step size is computed as proposed in [13], with a unitary
initial candidate. This comparison concerns two scenarios, as
follows.

First, Nr = 300 random real tensors X with dimensions
i = (20, 20, 20, 20) and mrank r = (8, 8, 8, 8) are generated
and normalized so that ‖X‖F = 1. Then, we add a Gaussian
noise tensor, yielding Y = X + 10−2N, where ‖N‖F = 1.
We randomly sample 5% of the entries of Y (uniformly) and
then run 500 iterations of each IHT algorithm to complete X.
Fig. 1(a) plots the average squared error SE(X̂;X) = ‖X −
X̂‖2F attained at each iteration, against the average elapsed
time until completing it. Clearly, SeLRAPIHT outperforms its
competitors significantly, due to SeLRAP’s higher precision.

In the second scenario, Nr random real tensors are gen-
erated as X = G •4n=1 (Qn Diag(1, 2−ϕ, . . . , 20−ϕ)) (and
normalized), where G has dimensions 20× 20× 20× 20 and
standard normal entries, Qn is a random orthogonal matrix
and ϕ = 2 controls the decay of the singular values of
the unfoldings of X. Again, 5% of the entries of X are
randomly sampled. The IHT algorithms are then applied to
estimate an mrank-(8,8,8,8) approximation of X from these
samples. To improve performance, we employ the gradual rank
increase heuristic of [9], starting with mrank (1, 1, 1, 1) and
then increasing all mrank components every 5 iterations. All
algorithms are run for 80 iterations. As shown in Fig. 1(b),
SeLRAP again brings a significant improvement.

V. CONCLUSION

We have proposed a novel low-mrank approximation al-
gorithm, SeLRAP, by generalizing SeROAP to any target
mrank. For third-order tensors, the guaranteed superiority of
SeROAP over THOSVD and SeMP still holds if the mrank
contains a unitary component whose mode is the first one to be
processed. Our numerical results indicate that this is the case
also for other ranks and for fourth-order tensors, at least with
very high probability. Though the improvement in accuracy is
usually small, it can yield an important advantage when several
approximations are successively computed, as happens in
iterative hard thresholding algorithms for tensor completion. In
this application, we have observed a significant superiority of
SeLRAP over other alternatives when the number of observed
tensor entries is very small, i.e., in challenging TC scenarios.
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