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Abstract

After thirty years of researching, the photometric stereo

technique for 3D shape recovery still does not provide reli-

able results if it is not constrained into very well-controlled

scenarios. In fact, dealing with realistic materials and light-

ings yields a non-linear bidirectional reflectance distribu-

tion function which is primarily difficult to parametrize and

then arduous to solve. With the aim to let the photomet-

ric stereo approach face more realistic assumptions, in this

work we firstly introduce a unified irradiance equation de-

scribing both diffuse and specular reflection components

in a general lighting setting. After that, we define a new

equation we call unifying due to its basic features modeling

the photometric stereo problem for heterogeneous materi-

als. It is provided by making the ratio of irradiance equa-

tions holding both diffuse and specular reflections as well as

non-linear light propagation features simultaneously. Per-

forming a wide range of experiments, we show that this new

approach overcomes state-of-the-art since it leads to a sys-

tem of unifying equations which can be solved in a very ro-

bust manner using an efficient variational approach.

1. Introduction

Extracting 3D shape information from the amount of

light reflected by a static object is a task as difficult as the

spreading of light from the source and the material of the

object are modeled realistically.

Initial studies aiming at solving the Photometric Stereo

(PS) problem [37] extended the Shape from Shading (SfS)

problem [10] by adding supplementary information from

additional images, making the PS problem easier to solve

than SfS. On the other hand, several important simplifica-

tions were done at that time, among which: orthographic
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viewing geometry, uniform light directions and intensities,

diffuse reflectance, absence of shadows and discontinuities.

Although those assumptions allowed to prove well-

posedness of the PS problem, they constrained this tech-

nique to be employed only for very controlled setups.

Contribution In this work, we propose a method able to

perform PS in much less controlled setups, by simultane-

ously handling several nonlinear physical effects in order

to make it as close as possible to real-world scenarios. We

move beyond the simplifications above, by proposing:

• a single lobe irradiance equation for both diffuse and

specular reflections as well as general lightings and

perspective viewing geometry;

• a unifying formulation for the PS problem based on

partial differential irradiance equation ratios;

• a L1 norm-based variational method computing di-

rectly the depth and the shininess parameter, being ro-

bust to shadows and allowing depth discontinuities.

Figure 1. Overview of our approach. On the left, we show 2 out of

the 10 images used in this experiment, for a medium-scale scene

where shapes having diffuse or specular reflections are present. On

the right, we show the reconstructed scene.



To the best of our knowledge, this approach overcomes

state-of-the-art since it represents the first purely data-

driven approach dealing with heterogeneous surfaces. An

overview of the capability of our approach is presented in

Figures 1 and 2.

Figure 2. Results of our algorithm on two real-world objects with

different reflectance properties, presented in Figure 1. Robustness

to non-directional lightings, perspective effects, shadows and non-

Lambertian reflectance is enforced.

1.1. Related works

After spending more than thirty years of research, the

scientific community did not get to a definitive solution for

the PS problem in a very general framework. However, sev-

eral attempts have been made in order to relax the original

assumptions (consisting in orthographic viewing geometry,

uniform light propagation and Lambertian reflection, [37])

dealing with realistic irradiance equations.

Camera modeling Perspective viewing geometry for

photometric 3D-reconstruction has been introduced by

Bruckstein [3] and later developed by Prados and Faugeras

[29]. Recently, Papadhimitri and Favaro [26] presented a

new perspective parametrization to solve the PS problem

without knowledge of the light directions, i.e. Uncalibrated

PS (UPS).

Such important feature allowed PS to be exploited for

important applications as shape recovery from endoscopic

images [25, 6]. In this particular case the anisotropic spread

of light cannot be considered negligible due to the proximity

of the light source to the inspected surface.

Lightings Starting from initial works dealing with uni-

form light direction assumption, lighting has been relaxed

into considering nearby point light sources spreading light

radially. Initially this idea has been proposed by Iwahori et

al. [14] and Clark [5] later. More recently, Migita et al. [21]

presented an optimization method for shape recovery while

moving a point light source. Papadhimitri and Favaro [27]

used the near field lighting for the UPS problem.

However, all those works modeling anisotropic light

propagation by adopting point light source parametrization,

assumed diffuse reflection which limits the applicability of

the PS technique.

Reflectance Shape recovery from specular shading still

remains a challenging goal since very common materials

provide specular highlights that prevent reasonable recon-

structions from the PS technique.

Regarding shading models for specular highlights, sev-

eral dedicated irradiance equations have been presented so

far. Firstly, Torrance and Sparrow [34] presented a physical

model based on radiometry principles. Later, Phong [28]

showed an empirical model which basically extended the

cosine law making it depend also from the viewer direction.

The Blinn-Phong shading model [1] extended further the

previous one by eliminating some limitation in the analyti-

cal formulation maintaining a reliable effectiveness [24].

Outliers Regarding robustness to outliers, most recent

works proposed sparsity-enhancing estimators. For in-

stance, the images can be a priori processed according to a

low-rank constraint, as suggested by Wu et al. [38]. Such an

approach was recently improved by Wang et al. [35], who

proposed to deal with the non-convex nature of the problem

through a proximal strategy. Ikehata et al. [13] introduced

robust estimators derived from the l1 norm to recover the

normals. Eventually, points where the normal cannot be

defined, because of the presence of edges or depth discon-

tinuities, can be handled by robust normal field integration

methods such as those presented in [7, 30].

Image Ratios New PS models based on non-linear PDEs

have attracted increasing interest in the last few years [4,

18, 20, 31]. Most of these approaches considered image ra-

tios in order to yield photometric invariant equations [9, 15],

and modeled the irradiance equations via PDEs. Mecca et

al. [18, 20] used specific irradiance equations for diffuse

surfaces, proving uniqueness of solution by characteristic

strip expansion. Chandraker et al. [4] considered more gen-

eral irradiance equations with unknown light sources, and

computed the photometric invariants describing the surface

through its isocontours.

Image ratios results more suitable for the PS problem due

to the fact that photometric invariant equations are indepen-

dent on several factors, among which the albedo [36].

This paper is organized by presenting the single lobe irra-

diance equation in Section 2. The mathematical derivation

of the new unifying equation for the PS problem is provided

in Section 3. The variational approach solving the PS prob-

lem with the new differential formulation is shown in Sec-

tion 4, yielding the results shown in Section 5.



2. Image formation model

With the aim to formulate a mathematical model as gen-

eral as possible, we have to deal with two important features

of the image formation model, which are the modeling of

the pinhole camera and that of the reflectance.

2.1. Camera model

We start by considering the projection of the tridimen-

sional surface Σ into the image plane introduced by Papad-

himitri and Favaro in [26]. This allows to easily extend the

perspective viewing projection to the orthographic one just

by making the focal length tend to infinity. The 3D real

world coordinates (ξ, η, ζ) ∈ Σ are projected into the image

plane Ω = Ω ∪ ∂Ω according to the following parametriza-

tion

(ξ(x, y), η(x, y), ζ(x, y))=

(

x
f+z(x, y)

f
, y

f+z(x, y)

f
, z(x, y)

)

(1)

where z is the depth. This yields the direction of the outgo-

ing normal to the surface given by

n(x, y)=

(

∇z(x, y),−
f+z(x, y)

f
−

(x,y)·∇z(x, y)

f

)

(2)

where the derivatives of z are considered in the image co-

ordinates, that is ∇z(x, y) =
(
∂z
∂x

(x, y), ∂z
∂y

(x, y)
)
. Let us

denote the normalized vector as follows

n(x, y) =
n(x, y)

|n(x, y)|
(3)

extending the same notation to the rest of the paper, consid-

ering · as unit vector.

2.2. Single lobe reflectance model

Coherently with having images as input data including

diffuse and specular reflections, we consider single lobe ir-

radiance equation for both reflections. Since diffuse and

specular components separation may not always be a reli-

able procedure to accurately recover shapes done by hetero-

geneous materials [11, 16, 33], we consider a single irradi-

ance equation that simultaneously parametrizes diffuse and

specular reflections, by extending the Blinn-Phong shading

model [1] as follows

Ii(x,y)=ρ(x,y)ai(x,y,z)
(
n(x,y,z)·hi(li,v)

) 1
c(x,y) . (4)

Here ρ and ai are positive scalar functions representing, re-

spectively, the albedo and the attenuation of light, while

c(x, y) > 0 describes more general reflectance properties.

Eventually, the vector function hi = (h1
i , h

2
i , h

3
i ) combines

information about the view direction v = v(x, y, z) and

the ith light source li = li(x, y, z). With the aim to unify

diffuse and specular components parametrized by a unique

irradiance equation we choose hi to be as follows

hi(x, y, z) = li(x, y, z)+min

{

1,
|1− c(x, y)|

ε

}

v(x, y, z),

(5)

where ǫ is a fixed parameter describing the transition be-

tween matte and glossy material, allowing the continuous

transition state between diffuse and specular component. In

the next part we provide an intuitive and effective interpre-

tation of the vector hi by showing the dependency on the

shininess parameter c(x, y). Let us remark that this new re-

flectance model generalizes many previous models used in

PS, as described hereafter.

2.3. Dealing with well-known settings

Besides being independent from the camera projection

model, thanks to the parametrization (2), (4) can be used

to deal with surfaces made by heterogeneous materials de-

pending on c(x, y):

Diffuse reflectance by having c = 1 (i.e. hi = li) , we

obtain the purely Lambertian shading model;

Specular reflectance setting 0 < c ≤ 1−ǫ (i.e. hi = li+
v) leads to purely specular Blinn-Phong type reflectance,

where the size of the specular lobe depends on the value

of c;

Intermediate state is well parametrized taking 1 − ǫ <

c < 1 (ǫ = 0.01 for all our experiments). This provides a

transition phase between diffuse and specular components.

Beyond the previous well-known settings, challenging

spatially-varying reflectances can be modelled by using

the piecewise constant space dependency of c over the im-

age domain. This allows us to take into account the very

difficult problem of dealing with heterogeneous materials.

In fact, the presented algorithm is capable to approximate

both z and c.

Moreover, by manipulating the definitions of ai and li,

this new model yields several well-known light configura-

tions.

Uniform lighting When ai ≡ φi and li is independent

from the coordinates (x, y, z), it corresponds to the direc-

tional lighting model, φi being a scalar parameter represent-

ing the intrinsic intensity of the source;

Point light source When li(x, y, z) = (ξi, ηi, ζi) −

(ξ(x, y), η(x, y), ζ(x, y)), one obtains the point light source

model, for a source at position (ξi, ηi, ζi);

Light attenuation In order to deal with more realistic

physical effects, we can also consider inverse-of-squared

distance light attenuation

adi(x, y, z) =
1

|li(x, y, z)|2
(6)



and an anisotropic angular factor that, without loss of gen-

erality, we choose as

aai(x, y, z) = (li(x,y,z) · pi)
µ (7)

taking inspiration from [20], where pi is the principal light-

ing direction of the source, i.e. its orientation. This atten-

uation term holds for most of commercial LEDs [23] and

it is usually calibrated by manufacturers, under the form of

luminous intensity diagrams. Isotropic sources, which are

valid approximations for small angles, are obtained by set-

ting µ = 0, while stronger anisotropy effects can be sim-

ulated by increasing the value of µ [19]. Considering both

attenuation factors, we get

ai(x, y, z) =
φiaai(x, y, z)

|li(x, y, z)|2
. (8)

Despite the apparent variety of the configurations han-

dled by (4), we will show in the following that the 3D-

reconstruction problem can be reformulated by the same

simple quasilinear PDE, handling the general viewing ge-

ometry, reflectance and lighting models previously de-

scribed.

3. The unifying equation

As already shown in [20], the ratios of irradiance equa-

tions as (4) seen as partial differential irradiance equations

simplifies the PS problem since it becomes independent by

photometric invariant (albedo) and irrational nonlinearities

(normalization of the normal vector). We now extend this

theory to the more realistic case studied in this paper.

3.1. Partial differential irradiance equation ratios

With the aim to extend such methodology to the more

general and realistic irradiance equations (4), we divide

those coming from the ith and jth light source, leading to

the following equation
Equation for Ij

︷ ︸︸ ︷

(Ii)
c

(ai)
c
hi · n

=
ρc

|n|
︸ ︷︷ ︸

Equation for Ii

=
(Ij)

c

(aj)
c
hj · n

(9)

with the same dependencies as above, that we neglect from

now on whenever the reader does not necessary needs them.

Denoting the vector field

bij=
(

(ajIi)
c
(

h
1

j −
x

f
h
3

j

)

− (aiIj)
c
(

h
1

i −
x

f
h
3

i

)

,

(ajIi)
c
(

h
2

j −
y

f
h
3

j

)

− (aiIj)
c
(

h
2

i −
y

f
h
3

i

))

(10)

and the scalar function

sij =
f + z

f

(

(ajIi)
c
h
3

j − (aiIj)
c
h
3

i

)

(11)

by considering the first and the last part of the chain of

equalities (9), we obtain the following quasilinear PDE

bij(x, y, z) · ∇z(x, y) = sij(x, y, z) (12)

that we will call as unifying equation for the PS problem.

It elegantly describes the interaction between two irradiance

scenarios depicted in Ii and Ij , whatever the models for the

camera projection, the surface reflectance and the type of

lighting.

By stacking the
(
N
2

)
vector fields bij , such that (i, j) ∈

{1 . . . N}2 and i < j, into a matrix field B : Ω → R
2×(N2 ),

and the
(
N
2

)
scalar fields sij into a vector field s : Ω →

R
(N2 ), our new mathematical formulation of the PS problem

with N images reads as the following system of unifying

equations

B⊤∇z = s. (13)

3.2. Advantages over previous work

Merging PS data We remark that most of the previous

works proposing robust approaches to the PS problem as

[13, 22, 31, 35, 38] derived the mathematical formulation

by considering each irradiance equation independently from

the others. Since our model is derived by coupling irradi-

ance equations considering their ratios, the unifying equa-

tion exploits the single view acquisition simplifying the

complexity of the problem due to heterogeneous materials.

Robustness An important advantage directly follows

from this coupling. It is based on the number of unifying

equations when solving PS with N > 2. In our formulation,

the number of equations to be solved does not increase lin-

early with the number of images since N images yield
(
N
2

)

unifying equations. Clearly these equations tend to be re-

dundant, providing a natural framework for robust recovery

of the shape. Hence, robust estimators enforcing sparsity of

the residual [13] are well adapted.

Missing data If, for some pixel (x, y), no information is

available in any of the images Ii(x, y), i ∈ {1 . . . N}, due

for instance to a null albedo (no light reflected at all), the

corresponding set of unifying equations (13) is not informa-

tive, since it reads as 0 = 0. Thus, there may be points on

the surface that are left undetermined. Denoting by Ωmissing

the set of such points (which is easily computed a priori by

thresholding the values of
∑N

i=1 I
i), we can deal with this

issue by modifying the definition of B and s according to

B =





1 0
0 1
0 0



 over Ωmissing (14)

s =0 over Ωmissing (15)

which will enforce ∇z = 0 over this subset Ωmissing. This

can be seen as a built-in hole filling of the non-informative



areas to ensure some smoothness and prevent artifacts. This

can be very useful when dealing with very specular ob-

jects, since in such case the information is concentrated in

small areas: performing such self-filling will smoothly en-

sure continuity between the areas where shape reconstruc-

tion is possible. Hence, it becomes possible to reconstruct

specular surfaces with few images, while several hundreds

are used in state-of-the art approaches [12].

4. Variational resolution

In order to enhance robustness to noise (inherent to the

acquisition process) and outliers (such as shadows, or non-

differentiable elements of the surface), we consider L1

optimization, following the recent sparsity-enhancing ap-

proaches described in [13, 31]. Adapting such framework to

the context of quasilinear system of PDEs (13), we consider

the following optimization problem

min
z

∥
∥B(z)⊤∇z − s(z)

∥
∥
L1(Ω)

, (16)

where L1(Ω) is the traditional space of functions whose ab-

solute value is Lebesgue integrable.

We emphasize that this variational problem is con-

ceptually very different from the state-of-the-art sparsity-

enhancing technique [13], where l1 optimization is con-

sidered locally, in order to approximate the normal to the

surface at each pixel. In fact, our formulation considers

the global minimum over the image domain, having as un-

known the depth, as for instance in [31]. Proceeding so,

integrability of normals is not an issue, since piecewise-

smooth surfaces are recovered directly, without relying on

a posteriori use of dedicated solvers, which are either fast

but not robust to discontinuities [32], or robust to disconti-

nuities but slow [7, 30].

4.1. Orthographic camera and directional lightings

In the specific case of orthographic camera and direc-

tional lightings, neither B nor s depend on z. Hence, the

functional to minimize is not coercive since it depends only

on ∇z, and not on z. Yet, the knowledge of z in just one

point suffices to make it coercive. Alternatively, any least-

squares prior z0 on the solution can be introduced, turning

the initial problem (16) into its zero-order Tikhonov regu-

larized version

min
z

∥
∥
∥B

⊤∇z − s

∥
∥
∥
L1(Ω)

+ λ ‖z − z0‖
2
L2(Ω) (17)

with λ > 0 very small in order not to bias the results (we

systematically used λ = 10−9). In our experiments, z0 is

a uniform function, which basically fixes the mean value of

z, and hence the mean distance from the object to the cam-

era. Dealing with the (functional) L1 norm requires a totally

different machinery from [13], since it involves the partial

derivatives of z. In this view, it is convenient to rewrite (17)

under its ADMM form [2]:

{
min
z,g

‖g‖L1(Ω) + λ ‖z − z0‖
2
L2(Ω)

s.t. g = B⊤∇z − s
. (18)

Introducing the auxiliary variables g and u, this new prob-

lem can be solved using the alternating direction scheme:

gk+1=argmin
g

‖g‖L1(Ω)+α
∥
∥
∥g−

(

B⊤∇zk−s−uk
)∥
∥
∥

2

L2(Ω)
(19)

zk+1=argmin
z

λ

α
‖z−z0‖L2(Ω)+

∥
∥
∥B

⊤∇z−
(
gk+1+s+uk

)
∥
∥
∥

2

L2(Ω)

(20)

uk+1 = uk + gk+1 −B⊤∇zk+1 + s (21)

starting from (z0,g0,u0) = (z0,B
⊤∇z0 − s,0). This

scheme can be proven to converge from almost any de-

scent parameter α, whose choice only affects the conver-

gence rate. Eq. (19) can be solved pointwise by shrink-

age, and (20) by Gauss-Seidel iterations. Let us remark that

no boundary condition is required using this approach [8],

while state-of-the-art differential methods for PS require the

depth to be known on the boundary [4].

4.2. Perspective viewing and lighting geometry

In the case of perspective camera and/or point light

sources, the fields B = B(z) and s = s(z) depend explic-

itly on the unknown z. To handle this issue, we consider the

semi-implicit scheme

zk+1=argmin
z

∥
∥B(zk)⊤∇z−s(zk)

∥
∥
L1(Ω)

+λ
∥
∥z−zk

∥
∥
2

L2(Ω)
(22)

starting from an initial solution z0 = z0. Convergence to-

wards a local minimum is guaranteed, and we experimen-

tally observed that it was reached in only a few iterations.

4.3. Approximating the shininess parameter c

Since the unifying irradiance equation allows a simulta-

neous parametrization of diffuse and specular reflectance,

the approximation of the shininess coefficient c is an im-

portant achievement for the material understanding of the

depicted scene. In fact, the shininess parameter can be de-

termined within the process, by enforcing sparsity residuals

on the ratio equations (9). A typical iterative scheme writes

as:






zk+1=argmin
z

∥
∥B(zk,ck)⊤∇z− s(zk,ck)

∥
∥
L1(Ω)

ck+1=argmin
c

∥
∥
∥

(
Iiaj(z

k)
Ijai(zk)

)c

−hi(z
k,ck)·n(zk)

hj(zk,ck)·n(zk)

∥
∥
∥
L1(Ω)

(23)

where the z update can be obtained as described earlier.

Taking the logarithm of both members of the second resid-



ual, the c update is given by

ck+1=median
{

log ((Iiaj)/(Ijai)) / log
((

hi · n
)

/(hj · n)
)}

.
(24)

As challenging proof of concept, we demonstrate the work-

ing principle of our method on synthetic data from the

MERL dataset [17] as well as real image scenarios.

5. Experiments

With the aim of showing a fair comparison of our method

with the state of the art algorithms, we firstly consider the

simplified version of our model leading to the orthographic

scenario explained in Section 4.1. Afterwards, more realis-

tic results considering the perspective viewing and lighting

geometry will be shown.

5.1. Robustness to realistic outliers

To quantitatively evaluate the robustness of our method,

we performed tests on synthetic data, considering first the

same setup as in [13]. That restricts our model by con-

sidering orthographic projection, directional lightings and

known reflectance (c = 1) with outliers consisting in self-

shadows and small additive specular spots generated ac-

cording to the bichromatic Blinn-Phong model (Figure 3).

Figure 3. Synthetic images used for quantitative evaluation, gener-

ated according to the dichromatic Blinn-Phong reflectance model,

with self-shadowing effects. Taking c = 1, both shadows and

highlights are outliers to the model (4), and hence useful to evalu-

ate the robustness of our method to real-world outliers.

To create the data, we used the seven real-world sets of

normals provided in the Harvard’s dataset1, that we inte-

grated into a depth map using our solver (setting B = I),

before recomputing the normals using finite differences.

The shading images were calculated under 8 different di-

rectional lightings and overlapped with the hestain.png

built-in image from Matlab, considered as albedo.

Quantitative comparisons of our results with traditional

least-squares [37] and state-of-the-art l1 normal recovery

[13] can be found in Table 1. Specular highlights are in this

case considered as outliers: reflectance models composed

1http://vision.seas.harvard.edu/qsfs/Data.html

of two lobes can hence be handled using the proposed one-

lobe model, which captures the dominant lobe, the other one

being trated as outlier.

Cat Frog Hippo Lizard

n z t n z t n z t n z t

ME std ME std ME std ME std ME std ME std ME std ME std

[37] 7.7 4.6 19 15 30 6.6 4.0 14 12 37 8.3 5.5 23 15 31 7.6 4.8 13 9.2 32

[13] 6.7 5.3 17 13 305 5.7 4.3 12 11 390 7.2 6.0 21 14 545 7.0 5.8 12 8.6 311

Ours 6.0 5.7 13 10 590 4.6 5.1 9.1 8.8 724 6.9 6.5 20 11 554 6.9 5.9 12 8.5 284

Pig Scholar Turtle

n z t n z t n z t

ME std ME std ME std ME std ME std ME std

[37] 7.1 4.5 13 12 39 6.8 4.2 21 11 97 7.4 5.0 9.3 8.8 33

[13] 6.3 5.0 12 11 417 5.7 4.5 18 10 1039 6.6 5.5 8.5 8.7 352

Ours 5.8 5.6 10 9.2 769 5.1 4.8 13 7.4 1865 6.5 6.2 7.6 8.0 526

Table 1. Robustness to outliers, for least-squares [37] and l1 es-

timation of the normals [13], and the proposed L1 estimation of

the depth, regarding the synthetic data presented in Figure 3. We

show the error on the normals orientations n in degrees, the abso-

lute error on the depth z in pixels, and the CPU time t in seconds

(CPU times were evaluated considering Matlab codes executed on

a i7 at 3.4 GHz). Considering the depth, rather than the normals,

improves the results because it includes an implicit smoothing.

5.2. Handling arbitrary reflectances

Here, we question the ability of the proposed BRDF

model (4) to handle real-world reflectances (Figures 4 and

5). To this purpose, we recovered the shape of a piece

of sphere rendered according to the BRDFs of the MERL

database [17]. First, we applied the proposed variational

scheme using N = 56 images while imposing c = 1: some

partly retro-reflective materials (pickled-oak-256) are

handled since this effect can be considered as outlier. Yet,

since many materials in this database are mostly specular, it

is not realistic to assume that specularities are outliers to a

diffuse model, hence the slopes are over-estimated in most

cases (alum-bronze). On the other hand, when simul-

taneously estimating the shape and the reflectance as dis-

cussed in Section 4.3, most materials of the database are

reasonably recovered. Notable exceptions include very dark

materials (black-obsidian) or highly retro-reflective

materials (polyethylene).

We also used this dataset to perform experiments on the

required number of input images. Figure 4 shows that reli-

able 3D-reconstruction results of highly specular materials

are obtained from as few as twenty images. This has to be

compared with the hundreds of images used in state-of-the-

art [12]: reducing so much the required number of inputs

is made possible by increasing quadratically the number of

equations due to image ratios, and by using robust varia-

tional recovery.

5.3. Qualitative evaluation on real-world datasets

We eventually performed tests on a real-world dataset

representing the current limits of PS having several objects

of different materials, inducing depth discontinuities and

shadows.
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N = 56, c = 1

N = 56, autom. c

N = 23, autom. c

N = 16, autom. c

N = 11, autom. c

Figure 4. RMSE on the depth, as a function of the BRDF. Most of specular materials are correctly handled with a dozen of images and

automatic reflectance estimation.

pickled-oak-260 pvc alum-bronze two-layer-silver black-obsidian polyethylene

# 1 #2 #10 #24 #83 #97

Figure 5. 3D-Reconstruction results for several materials from the MERL database, sorted according to their ranking in Figure 4. Bottom

row shows the ground-truth surface and reflectance, middle row shows the shape recovered while estimating automatically c using (23).

Top row shows the results with c = 1.

The dataset we used is presented in Figure 1. It con-

sists of a scene with several objects placed approximately

at 50cm of a calibrated pinhole camera (f ≈ 32mm), lit

successively by 10 calibrated LEDs located approximately

at 30cm from the scene. Besides the effects of perspective

camera and non-directional lightings, the originality of this

scene is the presence of numerous objects, while PS is usu-

ally applied to one single object. The difficulties induced

are the presence of objects with various reflectances (es-

pecially the tea box, which is metallic), the stronger shad-

owing effects, the presence of depth discontinuities and the

missing data (the legs of the Haddock character are black).

To deal with the piecewise constantly varying reflectance,

we manually segmented the objects. Then, we applied the

alternating scheme (23) to each object individually, provid-

ing us with an initial 3D-reconstruction (cf. figure 5) as well

as with an initial guess for the c values. Then, as shown in

Figure 1, we reconstructed the full scene. Depth disconti-

nuities are successfully recovered together with c ≈ 1 to the

bust (plaster), c ≈ 0.05 to the tea box (metal), c ≈ 0.4 to

the Haddock character (plastic), c ≈ 0.35 to both Buddha

dolls, and c ≈ 1 to the rest of the scene.

While Figure 2 shows the results obtained with the full

scene pictured by 1M pixels images, Figure 1 presents the

reconstructions of single objects. It is worth noticing the

quality of the reconstruction of the specular tea box and the

recovery of the discontinuities for the full scene. Eventu-

ally, these results are compared in Figures 6 and 7 to sev-

eral existing methods for Lambertian PS. Namely the clas-

sical PS approach proposed by Woodham [37], the robust

approach from [13] and a recent work on PS with point-

wise sources [27]. Figure 6 demonstrates the advantage

of global L1-based recovery over local sparsity-enhancing

techniques [13], and the importance of modelling appropri-

ately the lighting and the viewing. Besides these important

considerations, Figure 7 shows that our approach even pro-

vides satisfactory 3D-reconstructions of specular objects.



[37] [13] [27] Ours

Figure 6. Results of several PS algorithms on the bust dataset (plaster). With the classical approach [37] that assumes uniform lighting

and orthographic viewing, artifacts due to shadows are visible. By locally enforcing robustness as proposed in [13], these artifacts are still

visible. The global formulation of our approach provides better results, while also correcting the distortion due to pointwise lighting and

perspective viewing, as also assumed by [27].

[37] [13] [27] Ours

Figure 7. Results of several PS algorithms on the teabox dataset (metal). Our approach provides a more reliable 3D-reconstruction of this

purely specular object, compared to other methods based on the Lambertian assumption.

6. Conclusion and perspectives

In this work we introduced a unifying irradiance equa-

tion describing both diffuse and specular reflection com-

ponents in the most general lighting setting. We derived

a new formulation based on coupling those irradiance equa-

tions by considering their ratios. The resulting mathemati-

cal model consists in a set of quasi-linear PDEs having sev-

eral advantages with respect to the usual tools aimed at solv-

ing the PS problem. In fact, instead of considering specular

highlights as outliers, we exploit geometric information of

the shape by modeling specular reflectance with a Blinn-

Phong extension of the cosine law for diffuse reflection.

Furthermore, besides being independent from the albedo,

the number of unifying equations does not increase linearly

with respect to the available images. Indeed, instead of N

(irradiance) equations, robustness is guaranteed by having

a quadratic set of
(
N
2

)
(unifying) equations. The numerical

tool we used for solving such system of quasi-linear PDEs

is based on a variational approach performing L1 minimiza-

tion. On the other hand, researching on speeding up our

algorithm is foreseen in order to make the computation as

close as possible to real-time 3D shape providers.

We remark that this work makes very challenging goals

closer to be achieved. For instance, our approach could be

extended so as to estimate parameters related to the material

of the surface, lightings (uncalibrated PS), etc.
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