
HAL Id: hal-01531167
https://hal.science/hal-01531167

Submitted on 1 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OpenWiNo: An Open Hardware and Software
Framework for Fast-Prototyping in the IoT

Adrien van den Bossche, Réjane Dalcé, Thierry Val

To cite this version:
Adrien van den Bossche, Réjane Dalcé, Thierry Val. OpenWiNo: An Open Hardware and Software
Framework for Fast-Prototyping in the IoT. 23rd International Conference on Telecommunications
(ICT 2016), May 2016, Thessaloniki, Greece. pp. 1-6. �hal-01531167�

https://hal.science/hal-01531167
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 16943

The contribution was presented at ICT 2016 :
https://ict-2016.org/

To cite this version : Van den Bossche, Adrien and Dalce, Rejane and Val,
Thierry OpenWiNo: An Open Hardware and Software Framework for
Fast-Prototyping in the IoT. (2016) In: 23rd International Conference on
Telecommunications (ICT 2016), 16 May 2016 - 18 May 2016
(Thessaloniki, Greece).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

OpenWiNo: An Open Hardware and Software

Framework for Fast-Prototyping in the IoT

Adrien van den Bossche, Réjane Dalcé, Thierry Val

Institut de Recherche en Informatique de Toulouse

IRIT, Université Fédérale de Toulouse, INP, UPS, UT1, UT2J

Toulouse, France

{vandenbo, dalce, val}@irit.fr

Abstract— The Internet of Things promises an always-

connected future where the objects surrounding us will

communicate in order to make our lives easier, more secure, etc.

This evolution is a research opportunity as new solutions must be

found to problems ranging from network interconnection to data

mining. In the networking community, innovative solutions are

being developed for the Device Layer of the Internet of Things,

which includes the IoT wireless protocols. In order to study their

performance, researchers turn more often to real world

platforms, commonly designated by the term “testbeds”, on

which they may implement and test the protocols and algorithms.

This is even more important in the Industrial IoT field, where

environments are perturbed by industrial systems like automated

production systems. In this paper, after a brief presentation of

the context of testbeds, we introduce WiNo and OpenWiNo, an

open hardware and software framework for fast-prototyping in

the field of the Internet of Things. Compared to existing

platforms, the solution WiNo+OpenWiNo offers a wide array of

Physical layers and easy integration of various sensors as it is

developed as part of the Arduino ecosystem. It also allows

research teams to easily and quickly deploy their own testbed

into real environments.

Keywords— Internet of Things; Wireless Sensor Networks;

Fast prototyping; Testbed; Open Hardware; Arduino

I. INTRODUCTION

The Internet of Things (IoT) is currently revolutionising the
field of networks and telecommunications. Many specialists
expect an exponential growth, in the years to come, of the
number of connected devices [1] in industrialised countries,
especially in the comfort, leisure activities, and quality of life
and health areas. Among these connected devices are fixed
elements for environment monitoring, but also mobile
elements, for instance carried by a human being, or attached to
livestock or to smart vehicles. Today, these different classes of
devices form unconnected networks, since they use
communication protocols and technologies which often are not
interoperable. The goal of the IoT is to get them to collaborate
by giving them all the ability to communicate via the Internet.
This revolution is at the crossroads between several areas of
expertise, and opens up major opportunities for scientific
contributions in the computing, electronics and
telecommunication domains, and far beyond if we consider
how they are applied by users.

In the IoT context, the literature defines the Industrial IoT
(IIoT) [2] as a subset of the IoT, focusing on communication
between objects and tools without human interaction. The IIoT
is generally associated with the concept of Machine-to-
Machine communications (M2M) [3]. The hardware-specific
aspects and the low-level protocols, which constitute the IoT
Device Layer (IoT-DL) [4] – the first (or last) links in its
overall structure – also find a new lease of life in this cloud of
things and areas of research for the specific features of
Wireless Sensor Networks (WSN).

The network and protocol development tools and methods
must be suited to the IoT. At present, we observe the
emergence of a great amount of work [5] based on simulation
tools, such as NS3 [6] or Cooja for Contiki, designed to test
and analyse the new low-level protocols (point-to-point or
mesh network, time and/or energy constrained devices, etc.)
used by the nodes in the IoT-DL. However, the research
community is also getting more involved in analysis and
performance investigation through hardware test platforms
known as testbeds. This trend often comes as a complement to
traditional simulation-based studies. The low cost and high
availability of efficient and fully reprogrammable components
favour the development of these assessment techniques.
Several new platforms are coming into being, which sometimes
originate from hardware and software environments used a few
years ago for WSN. In order to support our studies and
investigations on the IoT-DL, we developed an open
framework named OpenWiNo, which mainly focuses on
simple replacement of the physical layer (PHY) and
simple/low cost deployments of testbeds. This paper's aim is to
introduce this platform, its strengths and some first results
obtained with this environment.

The following sections of this article will introduce the
context and the related works. The OpenWiNo framework will
then be presented, before conclude and provide perspectives
for this research area.

II. CONTEXT AND OBJECTIVES

At the start of the 2010 decade, many innovative
transmission modes made their debut in the fields of Wireless
Personal Area Networks (WPANs) and Wireless Local Area
Networks (WLANs). Ground-breaking solutions like light-
based LiFi, Ultra-Wide Band (UWB) or LoRa as well as

additions to standards (802.11ac, 802.15.1 BLE, 802.15.6) are
all striving to become the reference in the field. These physical
layers (PHY) and the associated Medium Access Control
(MAC) layer, whether proprietary or from open standards, are
now commonly found and implemented in devices of the IoT.
Although a similar competition has been observed in the
1990's, the outcome will not be a unique standard, meant to
rule all short-range communications. When taking into account
the development of Cognitive Radio or Software-Defined
Radio (SDR) and Software-Defined Network (SDN), one can
perceive a future based on inter-network cooperation: on one
hand, the diversity of transmission modes now seems to be
accepted both by the designers and the users; on the other hand,
the high availability of the Internet Protocol, including on
hardware targets with very limited resources, guarantees a
convergence above heterogeneous physical layers. This new
vision can be summarised through the following: “as long as a
connection is provided, the communication technology doesn’t
matter”. The coming years will show whether the market as a
whole accepts this diversity for good.

Regarding the hardware, the IoT community is very
prolific, thanks to the numerous FabLabs and Makers: a great
many hardware platforms based on the Open Hardware
concept are now available. These platforms have two well-
known advantages: on the one hand, they make full use of the
open nature, both in terms of hardware and software. While the
Open Source has demonstrated its efficiency in software, the
hardware now adopts its codes (design of the boards under
BSD licence, Creative Commons, even GPL, access to
platforms for fast prototyping and fast production of printed
circuit boards at a very low cost, etc.). The Arduino ecosystem
is an example of widely used Open Hardware. The community
can then take these systems over and quickly and efficiently
make headway with innovation in the area of the IoT. On the
other hand, beyond the networking aspects, the high
accessibility of these platforms means that their use extends far
beyond the networking community and brings
pluridisciplinarity in the research projects: for example, it is
now easier to study the performance of a real-deployed sensor
network, by taking into account the human experience, with the
help of the Human-Machine Interface (HMI) and psychology
teams, thanks to real nodes, implementing real sensors. This
pluridisciplinarity allows researchers to come up with
innovative products and services, extending far beyond the
sphere of networking.

In this context, studying the performance of a network
protocol can be done by using a testbed [7], as a complement
of classical network simulators. As there is, on the one hand, an
explosion in the diversity of forms of transmission, and on the
other hand, a very simple access to hardware, the prototyping
of innovative communicating devices is facilitated. Deploying
a set of prototyped connected objects and studying the
performance of the system with both classical networking
performance metrics and human feeling gives a very interesting
approach for the researchers.

III. RELATED WORK AND MOTIVATIONS

The typical IoT research topics can be approached from
either a data angle or an infrastructure angle. In the first case,

the problem is how to transform a massive amount of data into
relevant information, giving rise at the same time to innovative
applications. This approach puts the middleware in the
spotlight, as it hides the physical differences between networks.
The Vital IoT [8] is a case in point.

Approaching the IoT with the infrastructure in mind
involves developing protocols allowing for secure remote
interaction with equipments. This generates the need to set up
structures for the study of these solutions. Due to our own
specialisation in wireless networks, we will focus on the
communication aspects of the issues related to the IoT. Thus,
we will be interested in the means available for implementing
and testing communication solutions on testbeds.

The term testbed is commonly used to refer to platforms
often developed for research purpose, which include a great
number of nodes (large scale), and are open and accessible on
request. These platforms enable users to test their protocols,
from functional validation to performance analysis, on a
limited number of nodes or on a larger scale. The most
prominent testbeds nowadays are FIT/IoT-Lab [9] and the
SmartSantander project. The SmartSantander platform for
smart cities vies with FIT/IoT-Lab with respect to the scale of
the deployment: each of these testbeds makes several
thousands of nodes available. Both testbeds support various
communication media (IEEE 802.15.4-2006 standard, at
868MHz and 2.4GHz for FIT and a considerably more
heterogeneous set for SmartSantander as it includes NFC tags,
smartphones, nodes embedded on public transportation
buses…) and a wide array of sensors (magnetometers,
accelerometers, gyroscopes…). FIT/IoT-Lab supports robot-
based mobility while SmartSantander includes mobile nodes
such as smartphones as well as mobility constrained units
(buses). From a software point of view, both platforms offer a
framework allowing reprogramming of the nodes, results
visualisation etc.

Although the traits we enumerated make these testbeds
very interesting from a research point of view, they may be
impractical for certain studies. When considering testbeds for
the IIoT, it is important to remember that the deployment
environment may impact the performance evaluation
parameters such as throughput, latency, loss of messages:
Warehouses, factories and assembly lines are environments
which are highly perturbed by industrial systems such as
automated production systems, motors, etc. Driving a
performance study on a classical testbed may not be
representative; deploying a testbed directly on the final
environment, as soon as possible in the development process,
may be interesting.

Last but not least, as seen in the previous section, there are
today many transmission technologies (PHY layers) providing
new functionalities, ranging from evolution of standardised
technologies to ground breaking transmission modes. All these
technologies are commonly available thanks to low-cost
transceivers. In the IIoT context, studying the most suitable
transmission PHY, to ensure the most reliable networking
experience, is an important deal. Nowadays, a wide variety of
nodes is available, ranging from memory-constrained devices
to others which are capable of running an operating system

(FreeRTOS, LiteOS or even Linux). Unfortunately, these
standard devices hardly ever match the required set of
functionalities and are not meant to be customized from a
hardware point of view. There is an opportunity for Open
Hardware solutions, to enable fast replacement of transceivers
on testbed motes.

If we sum this up, on one hand, we have powerful
platforms, ready to be remotely used, and on the other hand, we
have devices that can be installed rather easily in the desired
space but are difficult to modify. The aim of our work is to fill
the gap by providing a set of software and hardware tools
which enable the creation of a cost-effective, easy to manage,
customizable testbed. Although we have deployed one such
solution in the context of IIoT, the objective is not the size of
the network but the suitability of our solution to a wide array of
issues, especially when a local testbed must be deployed in a
particular environment.

As will be described in the following section, our open
architecture allows a variety of sensors to be seamlessly
integrated in the testbed. In addition, we also support many
physical layers and offer the related Hardware Adaptation
Layer (HAL): this will enable researchers to evaluate the
impact of a change in the PHY layer on their protocols with
minimal development.

IV. OPENWINO: AN OPEN HARDWARE AND SOFTWARE

FRAMEWORK FOR FAST-PROTOTYPING IN THE IOT

WiNo (Wireless Node) is an Open Hardware platform for
fast prototyping and pragmatic assessment of the performance
of wireless protocols at the MAC (L2) and Network (NWK,
L3) levels. Used in the context of the IoT-DL or WSNs, it
enables fast-prototyping and easy-deployments of nodes in a
real environment. In combination with the OpenWiNo
software, the WiNos offer a low-level access for a demanding
developer who wishes to precisely control the medium access
delays, the standby and wake-up modes of the nodes as well as
the CPU load with a small memory footprint. Whether the
objective is to apply drastic power-saving policies or to
maintain a high Quality of Service, such a control of the node's
components is necessary; WiNo is a hardware platform
suitable for protocols with stringent time constraints and an
uptime objective of several months of operation using two
AAA batteries [10][11]. Table 1 gives the precise consumption
state of a typical WiNo.

The architecture of WiNo (hardware) and OpenWiNo
(software) is represented on Fig. 1. OpenWiNo comes with a
kernel which proposes the classical tools to compensate the
absence of an Operating System: a software interrupt engine,
FiFos’ management, etc. OpenWiNo’s kernel also provides
specific networking tools such as pushing/poping bytes into
messages to help to the protocol implementation, and a serial
console to interact with the node with a set of commands via its
USB port [12].

OpenWiNo aims three main objectives: Simple
replacement of the physical layer, very simple deployment of
testbeds and test in real-life conditions, including usage
feedback.

TABLE I. WINO POWER CONSUMPTION

Hardware

element
State

Power

consumption

(Vcc=3.7V)

CPU

Freescale

MK20DX256

VLH7

Working, 96MHz 129mW

Working, 72MHz 103mW

Working, 48MHz 88.8mW

Working, 24MHz 55.5mW

Working, 16MHz 32.9mW

Working, 8MHz 22,2mW

Working, 4MHz 14.8mW

Working, 2MHz 5.18mW

Sleep, any freq, LPTMR wake 2mW

Deepsleep, any freq, LPTMR wake 650 W

Hibernate, any freq, LPTMR wake <30 W

Transceiver

HopeRF

RFM22b

Transmit (10dBm) 76mW

Receive 57mW

Idle 26mW

Sleep <5 W

Fig. 1. OpenWiNo architecture

1) Simple replacement of the Physical Layer. Nowadays,

there are many ways to transmit information (conventional

IEEE communication technologies, unusual transmission

modes such as LiFi or LoRa…) and it may be very useful to

compare these various ways. WiNo supports both standardised

PHY layers and ground-breaking transmission modes like the

UWB or LoRa. In fact, thanks to the Open Hardware nature of

the WiNo, any transceiver chip supported by the Arduino

ecosystem can be easy integrated in OpenWiNo, by using the

PHY Service Access Point (SAP), designed as a Hardware

Abstraction Layer (HAL) (Fig. 1). The transceiver of a WiNo

can be simply changed from a hardware point of view by

modifying the electronic board and from a software point of

view by changing the library (driver). While in a traditional

industrial approach, this operation would be time-consuming

in terms of development and integration, the Open Hardware

and the Arduino environment allow this operation to be

carried out in a relatively simple manner: A first WiNo

prototype can be assembled with a couple of breakout boards,

including microcontroller and radio transceiver. Then, by

using the services of a local FabLab, the new WiNo prototype

can be produced with specific form factor, box, etc. and

deployed in the test environment. The ability to change only

one system component is important to enable precise

performance comparison in real-life use. Table 2 and Fig. 2

illustrate some WiNo examples with various radios:

WiNoRF22 (a) and TeensyWiNo (b), both based on the

HopeRF RFM22b proprietary radio; DecaWiNo (c) [13],

based on the DecaWave DM1000 IEEE 802.15.4-2011-

compliant UWB radio [14].

Fig. 2. Various WiNos: WiNoRF22 (a), TeensyWiNo (b), DecaWiNo (c)

TABLE II. WINO CHARACTERISTICS

 TeensyWiNo WiNoRF22 WiNoLoRa DecaWiNo

Usage Classical IoT
Long range,

ultra low rate

Short range,

ranging,

localisation

CPU

RAM

PJRC Teensy 3.2 Arduino-compliant

(Freescale MK20DX256VLH7)

ARM Cortex M4 72MHz, 64kB RAM, 256kB Flash

Transceiver RFM22b RFM95 DW1000

Library Radiohead DecaDuino

Sensors

Temperature,

Luminosity,

Barometer,

Accelerometer,

Magnetometer,

Gyroscope

Temperature, Luminosity

Others RGB LED, GPIOs, PWM, ADC/DAC, SPI, I2C, CANbus

Availability snootlab.com DIY

2) Very simple deployment of testbeds: OpenWiNo allows

easy deployment of testbeds, either in controlled or natural

environment. Once deployed, the WiNos execute the protocol

stack (Fig. 1) on their wireless interface, while being managed

by a second network, called supervision network (Fig. 3) via

their USB interface, with the kernel console. This additional

infrastructure is used for debugging, firmware injection and

performance parameters gathering. Thanks to the supervision

network, the WiNos can then be used for pragmatic assessment

of the performance of the developed protocols. The supervision

network comprises the WiNos, connected via USB to a

controller, which can handle several WiNos. The controllers

are connected to a central server via wired Ethernet/IP links,

which centralises console logs and forward console commands

to the WiNos, via the controllers. In our lab, the controllers are

built using ordinary Raspberry Pi. If the experiment does not

permit the deployment of the supervision network, the WiNo

consoles remain accessible by using the built-in OpenWiNo

remote-shell via a WiNo used as a gateway; In this case, the

user must deal with the limited resources of the wireless

network to optimise the quantity of data used in the

assessment.

Fig. 3. Testbed architecture, with both wireless and supervision networks

3) Real-life usage: The WiNos small size and very low

energy consumption facilitates their integration in prototypes

of communicating objects, making them a component of the

IoT. They can also easily be carried by a person or be attached

to automatic motion systems. In addition, a great variety of

sensors can be added to the platform: being compliant with the

world of open hardware and software, the WiNo architecture

permits addition of foreign libraries related to the desired

sensor. Since the nodes are easy to carry and can be

personalised using a wide array of sensors, designing a realistic

implementation is possible. This setup may be used for a joint

study of network performance and usage-based testing, but also

for demonstrations and as a proof-of-concept.

Fig. 4. Testbed management via the web interface

V. OPENWINO EXAMPLES

OpenWiNo, associated to the WiNo hardware, has certain
advantages, compared with the other platforms and testbeds
described in the section III. As presented before, the main
advantage of OpenWiNo is the simplicity of transceiver
switching; To add the support of a given transceiver, the
developer must get the primitive set of the transceiver,
basically how to configure the transceiver (setting channel
frequency, transmission power), send a frame, set receive
mode, get a received frame and put transceiver in sleep mode.
Considering specific protocols, some functionalities may be
mandatory, such as sensing energy on medium for CSMA-
based protocols, timestamping frame reception for
synchronisation protocols, etc. Choosing the best transceiver is
an important matter and may impact the MAC protocol under
study. At this time, 4 different transceivers – enabling 4
different PHY layers – have been tested successfully with
OpenWiNo:

• IEEE 802.15.4-2011 UWB (DecaWave DW1000),

• Proprietary 433MHz FSK/GFSK (HopeRF RFM22b),

• LoRa mode 868MHz (HopeRF RFM95),

• Classical IEEE 802.15.4 2.4GHz DSSS (Freescale).

At MAC level, the CSMA/CA from the IEEE 802.15.4-
2006 standard is available in OpenWiNo. A non-hierarchical
TDMA MAC, based on the SISP protocol [15] is also
available. At NWK level, an implementation of a reactive
routing protocol is available; Static routing is also possible. At
APL level, an API to the Arduino sketch is available,
implementing the standard send() and recv() primitives.
Various mechanisms such as end-to-end acknowledgments and
packet reordering/FiFos are also implemented.

Another advantage of OpenWiNo is the simplicity of local
testbed deployment, with a lightweight infrastructure, on a real
environment such as an industrial area like a factory. In the lab,
a complete testbed of 16 WiNoRF22 has been deployed on a
200m² indoor zone, for a reasonable price, i.e. less than
2kEUR, including controllers. Fig. 5 illustrates the logical
topology of this deployment, from the MAC layer point of
view: We can see asymmetric links, which the MAC layer
must deal with. The value on the links is the RSSI before dBm
conversion.

Fig. 5. Our 16-nodes testbed topology

In addition to be flexible with the transceiver replacement,
the WiNo is also versatile on electronic usage: it is possible to
connect external sensors or use I/O of the MCU; for example,
by driving the General Purpose I/Os (GPIOs), it is simple to
represent protocol states. For example, Fig. 6 illustrates the
representation of a typical industrial time-constrained TDMA
MAC slotting by asserting a single GPIO on each node of the
testbed: Each node sets a dedicated GPIO at the beginning of
its TDMA slot, than clears the GPIO at the end of its slot. The
result is viewed with a logic analyzer and enables very precise
measurements on timing, such as synchronisation and slotting
at MAC-layer. The performance evaluation is complementary
of results obtained by simulation.

Fig. 6. Timing representation of a TDMA scheduling

Nevertheless, OpenWiNo also has few shortcomings, such
as the lack of library implementing the most standardized
protocols or the absence of Operating System; even if this last
drawback is a choice at the foundation of OpenWiNo to get a
highest level of portability on new hardware, the absence of OS
can complicate the implementation of processes and tasks.

VI. CONCLUSION AND PERSPECTIVES

In the coming years, the IoT Device Layer will no doubt be
based on a variety of wireless technologies, according to the
application and to the use of each of the connected devices:
WiFi, Bluetooth BLE, Zigbee, NFC, Ant, 4G, IEEE 802.15.6,
etc… will each have their role to play in this smart world. The
prototyping platforms and the protocol and design tools in
general, will therefore have to take this variety of technologies
into account. Some platforms, such as OpenWiNo, FIT/IoT-
LAB or SmartSantander, are already a part of this trend: they
incorporate several PHY and MAC layers, with the eventual
possibility of easily and quickly supporting new ones. In the
case of WiNo, this is done very simply by swapping
transceivers and associated libraries, or by programming new
MAC layers, allowing for innovation in the IoT. The node
architectures will move towards smaller but more powerful and
more energy-efficient processors, since autonomy remains a
major challenge for energy-constrained nodes: the new-
generation platforms will have to incorporate this constraint for
connected devices to be accepted by users. In addition to
providing a platform for network protocol evaluation,
OpenWiNo is designed to facilitate pluridisciplinary projects
where the aim is not only to evaluate performance through
traditional networking metrics but also to investigate the user
experience. Although registered users can remotely access the
existing OpenWiNo deployment, the main objective is to allow
research teams to easily deploy their own testbed in a
representative environment, while incorporating the most
appropriate sensors and actuators for the target application. For

example, in the next months, WiNo+OpenWiNo solution will
be tested in a real application to enable wireless
communications between autonomous candelabras.

In the future, we plan on giving potential users a taste of
OpenWiNo by allowing registration-based web access to our
testbed. Another perspective is to develop a Hardware
Adaptation Layer suitable for reference hardware platforms
such as the ones found on FIT/IoT-LAB; this will allow the
execution of protocols implemented on OpenWiNo on the
FIT/IoT-LAB testbed. A final perspective is the development
of a driver for a Software Defined Radio-based Physical layer;
In addition to using the open software approach on the
hardware, this will give an impulse to research on the
opportunistic use of the radio interface.

ACKNOWLEDGMENT

The authors want to thank Snootlab, Toulouse Tech
Transfer and Julien Aubé for their support on the
industrialisation of OpenWiNo source code. Thanks to
Snootlab for the finalisation and the marketing of the first
WiNo. OpenWiNo source code will be available on
http://openwino.cc as soon as WiNo hardware is available on
http://snootlab.com.

REFERENCES

[1] Xu B, Xu LD, Cai H, Xie C, Hu J, Bu F, (2014) Ubiquitous Data
Accessing Method in IoT-Based Information System for Emergency
Medical Services, IEEE Transactions on Industrial Informatics, 05/2014,
pp 1578-1586

[2] Lunardi WT, De Matos E, Tiburski RT, Amaral LA, Marczak S and
Passuelo Hessel F, Context-based search engine for industrial IoT:
Discovery, search, selection, and usage of devices. 20th IEEE
International Conference on Emerging Technologies and Factory
Automation, ETFA'15, September 8-11, 2015, Luxembourg

[3] Jaewoo K, Jaiyong L, Jaeho K, Jaeseok Y, (2014) M2M Service
Platforms: Survey, Issues, and Enabling Technologies, IEEE
Communications Surveys & Tutorials, 01/2014, pp 61-76

[4] Khan R, Khan SU, Zaheer R, Khan S, (2012) Future Internet: The
Internet of Things Architecture, Possible Applications and Key
Challenges, in Frontiers of Information Technology (FIT), 2012 10th
International Conference on , vol., no., pp.257-260, 17-19 Dec. 2012
doi: 10.1109/FIT.2012.53

[5] Ding Y, Jin Y, Ren L, Hao K, (2013) An Intelligent Self-Organization
Scheme for the Internet of Things, IEEE Computational Intelligence
Magazine, 01/2013 pp 41-53.

[6] Tang C, Song L, Balasubramani J, Wu S, Biaz S, Yang Q, Wang H,
(2014) Comparative Investigation on CSMA/CA-Based Opportunistic
Random Access for Internet of Things, Internet of Things Journal, IEEE
01/2014, pp171-179.

[7] Tonneau AS, Mitton N, Vandaele J, (2015) How to choose an
experimentation platform for wireless sensor networks? Elsevier Adhoc
networks, Elsevier, 2015, 30, pp.12.

[8] VITAL: The future of Smart Cities. http://vital-iot.eu/ last accessed on
20/02/2016

[9] Adjih C and al. (2015) FIT IoT-LAB: A Large Scale Open Experimental
IoT Testbed, IEEE World Forum on Internet of Things (IEEE WF-IoT),
Milan, Italy, 14-16 December 2015.

[10] Fourty N, van den Bossche A, Val T (2012), An advanced study of
energy consumption in an IEEE 802.15.4 based network: everything but
the truth on 802.15.4 node lifetime. Computer Communications,
Elsevier, June 2012.

[11] Chauvenet C, Tourancheau B, Genon Catalot D, (2013) Energy
Evaluations for Wireless IPv6 Sensor Nodes. SENSORCOMM 2013,
7th International Conference on Sensor Technologies and Applications,
2013, pp.97-103 <hal-01073749>

[12] Van den Bossche A, Val T (2013) WiNo : une plateforme d'émulation et
de prototypage rapide pour l'ingénierie des protocoles en réseaux de
capteurs sans fil. 9th Journées Francophones Mobilite et Ubiquité
(UbiMob 2013), June 2013, Nancy, France <hal-01240700> (in French)

[13] van den Bossche A, Dalcé R Fofana NI, Val T (2016), DecaDuino: An
Open Framework for Wireless Time-of-Flight Ranging Systems,
IEEE/IFIP Wireless Days, WD 2016, Toulouse, 23/03/2016-25/03/2016

[14] DecaWave Ltd. 2013, DWM1000 datasheet, last accessed on
20/02/2016

[15] Van Den Bossche A, Val T, Dalce R (2011), SISP: A lightweight
synchronization protocol for Wireless Sensor Networks, 16th IEEE
Conference on Emerging Technologies & Factory Automation (ETFA),
5-9 Sept. 2011 doi: 10.1109/ETFA.2011.6059182

