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Abstract: A Data warehouse (DW) is characterized by a complex architecture, designed in order to integrate data 

derived from operational data sources (DS), hence providing advanced analytical tools of these data. The 

DW is highly dependent on its DS. Hence, evolutions of the DS schema need to be propagated to the DW 

schema and content. This paper presents a model-driven approach for the evolution of a multidimensional 

DW. It is based on two evolution models: a first evolution model for the DS and another for the DW. These 

two models concern the data structure aspects as well as the evolution operations. The transition between 

these two models is performed through specific transformation rules defined in QVT 

(Query\View\Transformation). 

1 INTRODUCTION 

In the data warehousing (DW) field, whatever the 

enterprise's philosophy falls into i) Bill Inmon's 

camp where the DW is one part of the overall BI 

system, or into ii) Ralph Kimball's camp where the 

DW is the conglomerate of all data marts within the 

enterprise, data issued from the operational systems 

are extracted, transformed, cleansed and finally 

loaded into the fact and dimension tables of the 

famous star schema which represents the keystone 

modeling diagram that has twofold objectives: first, 

it highlights the subject of analyses (i.e., fact 

representing the activity to be evaluated) and, 

secondly, it shows up the axes (i.e., dimensions) 

according to which the fact’s data could be analyzed 

(Inmon, 2002). 

This strong dependency between the DW and the 

data source (DS) leads to a new evolution problem 

that addresses the impact of the DS schema 

evolution on the DW. In fact, the dynamic evolution 

of business processes within the enterprise can lead 

to another evolution of the DS schema. The 

associated DW cannot escape from this evolution 

which can simultaneously affect its schema, stored 

data, and also the ETL process (Extract-Transform-

Load) (Vassiliadis, 2009). 

This paper treats this evolution problematic, it is 

organized as follows. In section 2, we overview 

researches related to the DW evolution problem. 

Section 3 proposes a model-driven approach for the 

propagation of DS schema changes towards the DW. 

Section 4 defines the evolution models of both the 

DS and the DW. Section 5 presents an example of 

transformation rules formalized in QVT (Query 

\View \Transformation); it is for the automatic 

passage between these two models. Finally, section 

6 concludes the paper and enumerates our future 

perspectives. 

2 RELATED RESEARCHES 

The DW evolution problem has been the subject of 

several research studies. It was treated from several 

points of views: Analytical need evolution, DS 

schema evolution, etc. 

Some researchers (Favre et al., 2007), (Benitez et 

al., 2004), (Blaschka et al., 1999 ) have limited their 

study to the DW evolution as a result of evolution of 

decision makers needs, without considering the case 

of the DS evolution. Other literature works 

(Bellahsene, 2002), (Wrembel and Bebel, 2007), 

(Solodovnikova, 2008) have examined the evolution 

of the source schema as well as its impact on the 

DW. This suits our concern in this paper. 

Accordingly, in (Rundensteiner et al., 1999) and 

(Bellahsene, 2002) the authors consider the DW as a 

set of materialized views built directly from the data 

sources. In this approach, any change in the DS 



schema requires views maintenance.  

As a practical extension, the authors of 

(Rundensteiner et al., 1999) have developed a 

prototype to automate the rewriting of the 

materialized views definitions in order to reflect and 

to be coherent with the realized structural changes at 

the layer of the DS. Their EVE (Evolvable View 

Environment) tool consists of two basic modules: 

The first module is used to describe the appeared 

changes in the DS. The second module allows the 

user to evolve the views via an extended Structured 

Query Language (SQL) version. 

In (Bellahsene, 2002), the author presents an 

approach for a dynamic adaptation of the 

materialized views in response to an evolution of the 

DS. This approach is applied to maintain not only 

the schema views, but also its instances (i.e., data). 

The main idea of this contribution is to avoid 

recalculating the views after each change done on 

the DS by subtracting the schema of the new view 

from the old one. 

The authors studied the impact of the DS 

evolution on the DW. Nevertheless, their proposed 

solutions are only applicable in case the DW is 

composed of a set of materialized views. 

In (Papastefanatos et al., 2009), the authors 

tackle the inconsistencies that may appear in ETL 

processes after the DS evolution. They proposed the 

"HECATAEUS" tool which offers to the designer a 

mechanism for adapting the ETL activities to the 

changes happening in the DS schema. Moreover, the 

tool is able to detect precociously the vulnerable 

components (i.e., affected) in the Information 

System (IS). The proposed approach is based on a 

technical representation which includes all the 

essential components of the ETL process and also 

produces a graph evolution model (Simitsis et al., 

2005). Following a change in the graph element(s), 

the tool detects automatically the graph parts that 

have to be affected and also highlights the changes 

to be made according to a set of rules a priori 

defined.  

This ensures the consistence of the ETL 

procedures. However, this study was limited to the 

ETL feeding process and did not treat the impact of 

the DS schema evolution on the schema of the DW. 

In (Wrembel and Bebel, 2007) and 

(Solodovnikova, 2008), the authors were interested 

in studying the effect of the DS evolution on the DW 

schema.  

They adopted an approach based on versioning 

in order to historize the versions of DW schemas.  

In (Wrembel and Bebel, 2007), the authors 

presented a formal model for a multi-version DW. 

They identified a set of evolution operations 

affecting the DW schema and its instances. The 

authors have distinguished between two types of 

DW versions: Real version and Alternative version. 

The DW real version is created in order to reflect 

the changes in the real environment of the enterprise, 

whereas the aim of the DW alternative version is to 

ensure the change in the simulation process based on 

“What-If” analyses. In order to validate their 

approach, the authors have developed a software 

tool for both the maintenance of the DW and the 

management of its versions. 

In (Solodovnikova, 2008), the author suggested a 

tool for the DW evolution which ensures the 

creation and manipulation of several versions as well 

as the construction and execution of associated 

reports. He also defined a physical representation of 

the schema version in the database and a logical 

representation of the DW, hence classifying the 

changes which may affect the DW into three 

categories: Physical, logical and semantic changes. 

Solutions proposed by (Solodovnikova, 2008) 

and (Wrembel and Bebel, 2007) allow the automatic 

detection of the DS changes and assist the 

administrator in the propagation of these changes 

towards the DW. These studies are mainly based on 

the administrator’s expertise and do not propose 

automatic propagation rules for the DW alterations. 

For example, when adding a new table/column to the 

DS schema, the administrator must manually define 

the potential role of the new table/column in the 

DW. For instance, (s)he indicates whether the added 

table could become a dimension, a fact, a measure or 

a parameter. 

Table 1: Comparison of DW evolution approaches. 
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Figure 1: Model-driven approach for DW evolution. 

evolution and DW schema evolution. We note that 

all suggested solutions are realized in a software 

engineering conventional context; therefore, their 

implementations are platform-dependent and, thus, it 

is so hard to be adapted on different platforms.  
In our current research, we are addressing the 

evolution problem of the decision information 

system by adopting the Model-Driven Architecture 

(MDA). This choice is motivated by the fact that 

MDA provides a flexible and effective evolution of 

the management support. Indeed, the DW evolution 

process requires less effort when it is managed with 

a high level of abstraction (i.e. when using models 

and transformations), hence improving the quality. 

This is particularly advantageous because MDA 

provides mechanisms for automatic transformation 

between models at different levels, unlike the 

traditional approaches which directly affect the 

implementation part. Moreover, MDA can provide 

support for the development, integration, 

interoperability, scalability, portability and 

reusability of information systems (Mazon and 

Trujillo, 2008). 

3 PROPOSED APPROACH 

We adopt the MDA to automate the extension of the 

DS schema evolution towards the DW which is 

loaded from this DS. 

The MDA provides an approach to systems 

development based on models and model 

transformations in accordance with a set of OMG 

(Object Management Group) standards (OMG, 

2004). This approach separates functional system 

specifications details and their implementation. In 

fact, everything in MDA is considered as a model, as 

well as the schema and source code too.  

Figure 1 shows the different steps of our 

proposed approach where we find three modeling 

levels and two types of transformations: Vertical and 

Horizontal. 
The vertical transformation involves different 

levels of abstraction. It allows the passage from the 

requirements model (CIM: Computation 

Independent Model) to the analysis and design 

model (PIM: Platform Independent Model) and then 

to model concrete design (PSM: Platform Specific 

Model) in order to reach the end of a code of 

impaired DW. The passage between these different 

levels of models is achieved through transformation 

rules (Section 5). 

 CIM: is a model independent from any computer 

system. This is the application domain model. It 

represents the starting point of the DW alteration 

process which describes the administrator needs in 

terms of changes to be applied on the decision 

information system.  

 PIM: is a model independent from any 

technological platform. It defines the structure and 

behavior of the system without reference to the 

execution platform. This level constitutes the 

major part of the proposed approach. It allows the 

management of changes in the decision 

information system levels, namely Data 

Warehousing and ETL. 



 PSM: it is a model dependent on technological 

platforms, and represents a projection of a PIM on 

a given platform for the generation of 

corresponding executable code. 

The horizontal transformation allows the passage 

from one or more sources to a target model having 

the same level of abstraction. Figure 1 shows this 

type of model transformation at the PIM level.  

We distinguish three models of evolution: 

 Data source evolution model: This model 

describes all the evolution operations that may 

affect a relational DS (table, column...). 

 Data warehouse evolution model: It describes all 

operations that may affect the multidimensional 

structures (dimensions, facts ...). It should be 

derived from the DS evolution model. 

 ETL evolution model: It describes the ETL 

applicable evolution operations. It is intended to be 

derived from the two previous evolution models: 

DS and DW evolution models. 
 

Each of these models must be conform to a meta-

model which must be, in its turn, based on a meta- 

meta-model (MOF: Meta-model Object Facility) 

(OMG, 2001). 

The transformation rules are defined with the 

QVT transformation language which is also based 

on a MOF meta-model (OMG, 2009). These rules 

allow defining mappings between source and target 

meta-models and their execution results in the 

generation of the target model from the source 

model. Figure 2 shows the source and target 

evolution models. They will be presented in the next 

section.  

4 EVOLUTION MODELS 

In order to represent the three evolution models, we 

use the UML (Unified Modeling Language) class 

diagram (OMG, 2001) which is a graphical object-

oriented language (Prat et al, 2006).  

We use UML in order to model the structural and 

behavioral aspects of a system through a set of 

models. Specifically, the class models are used to 

represent simultaneously these two aspects. Indeed, 

a UML class diagram is composed of a static 

property list and a set of operations to describe the 

evolution models (Figure 2).  

On the one hand, we use the property list in order 

to define schemas of the DS, ETL process and the 

DW and, on the other hand, the operations to 

identify the changes which may affect each of these 

structures. 

 

Figure 2: The structure of the evolution models. 

Remember that in this paper, we are only interested 

in studying the impact of the DS evolution model on 

the DW model. So, we limit ourselves to two 

evolution models: (i) Data Source Evolution Model 

and (ii) Data Warehouse Evolution Model (Figure 

2).  
 

The following sub-sections detail these two 

evolution models. 

4.1 Data Source Evolution Model 

The DS evolution model is the basic model for the 

deduction of the ETL and DW evolution models. It 

defines the relational DS schema (such as tables, 

constraints...) using the class properties as well as 

the evolution operations that apply to it (add table, 

add column...). 

The DS evolution model conforms to the meta-

model presented in Figure 3. This latter is composed 

of a DS_Schema class which is an extension of the 

Package meta-class. The schema of the DS, in its 

turn, is composed of several tables. Each one of 

them is defined by a Table class which is an 

extension of the Class meta-class.  

Each table contains one or more columns; a 

column may be a primary key (or part of it) and/or 

even a foreign key.  

The Column class is an extension of the 

StructuralFeature meta-class. 

The dashed region of Figure 3 models the DS 

schema. We add operations describing the changes 

affecting the DS model. These operations (addition, 

deletion, modification...) mainly concern tables and 

columns. We modeled them with the 

DS_Evolution_Operation class which represents an 

extension of the Operation meta-class. 

A transformation enables the automatic 

generation of a target model starting from a source 

model by applying a set of rules. It requires 

generation  of  a  target model starting from a source 
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Figure 3: Data Source Evolution Meta-model. 

model by applying a set of rules. It requires 

specifying the meta-models describing these models. 

In this section we have defined the source meta-

model (DS Evolution Meta-Model). Then we 

describe the target meta-model (i.e. DW Evolution 

Meta-Model). 

4.2 Data Warehouse Evolution Model 

DW Evolution Model conforms to the DW 

Evolution Meta-model depicted in Figure 4. 

The DW Evolution Meta-model has two parts 

(Figure 4): The first one, in dashed line, describes 

the DW schema and the second part deals with the 

DW Evolution Operations. 

For the first part, the DW structure is loaded with 

the DW schema meta-data. As to the second part, the 

operations of evolution will be deducted 

automatically from the DS Evolution Model based 

on the transformation rules. 

Figure 4 shows the DW Evolution Meta-model 

which is composed of the warehouse schema 

DW_Schema (meta-class Package extension).  
This schema is composed of fact tables Fact and 

dimensions tables Dimension. A Dimension is 

composed of one or more hierarchies Hierarchy 

which contains one or more attribute levels Level. 

Fact, Dimension, Hierarchy and Level are 

extensions of the meta-class Class. The fact table 

contains one or more measures Measure. Each level 

of hierarchy is composed of parameters Parameter 

which may be associated with one or more weak 

attributes Weak_Attribute. 

Measure, Parameter and Weak_Attribute inherit 

from the class Attribute which is an extension of the 

meta-class StructuralFeature.  

Evolution operations of the DW level can be 

applied to the various DW model components (fact 

table, dimensions hierarchies, parameters and weak 

attributes).  

These operations can be constructive (add 

dimension, add measure, etc.) or destructive (delete 

dimension, delete hierarchy, etc.). We model these 

operations through the class DW_Evolution 

_Operation which is an extension of the meta-class 

Operation. 

In this section, we have defined the DS and 

target evolution meta-models. In the next section, we 

present the transformation rules. 

5 MODEL TRANSFORMATION 

This section presents the QVT formalization of the 

transformation rules allowing the automatic passage 

between the source and warehouse evolution 

models. These transformations mainly relate to 

evolution operations. Each operation in the DS 

evolution model can be transformed automatically 

into one or more evolution operations in the target 

model (i.e. DW Evolution Model).To propagate a 

DS evolution operation, first we need to determine 

the modified element (table, column, etc), its 

corresponding element in the DW schema 

(dimension, fact, parameter, etc) as well as the 

evolution operation (add table/column, alter column, 

etc).  All these details are traceable from the two 

evolution models described in Figures 3 and 4. 

Table 2 lists the possible transformations 

applicable to the DW after adding a new table or 

column to the DS schema. For example, the 

evolution operation AddTable could be transformed 

into AddDimension operation in the DW evolution 

model when the rule TableToDim is applied. 

ColumnTable

+P_Key

1..*

+F_Key

*

+Attribut
*

DS_Schema

Package StructuralFeautureClass Operation

DS_Evolution_Operation

*

*

*

*

* *



 

Figure 4: Data Warehouse Evolution Meta-Model. 

 

Figure 5: Description of the transformation semTOwem. 

Figure 5 shows a textual description of the 

transformation semTOwem which takes as input the 

two models sem and wem.  
sem is an instance conform to the Source 

Evolution Meta-model (Figure 3). wem is an 

instance conform to the Warehouse Evolution Meta-

model (Figure 4). 

The transformation semTOwem contains a set of 

relations (TableToDim, TableToFact, ColToMeas ...) 

which must be verified on the candidate models 

(sem, wem) for the achievement of the 

transformation. 

As an example, the relation ColToMeas 

transforms the evolution operation AddColumn into 

AddMeasure (Figure 6). This transformation is 

defined by: 

 Two domains such as DS_Evolution_Operation 

(dseo) and DW_Evolution_Operation (dweo) 

which must be matched through the elements 

belonging to them. 

 A when clause specifies the relation condition. For 

this example, the relation ColToMeas is only 

applicable when: (1) the DS evolution operation is 

AddColumn, and (2) the added column is numeric 

and (3) the modified table loads a fact. 

We illustrate the ColToMeas relation on the 

relational data source of Figure 7 and its DW of 

Figure 8. 

The addition of a column (Reduction_Rate, Number) 

to the table SALE  of the DS to express the reduction 

rate of each transaction is translated into an 

AddColumn ('Reduction_Rate’, Number)  evolution 

operation affecting the class SALE  of the DS 

evolution model. In this evolution operation: 

(1) The column is added using the AddColumn 

operation, 

(2) The column is added using the AddColumn 

operation, 

(3) the type of column Reduction_Rate is numeric, 

and 

Fact Dimension Hierarchy

Attribute

ParameterWeak_AttributeMeasure

*

1..*

1..*

1..*1..*

Level

1..*

Package StructuralFeauture

Class

Operation

DW_Schema DW_Evolution_Operaton*

* * * * *

Transformation semTOwem

(sem : SourceEvolutionMetaModel,
wem : WarehouseEvolutionMetaModel)

{
Relation TableToDim {…}
Relation TableToFact {…}

Relation TableToHier {…}
Relation ColToMeas {…}

Relation ColToLev {…}
Relation ColToPara {…}
…

}



Table 2: Example for the evolution operation (Add) and transformation rules. 

 
 

 

Figure 6: Description of the relation ColToMeas. 

(4) the table SALE  of the DS loads the SALE  fact 

table of the DW. 
 

According to the when clause (Figure 6), the 

condition of the relation ColToMeas is satisfied. 

Therefore, the operation AddColumn (' 

Reduction_Rate’, Number) is transformed into an 

evolution operation applied to the fact table 

AddMeasure (M_Reduction_Rate, number). 

 

 

Figure 7: Relational data source schema. 

 

Figure 8: DW Star schema SALE built on the DS schema 

of Figure 7. 

6 CONCLUSIONS 

In this paper we have discussed the problem of the 

data sources evolution and then studied its impact on 

a multidimensional data warehouse.  

To address this problem, we proposed a model-

driven approach in order to automate the 

propagation of the data source schema evolution 

toward the multidimensional data warehouse. This 

approach is based on two evolution models 

presenting simultaneously the structural and 

Evolution

Operation

DataSource

(DS)

Relations

(R)

DataWarehouse (DW)

Fact Dimension Hierarchy Level Measure Weak_Att Parameter

Add

Table

TableToFact

TableToDim

TableToHier

TableToLev

Column

ColToHier

ColToLev

ColToMeas

ColToWatt

ColToPara

Relation ColToMeas

{
Domain sem dseo : DS_Evolution_Operation

{
DS_Schema = ds : DS_Schema{ },
table = t : table 

{name = tn, 
column= cl:Column{ }},

type =‘AddColumn’,
Parameter = Ps : Parameter

{c_name = cn, 

c_type = ct}
}

Domain wem dweo : DW_Evolution_Operation
{

DW_Schema = ds : DW_Schema{ },

fact = f : fact { },
type =‘AddMeasure’,

Parameter = Pw : Parameter
{m_name = ‘M_’+cn, 
m_type = ct }

} 
When

{
dseo.type = ‘AddColumn’ 
and ct=‘Number’

and Fact ( t ) = f /*returns a fact

loadable from a table t */

}
}

CUSTOMER (Id_Cust, First_Name, Last_Name, #Id_City…)

CITY (Id_City, City_Name…,#Id_Cntry)

COUNTRY (Id_Cntry, Country_Name…)

SALE (Id_Sale, Date, #Id_Cust, Sale_Amount)

SALE_ITEM (#Id_Sale, #Id_Prod, Sold_Qtity)

PRODUCT (Id_Prod, PName, Unit_Price, #Id_Categ)

CATEGORIE (Id_Categ, CName)



behavioral aspects of data in terms of the evolution 

operations. The passage between these two models 

is achieved through a set of transformation rules. In 

this paper we have illustrated one rule and defined it 

for the case of adding a new column to the DS; this 

column transforms into a measure in the 

multidimensional DW. The remaining rules exist in 

(Taktak and Feki, 2012) as textual description but 

they are not yet coded as QVT 

(Query\View\Transformation) transformations. 

We have started the step of testing the set of 

rules on samples DS/DW schemas (Azaiez et al, 

2013). In order to experimentally validate the 

proposed models and all transformations, we are 

looking to apply them on a real case study.  

In the future research, we have the intention to 

extend the DW alteration process to take into 

account expected evolutions of the ETL (Extract 

Transform and Load procedures. 
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