
HAL Id: hal-01531165
https://hal.science/hal-01531165

Submitted on 1 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Evolution Models for Data Warehouses
Saïd Taktak, Jamel Feki, Gilles Zurfluh

To cite this version:
Saïd Taktak, Jamel Feki, Gilles Zurfluh. Toward Evolution Models for Data Warehouses. 2nd In-
ternational Conference on Model-Driven Engineering and Software Development (MODELSWARD
2014), Jan 2014, Lisbon, Portugal. pp. 472-479. �hal-01531165�

https://hal.science/hal-01531165
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17808

The contribution was presented at MODELSWARD 2014 :
http://www.modelsward.org/?y=2014

To cite this version : Taktak, Saïd and Feki, Jamel and Zurfluh, Gilles Toward
Evolution Models for Data Warehouses. (2014) In: 2nd International Conference
on Model-Driven Engineering and Software Development (MODELSWARD
2014), 7 January 2014 - 9 January 2014 (Lisbon, Portugal).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Toward Evolution Models for Data Warehouses

Saïd Taktak1, Jamel Feki1 and Gilles Zurfluh2
1University of Sfax, FSEGS Faculty, P.O. Box 1088, Miracl Laboratory, Sfax, Tunisia

2University of Toulouse 1 Capitole, IRIT, Toulouse, France

{said.taktak, jamel.feki}@fsegs.rnu.tn, gilles.zurfluh@ut-capitole.fr

Keywords: Data Warehouse, Evolution Model, MDA, QVT.

Abstract: A Data warehouse (DW) is characterized by a complex architecture, designed in order to integrate data

derived from operational data sources (DS), hence providing advanced analytical tools of these data. The

DW is highly dependent on its DS. Hence, evolutions of the DS schema need to be propagated to the DW

schema and content. This paper presents a model-driven approach for the evolution of a multidimensional

DW. It is based on two evolution models: a first evolution model for the DS and another for the DW. These

two models concern the data structure aspects as well as the evolution operations. The transition between

these two models is performed through specific transformation rules defined in QVT

(Query\View\Transformation).

1 INTRODUCTION

In the data warehousing (DW) field, whatever the

enterprise's philosophy falls into i) Bill Inmon's

camp where the DW is one part of the overall BI

system, or into ii) Ralph Kimball's camp where the

DW is the conglomerate of all data marts within the

enterprise, data issued from the operational systems

are extracted, transformed, cleansed and finally

loaded into the fact and dimension tables of the

famous star schema which represents the keystone

modeling diagram that has twofold objectives: first,

it highlights the subject of analyses (i.e., fact

representing the activity to be evaluated) and,

secondly, it shows up the axes (i.e., dimensions)

according to which the fact’s data could be analyzed

(Inmon, 2002).

This strong dependency between the DW and the

data source (DS) leads to a new evolution problem

that addresses the impact of the DS schema

evolution on the DW. In fact, the dynamic evolution

of business processes within the enterprise can lead

to another evolution of the DS schema. The

associated DW cannot escape from this evolution

which can simultaneously affect its schema, stored

data, and also the ETL process (Extract-Transform-

Load) (Vassiliadis, 2009).

This paper treats this evolution problematic, it is

organized as follows. In section 2, we overview

researches related to the DW evolution problem.

Section 3 proposes a model-driven approach for the

propagation of DS schema changes towards the DW.

Section 4 defines the evolution models of both the

DS and the DW. Section 5 presents an example of

transformation rules formalized in QVT (Query

\View \Transformation); it is for the automatic

passage between these two models. Finally, section

6 concludes the paper and enumerates our future

perspectives.

2 RELATED RESEARCHES

The DW evolution problem has been the subject of

several research studies. It was treated from several

points of views: Analytical need evolution, DS

schema evolution, etc.

Some researchers (Favre et al., 2007), (Benitez et

al., 2004), (Blaschka et al., 1999) have limited their

study to the DW evolution as a result of evolution of

decision makers needs, without considering the case

of the DS evolution. Other literature works

(Bellahsene, 2002), (Wrembel and Bebel, 2007),

(Solodovnikova, 2008) have examined the evolution

of the source schema as well as its impact on the

DW. This suits our concern in this paper.

Accordingly, in (Rundensteiner et al., 1999) and

(Bellahsene, 2002) the authors consider the DW as a

set of materialized views built directly from the data

sources. In this approach, any change in the DS

schema requires views maintenance.

As a practical extension, the authors of

(Rundensteiner et al., 1999) have developed a

prototype to automate the rewriting of the

materialized views definitions in order to reflect and

to be coherent with the realized structural changes at

the layer of the DS. Their EVE (Evolvable View

Environment) tool consists of two basic modules:

The first module is used to describe the appeared

changes in the DS. The second module allows the

user to evolve the views via an extended Structured

Query Language (SQL) version.

In (Bellahsene, 2002), the author presents an

approach for a dynamic adaptation of the

materialized views in response to an evolution of the

DS. This approach is applied to maintain not only

the schema views, but also its instances (i.e., data).

The main idea of this contribution is to avoid

recalculating the views after each change done on

the DS by subtracting the schema of the new view

from the old one.

The authors studied the impact of the DS

evolution on the DW. Nevertheless, their proposed

solutions are only applicable in case the DW is

composed of a set of materialized views.

In (Papastefanatos et al., 2009), the authors

tackle the inconsistencies that may appear in ETL

processes after the DS evolution. They proposed the

"HECATAEUS" tool which offers to the designer a

mechanism for adapting the ETL activities to the

changes happening in the DS schema. Moreover, the

tool is able to detect precociously the vulnerable

components (i.e., affected) in the Information

System (IS). The proposed approach is based on a

technical representation which includes all the

essential components of the ETL process and also

produces a graph evolution model (Simitsis et al.,

2005). Following a change in the graph element(s),

the tool detects automatically the graph parts that

have to be affected and also highlights the changes

to be made according to a set of rules a priori

defined.

This ensures the consistence of the ETL

procedures. However, this study was limited to the

ETL feeding process and did not treat the impact of

the DS schema evolution on the schema of the DW.

In (Wrembel and Bebel, 2007) and

(Solodovnikova, 2008), the authors were interested

in studying the effect of the DS evolution on the DW

schema.

They adopted an approach based on versioning

in order to historize the versions of DW schemas.

In (Wrembel and Bebel, 2007), the authors

presented a formal model for a multi-version DW.

They identified a set of evolution operations

affecting the DW schema and its instances. The

authors have distinguished between two types of

DW versions: Real version and Alternative version.

The DW real version is created in order to reflect

the changes in the real environment of the enterprise,

whereas the aim of the DW alternative version is to

ensure the change in the simulation process based on

“What-If” analyses. In order to validate their

approach, the authors have developed a software

tool for both the maintenance of the DW and the

management of its versions.

In (Solodovnikova, 2008), the author suggested a

tool for the DW evolution which ensures the

creation and manipulation of several versions as well

as the construction and execution of associated

reports. He also defined a physical representation of

the schema version in the database and a logical

representation of the DW, hence classifying the

changes which may affect the DW into three

categories: Physical, logical and semantic changes.

Solutions proposed by (Solodovnikova, 2008)

and (Wrembel and Bebel, 2007) allow the automatic

detection of the DS changes and assist the

administrator in the propagation of these changes

towards the DW. These studies are mainly based on

the administrator’s expertise and do not propose

automatic propagation rules for the DW alterations.

For example, when adding a new table/column to the

DS schema, the administrator must manually define

the potential role of the new table/column in the

DW. For instance, (s)he indicates whether the added

table could become a dimension, a fact, a measure or

a parameter.

Table 1: Comparison of DW evolution approaches.

Table 1 presents a recap of the approaches studied in

this section. These contributions have addressed the

DS evolution effect on the DW from different points

of views: materialized view evolution, ETL

DW Evolution Evolution Approach

Mat.

Views
ETL

DW

schema
Classic MDA

Rundensteiner

et al., 1999 - - -
Bellahsene,

2002 - - -
Wrembel and

Bebel, 2007 - - -
Solodov ikova

2008 - - -
Papastefanatos

et al., 2009 - - -

Authors

Criteria

Figure 1: Model-driven approach for DW evolution.

evolution and DW schema evolution. We note that

all suggested solutions are realized in a software

engineering conventional context; therefore, their

implementations are platform-dependent and, thus, it

is so hard to be adapted on different platforms.
In our current research, we are addressing the

evolution problem of the decision information

system by adopting the Model-Driven Architecture

(MDA). This choice is motivated by the fact that

MDA provides a flexible and effective evolution of

the management support. Indeed, the DW evolution

process requires less effort when it is managed with

a high level of abstraction (i.e. when using models

and transformations), hence improving the quality.

This is particularly advantageous because MDA

provides mechanisms for automatic transformation

between models at different levels, unlike the

traditional approaches which directly affect the

implementation part. Moreover, MDA can provide

support for the development, integration,

interoperability, scalability, portability and

reusability of information systems (Mazon and

Trujillo, 2008).

3 PROPOSED APPROACH

We adopt the MDA to automate the extension of the

DS schema evolution towards the DW which is

loaded from this DS.

The MDA provides an approach to systems

development based on models and model

transformations in accordance with a set of OMG

(Object Management Group) standards (OMG,

2004). This approach separates functional system

specifications details and their implementation. In

fact, everything in MDA is considered as a model, as

well as the schema and source code too.

Figure 1 shows the different steps of our

proposed approach where we find three modeling

levels and two types of transformations: Vertical and

Horizontal.
The vertical transformation involves different

levels of abstraction. It allows the passage from the

requirements model (CIM: Computation

Independent Model) to the analysis and design

model (PIM: Platform Independent Model) and then

to model concrete design (PSM: Platform Specific

Model) in order to reach the end of a code of

impaired DW. The passage between these different

levels of models is achieved through transformation

rules (Section 5).

 CIM: is a model independent from any computer

system. This is the application domain model. It

represents the starting point of the DW alteration

process which describes the administrator needs in

terms of changes to be applied on the decision

information system.

 PIM: is a model independent from any

technological platform. It defines the structure and

behavior of the system without reference to the

execution platform. This level constitutes the

major part of the proposed approach. It allows the

management of changes in the decision

information system levels, namely Data

Warehousing and ETL.

 PSM: it is a model dependent on technological

platforms, and represents a projection of a PIM on

a given platform for the generation of

corresponding executable code.

The horizontal transformation allows the passage

from one or more sources to a target model having

the same level of abstraction. Figure 1 shows this

type of model transformation at the PIM level.

We distinguish three models of evolution:

 Data source evolution model: This model

describes all the evolution operations that may

affect a relational DS (table, column...).

 Data warehouse evolution model: It describes all

operations that may affect the multidimensional

structures (dimensions, facts ...). It should be

derived from the DS evolution model.

 ETL evolution model: It describes the ETL

applicable evolution operations. It is intended to be

derived from the two previous evolution models:

DS and DW evolution models.

Each of these models must be conform to a meta-

model which must be, in its turn, based on a meta-

meta-model (MOF: Meta-model Object Facility)

(OMG, 2001).

The transformation rules are defined with the

QVT transformation language which is also based

on a MOF meta-model (OMG, 2009). These rules

allow defining mappings between source and target

meta-models and their execution results in the

generation of the target model from the source

model. Figure 2 shows the source and target

evolution models. They will be presented in the next

section.

4 EVOLUTION MODELS

In order to represent the three evolution models, we

use the UML (Unified Modeling Language) class

diagram (OMG, 2001) which is a graphical object-

oriented language (Prat et al, 2006).

We use UML in order to model the structural and

behavioral aspects of a system through a set of

models. Specifically, the class models are used to

represent simultaneously these two aspects. Indeed,

a UML class diagram is composed of a static

property list and a set of operations to describe the

evolution models (Figure 2).

On the one hand, we use the property list in order

to define schemas of the DS, ETL process and the

DW and, on the other hand, the operations to

identify the changes which may affect each of these

structures.

Figure 2: The structure of the evolution models.

Remember that in this paper, we are only interested

in studying the impact of the DS evolution model on

the DW model. So, we limit ourselves to two

evolution models: (i) Data Source Evolution Model

and (ii) Data Warehouse Evolution Model (Figure

2).

The following sub-sections detail these two

evolution models.

4.1 Data Source Evolution Model

The DS evolution model is the basic model for the

deduction of the ETL and DW evolution models. It

defines the relational DS schema (such as tables,

constraints...) using the class properties as well as

the evolution operations that apply to it (add table,

add column...).

The DS evolution model conforms to the meta-

model presented in Figure 3. This latter is composed

of a DS_Schema class which is an extension of the

Package meta-class. The schema of the DS, in its

turn, is composed of several tables. Each one of

them is defined by a Table class which is an

extension of the Class meta-class.

Each table contains one or more columns; a

column may be a primary key (or part of it) and/or

even a foreign key.

The Column class is an extension of the

StructuralFeature meta-class.

The dashed region of Figure 3 models the DS

schema. We add operations describing the changes

affecting the DS model. These operations (addition,

deletion, modification...) mainly concern tables and

columns. We modeled them with the

DS_Evolution_Operation class which represents an

extension of the Operation meta-class.

A transformation enables the automatic

generation of a target model starting from a source

model by applying a set of rules. It requires

generation of a target model starting from a source

Relational

data source

Data

warehouse ETL

data source

evolution
operations

DW

evolution
operations

ETL

evolution
operations

D
a
ta

S
tr
u
ct
u
re
s

Data Source

EvolutionModel

O
p
e
ra
ti
o
n
s

Data Warehouse

EvolutionModel

ETL

EvolutionModel

(i) (ii) (iii)

Figure 3: Data Source Evolution Meta-model.

model by applying a set of rules. It requires

specifying the meta-models describing these models.

In this section we have defined the source meta-

model (DS Evolution Meta-Model). Then we

describe the target meta-model (i.e. DW Evolution

Meta-Model).

4.2 Data Warehouse Evolution Model

DW Evolution Model conforms to the DW

Evolution Meta-model depicted in Figure 4.

The DW Evolution Meta-model has two parts

(Figure 4): The first one, in dashed line, describes

the DW schema and the second part deals with the

DW Evolution Operations.

For the first part, the DW structure is loaded with

the DW schema meta-data. As to the second part, the

operations of evolution will be deducted

automatically from the DS Evolution Model based

on the transformation rules.

Figure 4 shows the DW Evolution Meta-model

which is composed of the warehouse schema

DW_Schema (meta-class Package extension).
This schema is composed of fact tables Fact and

dimensions tables Dimension. A Dimension is

composed of one or more hierarchies Hierarchy

which contains one or more attribute levels Level.

Fact, Dimension, Hierarchy and Level are

extensions of the meta-class Class. The fact table

contains one or more measures Measure. Each level

of hierarchy is composed of parameters Parameter

which may be associated with one or more weak

attributes Weak_Attribute.

Measure, Parameter and Weak_Attribute inherit

from the class Attribute which is an extension of the

meta-class StructuralFeature.

Evolution operations of the DW level can be

applied to the various DW model components (fact

table, dimensions hierarchies, parameters and weak

attributes).

These operations can be constructive (add

dimension, add measure, etc.) or destructive (delete

dimension, delete hierarchy, etc.). We model these

operations through the class DW_Evolution

_Operation which is an extension of the meta-class

Operation.

In this section, we have defined the DS and

target evolution meta-models. In the next section, we

present the transformation rules.

5 MODEL TRANSFORMATION

This section presents the QVT formalization of the

transformation rules allowing the automatic passage

between the source and warehouse evolution

models. These transformations mainly relate to

evolution operations. Each operation in the DS

evolution model can be transformed automatically

into one or more evolution operations in the target

model (i.e. DW Evolution Model).To propagate a

DS evolution operation, first we need to determine

the modified element (table, column, etc), its

corresponding element in the DW schema

(dimension, fact, parameter, etc) as well as the

evolution operation (add table/column, alter column,

etc). All these details are traceable from the two

evolution models described in Figures 3 and 4.

Table 2 lists the possible transformations

applicable to the DW after adding a new table or

column to the DS schema. For example, the

evolution operation AddTable could be transformed

into AddDimension operation in the DW evolution

model when the rule TableToDim is applied.

ColumnTable

+P_Key

1..*

+F_Key

*

+Attribut
*

DS_Schema

Package StructuralFeautureClass Operation

DS_Evolution_Operation

*

*

*

*

* *

Figure 4: Data Warehouse Evolution Meta-Model.

Figure 5: Description of the transformation semTOwem.

Figure 5 shows a textual description of the

transformation semTOwem which takes as input the

two models sem and wem.
sem is an instance conform to the Source

Evolution Meta-model (Figure 3). wem is an

instance conform to the Warehouse Evolution Meta-

model (Figure 4).

The transformation semTOwem contains a set of

relations (TableToDim, TableToFact, ColToMeas ...)

which must be verified on the candidate models

(sem, wem) for the achievement of the

transformation.

As an example, the relation ColToMeas

transforms the evolution operation AddColumn into

AddMeasure (Figure 6). This transformation is

defined by:

 Two domains such as DS_Evolution_Operation

(dseo) and DW_Evolution_Operation (dweo)

which must be matched through the elements

belonging to them.

 A when clause specifies the relation condition. For

this example, the relation ColToMeas is only

applicable when: (1) the DS evolution operation is

AddColumn, and (2) the added column is numeric

and (3) the modified table loads a fact.

We illustrate the ColToMeas relation on the

relational data source of Figure 7 and its DW of

Figure 8.

The addition of a column (Reduction_Rate, Number)

to the table SALE of the DS to express the reduction

rate of each transaction is translated into an

AddColumn ('Reduction_Rate’, Number) evolution

operation affecting the class SALE of the DS

evolution model. In this evolution operation:

(1) The column is added using the AddColumn

operation,

(2) The column is added using the AddColumn

operation,

(3) the type of column Reduction_Rate is numeric,

and

Fact Dimension Hierarchy

Attribute

ParameterWeak_AttributeMeasure

*

1..*

1..*

1..*1..*

Level

1..*

Package StructuralFeauture

Class

Operation

DW_Schema DW_Evolution_Operaton*

* * * * *

Transformation semTOwem

(sem : SourceEvolutionMetaModel,
wem : WarehouseEvolutionMetaModel)

{
Relation TableToDim {…}
Relation TableToFact {…}

Relation TableToHier {…}
Relation ColToMeas {…}

Relation ColToLev {…}
Relation ColToPara {…}
…

}

Table 2: Example for the evolution operation (Add) and transformation rules.

Figure 6: Description of the relation ColToMeas.

(4) the table SALE of the DS loads the SALE fact

table of the DW.

According to the when clause (Figure 6), the

condition of the relation ColToMeas is satisfied.

Therefore, the operation AddColumn ('

Reduction_Rate’, Number) is transformed into an

evolution operation applied to the fact table

AddMeasure (M_Reduction_Rate, number).

Figure 7: Relational data source schema.

Figure 8: DW Star schema SALE built on the DS schema

of Figure 7.

6 CONCLUSIONS

In this paper we have discussed the problem of the

data sources evolution and then studied its impact on

a multidimensional data warehouse.

To address this problem, we proposed a model-

driven approach in order to automate the

propagation of the data source schema evolution

toward the multidimensional data warehouse. This

approach is based on two evolution models

presenting simultaneously the structural and

Evolution

Operation

DataSource

(DS)

Relations

(R)

DataWarehouse (DW)

Fact Dimension Hierarchy Level Measure Weak_Att Parameter

Add

Table

TableToFact

TableToDim

TableToHier

TableToLev

Column

ColToHier

ColToLev

ColToMeas

ColToWatt

ColToPara

Relation ColToMeas

{
Domain sem dseo : DS_Evolution_Operation

{
DS_Schema = ds : DS_Schema{ },
table = t : table

{name = tn,
column= cl:Column{ }},

type =‘AddColumn’,
Parameter = Ps : Parameter

{c_name = cn,

c_type = ct}
}

Domain wem dweo : DW_Evolution_Operation
{

DW_Schema = ds : DW_Schema{ },

fact = f : fact { },
type =‘AddMeasure’,

Parameter = Pw : Parameter
{m_name = ‘M_’+cn,
m_type = ct }

}
When

{
dseo.type = ‘AddColumn’
and ct=‘Number’

and Fact (t) = f /*returns a fact

loadable from a table t */

}
}

CUSTOMER (Id_Cust, First_Name, Last_Name, #Id_City…)

CITY (Id_City, City_Name…,#Id_Cntry)

COUNTRY (Id_Cntry, Country_Name…)

SALE (Id_Sale, Date, #Id_Cust, Sale_Amount)

SALE_ITEM (#Id_Sale, #Id_Prod, Sold_Qtity)

PRODUCT (Id_Prod, PName, Unit_Price, #Id_Categ)

CATEGORIE (Id_Categ, CName)

behavioral aspects of data in terms of the evolution

operations. The passage between these two models

is achieved through a set of transformation rules. In

this paper we have illustrated one rule and defined it

for the case of adding a new column to the DS; this

column transforms into a measure in the

multidimensional DW. The remaining rules exist in

(Taktak and Feki, 2012) as textual description but

they are not yet coded as QVT

(Query\View\Transformation) transformations.

We have started the step of testing the set of

rules on samples DS/DW schemas (Azaiez et al,

2013). In order to experimentally validate the

proposed models and all transformations, we are

looking to apply them on a real case study.

In the future research, we have the intention to

extend the DW alteration process to take into

account expected evolutions of the ETL (Extract

Transform and Load procedures.

REFERENCES

Azaiez, N., Taktak, S., Feki, J., 20113. DWEv : Un

prototype pour l'évolution partielle du schéma

multidimensionnel. 7éme édition de la Conférence

Maghrébine sur les Avancées des Systèmes

Décisionnels (ASD 2013), Marrakech, Maroc, pages

457-462.

Bebel, B., Eder,J., Koncilia, C., Morzy, T., Wrembel, R.,

2004. Creation and Management ofVersions in

Multiversion Data Warehouse.In XIXth ACM

Symposium on Applied Computing (SAC), Nicosia,

Cyprus, pages 717–723.

Bellahsene, Z., 2002. Schema Evolution in Data

Warehouses.Knowledge and Information-Systems

4(3), pages 283–304.

Benitez-Guerrero, E.I., Collet, C., Adiba, M., 2004. The

Whes Approach To Data Warehouse Evolution, e-

Gnosis (online), 2, Art. 11.

Blaschka, M., Sapia, C., and Hofling, G., 1999. On

Schema Evolution in Multi-dimensional Databases.In

Ist International Conference on Data Ware-housing

and Knowledge Discovery(DaWaK), Florence, Italy,

volume1676 of LNCS, pages 153–164.

Favre, C., Bentayeb, F., Boussaid, O., 2007. A Survey of

Data Warehouse Model Evolution, Encyclopedia of

Database Technologies and Applications, Second

Edition, Idea Group Publishing.

Inmon, W., 2002. Building the Data Warehouse (3rd

Edition). New York. Wiley & Sons.

Mazon, J.N., Trujillo, J. 2008. An MDA approach for the

development of data warehouses. Decision Support

Systems (DSS’08), Vol. 45 (1), pages 41-58.

OMG, 2001. Object Management Group: Unified

Modeling Language Specification 1.4.

http://www.omg.org/cgi-bin/doc?formal/01-09-67.

OMG, 2004. Object Management Group: Model Driven

Architecture (MDA). http://www.omg.org/cgi-

bin/doc?formal/03-06-01.

OMG, 2009. Object Management Group: Meta Object

Facility (MOF) 2.0 Query/View/Transformation,

version 1.1, ttp://www.omg.org/spec/QVT/1.1/Beta2/.

Papastefanatos, G., Vassiliadis, P., Simitsis, A., Sellis, T.,

Vassiliou, Y., 2009. Rulebased Managementof

Schema Changes at ETL Sources. In The International

Workshop on ManagingEvolution of Data Warehouses

(MEDWa), Riga, Latvia.

Prat, N., Akoka, J., Comyn-Wattiau. I., 2006. A UML-

based data warehouse design method, Decision

Support Systems (DSS 06), Vol. 42(3), pages 1449-

1473.

Rundensteiner, E. A., Koeller, A., Zhang, X., Lee, A.J.,

Nica, A., 1999. Evolvable View Environment EVE: A

Data Warehouse System Handling Schema and Data

Changes of Distributed Sources. The International

Database Engineering and ApplicationSympo-sium

(IDEAS'99), Montreal, Canada.

Solodov ikova, D., 2008. The Formal Model for

Multiversion Data Warehouse Evolution.

Postconference proceedings of the 8th International

Baltic Conference on Databases and Information

Systems, Tallinn, Estonia, Frontiers in Artificial

Intelligence and Applicationsby IOS Press, pages 91-

102.

Taktak, S., Feki, J., 2012. Toward Propagating the

Evolution of Data Warehouse on Data Marts, 2nd

International Conference on Model & Data

Engineering (MEDI’2012), Poitiers, France, pages

178-185.

Vassiliadis, P., 2009. A survey of Extract-transform-Load

technology. International Journal of Data

Warehousing & Mining (IJDWM’09), Vol. 5(3),

pages. 1-27.

Wrembel, R., Bebel, B., 2007. Metadata management in a

multiversion data warehouse.In Journal on data

semantics VIII.Lecture Notes In Computer Science,

Vol. 4380. Springer-Verlag, Berlin, Heidelberg pages

118-157.

