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Abstract. This paper proposes a design framework for a personalized
multi-agent recommender system. More precisely, the proposed frame-
work is a multi-context based recommender system that takes into ac-
count user preferences to generate a plan satisfying those preferences.
Agents in this framework have a Belief-Desire-Intention (BDI) compo-
nent based on the well-known BDI architecture. These BDI agents are
empowered with cognitive capabilities in order to interact with others
agents. They are also able to adapt to the environment changes and to
the information coming from other agents. The architecture includes also
a planning module based on ontologies in order to represent and reason
about plans and intentions. The applicability of the proposed model is
shown through a simulation in the NetLogo environment.

1 Introduction and motivation

Human activities take place in particular locations at specific times. The increas-
ing use of wearable devices enables the collection of information about these
activities from an heterogeneous set of actors varying in physical, cultural, and
socioeconomic characteristics. Generally, the places you have spent regularly or
occasionally time in, reflect your lifestyle, which is strongly associated to your
socioeconomic features. This amount of information about people, their rela-
tions, and their activities are valuable elements to personalize healthcare being
sensitive to medical, social, and personal characteristics of individuals. Besides
this, the decision-making process in human beings is based not only on logi-
cal objective elements, but also emotional ones that are typically extra-logical.
As a result, the behavior can also be explained by other approaches, which
additionally consider emotions, intentions, beliefs, motives, cultural and social
constraints, impulsive actions, and even the simple willingness to try. Hence,
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building recommender systems that take user behavior into account requires a
step toward personalization.

To the best of our knowledge, there are no recommender systems that com-
bine all these features at the same time. Consider the following motivating ex-
ample that had driven this research: Bob, a 40 year-old adult, wants to get back
to a regular physical activity (pa). Bob believes that a regular physical activity
reduces the risk of developing a non-insulin dependant diabetes mellitus (rd).
Mechanisms that are responsible for this are weight reduction (wr), increased
insulin sensitivity, and improved glucose metabolism. Due to his busy schedule
(bs), Bob is available on weekends (av) only. Hence, he would be happy if he
can do his exercises only on weekends (w). Bob prefers also not to change his
eating habits (eh). Besides all the aforementioned preferences, Bob should take
into account his medical concerns and refer to a healthcare provider for mon-
itoring. This scenario exposes the following problem: how can we help Bob to
select the best plan to achieve his goal based on his current preferences and re-
strictions? This problem raises different challenges. First, the proposed solution
should take into account Bob’s preferences and restrictions (e.g., medical and
physical concerns) in the recommendation process. Second, information about
the environment in which Bob acts and people that might be in relationship with
him may have impact in his decision-making process. Third, the system should
be able to keep a trace of Bob’s activities in order to adapt the recommendation
according to his progress. Finally, the information or data about Bob’s activities
is distributed geographically and temporarily.

In order to address these challenges, multi-agent systems stand as a promis-
ing way to understand, manage and use distributed, large-scale, dynamic, and
heterogeneous information. The idea is to develop recommender systems able
to help users confronted with situations in which they have too many options
to choose from, with the aim of assisting them to explore and filter out their
preferences from a number of different possibilities. Based on this real-world ap-
plication scenario, we propose in this paper a multi-agent-based recommender
system where agents are described using the BDI model as a multi-context sys-
tem. The system’s goal is to recommend a list of activities according to the user
preferences. We propose also an extension of the BDI model to deal with the
social dimension and the uncertainty in dynamic environments.

The originality of what we propose with respect to existing works is the
combination of an extended possibilistic BDI approach with multi-context sys-
tems. The resulting framework is then used as a healthcare recommender system.
There are several advantages deriving from such combination. First, the use of a
multi-context architecture allows us to have different syntaxes, e.g., the ontology
to represent and reason about plans and intentions. Besides this, we believe that
extending the classical BDI model with goals and social contexts better reflects
human behavior. Moreover, the proposed approach deals with goal-belief con-
sistency, and defines a belief revision process. However, the idea of extending
the BDI model with social contexts is not novel: different works explored trust
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or reputation [1,2]. In our approach, we consider trust measures between two
agents only if they are similar.

The reminder of this paper is organized as follows: Section 2 includes a lit-
erature overview about the related work. In Section 3, we summarize the main
concepts on which this work is based. We introduce after, in Section 4, the
multi-context BDI agent framework. In order to show how the model works, we
describe in Section 5 a real-world scenario in healthcare domain, and we describe
its simulation in Section 6. Conclusions end the paper.

2 Related Work

Research in agent-based recommender systems is increasing in order to address
the challenges raised by a growing number of real-world applications. For a
taxonomy of recommender agents on the Internet, we refer the reader to [3].
Several works propose to use a cognitive architecture as a base for a recommender
system. Next, we will focus on works using the well known BDI architecture.

Casali et al. proposed in [4] a Travel Assistant agent that helps a tourist
to choose holiday packages. They used a graded BDI agent model based on
multi-context systems to deal with information uncertainty and graded notions
of beliefs, desires and intentions, and a modal many-valued logic approach for
modeling agents. An implementation of the proposed model is later presented
in [5] and [6]. Results concluded that BDI agents are useful to build recommender
systems. Nevertheless, as pointed in [7], this approach needs further research to
adapt the agent behavior in a dynamic environment.

In [8], the authors propose a framework for personalized recommendations in
e-commerce. They use the cognitive architecture as a middle layer between the
user, and a set of recommerders instead of using it as a recommender. However,
the proposed framework still in a preliminary stage and needs further improve-
ments, e.g., to enable the communication with the user.

Another example of a multi-agent recommender system using a BDI archi-
tecture is studied in [9]. The proposed system, SHOpping Multi-Agent System
(SHOMAS), aims at helping users to identify a shopping or leisure plan. The
architecture of the user agent is based on both Case-Based Reasoning and the
Beliefs Desires Intentions architectures (CBR-BDI). The combination of the two
architectures allows dynamic re-planning in a dynamic environment.

In [10], an Interest Based Recommender System (IBRS) is proposed for the
personalization of recommendations. The IBRS is an agent-based recommender
system that takes into account users’ preferences to generate personalized rec-
ommendations. Agents are based on the BDI architecture empowered with cog-
nitive capabilities and interact with other users using argumentation. A travel
case study is used to experiment the model.

Our work takes a different approach compared to the aforementioned ap-
proaches. It is based on a full-fledged possibilistic approach and includes a revi-
sion process for beliefs and intentions .
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3 Background

In this section, we summarize the main insights on which the present contribution
is based.

An agent in a BDI architecture is defined by its beliefs, desires and intentions.
Beliefs encode the agent’s understanding of the environment, desires are those
states of affairs that an agent would like to accomplish and intentions those de-
sires that the agent has chosen to act upon. Many approaches tried to formalize
such mental attitudes (e.g., [11], [12], [13] and [14]). However, all these works
concentrated on the human decision-making process as a single approach with-
out considering social influences. They did not take the gradual nature of beliefs,
desires, and intentions into account. Incorporating uncertainty and different de-
grees of attitudes will help the agent in the decision-making process. In order to
represent and reason about uncertainty and graded notions of beliefs, desires,
and intentions, we follow the approach proposed in [15], where uncertainty rea-
soning is dealt with by possibility theory. Possibility theory is an uncertainty
theory dedicated to handle incomplete information. It was introduced by [16]
as an extension to fuzzy sets which are sets that have degrees of membership
in [0, 1]. Possibility theory differs from probability theory by the use of dual set
functions (possibility and necessity measures) instead of only one. A possibility
distribution assigns to each element w in a set {2 of interpretations a degree of
possibility 7(w) € [0,1] of being the right description of a state of affairs. It
represents a flexible restriction on what is the actual state with the following
conventions:

— m(w) = 0 means that state w is rejected as impossible;
— m(w) = 1 means that state w is totally possible (plausible).

While we chose to adopt a possibilistic BDI model to include gradual mental
attitudes, unlike [15], we use multi-context systems (MCS) [17] to represent our
BDI agents. According to this approach, a BDI model is defined as a group of
interconnected units {C;},i € I, Ap,., where:

— Foreach i € I, C; = (L;, A;, 4;) is an axiomatic formal system where L;, A;
and A; are the language, axioms, and inference rules respectively. They
define the logic for context C; whose basic behavior is constrained by the
axioms.

— Ay, is a set of bridge rules, i.e., rules of inference which relate formulas in
different units.

The way we use these components to model BDI agents is to have separate
units for belief B, desires D and intentions I, each with their own logic. The
theories in each unit encode the beliefs, desires, and intentions of specific agents
and the bridge rules (Ay,) encode the relationships between beliefs, desires and
intentions. We also have two functional units C' and P, which handle commu-
nication among agents and allow to choose plans that satisfy users desires. To
summarize, using the multi-context approach, a BDI model is defined as follows:
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Ag = ({BC,DC, IC, PC,CC}, Apy)

where BC', DC, IC represent respectively the Belief Context, the Desire Context
and the Intention Context. PC and C'C are two functional contexts correspond-
ing to Planning and Communication Contexts.

The use of MCS offers several advantages when modeling agent architectures:
it gives a neat modular way of defining agents, which allows from a software
perspective to support modular architectures and encapsulation.

4 The Multi-context BDI Framework

The BDI agent architecture we are proposing in this paper extends Rao and
Georgeffs well-known BDI architecture [12]. We define a BDI agent as a multi-
context system being inspired by the work of [17]. Following this approach, our
BDI agent model, visualized in Figure 1, is defined as follows:

Ag = ({BC,DC,GC,SC,PC,IC,CC}, Ayy)

where GC' and SC represent the Goal and the Social Contexts, respectively.
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Fig. 1: The extended Multi-context BDI agent model.

In order to reason about beliefs, desires, goals and social contexts we follow
the approach developed by da Costa Pereira and Tettamanzi [15, 18] where they
adopt a classical propositional language for representation and possibility theory
to deal with uncertainty.

Let A be a finite set of atomic propositions, and £ be the propositional
language such that AU{T, L} C Land Vo,vp € L;~p € L,V € Lo,opNY € L.
These propositions can contain temporal elements that are left as future work.
As in [15], £ is extended, and we will denote with 2 = {0,1} the set of all
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interpretations on 4. An interpretation w € (2 is a function w : A — {0,1}
assigning a truth value p* to every atomic proposition p € A and, by extension,
a truth value ¢* to all formula ¢ € L. [¢] denotes the set of all interpretations
satisfying ¢. (i.e., [¢] = {w € 2:wF ¢}).

In the planning and intentions contexts, we propose an ontological representa-
tion for plans and intentions to provide the agents with a computer-interpretable
description of the services they offer, and the information they have access to
(workout plans in our case). In the following subsections, we will outline the
different theories defined for each context in order to complete the specification
of our multi-context agent model.

4.1 Belief Context

The BC language and semantics In order to represent beliefs, we use the
classical propositional language with additional connectives, following [15]. We
introduce also a fuzzy operator B over this logic to represent agents beliefs.
The belief of an agent is then represented as a possibility distribution w. A
possibility distribution 7 can represent a complete preorder on the set of possible
interpretations w € (2. This is the reason why, intuitively, at a semantic level,
a possibility distribution can represent the available knowledge (or beliefs) of
an agent. When representing knowledge, m(w) acts as a restriction on possible
interpretations and represents the degree of compatibility of the interpretation
w with the available knowledge about the real world. m(w) = 1 means that is
totally possible for w to be the real world. As in [15], a graded belief is regarded
as a necessity degree induced by a normalized possibility distribution 7 on the
possible worlds w. The degree to which an agent believes that a formula @ is
true is given by:

B(¢) = N([¢]) = 1 — max{m(w)} (1)

Wl

An agent’s belief can change over time because new information arrives from
the environment or from other agents. A belief change operator is proposed
in [15], which allows to update the possibility distribution 7 according to new
trusted information. This possibility distribution 7/, which induces the new belief
set B’ after receiving information ¢, is computed from the possibility distribution
7 with respect to the previous belief set B (B’ = B * Z, 7’ = 7 * F) as follows:
for all interpretations w,

/ n’Ef{;)}) ifwE ¢ and B(=¢) < 1;
m(w) =141 ifwk ¢ and B(~¢) = 1; (2)

min{7(w), (1 — 1)} if w ¥ ¢.
where 7 is the trust degree towards a source about an incoming information ¢.
BC Axioms and Rules Belief context axioms include all axioms from classical

propositional logic with weight 1 as in [19]. Since a belief is defined as a necessity
measure, all the properties of necessity measures are applicable in this context.
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Hence, the belief modality in our approach is taken to satisfy these properties
that can be regarded as axioms. The following axiom is then added to the belief
unit:

BC : B(¢) >0— B(—¢) =0

It is a straightforward consequence of the properties of possibility and necessity
measures, meaning that if an agent believes ¢ to a certain degree then it cannot
believe —¢ at all. Other consequences are:

B(¢ A1) = min{B(¢), B(¢)}
B(¢ V) = max{B(¢), B(¢)}

The inference rules are:

- B(-pVyq) > a,B(p) > S+ B(g) > min(a, §) (modus ponens)
- B<a, B(p) > ak B(p) > (weight weakening)

where - denotes the syntactic inference of possibilistic logic.

4.2 Desire Context

Desires represent a BDI agent’s motivational state regardless its perception of
the environment. Desires may not always be consistent. For example, an agent
may desire to be healthy, but also to smoke; the two desires may lead to a con-
tradiction. Furthermore, an agent may have unrealizable desires; that is, desires
that conflict with what it believes possible.

The DC language and semantics In this context, we make a difference be-
tween desires and goals. Desires are used to generate a list of coherent goals
regardless to the agent’s perception of the environment and its beliefs. Inspired
from [18], the language of DC' (Lpc) is defined as an extension of a classical
propositional language. We define a fuzzy operator DT, which is associated with
a satisfaction degree (D (¢) means that the agent positively desires ¢) in con-
trast with a negative desire, which reflects what is rejected as unsatisfactory. For
sake of simplicity, we will only consider the positive side of desires in this work,
and the introduction of negative desires is left as future work.

In this theory, da Costa Pereira and Tettamanzi [15] use possibility measures
to express the degree of positive desires. Let u(w) be a possibility distribution
called also qualitative utility (e.g., u(w) = 1 means that w is fully satisfactory).
Given a qualitative utility assignment u (formally, a possibility distribution), the
degree to which the agent desires ¢ € Lpc is given by:

D(¢) = Al¢]) = min{u(w)} 3)
wk¢
where A is a guaranteed possibility measure that, given a possibility distribution

m, is defined as follows:

A(2) = min{r(2)} (4)
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DC Axioms and Rules The axioms consist of all properties of possibility
measures such as D(¢ V) = min{D(¢), D(¢))}. The basic inference rules, in the
propositional case, associated with A are:

— [D(=pAq) > al,[DipAr) > B]F [D(gAr) > min(a, B)] (resolution rule)
— if p entails ¢ classically, [D(p) > o] F [D(q) > «] (formula weakening)

— for B < a, [D(p) > o] F [D(p) > B] (weight weakening)

= [D(p) = al; [D(p) = B+ [D(p) = max(a, B)] (weight fusion).

4.3 Goal Context

Goals are sets of desires that, besides being logically “consistent”, are also max-
imally desirable, i.e., maximally justified. Even though an agent may choose
some of its goals among its desires, nonetheless there may be desires that are
not necessarily goals. The desires that are also goals represent those states of
the world that the agent might be expected to bring about precisely because
they reflect what the agent wishes to achieve. In this case, the agent’s selection
of goals among its desires is constrained by three conditions. First, since goals
must be consistent and desires may be inconsistent, only the subsets of consis-
tent desires can be the potential candidates for being promoted to goal-status,
and also the selected subsets of consistent desires must be consistent with each
other. Second, since desires may be unrealizable whereas goals must be consis-
tent with beliefs (justified desires), only a set of feasible (and consistent) desires
can be potentially transformed into goals. Third, desires that might be potential
candidates to be goals should be desired at least to a degree o. Then, only the
most desirable, consistent, and possible desires can be elected as goals.

The GC language and semantics The language Lo to represent the Goal
Context is defined over the propositional language L extended by a fuzzy opera-
tor G having the same syntactic restrictions as D*. G(¢) means that the agent
has goal ¢. As explained above, goals are a subset of consistent and possible
desires. Desires are adopted as goals because they are justified and achievable.
A desire is justified because the world is in a particular state that warrants its
adoption. For example, one might desire to go for a walk because he believes it is
a sunny day and may drop that desire if it starts raining. A desire is achievable,
on the other hand, if the agent has a plan that allows it to achieve that desire.

GC Axioms and Rules Unlike desires, goals should be consistent, meaning
that they can be expressed by the D¢g axiom (D from the KD45 axioms [12]) as
follows:

De GC:G(¢)>0—=G(—¢)=0

Furthermore, since goals are a set of desires, we use the same axioms and deduc-
tion rules as in DC'. Goals-beliefs and goals-desires consistency will be expressed
with bridge rules as we will discuss later on in the paper.
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4.4 Social Context

One of the benefits of the BDI model is to consider the mental attitude in the
decision-making process, which makes it more realistic than a purely logical
model. However, this architecture overlooks an important factor that influences
this attitude, namely the sociality of an agent. There are a number of ways in
which agents can influence each other mental states, e.g., authority where an
agent may be influenced by another to adopt a mental attitude whenever the
latter has the power to guide the behavior of the former, trust where an agent
may be influenced by another to adopt a mental attitude merely on the strength
of its confidence in the latter, or persuasion where an agent may be influenced to
adopt another agent mental state via a process of argumentation or negotiation.
In this work, we will only consider trust as a way by which agents can influence
each others.

The SC language and semantics In our model, we consider a multi-agent
system MAS consisting of a set of N agents {a1,..,a;,..an}. The idea is that
these agents are connected in a social network such as agents with the same goal.
Each agent has links to a number of other agents (neighbors) that change over
time. In this paper, we do not consider dynamic changes in the social network,
but we assume to deal with the network in a specific time instant. Between
neighbors, we assume a trust relationship holds. The trustworthiness of an agent
a; towards an agent a; about an information ¢ is interpreted as a necessity
measure 7 € [0, 1], as in [20], and is expressed by the following equation:

Ta,i,aj (¢) =T (5)

where a;,a; € MAS = {a1,..,a;,..,an}. Trust is transitive in our model, which
means that, trust does not hold only between agents having a direct link to each
other, but indirect links are also considered. Namely if agent a; trusts agent ay
to a degree 71, and ay trusts agent a; with a trust degree 7 then a; can infer
its trust for agent a;, and Tq, q, (¢) = min{ry, T2}.

SC Axioms and Rules As sociality is expressed as a trust measure, which
is interpreted as a necessity measure, SC axioms include properties of necessity
measures as in BC' (e.g., N(¢ A ) = min{N(¢), N(¢)}).

When an agent is socially influenced to change its mental attitude, by adopting
a set of beliefs and/or desires, the latter should maintain a degree of consistency.
Those rules will be expressed with bridge rules that link the social context to
the belief and the desire contexts.

4.5 Planning and Intention Contexts

The aim of this functional context is to extend the BDI architecture in order
to represent plans available to agents and provide a way to reason over them.
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In this context, we are inspired by [21] to represent and reason about plans and
intentions. Plans are described using ontologies. [22] defines an ontology as ‘the
specification of conceptualizations used to help programs and humans to share
knowledge’. According to the World Wide Web Consortium* (W3C), ontologies
or vocabularies define the concepts and relationships used to describe and rep-
resent an area of concern. We use the 5W® (Who, What, Where, When, Why)
vocabulary which is relevant for describing different concepts and constraints in
our scenario. The main concepts and relationships of this ontology are illustrated
in Figure 2.

geo : Place

huto :date

Fig. 2: The main concepts and relationships of the 5W ontology.

The main task of this context is to select plans that satisfy maximally the
agents goals. To go from the abstract notions of desires and beliefs to the more
concrete concepts of goals and plans, as illustrated in Figure 3, the following steps
are considered: (1) new information arrives and updates beliefs or/and desires
which trigger goals update; (2) these goal changes invoke the Plan Library. The
selection process is expressed by Algorithm 1 which looks in a knowledge base
(KB) for all plans that satisfy maximally these goals; CB and/or C'F techniques
can be used in the selection process but will be investigated more thoroughly in
further work. The algorithm complexity is significantly reduced since we discard
from the beginning goals without plans; (3) one or more of these plans is then
chosen and moved to the intention structure; and (4) a task (intention) is selected

* http://www.w3.org/standards/semanticweb/ontology
5 http://ns.inria.fr/huto/5w/
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Fig. 3: Planning and Intention Contexts

for execution and once executed or failed this leads to the update of the agents
beliefs (5).

4.6 Bridge Rules

There are a number of relationships between contexts that are captured by so-
called bridge rules. A bridge rule is of the form:

ul : p,u2 Y - ud: 0

and it can be read as: if the formula ¢ can be deduced in context ul, and ¥ in
u2, then the formula 6 has to be added to the theory of context u3. A bridge rule
allows to relate formulae in one context to those in another one. In this section,
we present the most relevant rules, illustrated by numbers in Figure 1. For all
the agents in the MAS, the first rule relating goals to beliefs can be expressed
as follows:

(1) FGC : G(ai,¢) >0— BC : B(a;,~¢) =0

which means that if agent a; adopts a goal ¢ with a satisfaction degree equal to
B¢ then ¢ is believed possible to a degree 4 by a;. Concerning rule (2) relating
the goal context to the desire context, if ¢ is adopted as goal then it is positively
desired with the same satisfaction degree.

(2) F GC : G(a;, ¢) = 65 — DC : DV (a;,¢) = d,
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Data: G
Result: S //S is a list of plans
G* = {¢17 ¢27 i) ¢7’l}
m <+ 0; 8 <+ 0; G« 0;
for each ¢; in G* do
//Search in the KB for a plan satisfying ¢;
Se; < SearchInK B(¢;);
if Sy, # 0 then
// Discard goals without plans
Append(G’, Sg,);
end
end
for i in 1..Lenght(G') do
// Combination of i elements in G’
S’ + Combination(G', 1);
for j in 1..Length(S’) do
if S'[j] # 0 then
// Compute the satisfaction degree of S’
a; = G(S'[1]);
//Select the mazimum oy
if a; > m then
m 4 ou;
Initialize(S);
Append(S, S);
else
if a; = m then
| Append(S,S’);

end
end
end
end
end
Return S;

Algorithm 1: RequestForPlan Function

An agent may be influenced to adopt new beliefs or desires. Beliefs coming from
other agents are not necessarily consistent with the agent’s individual beliefs.
This can be expressed by the following rule:

(3) F BC : B(ag, $) = By, SC : T, () = t — BC : Blas, ¢) = B

where S is calculated using Equation 1 with 7 = min{8,,t} to compute the
possibility distribution, and Equation 1 to deduce the Belief degree.

Similarly to beliefs, desires coming from other agents need not to be consistent
with the agent’s individual desires. For example, an agent may be influenced by
another agent to adopt the desire to smoke, and at the same time having the
desire to be healthy, as shown by the following rule:

(4) E DC : D*(aj,1) = 0y, SC : T, 0, () = 7 = DC : D¥(ai, ) = 4,
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Data: B,D

Result: G*, v~

¥ 0

repeat
Compute G5 by Algorithm 3;
if G5 =0 then

// Move to the next more believed value in B

e {rlnin{a € Img(B) | a> 7}

ifPa>7y
end
until ¥ < 1 and G5 = 0;
Y =1-9,G" = Gs;
Algorithm 2: The goal election function.

where 51; = min{dy, 7}. Desire-generation rules can be expressed by the follow-
ing rule:

(5) £ BC : min{B(¢1) A ... A B(¢n)} = 8, DC :
min{D* (1) A .. A DT ()} = 6 — DC : DT(¥) > min{B, 5}

Namely, if an agent has the beliefs B(¢1) A ... A B(¢,) with a degree § and it
positively desires D¥ (1) A ... A DT (¢,,) to a degree §, then it positively desires
¥ to a degree greater or equal to min{3,d}. According to [18], goals are a set of
desires that, besides being logically ‘consistent”, are also maximally desirable,
i.e., maximally justified and possible. This is expressed by the following bridge
rule:

(6) F BC : B(ai, ¢) = By, DC : DF(a;, ¢) = 6y — GC : G(x(,¥)) =0

where x(¢, ) = ElectGoal(¢, ), as specified in Algorithm 2, is a function that
allows to elect the most desirable and possible desires as goals. If FElectGoal
returns @, then G() = 0, i.e., no goal is elected.

Data: B, D, ¥
Result: G5
//Img(D) is the level set of D, i.e., the set of membership degrees of D
0 < max Img(D);
// Find the most desired §-cut Ds of D which is believed possible
while minyep; B(—¢) <7 and § > 0 do
//while not found, move to the next lower level of desire
5 {max{a € Img(D) | a < 0}

0 if Pa<d
end
if § > 0 then G5 = Dy;
else G5 = 0;

Algorithm 3: Computation of G5.
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As expressed by the bridge rule above, once goals are generated, our agent
will look for plans satisfying goal ¢ by applying the RequestForPlan function
and do the first action of the recommended plan.

(7) E GC : G(a;,¢) = 6, PC : RequestForPlan(¢) — IC :
I(act;, PostConditon(act;))

where RequestForPlan is a function that looks for plans satisfying goal ¢ in the
plan library, as specified in Algorithm 1. Rule (8) means that if an agent has
the intention of doing an action act; with PostCondition(act;) then it passes
this information to the communication unit and via it to other agents and to
the user.

(8) E IC : I(act;, PostConditon(act;)) — CC' : C(does(act;, PostConditon(act;)))

If the communication unit obtains some information that some action has been
completed then the agent adds it to its beliefs set using rule (3) with B(PostConditon(act;)) =
1.

5 Illustrative Example

To illustrate the reasoning process of our BDI architecture, we use our Bob’s
running example. To implement such a scenario using the BDI formalism, a
recommender agent has a knowledge base (KB) like the one shown in Table 1,
initially specified by Bob.

Beliefs Desires

B(pa — rd) = 0.75 D% (pa) =0.8
B(wr — rd) = 0.8 Dt (wr) =0.8
B(-eh) = 0.4 D%t (eh) = 0.9
B(bs) = 0.9 Dt (w) =0.75

Table 1: Initial knowledge base of Bob’s recommender agent

The belief set is represented by formulae describing the world (e.g., B(¢1) = 1
means that 1 is necessary and totally possible). Desires are all possible states
that the agent wishes to achieve. Notice that they can be conflicting like DT (wr)
and DT (=eh). DT (wr) = 0.8 means that wr is desired to a degree equal to 0.8.
Desire-generation rules from bridge rule (5) can be described as follows:

Rs, : BC: B(pa—rd), DC : D" (rd) — DC : D*(pa),
Rs, : BC: B(wr — rd), DC : DT (rd) — DC : DT (wr),
Rs, : BC : B(bs), DC : D*(pa) — DC : D*(w),
Rs, : BC : B(pa — wr), DC : D" (wr) — DC : Dt (—eh).

Then, the desire base of Bob, derived from desire-generation rules, will be as
follows:
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D = {(pa,0.8), (wr,0.8), (w,0.75), (—eh,0.9)}

We may now apply rule (6) to elect Bob’s goals, given his belief base and
his desire base. This rule will apply the function electGoal() which will choose
from the desire base the most desirable and possible desires. Then, Img(B) =
{0.75,0.8,0.9,0.4} and Img(D) = {0.75,0.8,0.9}. We begin by calling Algo-
rithm 2 with v = 0; 4 is set to maxzImg(D) = 0.9 and the corresponding desire
in D is D5 = {—eh}. Now if we verify B(—(—eh)) = 0.4 > ~ we move to the next
less desired value which sets § to Img(D) = 0.8 < 6 = 0.9. 6 = 0.8 > 0, then
we go back to Step 2. In this case, Ds = {(pa,wr}. Now B(—pa) = B(pa) =0
because we ignore yet whether pa is possible or nor. Similarly, B(—wr) = 0 and
Algorithm 2 will terminate with G* = G, = {pa, wr}, i.e., Bob’s recommender
agent will elect as goal ‘get back to a regular physical activity and reduce weight’.

Given these goals, Bob’s agent (a1) will look in the plan library for a plan
satisfying them. As explained in rule (7), the agent will invoke function Request-
ForPlan, which will look for a plan satisfying pa and wr. Applying Algorithm 1,
we have G’ = {pa,wr} and S' = [pa,wr, {pa,wr}] with the same satisfaction
degree a; = as = agz = 0.8. Suppose that it returns three plans p;, ps and ps
satisfying respectively goals pa, wr and {pa,wr}. Bob’s recommender agent will
propose plan p3 to the user because it meets more Bob’s requirements with the
same satisfaction degree. We suppose that Bob chooses plan p3. Therefore, the
first action (activity) in plan ps will become the agent’s intention. The intended
action will be proposed to the user via the communication unit by applying rule
(8). Finally, if Bob starts executing the activity, information such as speed, dis-
tance or heart rate are collected via sensors (i.e., a smart watch) and transmitted
to the communication unit in order to update the agent’s beliefs. The revision
mechanism of beliefs is the same as in [15], defined by Equation 2. Once the
activity is completed, rule (3) is triggered in order to update the belief set of
Bob’s agent with B(postCondition(actionl) = 1) which will permit to move to
the next action in plan «a.

In order to illustrate the social influence between agents, we suppose that
Bob’s doctor uses our application with the same goal as Bob, i.e., to reduce
his diabetes risk. Then, there is a direct link between agents a1, as representing
Bob and Bob’s doctor, respectively, with T, 4,(¢) = 0.9 where ¢ represents
any message coming from Bob’s doctor (see [20] for more details). Now that
Bob is executing his plan in order to get back to a physical activity, his recom-
mender agent receives the following information from as : B(—pa) = 1 which
means that Bob’s doctor believes that physical activity is not possible (not rec-
ommended). This information will trigger bridge rule (3). Knowing the belief
degree of as about pa and given the trust degree of a; toward as about in-
formation pa (T4, .4, (pa)), a1 decides to update its mental state according to
Equation 2, and sets the new belief to B’(pa) = 0 according to Equation 1. This
will trigger the goal generation process, which updates the elected goals. pa will
be removed because B(—pa) = 1. Hence, a new plan is proposed to Bob.
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6 Simulation

Aiming to illustrate the applicability of our model, the case study used in the pre-
vious section has been implemented and simulated in the NetLogo® environment.
Netlogo [23] is a multi-agent programming language and modelling environment
for simulating complex phenomena. It stands out from other agent-based simu-
lation platforms for its ease of use and excellent documentation. We decided to
use Netlogo for this work for those reasons, but also because it has a support for
the BDI architecture and the Agent Communication Language (ACL).

L%

ticks: 68 30

SETUP G0 o
I0n
Icm show_messages

Ig;" show-intentions

Command Center

Elected goals:{{table: [["pa" @.8] ["wr" @.8]]}}

Executing intentions....

Executing intentions....

Executing intentions...

Cuser @): ["propesal” "sender:1" "content:" [“"Not-pa" 1] “"receiver:@"]

(doctor 1): [“Accept proposal” “sender:8" "content:" ["proposal” “sender:1" “content:" ["Not-pa" 1] “"receiver:@"] “"receiver:1"]
Intentions[]

Bob's New beliefs base: {{table: [["Not-eh" 8.4] ["bs" @.9] ["wr --> rd" @.75] ["pa --> rd" ©.8] ["Not-pa" @.9]1}}
HHXEHAHAHNXXL You should have a special diet program

SN %% Please Consider to see a health provider FHXIXS

Bob's New Goals: {{table: [["wr" @.8]]}}

Intentions[[move-to-dest dxcor dycor at-dest dxcor dycor]]

Fig. 4: A view of the simulation of our running scenario in Netlogo.

The agent-based model is composed of 2 types of agents: a user agent which
represents Bob, and a doctor agent representing Bob’s doctor. The behavior of
Bob’s agent reproduces the behavior described in Section 4 with some simplifi-
cations, e.g., in the planning context, plans are a list of activities (moving from
one destination to another) defined using Netlogo procedures. The behavior of
the doctor agent is similar to Bob’s agent one, but in this scenario its role is
limited in communicating its recommendation about physical activity to Bob’s
agent. Beliefs and desires are initialized according to Table 1 for Bob’s agent.
For the doctor agent, we initialize only its beliefs to B(—pa) = 1. Figure 4 shows
a general view of the implemented agent-based scenario.

As expected, in this simulation agents behave as described in the previous
Section. Once the recommendation is calculated, Bob’s agent starts to execute

5 https://ccl.northwestern.edu/netlogo/
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its intentions. It changes its plan when it receives information from its doctor’s
agent, who is considered as trustworthy. The analysis of the behavior of agents in
this scenario allowed to support the design of the agent-based framework, tuning
and refining its specification. The simulation is available online at the following
link: http://modelingcommons.org/browse/one\_model/4602.

7 Conclusions

Using cognitive agents architectures in the recommendation process is relevant
especially in real-world applications [6]. To this end, we have presented a recom-
mender system based on the BDI architecture. We used multi-context systems to
define the BDI agent architecture with additional reasoning capabilities. First,
we extended the traditional BDI architecture with a social context in which sim-
ilar agents can communicate and influence each other to adopt mental attitudes.
Second, we used ontologies to represent and reason about plans and intentions
which offer the possibility of sharable and reusable data. The use of ontologies
allow also to query streaming data. Unlike current approaches to agents recom-
mendations, the agents (i.e, users) in our approach are active participants in the
recommendation process, as they involve their personal social network based on
their own perception of similarity. When applying the proposed framework to a
running example, we showed it to be applicable and appropriate. As for future
work, a more sophisticated evaluation of the framework with different metrics
and agent strategies will be provided. As long term goals, a proof-of-concept
implementation of the proposed framework is conceivable following approaches
like [24].

Finally, our BDI agents operate in a dynamic environment which is dynamic
both on the temporal and on the space side. Consequently, they are sensitive to
the context and its changes especially spatio-temporal ones. Extending the pro-
posed framework in order to handle spatio-temporal reasoning is then necessary.
For that aim, approaches such as [25] will be explored.
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