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Identification of points using disks

Valentin Gledel∗ Aline Parreau†

June 1, 2017

Abstract

We consider the problem of identifying n points in the plane using disks, i.e., minimizing the
number of disks so that each point is contained in a disk and no two points are in exactly the same
set of disks. This problem can be seen as an instance of the test covering problem with geometric
constraints on the tests. We give tight lower and upper bounds on the number of disks needed to
identify any set of n points of the plane. In particular, we prove that if there are no three colinear
points nor four cocyclic points, then 2⌈n/6⌉ + 1 disks are enough, improving the known bound of
⌈(n + 1)/2⌉ when we only require that no three points are colinear. We also consider complexity
issues when the radius of the disks is fixed, proving that this problem is NP-complete. In contrast,
we give a linear-time algorithm computing the exact number of disks if the points are colinear.

1 Introduction

Let P be a set of n points of the plane R
2. What is the minimum number of disks so that each point is

contained in a disk and no two points are in exactly the same set of disks? In other words, we want to
find a minimum set of disks such that every point is in a disk and the disks that contain a given point
uniquely determine it. Such a set of disks (not necessarily minimum) is said to identify P . See Figure 1
for an example of an identifying set of disks.

Figure 1: A set of four disks optimally identifying eight points.

The motivation of this problem comes from the localization of indviduals and more generally from
the following setting of identification problems: Given a set of individuals with binary attributes that
each individual can have or not, the goal is to choose a minimum number of attributes in such a way
that each individual has a unique set of attributes. This problem is known in the literature as the test
covering problem [16] or identifying codes problem in hypergraph [15] since one can represent the data by
a hypergraph where individuals are vertices and attributes are hyperedges. It has many application in
particular in medical diagnostics and pattern recognition [13, 16, 20].
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†Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LIRIS - CNRS UMR 5205, F69622 (France). E-mail:
aline.parreau@univ-lyon1.fr

1



In a context of localization, the attributes are defined by the metric of the space where individuals
live. As an example, in the context of identifying codes [12], individuals are vertices of a graph. Then the
attributes are defined by the closed neighbourhoods, meaning “to be closed to”. Choosing some attributes
is equivalent to setting detectors on some vertices that are able to detect errors in their neighbourhood.
Then the set of detectors is able to detect any intrusion in the graph. Indeed, if there is an intrusion on
a vertex, then the set of detectors that have detected something uniquely determines where the intrusion
is. Locating-dominating sets [22, 23] and open locating dominating sets [21] are defined in a similar
way. These concepts are studied by various authors since the 1970s and 1980s, and have been applied to
various regions such as fault-detection in networks [12, 25] or graph isomorphism testing [2].

In this paper, we consider that individuals (which are the points in our problem) are living in R
2. A

detector can be placed anywhere, with any radius of detection and thus is represented by a disk. It can
be formulated as a test covering instance: a set of individuals share an attribute if they can be isolated
from the other individuals by a disk. It is also related to identifying codes in graphs: if the detectors must
be located on points and have a fixed radius, a natural graph structure emerges. Then our problem is
equivalent to the problem of identifying codes in unit disk graphs (in the general case) or in unit interval
graphs (if points are colinear).

Another motivation comes from the notion of geometric separator in computational geometry [7]. Let
C1, . . . , Ck be k finite disjoint sets of R2. A finite set S of curves in the plane is a separator for the sets
C1,...,Ck if every connected component in R

2−S contains points from only one set Ci. Finding separators
is a classical problem of computationnal geometry, in particular when considering image analysis. The
most studied case is k = 2 and separation with lines or circles [1]. Our problem – if we forget the condition
that each point must be in a disk – can be considered as a separating problem where each set Ci contains
only one point and S is a union of circles. This problem has been mentionned by Gerbener and Tóth
[10] who have considered more generally separation with convex sets. They in particular proved that
⌈n/2⌉ circles are enough to separate n points even if they are in a general configuration (no three colinear
points). Separators of single points have also been studied for lines. Bolland and Urrutia [19] gave an
algorithm of time complexity O(n log n) to find a family of n/2 lines that separates any set of n points in
a general configuration. Cǎlinescu, Dumitrescu and Wan [5] proved that in the particular case where the
lines are parallel to the axis, the problem is NP-complete and gave a constant approximation polynomial
algorithm for this case. A natural extension in higher dimension, called multi-modal sensor allocation
problem, has been defined in [14], making links with identification problems. Note that the separating
problem with lines is a subproblem of ours. Indeed, if the points are given, one can consider a line as a
very large circle.

In Section 2, we give formal definitions and background that will need along the paper. In Section 3,
we study particular configurations of points: colinear or forming a grid. For colinear points, we give the
exact number of disks needed if any radius can be used. If the points are on a grid, we give exact values
for height 2 and bounds for larger heights. In Section 4, we give tight lower and upper bounds: we prove
that at least Θ(

√
n) and at most ⌈(n+1)/2⌉ disks are necessary (n is the number of points). If moreover

there are no three colinear points nor four cocyclic points, then we prove, using Delaunay triangulation,
that we need at most 2⌈n/6⌉+ 1 disks. Finally, in Section 5, we discuss the complexity of the problem
when the radius is fixed , we prove that it is NP-complete in the general case but that there is a linear
algorithm to solve it when the points are colinear.

2 Definition and background

2.1 Formal definition

Let P be a set of points of R2. A disk of radius r ∈ R and center c ∈ R
2 is the set of points of R2 at

distance at most r of c. A point P ∈ P is covered by a disk if it belongs to it. Two points P and Q of
P are separated by a disk D if exactly one of them is covered by D. A set of disks D is identifying P if
it is covering all the points of P and separating all the pairs of points of P . We denote by γID

D (P) the
minimum number of disks needed to identify P . Let r ∈ R, we denote by γID

D,r(P) the minimum number
of disks of radius r needed to identify P . When r is large enough compare to the distances between
the points of P , any disk of radius r is separating the same pairs of points as some half-plane. Hence,
identification with half-planes is a particular case of identification with disks of fixed size. We will denote
by γID

D,∞(P) the corresponding number.
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Remark. In our definition, we ask that every point of P must be covered by at least one disk. This
choice could be discussed. Indeed, it is not the case for similar notions like separating families or test
covers. We choose this definition to be consistent with our first motivation: in a context of localization,
our detection system must be able to detect if there is an intrusion or not, which is possible only if all the
points are covered. This is the reason why in identifying codes there is the condition of domination (see
Section 2.2 for formal definition of identifying codes). However, if a set of disks is separating all the pairs
of points of P , at most one point is not covered (otherwise all the points that are not covered will not be
separated). Therefore, we need at most one more disk to obtain an identifying set. Hence the difference
between the two values is at most one and our results can be easily adapted for only-separating sets.

For any radius r and any points P and Q of R2, there is always a disk of radius r that separates them.
Hence, γID

D (P) and γID

D,r(P) are well-defined and always smaller than
(

|P|
2

)

. Moreover, if the radius is not
fixed or small enough, one can take for each point a disk containing only this point and then forms an
identifying set of disks. Thus, we have γID

D (P) ≤ |P|. About the lower bound, consider a set D of k disks
identifying P . Since each point is contained in a unique non-empty subset of D, there are at most 2k − 1
points in P , leading to the following lower bound on γID

D (P):

Lemma 1. Let P be a set of n points of R2, then γID

D (P) ≥ ⌈log(n+ 1)⌉.

These trivial lower and upper bounds are not tight and will be improved in Section 4.
Finally, since a set of disks identifying P is identifying any subset of P , we have the following lemma:

Lemma 2. Let P and P ′ be two sets of points of R2 with P ′ ⊆ P, then γID

D (P) ≥ γID

D (P ′).

2.2 Related work

Among the related notions given in the introduction, we give formal definitions for three of them that we
will need in the rest of the paper.

Separating families of disks. If D is only separating any pair of vertices of P , D is a separating
family of disks, studied by Gerbner and Tóth [10] in the more general context of convex sets. They in
particular consider the parameter s(n,D) and s′(n,D)) which stand for the maximum number of disks
that are needed to separate any n-point set and any n-point set in general position (no three of its points
are on a line). They prove that s(n,D) = s′(n,D) = ⌈n/2⌉. Since at most one more disk is necessary to
obtain an identifying set of disks from a separating set of disks, it means that γID

D (P) is at most ⌈n/2⌉+1.
We will improve this bound in Section 4 to 2⌈n/6⌉+ 1 if moreover no four points are cocyclic.

Identifying codes in unit interval and unit disk graphs. Let G = (V,E) be a graph. A vertex c
dominates a vertex x if c is in the closed neighbourhood of x (i.e: x and its neighbours). It separates two
vertices x and y if it is dominating exactly one of them. An identifying code of G is a subset of vertices
C such that each vertex is dominated by some vertex of C and each pair of vertices of G is separated
by some vertex of C. We denote by γID(G) the minimum number of vertices in an identifying code of
G. Note that γID(G) is not always well-defined since G might have two vertices with exactly the same
neighbourhood and thus no vertex can separate them. Such vertices are called twin vertices. If a graph
does not have any twins, then it has an identifying code (take for example all the vertices in C).

Identifying codes are closely related to identifying sets of disks when considering graphs of geometric
intersections. Given a set of geometric objects, one can define its intersection graph as follows. Vertices
are the objects and there is an edge between two objects if they intersect. A class of graphs of particular
interest for us is the class of unit disk graphs that are the intersection graphs of disks of radius 1. Let G
be a unit disk graph and denote by P the set of centers of the disks forming G. Then an identifying code
of G is equivalent to an identifying set of P using disks that have radius 2 and are centered on points of
P . Indeed, a disk of radius 2 centered on a point P of P contains all the points that are centers of disks of
the closed neighbourhood of the disk corresponding to P in G. Identifying codes in unit disk graphs have
been studied by Müller and Sereni [17] who prove, in particular, that the minimization problem in NP-
complete. If the points of P are colinear, then G is a unit interval graph. The complexity of identifying
codes in unit interval graphs is surprisingly still open [9] (but has been proved to be NP-complete for
interval graphs).
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Junnila and Laihonen [11] studied identifying codes in the grid Z
2 using Euclidean balls. The under-

lying graph has the set Z2 as vertices and the closed neighbourhood are given by the Euclidean balls of
a fixed radius r. This graph can also be seen as an (infinite) unit disk graph. They give lower and upper
bounds on the density of minimum identifying codes in this graph in function of r.

Identifying codes in hypergraphs. The notion of identifying codes can be extended to hypergraphs.
Let H = (V, E) be a hypergraph. An identifying code of H is a set C ⊆ E of hyperedges such that:

• each vertex of H is in at least one element of C;

• for each pair of vertices of H, there is an element of C containing exactly one element of the pair.

An identifying code in a graph G is equivalent to an identifying code in the hypergraph of the closed
neighbourhoods of G. As said in the introduction, this notion is known under different names and has
actually been introduced before identifying codes in graphs, see [15, 16]. Our problem can be reduced to
identifying codes in hypergraph. Indeed, let P be a set of n points of R2. Let H(P) be the hypergraph
with vertex set P and a set of points E ⊆ P is a hyperdege if there exists a disk D such that D∩P = E.
Then finding an identifying set of disks identifying P is equivalent to finding an identifying code in H(P).
Note that an hyperedge of H(P) of size k corresponds to a nonempty cell in the iterated Voronöı diagram
of size k of P and can be computed in O(n) time [18]. The whole hypergraph H(P) can be obtained
by computing all iterated Voronöı diagrams of P . This can be done in time O(n3) and the number of
hyperedges of H(P) is of order O(n3) [8].

3 Particular configurations

3.1 Colinear points

When points are located on a single line, the problem is completly solved with the following theorem.

Theorem 3. Let P be a set of n colinear points, then γID

D (P) = ⌈n+1
2 ⌉.

Proof. Let P be a set of n colinear points located on a line L. We denote by x1, ..., xn the points,
respecting their order on L.

Let D be a set of disks identifying P . For any i ∈ {1, ..., n− 1}, xi and xi+1 are separated by D. It
means that there is a disk D ∈ D, such that its perimeter intersects L between xi and xi+1. Moreover,
x1 and xn are covered by D, thus there is a disk whose perimeter intersects L before x1 and after xn. In
total, there are at least n+1 intersections between L and some disks’ perimeters. Since a circle intersects
a line into at most two points, we necessarily have |D| ≥ ⌈n+1

2 ⌉.
To prove the equality, note that for any subset of consecutives points xi, xi+1, ..., xj of P , there exists

a disk Di,j such that Di,j ∩ P = {xi, xi+1, ..., xj}. Then the set of disks

D =

{

Di,i+⌈n/2⌉ | i = 1, ..,

⌈

n+ 1

2

⌉}

has size ⌈n+1
2 ⌉ and is identifying P . See Figure 2 for an illustration with nine points.

In the solution given in the proof of Theorem 3, some disks might have a big radius. Actually, if the
radius of the disks is bounded by a constant r, n disks are sometimes needed and γID

D,r(P) can take any

value between ⌈n+1
2 ⌉ and n. In Section 5, we give an algorithm that computes γID

D,r(P) in linear time.

3.2 Points located on a grid

We now consider points located on a regular grid. Given two integers m and n, we denote by Pm,n the
set of points (x, y) of Z2 such that 1 ≤ y ≤ m and 1 ≤ x ≤ n.
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x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 2: Identification of colinear points

3.2.1 Grids of height 2

When the grid contains only two lines, one can identify the points using the same number of disks than
on a single line, except in few cases:

Theorem 4. Let n ≥ 2 be an integer. We have:

γID

D (P2,n) =

{

⌈n+1
2 ⌉+ 1 if n ∈ {2, 3, 4, 5, 7},

⌈n+1
2 ⌉ otherwise.

Proof. We can first see that for all n, P2,n ≤ ⌈n+1
2 ⌉+1. Indeed, to identify P2,n one can use the method

proposed in Theorem 3 and add an half-plane (which can be seen as a very large disk) to separate the
lines as in Figure 3.

Figure 3: Identification of P2,n with ⌈n+1
2 ⌉+ 1 disks

For grids P2,n with n ≤ 5, this solution is optimal by Lemma 1. In Section 4 Proposition 7, we show
that at least five disks are needed to identify a set of 14 points, so there is no better solution for P2,7.
For all the other cases, we show that we only need ⌈n+1

2 ⌉ disks. We only have to study the case where n
is odd or equal to 6. Indeed, by Lemma 2, solution for P2,2q+1 is also a solution for P2,2q by removing
the points of the last column.

We first give a characterization for a set X ⊆ P2,n to be the intersection of P2,n and a disk. Let X
be such a set, X is the union of two sets of consecutive points of the first line (a, 1), ... , (b, 1) and of the
second line (c, 2), ... , (d, 2), with a, b, c, d ∈ N, a ≤ b and c ≤ d. We must have either [a, b] ⊆ [c, d] or
[c, d] ⊆ [a, b] and the difference between each extremities must differ of at most 1: |(c− a)− (b− d)| ≤ 1.

This condition is sufficient since for every a, b, c, d verifying this relation, there exist a disk D[c,d]
[a,b] that

contains exactly these consecutive points.

An explicit solution for the grids P2,6, and P2,9 are the following disks :

• P2,6 can be identified by the set of disks : D[3,4]
[1,5], D

[4,5]
[3,6], D

[1,5]
[2,3] and D

[2,6]
[4,4].
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• P2,9 can be identified by the set of disks : D[3,4]
[1,6], D

[4,6]
[2,9], D

[6,7]
[4,8], D

[1,8]
[3,4] and D

[2,9]
[6,7].

We now give a solution for grids P2,4p+1, with p ≥ 3. This solution use three different steps. Figure 4
gives an illustration of these three steps.

The first step is to use the disksD1 = D[p+2,2p]
[1,3p+1] , D2 = D[1,3p+1]

[p+2,2p], D3 = D[2p+2,3p]
[p+1,4p+1] andD4 = D[p+1,4p+1]

[2p+2,3p] .

After adding these disks, the points of each line are separated from the other line. Indeed, the points of
the first line in the intervals [1, p+ 1] and [2p+ 1, 3p+ 1] are in the disk D1 and are not in the disk D2

which separate them from all the points of the second line. Similarly the points of the first line and in
the intervals [p+ 2, 2p] and [3p+ 2, 4p+ 1] are in the disk D3 and are not in the disk D4, which separate
them from all the points of the second line.

In the second step, we add the disks D[p,p+2]
[p,p+2] and D

[3p,3p+2]
[3p,3p+2] . These two disks separate the points on

the columns p+ 1, 2p+ 1 and 3p+ 1, which weren’t until now.
After this, all the points are covered by at least one disk and the points that are no separated from

each other are the same line and on the intervals [1, p− 1], [3p+ 3, 4p+ 1], [p+ 3, 2p] and [2p+2, 3p− 1]
(the last two intervals occurs if p ≥ 4).

In the third step, we can now finish identifying the points by adding the following concentric disks :

D[2,4p]
[2,4p], D

[3,4p−1]
[3,4p−1], ... , D

[p−1,3p+3]
[p−1,3p+3], D

[p+4,3p+2]
[p+4,3p−2], D

[p+5,3p−3]
[p+5,3p−3] , ... , D

[2p,2p+2]
[2p,2p+2] .

We use four disks in the first part, then two disks and finally (p − 2) + (p − 3). So in total we use

2p+ 1 disks, which is equal to (4p+1)+1
2 disks.

For the grids P2,4p−1, we can remove the points of the columns 1 and 4p+ 1 and the disk D[2,4p]
[2,4p].

So we can indeed identify the grids P2,n, with n ≥ 10 with n+1
2 disks.

D1

D2

D3

D4

1 p+ 1 2p+ 1 3p+ 1 4p+ 1

Figure 4: The three steps of the proof the grid P2,4p+1

3.2.2 General case

We now consider the general case of grids m × n, n ≥ m ≥ 3. We first solve the case of identification
with half-planes - which can be considered as disks with infinite radius.

Theorem 5. Let m,n ≥ 3 be two integers. Then, γID

D,∞(Pm,n) = m+ n− 2.

Proof. We denote by x1, ..., x2(m+n−2) the points on the convex hull of Pm,n, respecting their order.
Let L be a set of half-planes identifying Pm,n. For any i ∈ {1, ..., 2(m + n − 2)}, xi and xi+1 are

separated by L (with x2(m+n−2)+1 associated with x1). It means that the there is a half-plane L ∈ L
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Figure 5: Identification of the edges of a grid using half-planes

whose boundary line intersects the convex hull of Pm,n between xi and xi+1. In total, there are at least
2(m+ n− 2) intersections between the convex hull of Pm,n and boundary lines of some half-planes of L.
Since a line intersects a convex polygon into at most two points, we necessarily have |L| ≥ m+ n− 2.

Consider any m− 1 vertical lines between adjacent points and n− 1 horizontal lines between adjacent
points (see Figure 5 for an example). Then every pair of points is separated by a line. To obtain a
solution, one just need to choose half-planes with these lines as boundary and in such a way that every
point is covered.

This theorem gives a bound for the general case: γID

D (Pm,n) ≤ n +m − 2. This bound is not tight,
especially when n is large enough compared to m. Next theorem gives a better (but still not tight) bound
in this case:

Theorem 6. Let n and m be two integers such that m ≥ 3 and n ≥ m2

2 −3. Then γID

D (Pn,m) ≤ ⌈n2 ⌉+m−1.

Proof. The idea is to use a method similar to the one described in Figure 3. We use half-planes to
separates the lines and disks to separates the columns. When n is large enough the disks act on each line
in the same way they act when there is only one line.

Since m ≥ 3 we use half-planes to separate the lines and include all the points into a disk: the bottom
half-plane includes all the points above itself and the top half-plane includes all the points below itself.

We now use disks of radius

√

(

1
2⌈n2 ⌉

)2
+ m2

4 and centered on (12 (⌈n2 ⌉+1)+ k,m/2) with k an integer

between 0 and ⌈n2 ⌉−1. Since n ≥ m2

2 −3, those disks contains ⌈n2 ⌉ points on each line and they separates
all the columns. An example of such disks can be seen in Figure 6. Since all the points are inside a
half-plane, there is no need for all the columns to be inside a disk. That is why we only need ⌈n2 ⌉ disks
instead of ⌈n+1

2 ⌉ as in the case of one line.
There is ⌈n2 ⌉ disks to separate the columns and m− 1 half-planes to separate the lines, this gives us

⌈n2 ⌉+m− 1 in total.

Figure 6: Example of identification of points of a grid with n sufficiently greater than m
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4 Extremal cases

In this section, we give tight lower and upper bounds on γID

D (P) using the number of points of P when
the points are in general configuration.

4.1 Lower bound

The logarithmic lower bound given in Lemma 1 is the natural lower bound for identifying codes in
hypergraphs. It is tight if any hyperedge is allowed. But if there is some structure on the hyperedges,
this is not always true. In particular, if the hyperedge set has bounded dual VC-dimension d∗, then the
lower bound is at least of order n1/d∗

[3]. This is the case for our problem since the hypergraph induced
by disks have bounded dual VC-dimension equals to 3, leading to a lower bound of order n1/3. However,
this bound is still not tight. Indeed, we provide in this section a lower bound of order n1/2. This bound
comes from the fact that an arrangment of k disks can create at most k2 − k + 1 inner faces. This
classical result can be proved by induction with the argument that each time one add a circle to a set of
circles it cross each circle at most twice (see [24] for more details and references). Since if some disks are
identifying a set of points, there is at most one point in each faces of the intersections of the disks, we
have the following bound:

Proposition 7. Let P be a set of n points of R2. Then, γID

D (P) ≥
⌈

1+
√

1+4(n−1)

2

⌉

. This bound is tight.

To obtain a set P of n points reaching the bound, one can use an arrangment of k disks making
k2 − k + 1 inner faces and set one point in each face. Such an arrangment can be obtained by taking
disks of radius 1 + ǫ, centered on vertices of a k-regular polygon that is inscribed in a circle of radius 1.
See Figure 7 for a construction with k=5.

Figure 7: Five disks creating 21 = 52 − 5 + 1 inner faces.

Since an identifying code of a unit disk graph can be seen as an identifying set of special disks, the
lower bound of Property 7 is still true for identifying codes in unit disk graphs, improving the bound
given in [4]. Moreover, this bound is also tight for this case. Indeed, the construction of Property 7 can
be adapted for identifying codes of unit disk graphs since all the disks have the same radius and their
center can be points.

4.2 Upper bound

We now consider the worse configurations of points. Otherwise said, what is the minimum number of
disks that is enough to identify any set of n points? This question has already been solved by Gerbner
and Tóth when one just wants to separate points [10]. They prove that ⌈n/2⌉ disks are always enough
and that this is the best value one can obtain since there are point sets needing this number of disks.
Since one more disk is enough to obtain an identifying set, it gives us the bound ⌈n/2⌉+1. Actually, we
can slightly improve it by noticing that in the proof of Gerbner and Tóth [10], all the points are covered
if there is an odd number of points. For the sake of completeness we give the proof, it follows the one of
[10].

Proposition 8. Let P be a set of n points of R2. Then, γID

D (P) ≤ ⌈n+1
2 ⌉. This bound is tight.
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Proof. Since P is finite there exists a direction we can choose as abscissa, such that no pair of points have
the same abscissa. Then there is a line L of constant abscissa which separates the points in two parts of
the same size up to one. Let D be the half-plane defined by L and containing the biggest part of points
as one of the disks. We choose a direction perpendicular to the abscissa as the ordinate.

At first, all the points are part of a set P ′ and the set of identifying disks contains only D. Then we
repeat the following operation ⌊n2 ⌋ times. Consider the convex hull of P ′, exactly two of its edges cross
L. Let (x, y) be the edge which intersects L on the largest ordinate. Since it is an edge of the convex
hull, there is no point of P ′ with a larger ordinate than x and y. Therefore there is a disk Dx,y that
contains only x and y among the points of P ′. Add this disk to the set of identifying disks and remove
x and y from P ′. Iterate the process.

This algorithm gives a set of disks that identifies P of size 1 + ⌊n2 ⌋ = ⌈n+1
2 ⌉. Indeed, at each step,

x and y are separated from all the other points of P ′ by Dx,y and since all the other points have been
considered previously they are also separated from them. Moreover, since (x, y) is an edge that crosses
L, x and y are separated from each other by D. At the end, if there is an odd number of points, there is
a point that is only in D, since this is the only point that is only in D, it is identified.

Figure 8 illustrates some steps of the algorithm. This bound is tight when all the points are colinear
(see Theorem 3).

D

Figure 8: First steps of the algorithm for the general upper bound

All the values between the lower bound of Property 7 and the upper bound of Property 8 are reached:

Theorem 9. Let n ∈ N and k ∈ N be such that ⌈ 1+
√

1+4(n−1)

2 ⌉ ≤ k ≤ ⌈n+1
2 ⌉.

There exists an n-point set P of R2 such that γID

D (P) = k.

Proof. Consider the optimal arrangement of k disks based on a regular polygon given on Figure 7. There
is a line L cutting this construction into 2k − 1 regions. Indeed, let L′ be a line going through an
intersection of disks and the center of the polygon, for symmetry reason, this line goes through k regions
and k − 1 intersections. So by shifting the line infinitesimally and parrallely, it is still going through
the previous regions but for each intersection we have a new region. Therefore, there is indeed 2k − 1
regions crossed by this new line L.We set 2k − 1 points on L in the different regions of the arrangement

of disks. Since k ≥ ⌈ 1+
√

1+4(n−1)

2 ⌉ we can set the n− (2k − 1) remaining points in the other regions of
the arrangement. At the end, the set of k disks of the arrangment identifies the n points that we have
put in its different regions and, since there are 2k− 1 colinear points, no smaller set of disks can identify
these points.

4.3 Improved upper bound for general configurations

The upper bound of Proposition 8 is tight for colinear points. A natural question is whether the bound
is still tight if there are no three colinear points among P . Actually, the bound is also tight if the points
are cocyclic. But, if there are no three colinear points nor four cocyclic points in P , the upper bound is
not tight anymore. In this section, we said that a set of points of R2 is in general configuration if there
are no three points of P on a line nor four points of P on a circle.

Theorem 10. Let P ⊆ R
2 be a set of n points in general configuration. Then γID

D (P) ≤ 2⌈n/6⌉+ 1.

The idea of the proof of this theorem is to give an algorithm that constructs an identifying set of disks
of size 2⌈n/6⌉+ 1. The algorithm is based on the same principle that we used in the not restricted case:
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1. Divide P in three equal parts using lines;

2. Choose a disk that contains exactly one point in each part, remove these points and repeat the
operation.

The crucial part is to find the disk of the second step. For that, we use Delaunay triangulations -
that is a triangulation of the points in such a way that the circumcircle of each triangle only contains
its vertices. Since there are no three colinear nor four cocyclic points, such a triangulation always exists
(and is unique). To find the disk of Step 2, we then need to find a Delaunay triangle that has a vertex
in each part, as illustrated in Figure 9. To insure the existence of such a triangle, we need to be more
precise at Step 1.

L′

L

A

R1

R2

R3 L′

L

A

R1

R2

R3

Figure 9: First steps of the method used in the main idea of the proof

Before going into details, we need two preliminary results.

Theorem 11 (Ceder [6]). For n points of R2 with no three colinear points, there is a way to divide the
plan in six regions containing each between ⌈n6 ⌉ − 1 and ⌈n6 ⌉ points using three concurrent lines.

Lemma 12. Let P be a set of points of R2, L a line and L′ a half-line with origin A on L. If each of
the three regions R1, R2 and R3 made by L and L′ contains one point of P and if A is in the convex hull
of P, then every triangulation of P contains a triangle that has a vertex in each region.

Proof. Let T be a triangulation of P . Since the intersection A of L and L′ is inside the convex hull, there
is at least a segment of T between any pair of regions.

Consider the segments between the regions separated by L′, namely R2 and R3. Let [x, y] be the
segment which cut L′ the closest from A. Since A is in the convex hull of P , there is at least one point z
of P such that (x, y, z) is a triangle of T in the direction of A from this segment. If z is in R2 or R3, then
the segment [x, z] or [y, z] would intersects L′ closer to A than [x, y], which contradicts the hypothesis
that [x, y] is the closest segment to A. Therefore z is in R1 and (x, y, z) form a triangle with one vertex
in each region.

Proof of Theorem 10. Using Theorem 11, there exist three concurrent lines L1, L2 and L3 that divides
the plane into six regions of the same size up to one. Let A be their common intersection. Let D1, D2

and D3 be three half-planes defining by L1, L2 and L3 such that every point is in at least one half-plane.
Let a, b, c, d, e and f be the six regions of the plane created by these lines, as illustrated in Figure 10.

First consider the regions a, c and e. Each of these regions contains between ⌈n6 ⌉ − 1 and ⌈n6 ⌉ points.
For construction reasons, if there is a point in each region then A is inside the triangle formed by these
points, so Lemma 12 always applies.

Consider the following process. Add D1, D2 and D3 to the future set of identifying disks. Set in P ′

all the points of a, c and e. Then repeat the following operation ⌈n6 ⌉ − 1 times. Consider the Delaunay
triangulation of P ′, at least one triangle (x, y, z) has its vertices in the three different regions. Since it
is a triangle of a Delaunay triangulation, its circumscribed circle C contains no other remaining points.
Add Dx,y,z, the disk of perimeter C, to the set of identifying disks, remove x, y and z from P ′ and iterate
the process.
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We do the same iterated operation for the regions b, d and f .
At the end of each step of the process all the considered points are separated from all the other points.

Indeed, at each step x, y and z are separated from the points of the other regions by the half-planes and,
since each considered triangle comes from a Delaunay triangulation, their circumscribed circle contains
no other points of P ′.

If a point has not been considered at the end of the processes, it is alone in its regions and therefore
is isolated from all the other points. Moreover, by the selection of the half-planes, it is inside at least one
half-plane so it is covered.

Therefore, this algorithm constructs an identifying set of disks of size 3 + 2(⌈n6 ⌉ − 1) = 2⌈n6 ⌉+ 1.

1
6

a

1
6

f

1
6

e
1
6

d

1
6

c

1
6

b

L1L2

L3

Figure 10: Dividing the points into six equal parts

The previous bound is tight, up to a constant 2, when points are located on an half-parabola, the
curve constituted of one side of a parabola symmetry axis:

Proposition 13. Let P ⊆ R
2 be a set of n points placed on an half-parabola. Then, γID

D (P) ≥ n
3 .

Proof. Let P be a set of n points located on a half-parabola H . We denote by x1, ..., xn the points,
respecting their order on H , with x1 the closest to the extrema of H .

Let D be a set of disks identifying P . For any i ∈ {1, ..., n− 1}, xi and xi+1 are separated by D. It
means that there is a disk D ∈ D whose perimeter intersects H between xi and xi+1. Moreover, xn is
covered by D, thus there is a disk whose perimeter intersects H after xn. In total, there are at least n
intersections between H and some perimeters of disks of D.

We now prove that a circle C can intersect H into at most three points. Let (x, y) ∈ C ∩H . Without
loss of generality, (x, y) satisfies the following set of equations, with x0, y0, r that are constant.







y = x2

(x − x0)
2 + (y − y0)

2 = r2

x ≥ 0

In particular, x is a solution of:

(X − x0)
2 + (X2 − y0)

2 = r2 (1)

There is no term in X3 in the previous equation. Thus, if x1, x2, x3 and x4 are solutions of (1, we
have x1 + x2 + x3 + x4 = 0. Since x ≥ 0, there are at most three possible values for x.

Since there are at least n intersections between H and an identifying set of disks D and since a circle
intersects a half-parabola at most three times, we necessarly have D ≥ n

3 .

5 Complexity when the radius is fixed

In this section, we consider the complexity of the following decision problems (with r ∈ R):

Identification-Disk(r)
Instance: A finite set P ⊆ R2, an integer k.
Question: Is it true that γID

D,r(P) ≤ k?
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Colinear Identification-Disk(r)
Instance: A finite set P ⊆ R2 of colinear points, an integer k.
Question: Is it true that γID

D,r(P) ≤ k?

Theorem 14. Identification-Disk(r) is NP-complete.

Proof. We prove the result for r = 1/2 which is not restrictive. We reduce this problem from the problem
of partitioning a grid graph into path on three vertices. A grid graph is a graph with vertex set included
in Z

2 and two vertices are adjacent if they are at Euclidean distance 1.

P3-Partition-Grid

Instance: A grid graph G.
Question: Is there a partition of the vertices of G in such a way that each part induces a path
on three vertices?

Bevern et al. [26] proved that this problem is NP -complete.

Let G be an instance of P3-Partition-Grid and n = |V (G)|. The instance of the identification
problem is P = V (G) and k = 2n/3. We have to prove that G has a P3-partition if and only if V (G) is
identified by 2n/3 disks of radius 1/2.

Assume first that there is a partition of G into path on three vertices. For each part (x, y, z) of the
P3 partition, add to the identifying set the disk Dx,y of radius 1/2 that contains x and y and the disk
Dy,z that contains y and z. Since (x, y) and (y, z) are edges of G, these disks exist and contains exactly
two points. Furthermore, x is the only point that is contained only in Dx,y, z is the only point that is
contained only in Dy,z and y is the only point that is contained exactly in Dx,y and Dy,z. Hence, we
obtain an identifying set of disks of size 2n/3.

Assume now that there is an identifying set of disks D that identify V (G) with 2n/3 disks. Since
the points are at distance at least 1, every disk contains at most two points. Without loss of generality,
we can suppose that if a disk contains only one point, then this point is not included in any other disk.
Indeed, assume there are two points x, y and two disks D1 and D2 such that D1 contains only x and D2

contains both x and y, then we can replace D2 by D′
2 that contains only y and the situation is similar,

V (G) is still identified and the number of disks is the same.
Let a be the number of disks containing only one point. Let V ′ be the n−a points not covered by these

a disks. Let G′ be the graph with vertices V ′ and edges (x, y) if x, y are contained together in a disk of
D. Note that G′ is a subgraph of G. The graph G′ has n− a vertices and its connected components have
at least three vertices. Indeed, if a component as only two vertices then these vertices are not identified.
So there are k ≤ (n − a)/3 connected components. We name these connected components {G1, ..., Gk}.
The number of edges of G′ is

∑k
i=1 E(Gi) ≥

∑k
i=1(V (Gi)− 1) ≥ (n− a)− k ≥ 2(n− a)/3.

Since a disk is either containing one point (and there are a such disks) or corresponds to an edge of
G′, there are at least a+ 2(n− a)/3 = 2n/3 + 2a/3 disks in D. Therefore we necessarily have a = 0 and
there are exactly n/3 connected components in G′, each of them being of size 3. This is a P3-partition
of G.

However if all of the points are colinear then this problem can be solved in linear time:

Theorem 15. Colinear Identification-Disk(r) can be solved in linear time.

Note that if the disks are required to be centered on the points, this problem is equivalent to the
problem of identifying codes in unit interval graphs, whose complexity is surprisingly still open.

To prove Theorem 15, we introduce few definitions and preliminary results. Let P be a set of n
colinear points on a line L and D is a set of disks of radius r identifying P . Let x1,..xn be the points of
P . We confuse xi with its abscissa on L and we assume that x1 < ... < xn.

Note that, since the points are colinear and the centers of the points can be chose anywhere on the
plane, a set of points of P can be the intersection of P and a disk of radius r if and only if there are
consecutive points of P at distance at most 2r. In the following, we will refer often directly to the set of
points contained in a disk D instead of D itself.

12



The set D is optimal if |D| = γID

D (P), it is perfect if n is odd and if |D| = n+1
2 (in particular D is

optimal).
The disks of D partitions the points of P on connected components. More formally, we define an

equivalence relation x ∼D y meaning that x and y are connected by a path of disks. For x and y two
points of P , we have x ∼D y if and only if there is a disk D in D that contains both x and y, or there is
a point z in P such that x ∼D z and y ∼D z.

The equivalence classes (Pi) of ∼D are made of consecutive points. Let Di = {D ∈ D|D ∩Pi 6= ∅} be
the disks containing points the points of (Pi).

A set of disks D is piece-wise perfect if it is optimal and if each Di perfectly identifies Pi.

Lemma 16. For any set of colinear points P, there is a set D of disks of radius r that identifies P and
is piece-wise perfect.

Proof. Let D be a set of disks that identifies optimally P and such that
∑

D∈D

|D ∩ P| is minimal. We will

prove that this set is piece-wise perfect.
Assume the contrary. It means that there is a set Pi which is not perfectly identified by Di. Following

the proof of Theorem 3, this means that there are two disks D1 and D2 whose perimeters intersect L
between the same pair of adjacent points of Pi or both before the first point of Pi or both after the last
point of Pi. Let xa, ..., xb be the points covered by D1 and xc, ..., xd the points covered by D2.

Case 1 : a = c (the case b = d is similar). Suppose, without loss of generality, that d ≤ b. Let D′
1

be a disk that contains the points from xa + 1 to xb, such a disk exist because its intersection with P
is included in D1 ∩ P . Then D′ = D \ {D1} ∪ {D′

1} identifies P . Indeed, the only point of P for whom
the situation is different for D and D′ is xa. For D′ it is the only point of P that is inside D2 and not
inside D′

1. So we have a new set of disks that identifies P and such that the sum of the number of points
contained in each disk is smaller. This is a contradiction to the minimal property of D.

Case 2 : c = b + 1 (the case a = d + 1 is similar). Since Pi is an equivalence class for the relation
∼D, we must have xb ∼D xb+1 and there must be a disk D3 such that D3 contains both xb and xb+1.
Let xe the first point of D3 and xf its last point.

Subcase 2.1 : a < e < b < f < d.
Let D′

1 be a disk that contains the point from xa to xb−1, such a disk can exist because it is smaller
than D1, and let D′ = D \ {D1} ∪ {D′

1}. D′ identifies P and contradict the minimal property of D.
Subcase 2.2 : e < a (the case f > d is similar).
Let D′

1 be a disk that contains the point from xe to xb, such a disk can exist because it is smaller
than D3 and D′

3 be a disk that contains the points from xa to xf , such a disk can exist because it is
smaller than D3. The set of disks D′ = D \ {D1, D3} ∪ {D′

1, D
′
3} identifies P . Indeed, the only points

of P for whom the situation is different for D and D′ are those between xe and xa−1. They are still
separated from each other by the disks that separates them in D and they are separated from the other
points because they are the only points that are in D′

1 and not in D′
3. The sum of the number of points

contained in the disk is the same for D′ and D.
Finally, the sum of the number of points contained in the disks remains the same, but now the disk

that contains both xb and xb+1 does not contain the disks that intersect the region between xb and xb+1.
So we are now in Subcase 2.1 and we can apply the method used in this case, concluding the proof.

A set of disks D identifying a set P of n colinear points is in normal form if n is odd and if :

• n = 1 and D is composed of a unique disk containing the point of P .
or

• n = 2p+1, p ≥ 1, and D = {Di}i∈[0,p] with D0 containing the points x1 and x2, Dp containing the
points x2p and x2p+1 and, for i ∈ [1, p− 1], Di containing the points x2i, x2i+1 and x2i+2.

In particular, D is perfect.

Lemma 17. For any set of colinear points P, if there is a set of disks that perfectly identifies P, then
there exists a set D that identifies P and is in normal form.
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Proof. If there is only one point in P , then the only way to identify perfectly P is to have a set D that
contains exactly one disk which contains the point of P , it always exists and it is already in normal form.

Suppose that P is of size 2p+ 1 with p ≥ 1. We show that if there is no set of disks identifying P in
normal form then there is no set perfectly identifying P .

Assume that there is no set of disks identifying P in normal form but that a set D perfectly identifies
P . Necessarily, ∼D has only one equivalnce class and all the adjacent points of P are distant at most 2r.

Since there is no possible set in normal form, there exists i ∈ [1, p − 1] such that the distance
between the points x2i and x2i+2 is greater than 2r. Let P1 be the set {x1, ..., x2i} and P2 be the set
{x2i+2, ..., x2p+1}. Let D1 (respectively D2) be the subset of disks of D that contains at least one point
of P1 (resp. P2). The intersection between D1 and D2 is empty since the distance between x2i and
x2i+2 is at least 2r. By Theorem 3, since D1 identifies P1 and D2 identifies P2, |D1| ≥ ⌈ 2i+1

2 ⌉ and

|D2| ≥ ⌈ 2(p−i)+1
2 ⌉. So |D| ≥ |D1| + |D2| ≥ ⌈ 2i+1

2 ⌉ + ⌈
2(p−i)+1

2 ⌉ = p + 2. Hence D does not identify P
perfectly, a contradiction.

Proof of Theorem 15. By Lemma 16, there exist a set identifying P that is piece-wise perfect. By
Lemma 17, every perfect part of that set can be identified by a set of disks in normal form. So there is a
piece-wise perfect set of disks D such that every Di is in normal form.

We now give an algorithm that finds an optimal solution to identify P with connected sets of disks
that are in normal form :

Require: the abscissas x1, ..., xn of a set of colinear points P
Ensure: D is a minimal identifying set that can be partitioned into subset in normal form.
i← 0
D ← ∅
xn+1 ←∞, xn+2 ←∞, xn+3 ←∞
while i ≤ n do

if xi+1 − xi > 2r or xi+2 − xi+1 > 2r then

Add to D a disk that contains only xi

i← i+ 1
else

Add to D a disk that contains only xi and xi+1

i← i+ 1
while xi+2 − xi ≤ 2r and xi+3 − xi+2 ≤ 2r do

Add to D a disk that contains only xi, xi+1 and xi+2

i← i+ 2
end while

Add to D a disk that contains only xi and xi+1

xi ← xi+2

end if

end while

This algorithm takes the biggest connected sets of disks in normal form starting with the first point
of P . We prove that this is optimal. Assumme it is not the case. Let P be a set of points such that
the set D given by the algorithm is not an optimal solution. We choose P with a minimum number of
points. Let Dopt be an optimal set in normal form. Its first connected component Dopt

1 is smaller than
the first connected component of D, D0. Indeed, it cannot be bigger since the algorithm take the biggest
connected component and it cannot be the same since, by minimality of P , the algorithm is optimal on
the rest of the points. So Dopt identifies Popt

1 , the points of P that are not in the disks of Dopt
1 with less

disks than D uses to identify P1, the points of P that are not in D′. Since P1 ⊂ Popt
1 , Dopt also identifies

P1, and thus with less disks than D. This contradicts the minimality of P .
This algorithm is linear since we consider each point at most once.
So there is a linear algorithm to find the maximum number of disks needed to identify a set of points

if each connected part must be in normal form. By Lemma 16 and Lemma 17, this algorithm also gives
a solution to Colinear Identification-Disk(r).
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6 Conclusion

We conclude with some open problems. About complexity issues, we do not know if computing a minimum
identifying set of disks when the radius is not fixed is NP -complete, but the contrary would be surprising.
The complexity of identification with lines seems to be also open. An intersecting question is what is the
number of disks needed if the points are randomly chosen in a 1× 1 square. It would also be interesting
to consider identifications with other sets or in higher dimensions using balls instead of disks.
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