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Real-Time Distributed Receding Horizon Motion Planning and Control
for Mobile Multi-Robot Dynamic Systems

José M. Mendes Filho a, b, ∗, Eric Lucet a and David Filliat b

Abstract— This paper proposes an improvement of a motion
planning approach and a modified model predictive control
(MPC) for solving the navigation problem of a team of
dynamical wheeled mobile robots in the presence of obstacles in
a realistic environment. Planning is performed by a distributed
receding horizon algorithm where constrained optimization
problems are numerically solved for each prediction time-
horizon. This approach allows distributed motion planning for
a multi-robot system with asynchronous communication while
avoiding collisions and minimizing the travel time of each robot.
However, the robots dynamics prevents the planned motion to
be applied directly to the robots. Using unicycle-like vehicles in
a dynamic simulation, we show that deviations from the planned
motion caused by the robots dynamics can be overcome by
modifying the optimization problem underlying the planning
algorithm and by adding an MPC for trajectory tracking.
Results also indicate that this approach can be used in systems
subjected to real-time constraint.

I. INTRODUCTION

The capability of defining and executing a collision-free
motion plan for passing from one configuration to another is
a crucial aspect of robotics that can be specially difficult to
solve for mobile multi-robot systems. A trending application
that requires this capability is the use of robotic systems in
industrial supply chains for processing orders and optimizing
the storage and distribution of products. For example,
Amazon employs the Kiva mobile-robot system, and IDEA
Groupe employs the Scallog system for autonomously
processing client orders [1], [2]. Such logistics tasks became
increasingly complex as sources of uncertainty, such as
human presence, are admitted in the work environment.

For ideally solving this navigation problem, different
constraints must be taken into account in the motion
planning; in particular geometric, kinematic and dynamic
constraints. The first kind comes from the need of preventing
some specific robot’s configurations in order to avoid
collisions, communication loss, etc. Kinematic constraints
derive directly from the mobile robot architecture implying
typically nonholonomic constraints. Dynamic constraints
come mainly from inertial effects and interaction between
different bodies in contact. For instance, those constraints
may translate into accelerations not exceeding maximum
values given that forces and torques are limited in a real
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system. Motion planning in presence of such constraints is
usually referred as kinodynamic planning [3].

The importance of incorporating dynamics in motion
planning dates back to the well-known Dynamic Window
approach (DW) [4]. More recent work on navigation for
teams of robots that uses DW can be found in [5].
In this work, real-time navigation for high speed robots
respecting dynamic constraints is solved in three separated
stages; an ERRT (Execution Extended Rapidly-Exploring
Random Tree) path planner, a motion control layer and
a velocity space safety search based on DW. Although
decentralization of that approach is allegedly possible, only
its centralized implementation was tested. Other works
such as [6] treat kinodynamic planning in real-time in a
dynamic environment but does not directly integrate multi-
robot constraints. Authors of [7] propose a distributed
motion planning approach that uses D* search algorithm
in two separated layers of path and velocity planning with
optimization at local and global levels but it is based on
strong assumptions such as robots moving at constant speeds
and being able to instantaneously halt.

Another work that relate to ours is the one presented in [8]
on noncooperative distributed nonlinear MPC (disNMPC)
and extended in [9] to work without stabilizing terminal
constraints. Their disNMPC is similar to our Distributed
Receding Horizon Motion Planning (DRHMP) scheme, but
the underlying optimization problems and the use of the
optimized solutions in the overall problem are very different.

The work presented here builds directly on the
mathematical programming approach presented in [10],
called DRHMP. The aim is to extend that approach so it
can take into account dynamics constraints.

By means of a physics engine that can simulate
rigid body dynamics (including collision detection), the
approach is tested, evaluated and improved in two main
aspects: i) feasibility of planned trajectories is improved
by changing the optimization problems underlying the
planning algorithm; ii) a model predictive control (MPC) that
profits from this particular motion planning is conceived for
minimizing deviations from the planned motion.

The paper’s outline is as follows. The second section
gives an overview of the DRHMP. The third section
explains the two improvements listed above. The forth
section is dedicated to the performance results obtained
through simulation. The proposed MPC is compared to other
controllers and measurements of elapsed time for planning
and control routines are performed. Finally, in the last



section, we present our conclusions and perspectives.

II. DRHMP

As a team of robots evolves in their work environment,
they progressively perceive new obstacles in their way to
their goal configuration. Thus, trying to plan for the whole
motion from initial to goal configurations is not a satisfying
approach. Planning locally and replanning is more suitable
for taking new information into account as it comes.

In the DRHMP in [10], each robot in the team computes
its own local trajectory. Analogous to an MPC, a prediction
time-horizon Tp and an implementation/computation timeslot
Tc are defined (Fig. 1).
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Fig. 1: Receding horizon scheme with termination plan. Tf
is both prediction horizon and implementation timeslot for
the termination plan in red.

Tp is the time-horizon for which a local solution to the
motion problem will be created and Tc is the timeslot during
which a portion of that solution is implemented while the
next plan - created for the next time-horizon Tp - is being
computed. The problem of producing a trajectory for a Tp
horizon during Tc time is called here a receding horizon
planning problem. It differs from the classical definition of
MPC since not only the first value of the optimized solution
is used for computing the system’s input.

Moreover, for each receding horizon planning problem,
the following steps are performed:

Step 1: Each robot in the team computes its own
intended solution trajectory (denoted (q̂(t), ˙̂q(t), ¨̂q(t))1 with
q the configuration vector of the robot) by solving a
constrained optimization problem. In that optimization
problem all constraints are included except coupling
constraints, that is, constraints that involve solving a conflict
between multiple robots such as collision or loss of
communication.

Step 2: Robots involved in a potential conflict (risk of
collision, lost of communication) update their trajectories
computed during Step 1 by solving a second constrained
optimization problem that additionally takes into account
geometric constraints for avoiding conflicts with other robots.
This is done by using estimates of the intended trajectories
of the other robots. If a robot is not involved in any conflict,
Step 2 is not executed and its final solution trajectory is
identical to the one found at Step 1.

1higher order derivatives of q̂(t) are guaranteed to exist by the choice of
trajectory representation. B-splines are used for that purpose with its degree
set to 3.

Differently from [10], [11], we do not consider that all
robots involved in a conflict have finished Step 1 and
exchanged information when any of them starts executing
Step 2. Here, the robot estimates trajectories for the
conflictual robots based on the available information at
the end of Step 1. Those estimates allow asynchronous
communication between robots: they can use different Tp
and Tc and no defined frequency for their communication is
imposed. Planning proceeds regardless of the communication
frequency.

For each of these steps and for each robot in the team,
one constrained optimization problem is solved. The cost
function to be minimized in those optimization problems
is the geodesic distance of a robot’s current position to its
goal position. This assures that the robots are driven towards
theirs goals. However, when a robot arrives closer to its goal
the receding horizon planning scheme does not produce the
desired effect. For instance, near the goal, the robot can
possibly take less time to reach it than the fixed Tp prediction
horizon used for computing previous trajectories.

In [10] a termination procedure for reaching the goal is
proposed. It takes the goal configuration as a hard constraint
in the optimization problem and uses the time for reaching
the goal as the cost function to be minimized. Fig. 1
illustrates that change in the planning process by introducing
the time-horizon Tf .

Fig. 2 illustrates the overall result of this approach
generated in simulation. Two robots avoid mutual collision
while, simultaneously, avoiding collision to obstacles, aiming
for their goals and respecting nonholonomic constraints.
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Fig. 2: Obstacles are represented by the grey regions. Blue
X’s over the red robot and red Y’s over the blue robot
represent their mutual trajectories estimates.

Trajectories generated with this approach are feasible
regarding kinematics but not necessarily regarding the robots
dynamics. In order to improve the quality of trajectories and
assure its execution, we propose in the next section a change
in the planning method and the addition of a controller.

III. IMPROVEMENTS FOR DEALING WITH DYNAMICS

Maximum acceleration constraints were added to all
optimization problems during motion planning. This reduced
tracking errors when directly applying planned trajectories to
the simulated vehicles.

Besides improving the motion planner, a further step was
to include a control law to minimize the deviation between



planned and executed trajectories. We modified an MPC
introduced in [12] so it could take advantage of our particular
motion planner.

A. Adding acceleration constraints

Maximum acceleration constraints were stated as follows:

‖[ẍ ÿ]‖2 ≤ a2
max (1)

ψ̈
2 ≤ α

2
max (2)

[x y] and ψ being the 2D position and orientation of the robot
in the xy plane respectively, and amax and αmax the linear and
angular maximum accelerations performed by the simulated
robots. This way, the resulting receding horizon optimization
problem solved at Step 2 by each vehicle can be written as
follows:

min
q(t)
‖q(τk +Tp)−qgoal‖, ∀t ∈ [τk,τk +Tp] (3)

q̇(t) = f (q(t),u(t)), ∀t ∈ [τk,τk +Tp]
q(τk) = q(τk−1 +Tc)
q̇(τk) = q̇(τk−1 +Tc)
v2(t)≤ v2

max, ∀t ∈ (τk,τk +Tp]
ω2(t)≤ ω2

max, ∀t ∈ (τk,τk +Tp]
a2(t)≤ a2

max, ∀t ∈ [τk,τk +Tp]
α2(t)≤ α2

max, ∀t ∈ [τk,τk +Tp]
d(O, t)≥ εo, ∀t ∈ (τk,τk +Tp], ∀O ∈ O
d(Rc, t)≥ εr, ∀t ∈ (τk,τk +Tp], ∀Rc ∈ C
d(Rd , t)≤min(dcom,dd,com), ∀t ∈ (τk,τk +Tp], ∀Rd ∈D

with v = ‖[ẋ ẏ]‖, ω = ψ̇ , a = ‖[ẍ ÿ]‖, α = ψ̈ , d(·, t) the
distance from the robot to · at the moment t, O the set of
the robot’s known obstacles, C the set of the robot’s collision
candidate robots, D the set of the robot’s communication loss
candidate robots, dcom the robot’s maximum communication
range and f the kinematic model of the robot.

For performing Step 1 the two last (coupling) constraint
equations are left out.

B. Model Predictive Control

Including a model predictive controller results in the
following architecture in Fig. 3 for each robot.

Planner
(DRHMP) Controller Σ

Observer

qr, q’r, q”r 

for any t+ᷠ | 
ᷠ in [0, Tp-Tc]

q, q’Θ

u

world

Fig. 3: The planner, knowing the initial and goal
configurations of the robot, takes information about obstacles
and other robots (denoted by Θ) from the observer and
outputs a reference trajectory. The controller takes a state
feedback from the observer and the reference trajectory from
the planner and generates the system’s input u.

The authors of [12] propose a Non-linear Continuous-
time Generalized Predictive Control (NCGPC) meant for
outdoor mobile robots. Following their approach, we derive

a different control law that takes advantage of our receding
horizon planner. That new control law is created by replacing
the approximation for the reference output by the prediction
of the motion planner.

1) Extended Unicycle Model:
To apply the same approach as in [12] we need an

extended model for the unicycle mobile robot that integrates
the kinematic and dynamic models. Furthermore, we need
to be able to write the model in a non-linear control-affine
form as shown bellow in eq. 4:

q̇ = f (q,u) = fa(q)+
p

∑
j=1

fb, ju j (4)

From [13] we can write such an extended model as in
eq. 5:

ẋ
ẏ
ψ̇

v̇
ω̇


︸ ︷︷ ︸

q̇

=


vcosψ

vsinψ

ω
θ3
θ1

ω2− θ4
θ1

v
− θ5

θ2
vω− θ6

θ2
ω


︸ ︷︷ ︸

fa(q)

+


0 0
0 0
0 0
1
θ1

0
0 1

θ2


︸ ︷︷ ︸

fb=[ fb,1 fb,2]

[
u1
u2

]
︸ ︷︷ ︸

u

(5)

where q ∈ Q⊂Rn |n = 5 is the state vector and
u ∈U ⊂Rp | p = 2 the system input. The parameters
vector θ ∈R6 characterizing the dynamics of the robot
can be determined either by system identification or by the
properties of the unicycle robot such as mass, moment of
inertia, impedance of motors. Details on the latter method
are provided in [13]. For our particular, simulated case an
identification algorithm was used based on the minimization
of error in velocities followed by minimization of error in
position.

2) Criterion to be minimized:
The objective is to synthesize a control law that minimizes

the quadratic error in position and orientation (i.e. pose) over
a time-horizon ahead of the current instant t.

Since only error in pose is to be minimized, the system
output can be written as follows:

z(t) = h(q(t)) =
[

x y ψ
]t

with z ∈ Z ⊂Rm |m = 3. And the error as:

e(t) = z(t)− zref(t)

where zref(t) is the reference output.
The criterion to be minimized can be written as:

J =
m

∑
i=1

1
2

∫ Ti

0
(ei(t + τ))2dτ

where Ti is the prediction horizon for the ith element of z(t)
and ei(t + τ) the ith element of the prediction error at t + τ

with 0 < τ ≤ Ti. In this particular case, to find the control
law that minimizes J is to find u satisfying the equation:

∂J
∂u

= 0p×1

For solving the above equation an expression for the
prediction error must be defined and the criterion rewritten
in a matrix form.



3) Predictive error definition:
In order to obtain an equation for the error e(t +τ) where

the system input u is explicitly present we rewrite z(t + τ)
using Taylor series:

zi(t + τ) =
ρi

∑
k=0

z(k)i (t)
τk

k!
+ ε(τρi)

As explained in [12] the vector ρ = [ρ1 · · · ρm] is the
relative degrees of a non-linear MIMO system (Multiple
Input Multiple Output). It is a vector composed by possibly
different values of relative degrees ρi for each output zi. ρi
is the least number of derivatives required to make explicit
in the expression of zi at least one component of the input
vector u.

Furthermore, a non-linear control-affine MIMO system
(eq. 4) has a relative degree ρ = [ρ1 · · · ρm] around q0 if:

1) L fb, j L
(k)
fa zi = 0 for all 1≤ j ≤ p, for all k < ρi−1, for

all 1≤ i≤ m and for all q in the neighborhood of q0

2) the product DtD is non-singular, D being the
decoupling matrix of dimension m× p, given by:

D =


L fb,1 L(ρ1−1)

fa z1 · · · L fb,pL(ρ1−1)
fa z1

...
. . .

...
L fb,1L(ρm−1)

fa zm · · · L fb,pL(ρm−1)
fa zm

 (6)

Here we use the standard geometric notation for Lie
derivatives summarized bellow by its recursive expression: L(0)

f zi = zi

L(k)
f zi = L f L(k−1)

f zi =
∂L(k−1)

fa zi

∂q f = z(k)i

Using this notation, L fb, j L
(k)
fa zi in condition 1) can be read

as the Lie derivative of the kth Lie derivative of zi with
respect to fa with respect to fb, j.

Rewriting the expression for zi(t + τ) in a matrix form
and excluding the remainder term we obtain the following
approximation:

zi(t + τ)'
[

1 τ · · · τρi
ρi!

]
︸ ︷︷ ︸

Λi

[
zi(t) żi(t) · · · z(ρi)

i (t)
]t

Replacing the first matrix by the more compact notation
Λi and using Lie derivatives, one can write:

zi(t + τ)' ΛiLzi (7)

where

Lzi =
[

L(0)
f zi(t) L(1)

f zi(t) · · · L(ρi−1)
f zi(t) L(ρi)

f zi(t)
]t

which, assuming condition 1) above, can be simplified to:

Lzi =


L(0)

fa zi(t)
...

L(ρi−1)
fa zi(t)

L(ρi)
fa zi(t)+L fb(L

(ρi−1)
fa zi(t))u(t)



This last form of Lzi makes the system input u explicit
in the expression of zi(t + τ). Functions f , fa and fb come
from the model in eq. 4.

As for the second term in the prediction error expression,
zi,ref(t + τ), it can be kept undetermined until the expression
for u, i.e. the control law, is found. This is possible because
our planner can give its value for any τ | 0 < τ ≤ Ti as long
as Ti ≤ Tp−Tc. That last condition over Ti is needed because
zref(t +Tp−Tc) is the further in time the planner can output
a valid reference trajectory for any given t.

4) Control law equation:
After some algebraic manipulation we derive the final

expression for the control law as shown in eq. 8.

∂J
∂u

= 0p×1

⇒ u =−(DtD)−1Dt(Kss)−1(KsLz−Rs) (8)

where D is the decoupling matrix (eq. 6), Kss and Ks the
gain matrices (eq. 9 to 12), Lz the prediction output matrix
(eq. 13) and Rs the future reference output matrix (eq. 14
and 15).

Ks = diag([Ks
1 · · · Ks

m]) (9)
Kss = diag([Kss

1 · · · Kss
m ]) (10)

with Ks
i the last line of the matrix Ki and Kss

i the last element
of the vector Ks

i . Ki being defined as:

Ki =
∫ Ti

0
Λ

t
iΛidτ (11)

which gives the following expression for each element of Ki:

Ki,(a,b) =
T (a+b)+1

i
((a+b)+1)a!b!

(12)

with a, b ∈ [0, ρi]⊂Z the row and column indexes.

Lz =
[

z1 · · · L(ρ1)
fa z1 · · · zm · · · L(ρm)

fa zm

]t
(13)

Rs = [Rs
1 · · · Rs

m]
t (14)

Rs
i being the last element of the row vector Ri, where

Ri =
∫ Ti

0
zi,refΛidτ (15)

5) Finding u for a unicycle-like robot:
In order to find u, matrices D, Ks, Kss, Lz and Rs must be

determined. To do so the vector ρ is needed. A way of finding
ρ for unicycle robots is by computing L fb, j L

(k)
fa zi using the

model in eq. 5 with k beginning at 0 and incrementing it
until the conditions 1) and 2) presented before are satisfied.

Applying that procedure, we find ρ = [2 2 2].
Consequently, matrices D, Kss, Ks and Lz can be written
as bellow:

D =


cosψ

θ1
0

sinψ

θ1
0

0 1
θ2

 , Kss = diag
([

T 5
1

20
T 5

2
20

T 5
3

20

])
,



Ks = diag
([[

T 3
1
6

T 4
1
8

T 5
1

20

]
· · ·
[

T 3
3
6

T 4
3
8

T 5
3

20

]])
,

Lz =



x
vcosψ(

θ3
θ1

ω2− θ4
θ1

v
)

cosψ− vω sinψ

y
vsinψ(

θ3
θ1

ω2− θ4
θ1

v
)

sinψ + vω cosψ

ψ

ω

− θ5
θ2

vω− θ6
θ2

ω


Rs can be found (numerically or analytically) from the

planner’s output according to the following expression:

Rs =
1
2


∫ T1

0 xref(t + τ)τ2dτ∫ T2
0 yref(t + τ)τ2dτ∫ T3
0 ψref(t + τ)τ2dτ

 (16)

According to [14], the stability of the closed-loop system
using a nonlinear generalized predictive control depends only
on the relative degree ρ and the control order p. For ρ =
[2 2 2] and p = 2 the closed-loop system is stable.

IV. EXPERIMENTAL RESULTS

A. Simulation setup

Simulations using the planner and controller presented
before were carried out using a physical simulation
environment called XDE [15]. Its visual environment can
be seen in Fig. 4.

The simulated vehicles have specifications similar to the
Adept Lynx AIV produced by Adept Technology. The setup
consisted of about 7 obstacles and 3 robots in a 15×15
m area. Obstacles radius were chosen randomly between
0.4 and 1.5 m. The pose of obstacles and robots was
generated also at random only excluding cases of conflict,
for instance, cases where two robots had overlapping initial
poses. Each robot traveled a total of 14 m approximately.
The overall aspects of the simulations can be seen in the
video supplement.

Fig. 4: XDE 3D visual environment during Fig. 2 simulation.

B. Controllers performance

In order to analyse the controller performance, three
different control laws were compared: NCGPC (Non-
linear Continuous-time Generalized Predictive Control) is
the control law presented in [12]; NCGPC-M (NCGPC-
Modified) is the control law presented in the previous
section; TRVSK (Tracking Reference Vehicle with Same

Kinetics) is presented in [16] and, differently from the other
two control laws, it is not predictive.

Fig. 5 shows the result of three identical simulations (same
reference trajectory, robot, obstacles) except for the control
law adopted to follow the reference trajectory. 6 obstacles
were placed in the simulated area as well as 4 waypoints
to which the robot passed by before reaching its goal near
point (−4,−5). Motion planning main parameters, Tp and Tc,
were set to 1.2 s and 0.3 s respectively2. The three different
paths for each simulation and the reference trajectory are
overlapped and their non-coincidence can better be seen in
Fig. 5b. Table I shows a comparison of the three control
laws based on results of the three simulations in Fig. 5.
Additionally, Fig. 6 shows the pose error during the first
20 seconds of the simulations, which is nearly the first half
of the robot’s path3.

From Table I and Fig. 6 we can see that NCGPC-M shows
the smaller root mean square (RMS) and smaller maximum
values for both position and orientation errors. This indicates
that the NCGPC-M is the control law that performs the best
among the three studied with regard to error minimization.

TABLE I: Comparison of control laws

TRVSK NCGPC NCGPC-M

RMS(‖[xerr yerr]‖) (cm) 6.93 1.17 0.44

max(‖[xerr yerr]‖) (cm) 31.28 4.26 1.92

RMS(ψerr) (deg) 2.78 0.75 0.34

max(ψerr) (deg) 16.29 4.84 1.28

C. Computational cost

Regarding the planner, two different computation routines
can be distinguished; the optimization routine computing
a parametric optimized solution, and the output evaluation
which evaluates that solution at given times.

In accordance with the receding horizon principle, the
control of the robot is performed based on the output
evaluation performed at instants t ∈ [τk,τk +Tc] which is
based on the parametric solution found by the optimization
routine at a previous time tpre ∈ [τk−Tc,τk). Therefore, the
response time of the planner depends only on the output
evaluation routine, and not on the optimization routine itself4.

The output evaluation routine, in turn, depends on how the
solution (q̂(t), ˙̂q(t), ¨̂q(t)) ∀t ∈ [τk,τk + Tp] is parameterized
as its only work is to evaluate the solution at a given
time. B-splines were used for that purpose. The time for
evaluating a b-spline curve at a given moment depends only
on three parameters, namely its number of nonzero knot
spans, its degree and its dimension. Those parameters do not
directly depend on the optimization problem size (number of
obstacles and robots). Overall, this suggests that the planner’s

2For some discussion about choosing values for Tp and Tc see [10]
3in the second half of the path, some high differences between errors

make difficult to appreciate the graph
4provided enough computational resource for computing in parallel both

routines, the output evaluation and optimization for the next time timeslot.
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Fig. 5: Control laws comparison. (a) General configuration
of the simulation. (b) Zoom on the robots’ paths stressing the
non-coincidence of the planned path and the three executed
paths for each control law. Travel time is around 48 s.
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Fig. 6: Errors in position and orientation for the first 20
seconds of the simulation shown in Fig. 5.

response time is independent from the size of the problem
which entails a good scalability.

As for the controllers, TRVSK and NCGPC approaches
were implemented having constant time complexity while
NCGPC-M implementation was O(n) on the number of
samples used for integration when approximating matrix Rs

(eq. 16). If an analytical solution for Rs would be provided,
NCGPC-M could also have constant complexity but it would
not necessarily be quicker than the current implementation
for relatively small number of samples.

Table II shows the mean and standard deviation of 4778
measurements of elapsed time for each of the four routines:
the output evaluation routine in the planner and the three
different control routines.

TABLE II: Performance of planning and control
implementations on an Intel i7-5600U CPU

Planner TRVSK NCGPC NCGPC-M

Mean elapsed time (µs) 6.48 1.79 1.89 33.86

Standard deviation (µs) 19.16 1.12 0.59 6.09

All controllers were coded in C++03 STL language and
compiled using Visual C++ 10.0 compiler. They were run on
an Intel i7-5600U CPU.

The NCGPC-M control which had the best performance
for minimizing the position and orientation errors presents
the greatest computational cost of the three controllers, which
is expected since it computes a numerical integration the
others do not.

In Fig. 7a we see a histogram based on the same 4778
calls to the NCGPC-M controller. For 95.44% of the calls
the elapsed time was inferior to 35 µs (~29 kHz) and in no
case the elapsed time was bigger than 140 µs (~7 kHz).

Likewise, a histogram for the elapsed times of the output
evaluation routine in the planner can be seen in Fig. 7b.
96.76% of the calls falls under 11 µs of elapsed time. The
second most significant bar in the graph represents the calls
where a new thread was spawned responsible for solving the
optimization problem.

The total elapsed time for the planner-controller scheme
is found by adding both times. Even considering the worst
case and adding the longest elapsed times for the NCGPC-M
controller and the planner, a response frequency of more than
2 kHz is possible using the processor mentioned before.

Another important time measurement is the one of the
optimization routine. Even though it does not impact the
response time, it suggests how short the implementation
timeslot Tc can be. In our implementation we used the
NLopt nonlinear-optimization package [17], more precisely
the SLSQP algorithm ([18], [19]) it provides. It is one of the
few free algorithms that supports minimization under both
equality and inequality constraints.

Fig. 7c shows the distribution of elapsed times for
optimization problem solving. In the worst case, optimization
took about 0.14 s which represents a lower bound for Tc. In
other words, replanning can be done at ~7.14 Hz.
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Fig. 7: Histograms of elapsed time of different routines
during simulation represented in Fig. 5. (a) Plot based on
4778 calls to the NCGPC-M controller. (b) Plot based on
4778 calls to the output evaluation routine. (c) Plot based on
153 calls to the optimization problem’s solver (they took in
average 0.046 s)

V. CONCLUSIONS

We tackled the problem of taking dynamics into account
when planning and executing trajectories for a multi-robot
system. Our approach for trying to solve this problem was
to improve a DRHMP approach so it could generate high
quality plans (or trajectories) and add an MPC that fully
exploits the information provided by the planner.

The simulated results suggest that this approach allows
a system of multiple unicycle-like robots to navigate
collision-free with errors from planned position below 2 cm.
Furthermore, the results indicate a response frequency for the
planner and controller higher than 2 kHz what would allow
for their use in a real-time system.

Small errors and real-time capability in addition to
the distributed and near-optimal aspects of this approach
motivate further research about this take on the mobile
multi-robot navigation problem. Besides, some issues remain
to be addressed. In particular, fail-safe measures when no
solution trajectory can be found by Step 1 or Step 2
must be implemented. The obvious next step will be to
perform experiments with real mobile robots and analyze
the robustness of this method with regard to perception,
communication and non-synchronization among vehicles.
Another interesting subject is the integration of this motion
planning and control to task planners. That integration could
enable a higher level of autonomy of the system making it
possible to operate in a more complex environment.
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