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Abstract

We study the evaluation of layer potentials close to the domain boundary. Accurate evaluation
of layer potentials near boundaries is needed in many applications, including fluid-structure inter-
actions and near-field scattering in nano-optics. When numerically evaluating layer potentials, it
is natural to use the same quadrature rule as the one used in the Nyström method to solve the
underlying boundary integral equation. However, this method is problematic for evaluation points
close to boundaries. For a fixed number of quadrature points, N , this method incurs O(1) errors
in a boundary layer of thickness O(1/N). Using an asymptotic expansion for the kernel of the
layer potential, we remove this O(1) error. We demonstrate the effectiveness of this method for
interior and exterior problems for Laplace’s equation in two dimensions.

Keywords: Boundary integral equations, Laplace’s equation, Layer potentials, Nearly singular
integrals, Close evaluations.

1 Introduction

Boundary integral equation methods are useful for solving boundary value problems for linear, elliptic,
partial differential equations [15, 20]. Rather than solving the partial differential equation directly,
one represents the solution as a layer potential, an integral operator applied to a density. The density
is the solution of an integral equation on the boundary of the domain that includes the prescribed
boundary data. This formulation offers several advantages for the numerical solution of boundary
value problems. First, the dominant computational cost is from the integral equation on the boundary
whose dimension is lower than that of the domain. Second, this boundary integral equation can be
solved to very high order using Nyström methods [3, 11]. Finally, the solution, given by this layer
potential, can be evaluated anywhere in the domain without restriction to a particular mesh. For these
reasons, boundary integral equations have found broad applications, including in fluid mechanics and
electromagnetics.

One particular challenge in using boundary integral equation methods is the so-called close evalu-
ation problem [4, 16]. Since a layer potential is an integral over the boundary, it is natural to evaluate
it numerically using the same quadrature rule used in the Nyström method to solve the boundary
integral equation. In that case, we say that the layer potential is evaluated using its native quadrature
rule. Numerical evaluation of the layer potential using its native quadrature rule inherits the high
order accuracy associated with solving the boundary integral equation, except for points close to the
boundary. For these close evaluation points, the native quadrature rule produces an O(1) error. This
O(1) error is due to the sharply peaked kernel of the layer potential leading to its nearly singular
behavior.

There are several problems that require accurate layer potential evaluations close to the boundary
of the domain. For example, modeling of micro-organisms swimming, suspensions of droplets, and
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blood cells in Stokes flow use boundary integral methods [26, 5, 22, 17]. The key to these problems is
the accurate computation of velocity fields or forces close to the boundary as these quantities provide
the physical mechanisms leading to locomotion and other phenomena of interest. Another example
is in the field of plasmonics [21], where one seeks to gain control of light at the sub-wavelength
scales for applications such as nano-antennas [1, 24] and sensors [23, 25]. Surface plasmons are sub-
wavelength fields localized at interfaces between nano-scale metal obstacles and their surrounding
dielectric background medium. Thus, these problems require accurate computation of electromagnetic
fields near interfaces. These problems and others motivate the need to address the close evaluation
problem.

The close evaluation problem for layer potentials has been studied previously for Laplace’s equation.
For example, Beale and Lai [6] have studied this problem in two dimensions by first regularizing the
nearly singular kernel and then adding corrections for both the discretization and the regularization.
The result of this approach is a uniform error in space. This method has been extended to three-
dimensional problems [7]. Helsing and Ojala [16] have studied the Dirichlet problem in two dimensions
by combining a globally compensated quadrature rule along with interpolation to achieve very accurate
results over all regions of the domain. Barnett [4] has also studied this problem in two dimensions. In
that work, Barnett has established a bound for the error associated with the periodic trapezoid rule.
We make use of this result in our work below. To address the O(1) error in the close evaluation problem,
Barnett has used surrogate local expansions with centers placed near, but not on, the boundary. This
new method, called quadrature by expansion (QBX), leads to very accurate evaluations of the layer
potential close to the boundary. Further error analysis of this method and extensions to evaluations
on the boundary for the Helmholtz equation is presented in Klöckner et al [18]. For the special case of
rectangular domains, Fikioris et al [12, 13] have addressed the close evaluation problem by removing
problematic terms from the explicit eigenfunction expansion of the fundamental solution.

Here, we develop a new method to address the close evaluation problem. We first determine
the asymptotic behavior of the sharply peaked kernel and then use that to approximate the layer
potential. Doing so relieves the quadrature rule from having to integrate over a sharp peak. Instead,
the quadrature rule is used to correct the error made by this approximation. This new method is
accurate, efficient, and easy to implement.

In this paper, we study the close evaluation problem in two dimensions for Laplace’s equation. We
use a Nyström method based on the periodic trapezoid rule to solve the boundary integral equation.
We study the double-layer potential for the interior Dirichlet problem and the single-layer potential for
the exterior Neumann problem. For both of these problems, we introduce an asymptotic expansion for
the sharply peaked kernel of the layer potential for close evaluation points, which is the main cause for
error. Using the Fourier series of this asymptotic expansion, we compute its contribution to the layer
potential with spectral accuracy. Through several examples, we show that this asymptotic method
effectively reduces errors in the close evaluation of layer potentials.

The remainder of this paper is as follows. In Section 2 we study in detail the illustrative example
of the interior Dirichlet problem for a circular disk. For this problem, we obtain an explicit error when
using the periodic trapezoid rule to evaluate the double-layer potential. This error motivates the use
of an asymptotic expansion for the sharply peaked kernel in the general method we develop in Section
3 to evaluate the double-layer potential for the interior Dirichlet problem. In Section 4, we extend
this method to the single-layer potential for the exterior Neumann problem. We discuss the general
implementation of these methods in Section 5. Section 6 gives our conclusions.
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2 Illustrative example: interior Dirichlet problem for a circu-
lar disk

We first study the close evaluation problem for

∆u = 0 in D = {r < a}, (2.1a)

u = f on ∂D = {r = a}. (2.1b)

For this problem, we compute an explicit error when applying an N -point periodic trapezoid rule
(PTRN ). This error reveals the key factors leading to the large errors observed in the close evaluation
problem. Moreover, this analysis provides the motivation for the general asymptotic method.

It is well understood that the solution of (2.1) is given by Poisson’s formula [27]. Here, we seek the
solution as the double-layer potential [20],

u(x) =
1

2π

∫
|y|=a

ny · (x− y)

|x− y|2
µ(y)dσy. (2.2)

Here, x ∈ D denotes the evaluation point, y ∈ ∂D denotes the variable of integration, ny denotes
the unit, outward normal at y, and dσy denotes a differential boundary element. The density, µ(y),
satisfies the following boundary integral equation,

−1

2
µ(y)− 1

4πa

∫
|y′|=a

µ(y′)dσy′ = f(y), (2.3)

from which we determine that

µ(y) =
1

2πa

∫
|y′|=a

f(y′)dσy′ − 2f(y). (2.4)

To numerically evaluate (2.2), we substitute the parameterization, x = (r cos t∗, r sin t∗), and y =
(a cos t, a sin t), with r < a, and t∗, t ∈ [0, 2π], and obtain

u(r, t∗) =
1

2π

∫ 2π

0

[
ar cos(t− t∗)− a2

a2 + r2 − 2ar cos(t− t∗)

]
µ(t)dt =

1

2π

∫ 2π

0

K(t− t∗)µ(t)dt. (2.5)

Using PTRN with points tj = 2πj/N for j = 1, · · · , N , to approximate (2.5), we obtain

u(r, t∗) ≈ UN (r, t∗) =
1

N

N∑
j=1

K

(
2πj

N
− t∗

)
µ

(
2πj

N

)
. (2.6)

The error, UN (r, t∗)−u(r, t∗), is not uniform in D. In particular, UN is very accurate for evaluation
points far away from the boundary. On the other hand, it is O(1) when r ∼ a. The reason for this
large error is due to the kernel, K(t − t∗). In Fig. 1, we show plots of K as a function of t − t∗.
The left plot of Fig. 1 shows that K becomes sharply peaked about t = t∗ when r ∼ a. We do not
evaluate the double-layer potential on the boundary. Nonetheless, because K becomes sharply peaked
as r → a, we say that the double-layer potential is nearly singular. The right plot of Fig. 1 shows that
the piecewise linear approximation of K used by PTR128 will grossly overestimate the magnitude of
the double-layer potential for r = 0.99a. It is this error that leads to the O(1) errors produced by
PTRN for close evaluation points. Barnett [4] has shown that this error is O(1) for a− r = O(1/N).
In light of this result, we say that the error exhibits a boundary layer of thickness O(1/N) in which it
undergoes rapid growth.

In the limit as N →∞, PTRN converges because the boundary layer vanishes at a rate of O(1/N).
However, that is not the limit we consider here. Rather, we study the limit as the evaluation point
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Figure 1: [Left] Plot of the kernel, K(t−t∗), defined in (2.5) with a = 1 for r = 0.9 (dot-dashed curve),
0.95 (dashed curve), and 0.99 (solid curve). [Right] Plot of the kernel, K(t − t∗), with a = 1, and
r = 0.99 (solid curve), and the corresponding piecewise linear approximation associated with PTR128

(dot-dashed curve).

approaches the boundary with N fixed. For that case, PTRN is unable to accurately capture the sharp
peak of the kernel about t = t∗ that forms as r → a.

Using the error associated with PTRN [10], we find UN defined in (2.6) satisfies

UN (r, t∗) = u(r, t∗) +

∞∑
l=−∞
l 6=0

p̂[lN ], (2.7)

where

p̂[k] =
1

2π

∫ 2π

0

K(t− t∗)µ(t)e−iktdt. (2.8)

The error in (2.7) is aliasing of high frequencies. To determine p̂[k] explicitly, we use the Fourier series
representation of the kernel,

K(t− t∗) =
ar cos(t− t∗)− a2

a2 + r2 − 2ar cos(t− t∗)
= −1

2
− 1

2

∞∑
m=−∞

( r
a

)|m|
eim(t−t∗), (2.9)

and of the density

µ(t) =

∞∑
n=−∞

µ̂[n]eint, (2.10)

to find

K(t− t∗)µ(t) = −1

2

∞∑
n=−∞

µ̂[n]eint − 1

2

∞∑
m=−∞

( r
a

)|m|
e−imt

∗
∞∑

n=−∞
µ̂[n]ei(m+n)t. (2.11)

Substituting (2.11) into (2.8), and rearranging terms, we find that

p̂[k] = −µ̂[k]− 1

2

∞∑
m=1

( r
a

)m (
eimt

∗
µ̂[k +m] + e−imt

∗
µ̂[k −m]

)
. (2.12)

We now obtain the error in using PTRN to evaluate the double-layer potential by substituting
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Figure 2: Contour plot of log10 |EN (r, t)| where EN is given by (2.15) with a = 1 and N = 128.

(2.12) into (2.7) which yields

EN (r, t∗) = UN (r, t∗)−u(r, t∗) =

∞∑
l=1

{
−µ̂∗[lN ]− 1

2

∞∑
m=1

[( r
a

)m (
µ̂∗[lN −m]eimt

∗
+ µ̂∗[lN +m]e−imt

∗
)]}

+

∞∑
l=1

{
−µ̂[lN ]− 1

2

∞∑
m=1

[( r
a

)m (
µ̂[lN +m]eimt

∗
+ µ̂[lN −m]e−imt

∗
)]}

. (2.13)

Here, we have assumed µ is real, so µ̂[−k] = µ̂∗[k], where [·]∗ denotes complex conjugation. Suppose
we have chosen N to be large enough so that µ̂[lN ]� 1 for l > 0. For that case, only terms in (2.13)
proportional to µ̂[lN −m] will substantially contribute to the error. By neglecting the other terms,
we obtain

EN (r, t∗) ∼ −
∞∑
l=1

∞∑
m=1

( r
a

)m
[Re{µ̂[lN −m]} cos(mt∗) + Im{µ̂[lN −m]} sin(mt∗)] . (2.14)

Equation (2.14) is the asymptotic error made by PTRN . The key point is that when N is fixed,
this error is not uniform for r ∈ [0, a). When r � a, we see that the error is much smaller than when
r ∼ a. Consider the specific case in which µ = 1, so that µ̂[0] = 1 and µ̂[k] = 0 for all k 6= 0. For that
case, (2.14) simplifies to

EN (r, t∗) ∼
(
r
a

)2N − ( ra)N cos(Nt∗)

1 +
(
r
a

)2N − 2
(
r
a

)N
cos(Nt∗)

. (2.15)

According to (2.15), |EN (a(1 − ε), t∗)| = O((1 − ε)N ) = O(e−εN ), and |EN (r, t∗)| → 1/2 as r → a.
These results show that EN has a boundary layer of thickness O(1/N) where it exponentially increases
to values that are O(1). Fig. 2 shows a plot of (2.15) over the entire circular disk and a close-up near
the boundary. These plots show the boundary layer about r = a where the error attains O(1) values.
In practice, we would like to set N based on the resolution required to solve the boundary integral
equation. It is neither desirable nor practical to increase N just to reduce aliasing in the evaluation of
the double-layer potential. In light of this, we make the following observations.

• Equation (2.13) gives the error incurred by PTRN to approximate the double-layer potential.
This error is due to aliasing. Equation (2.14) gives the asymptotic approximation of this error
when the N -point grid sufficiently samples µ.

• The aliasing error is not uniform with respect to r. For the case in which µ = 1, the asymptotic
error simplifies to (2.15). From this result, we find that the error grows rapidly and becomes
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O(1) in a boundary layer of thickness O(1/N) near the boundary. This boundary layer is shown
in Fig. 2.

• For points within the boundary layer, the sharply peaked kernel causes aliasing due to insufficient
resolution. Fig. 1 shows how the sharp peak of the kernel when r/a = 0.99 is under-resolved on
the grid for PTR128.

Alternatively, by substituting (2.9) and (2.10) into (2.5), we obtain

u(r, t∗) =

∞∑
n=−∞

K̂∗[n]µ̂[n]e−int
∗
≈

N/2−1∑
n=−N/2

K̂∗[n]µ̂[n]e−int
∗
. (2.16)

Since the coefficients, µ̂[n] for n = −N/2, · · · , N/2−1, can be computed readily using the Fast Fourier
Transform, we introduce the truncated sum as an approximation in (2.16). The decay of µ̂[n] controls
the error of this approximation. Therefore, choosing N to accurately solve the boundary integral
equation yields a spectrally accurate approximation of the double-layer potential.

For general problems, we do not know K̂[n] explicitly as we do here. Instead, we compute an
asymptotic expansion of the sharply peaked kernel. We determine the Fourier coefficients of this
asymptotic expansion explicitly. Hence, we evaluate its contribution to the double-layer potential
using an approximation like the one in (2.16). By removing the kernel’s sharp peak in this way, we
are left with a smooth function to integrate using the PTRN . We present this method to evaluate the
double-layer potential for the interior Dirichlet problem for Laplace’s equation in Section 3, and the
single-layer potential for the exterior Neumann problem for Laplace’s equation in Section 4.

3 Double-layer potential for the interior Dirichlet problem

Consider a simply connected, open set denoted by D ⊂ R2, with analytic boundary ∂D. Let D =
D ∪ ∂D. The function u ∈ C2(D) ∩ C1(D) satisfies

∆u = 0 in D, (3.1a)

u = f on ∂D, (3.1b)

with f an analytic function. We seek u as the double-layer potential [20],

u(x) =
1

2π

∫
∂D

K(x,y)µ(y)dσy, x ∈ D, (3.2)

with

K(x,y) = ny ·
x− y

|x− y|2
. (3.3)

The density, µ, satisfies the boundary integral equation,

−1

2
µ(y) +

1

2π

∫
∂D

K(y,y′)µ(y′)dσy′ = f(y), y ∈ ∂D. (3.4)

In what follows, we assume that we have solved (3.4) using PTRN .
To evaluate (3.2) when x is close to the boundary, we set

x = y∗ − ε

|κ∗|
n∗y, (3.5)

where y∗ is the closest point to x on the boundary, n∗y is the unit, outward normal at y∗, κ∗ is the
signed curvature at y∗, and ε > 0 is a small parameter. Fig. 3 gives a sketch of these quantities.
Substituting (3.5) into (3.3) yields

K

(
y∗ − ε

|κ∗|
n∗y,y

)
=
|κ∗|
ε

ny · |κ∗|(y∗ − y)/ε− ny · n∗y
|κ∗(y∗ − y)/ε|2 − 2n∗y · |κ∗|(y∗ − y)/ε+ 1

. (3.6)
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Figure 3: Sketch of the quantities introduced in (3.5) to study evaluation points close to the boundary.

We have written K in (3.6) to reveal its inherent dependence on the stretched variable, y = y∗ +
εY/|κ∗|.

3.1 Matched asymptotic expansion of the kernel

We determine the matched asymptotic expansion of (3.6) [8]. Consider first the outer expansion in
which y∗ and y are held fixed and ε→ 0+, so that |Y| → ∞. To leading order, we find that

Kout ∼ −|κ
∗|
ε

ny ·Y
|Y|2

=
ny · (y∗ − y)

|y∗ − y|2
. (3.7)

The error of (3.7) is O(ε). Since this outer expansion is the kernel in (3.4), we find that

1

2π

∫
∂D

Kout(y∗ − y)µ(y)dσy = f(y∗) +
1

2
µ(y∗). (3.8)

The inner expansion is (3.6) written in terms of the stretched variable, Y. We seek an explicit
parameterization of this inner expansion using y(t) = (y1(t), y2(t)), with t ∈ [0, 2π]. It follows that
dσy = |y′(t)|dt, the unit tangent is τ y(t) = (y′1(t), y′2(t))/|y′(t)|, the outward unit normal is ny(t) =
(y′2(t),−y′1(t))/|y′(t)|, and the signed curvature is κ(t) = (y′1(t)y′′2 (t) − y′′1 (t)y′2(t))/|y′(t)|3. Let y∗ =
y(t∗) and κ∗ = κ(t∗) with t∗ ∈ [0, 2π]. We introduce the stretched parameter, t = t∗ + εT , and find
by expanding about ε = 0 that

y(t∗ + εT ) = y(t∗) + εT |y′(t∗)|τ y(t∗)− 1

2
ε2T 2

[
κ∗|y′(t∗)|2ny(t∗)− (τ y(t∗) · y′′(t∗))τ y(t∗)

]
+O(ε3).

(3.9)
It follows that

ny(t∗ + εT ) · |κ∗|(y(t∗)− y(t∗ + εT )) = −1

2
ε2T 2γ∗ +O(ε3), (3.10)

ny(t∗) · |κ∗|(y(t∗)− y(t∗ + εT )) =
1

2
ε2T 2γ∗ +O(ε3), (3.11)

ny(t∗ + εT ) · ny(t∗) = 1− 1

2
ε2T 2|γ∗|2 +O(ε3), (3.12)

and
|κ(t∗)[y(t∗)− y(t∗ + εT )]|2 = ε2T 2|γ∗|+O(ε3), (3.13)
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with γ∗ = sgn[κ∗]|κ∗y′(t∗)|2. Here, sgn[x] = x/|x| for x 6= 0 and sgn[x] = 0 for x = 0. Substituting
(3.10) – (3.13) into (3.6), we find that

K in(T ; ε) = |κ(t∗)|
−ε− 1

2ε
2T 2γ∗ +O(ε3)

ε2T 2|γ∗|+ ε2 +O(ε3)
. (3.14)

Next, we substitute ε2T 2 ∼ 2−2 cos(t−t∗) into (3.14) and determine that the leading order asymptotic
behavior of K in is given by

K in(t− t∗; ε) ∼ |κ(t∗)| −(γ∗ + ε) + γ∗ cos(t− t∗)
(2|γ∗|+ ε2)− 2|γ∗| cos(t− t∗)

. (3.15)

The error of (3.15) is at most O(ε).
To form the leading order matched asymptotic expansion, we establish asymptotic matching in the

overlap region of the outer and inner expansions. We first evaluate (3.7) in the limit as y → y∗ and
find that

Kout → −κ
∗

2
, y→ y∗. (3.16)

Next, we evaluate (3.15) in the limit as ε→ 0+ and find that

K in → −κ
∗

2
, ε→ 0+. (3.17)

Thus, the overlapping value is −κ∗/2. It follows that the matched asymptotic expansion for the kernel
of the double-layer potential is given by

K = Kout +K in +
κ∗

2
+O(ε), ε→ 0+, (3.18)

with Kout given in (3.7) and K in given in (3.15). The error of this matched asymptotic expansion has
O(ε) error because the error of Kout given by (3.7) is O(ε), and K in given by (3.15) is at most O(ε).
For example, we plot K, K in, and Kout in Fig. 4 as a function of t− t∗ with t∗ = π and ε = 0.1 for the
boundary curve r(t) = 1 + 0.3 cos 5t. The right plot shows the L∞-error made by (3.18) as a function
of ε. The solid curve is the linear fit through these data and has slope 1.2034 consistent with the O(ε)
error.

3.2 Fourier coefficients of K in

The inner expansion given by (3.15) accurately captures the sharp peak of the kernel at t = t∗ in the
limit as ε → 0+ as shown in Fig. 4. To avoid using PTRN to integrate over this sharp peak, we seek
the Fourier coefficients,

K̂ in[n] =
1

2π

∫ 2π

0

K in(t; ε)e−intdt, (3.19)

so that we may use an approximation similar to that given in (2.16). To do so, we rewrite (3.15) as

K in(t− t∗; ε) = −|κ(t∗)|
C0

1
2A0 −A1 cos(t− t∗)

1 + C1 cos(t− t∗)
, (3.20)

with A0 = 2(γ∗ + ε), A1 = γ∗, C0 = 2|γ∗| + ε2, and C1 = −2|γ∗|/C0. Equation (3.20) gives K in as a
rational function of trigonometric polynomials which have been studied by Geer [14] in the context of
constructing Fourier-Padé approximations. Since |C1| < 1, we have

K̂ in[n] =


1+ρ2

1−ρ2
(
A0

2 +A1ρ
)
, n = 0

1+ρ2

1−ρ2

(
A0ρ

|n|

4 +A1(ρ|n|−1 + ρ|n|+1)
)
, n 6= 0

, (3.21)
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Figure 4: [Left] Plot of the kernel, K, given in (3.6) (solid curve) and the leading order behavior of its
inner expansion, K in given in (3.15) (dashed curve) and its outer expansion, Kout given in (3.7) (dotted
curve) as a function of t−t∗ with t∗ = π and ε = 0.1 for the boundary curve, r(t) = 1+0.3 cos 5t. [Right]
L∞–error of the matched asymptotic expansion given in (3.18) evaluated at t∗ = π for ε = 0.0001,
0.001, 0.01, and 0.1. These computed errors are plotted as circles. The solid curve gives the result of
fitting this data to the function, Cεp. This fit produced p = 1.2034 indicating the O(ε) error of the
matched asymptotic expansion.

where ρ =
(√

1− C2
1 − 1

)
/C1.

We find that we can improve on our approximation by considering the specific case in which the
boundary is a circle of radius a. For that case, Kout = −κ∗/2 which cancels with the asymptotic
matching term in (3.18). If we set

A0 = 2(γ∗ + ε− ε|γ∗|), (3.22a)

A1 = γ∗ − ε|γ∗|, (3.22b)

C0 = 2(|γ∗| − εγ∗) + ε2, (3.22c)

C1 = −2(|γ∗| − εγ∗)/C0, (3.22d)

instead of the coefficients defined above, we find that (3.20) gives the exact evaluation of the kernel
at r = a(1− ε). For this reason, we use (3.22) in (3.20) and (3.21) in practice. These coefficients just
include the O(ε3T 2) terms in the asymptotic expansion of K in for a general boundary.

To compute the contribution by K in to the double-layer potential, we use the approximation

1

2π

∫ 2π

0

K in(t− t∗; ε)µ(t)|y′(t)|dt ≈
N/2−1∑
n=−N/2

K̂ in∗[n]µ̂y[n]e−int
∗
, (3.23)

with

µ̂y[n] =
1

2π

∫ 2π

0

µ(t)|y′(t)|e−intdt. (3.24)

We use (3.21) and compute (3.24) using the Fast Fourier Transform to evaluate the approximation
in (3.23). Provided that N is chosen to solve boundary integral equation (3.4) so that µ(t)|y′(t)| is
sufficiently resolved, the approximation in (3.23) is spectrally accurate.

3.3 Evaluating the double-layer potential

The new method developed here for close evaluation of the double-layer potential uses (3.18). For
convenience, let us introduce the residual kernel,

K̃ = K −Kout −K in − κ∗

2
. (3.25)
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K̃ = O(ε) and more importantly, it does not have a sharp peak about t = t∗. We rewrite the double-
layer potential as

u

(
y∗ − ε

|κ∗|
n∗y

)
=

1

2π

∫ 2π

0

K̃(t− t∗; ε)µ(t)|y′(t)|dt+
1

2π

∫ 2π

0

Kout(t− t∗; ε)µ(t)|y′(t)|dt

+
1

2π

∫ 2π

0

K in(t− t∗; ε)µ(t)|y′(t)|dt+
κ∗

4π

∫ 2π

0

µ(t)|y′(t)|dt. (3.26)

Substituting (3.8) and (3.23) into (3.26), we obtain

u

(
y∗ − ε

|κ∗|
n∗y

)
≈ 1

2π

∫ 2π

0

[
K̃(t− t∗; ε) +

κ∗

2

]
µ(t)|y′(t)|dt+f(y(t∗))+

1

2
µ(t∗)+

N/2−1∑
n=−N/2

K̂ in∗[n]µ̂y[n]e−int
∗
.

(3.27)
Applying PTRN with tj = 2πj/N to the remaining integral in (3.27), we arrive at

u

(
y∗ − ε

|κ∗|
n∗y

)
≈ 1

N

N∑
j=1

[
K̃(tj − t∗; ε) +

κ∗

2

]
µ(tj)|y′(tj)|+f(y(t∗))+

1

2
µ(t∗)+

N/2−1∑
n=−N/2

K̂ in∗[n]µ̂y[n]e−int
∗
.

(3.28)
Equation (3.28) gives our method for computing the double-layer potential for close evaluation

points. It avoids aliasing incurred by the sharp peak of K in by using (3.23). Integration of Kout is
replaced by f(y∗) + 1

2µ(y∗), which comes from evaluating boundary integral equation (3.4) at y∗.

PTRN is now used only to integrate the term with the kernel, K̃ + κ∗/2. This term is important for
taking into account additional, non-local contributions to the double-layer potential, which may be
significant.

3.4 Numerical results

We present results of this method for evaluating the double-layer potential by computing the harmonic
function, u(x) = − 1

2π log |x − x0| with x0 = (1.85, 1.65). We compute the solution interior to the
boundary curve, r(t) = 1.55 + 0.4 cos 5t. The Dirichlet data in (3.1b) is determined by evaluating
the harmonic function on the boundary. Boundary integral equation (3.4) is solved using PTRN and
we use the resulting density, µ(tj) with tj = 2πj/N for j = 1, · · · , N in the double-layer potential.
We evaluate the double-layer potential using two methods: (1) PTRN and (2) asymptotic PTRN , the
new method given in (3.28). We present the solution on a body-fitted grid in which evaluation points
are found by moving along the normal into the domain from boundary grid points. The solution is
evaluated on a grid of 200 equispaced points along each normal starting at the boundary until we
reach a distance 1/κmax from the boundary, where κmax = max0≤t∗<2π |κ(t∗)|. This grid captures the
boundary layer, but does not coincide exactly with it since the boundary layer depends on the local
curvature. For regions of high curvature, this body-fitted grid extends beyond the boundary layer.

In Fig. 5 we show the errors (log10-scale) in computing the double-layer potential using PTR128

and asymptotic PTR128. These results show that asymptotic PTRN produces errors that are several
orders of magnitude smaller than those of the PTRN . To give an indication of this improvement, the
L∞ error is 8.03 for PTR128 and 1.85 × 10−4 for asymptotic PTR128. To examine this error in more
detail, we show in Fig. 6 a plot of the error in computing the double-layer potential evaluated at the
points indicated in Fig. 5 (t∗ = 0, t∗ = π/2, and t∗ = π) as a function of ε. These three cases are
plotted over different ranges of ε corresponding to 0 < ε < κ(t∗)/κmax. We observe that asymptotic
PTRN does significantly better than PTRN for small ε as expected. It reduces the O(1) error by at
least four orders of magnitude. We find similar results over all values of t∗.

We can further improve the new method using the identity for the double-layer potential [20] (see
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Figure 5: [Left] Plot of absolute error (log10-scale) in computing the double-layer potential using
PTR128 for the boundary r(t) = 1.55 + 0.4 cos 5t for the Dirichlet data, f(y) = 1

2π log |y − x0| with
x0 = (1.85, 1.65). [Right] Plot of absolute error (log10-scale) in computing the double-layer potential
using the asymptotic PTR128 given in (3.28) for the same problem. The “×” symbols on the boundary
indicates the points corresponding to t∗ = 0, t∗ = π/2, and t∗ = π.
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Figure 6: Plot of the absolute error as a function of ε made in evaluating the double-layer potential
for different t∗ values using PTR128 (solid curve) and using asymptotic PTR128 (dashed curve).

(5.1)) to rewrite (3.2) as follows:

u(x) =
1

2π

∫
∂D

K(x,y)(µ(y)− µ(y∗))dσy − µ(y∗), x ∈ ∂D. (3.29)

In (3.29), the integrand is now smoother as it vanishes at the point y = y∗, and the error using PTRN

11



drastically decreases. Applying asymptotic PTRN to (3.29), we obtain

u

(
y∗ − ε

|κ∗|
n∗y

)
≈ 1

N

N∑
j=1

[
K̃(tj − t∗; ε) +

κ∗

2

]
(µ(tj)−µ(t∗))|y′(tj)|+f(y(t∗))+

N/2−1∑
n=−N/2

K̂ in∗[n]µ̂∗y[n]e−int
∗

(3.30)
with

µ̂∗y[n] =
1

2π

∫ 2π

0

(µ(t)− µ(t∗))|y′(t)|e−intdt. (3.31)

For the example problem discussed above, the L∞ error is 7.13 × 10−5 for PTR128 applied to (3.29),
and 2.54 × 10−5 for asymptotic PTR128 given by (3.30). This additional improvement (3.29) is only
valid for the double-layer potential and does not generalize.

4 Single-layer potential for the exterior Neumann problem

We now consider the exterior Neumann problem,

∆v = 0 in R2\D̄, (4.1a)

∂v

∂n
= g on ∂D, (4.1b)

with g denoting an analytic function satisfying∫
∂D

g(y)dσy = 0. (4.2)

We seek v as the single-layer potential [20],

v(x) =
1

2π

∫
∂D

S(x,y)ϕ(y)dσy, x ∈ R2\D̄, (4.3)

with
S(x,y) = − log |x− y|. (4.4)

The density, ϕ(y), satisfies the boundary integral equation,

−1

2
ϕ(y) +

1

2π

∫
∂D

∂S(y,y′)

∂ny
ϕ(y′)dσy′ = g(y), y ∈ ∂D. (4.5)

To study the close evaluation of (4.3), we now set

x = y∗ +
ε

|κ∗|
n∗y. (4.6)

Substituting (4.6) into (4.4), we obtain

S

(
y∗ +

ε

|κ∗|
n∗y,y

)
= − log ε+ log |κ∗| − 1

2
log
(
|κ∗(y∗ − y)/ε|2 + 2n∗y · |κ∗|(y∗ − y)/ε+ 1

)
. (4.7)

Just as we have done for K in (3.6), we have written (4.7) to show the underlying dependence on the
stretched variable, y = y∗ + εY/|κ∗|.

The outer expansion of (4.7) is Sout ∼ − log |y∗−y|. This outer expansion is singular. In contrast
to the double-layer potential, this outer expansion does not correspond to the kernel boundary integral
equation (4.5). One could use a high order quadrature rule that explicitly takes into account this
singularity [2, 19]. However, we choose to not use one here because we find in the numerical examples
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below that our method significantly reduces the dominant error. To compute the inner expansion, Sin,
we introduce the stretched parameter, t = t∗ + εT into the same parameterization of the boundary
used for the double-layer potential. Making use of (3.10) and (3.12), we find by expanding as ε→ 0+

that

Sin(T ; ε) = log |κ∗| − 1

2
log
(
ε2T 2|γ∗|+ ε2 +O(ε3)

)
. (4.8)

Substituting ε2T 2 ∼ 2− 2 cos(t− t∗), we find that to leading order,

Sin(t− t∗; ε) ∼ log |κ∗| − 1

2
log
(
(2|γ∗|+ ε2)− 2|γ∗| cos(t− t∗)

)
. (4.9)

4.1 Fourier coefficients of Sin

Using the modified coefficients introduced in (3.22), we write (4.9) as

Sin(t− t∗; ε) ∼ log |κ∗| − 1

2
logC0 −

1

2
log[1 + C1 cos(t− t∗)]. (4.10)

We now seek to compute

Ŝin[n] = δn,0

[
log |κ∗| − 1

2
logC0

]
− 1

2π

∫ 2π

0

1

2
log[1 + C1 cos(t− t∗)]e−intdt, (4.11)

with δn,0 denoting the Kronecker delta. To compute the integral in (4.11), we start with

d

dt
log[1 + C1 cos(t− t∗)] =

C1 sin(t− t∗)
1 + C1 cos(t− t∗)

. (4.12)

The right-hand side of (4.12) is another example of a rational trigonometric function studied by
Geer [14]. It can be readily shown that

1

2π

∫ 2π

0

sin(t− t∗)
1 + C1 cos(t− t∗)

eintdt = sgn(n)
i

2

1 + ρ2

1− ρ2
(
ρ|n|−1 − ρ|n|+1

)
, (4.13)

where ρ =
(√

1− C2
1

)
/C1. It follows from term-by-term integration of the Fourier series with these

coefficients that

Ŝin[n] =


log |κ∗| − 1

2
logC0 −

C1

2

1 + ρ2

1− ρ2

(
1

ρ
− ρ
)

log(1− ρ) n = 0,

C1

4|n|
1 + ρ2

1− ρ2
(
ρ|n|−1 − ρ|n|+1

)
n 6= 0.

(4.14)

4.2 Evaluating the single-layer potential

Given the inner expansion computed above, our method for evaluating the single-layer potential is to
compute an approximation of

v

(
y∗ +

ε

|κ∗|
n∗y

)
=

1

2π

∫ 2π

0

S̃(t− t∗)ϕ(t)|y′(t)|dt+
1

2π

∫ 2π

0

Sin(t− t∗; ε)ϕ(t)|y′(t)|dt, (4.15)

with S̃ = S − Sin. We use PTRN to evaluate the first integral with kernel, S̃, and a truncated
convolution sum to evaluate the second integral with kernel, Sin,

v

(
y∗ +

ε

|κ∗|
n∗y

)
≈ 1

N

N∑
j=1

S̃(tj − t∗)ϕ(tj)|y′(tj)|+
N/2−1∑
n=−N/2

Ŝin[n]ϕ̂y[n]e−int
∗
, (4.16)
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where we compute

ϕ̂y[n] =
1

2π

∫ 2π

0

ϕ(t)|y′(t)|e−intdt, (4.17)

using the Fast Fourier Transform. Just as with the double-layer potential, provided that N is chosen
so that it solves boundary integral equation (4.5) with sufficient accuracy, the truncated convolution
sum in (4.16) is spectrally accurate.

4.3 Numerical examples

We present results for the evaluation of the single-layer potential by computing the harmonic function,
v(x) = (x−x0)/|x−x0|2, with x0 = (0.1, 0.4). We compute the solution exterior to the the boundary
curve, r(t) = 1.55 + 0.4 cos 5t. The Neumann data in (4.1b) is determined by computing the normal
derivative of the harmonic function on the boundary. Boundary integral equation (4.5) is solved using
PTRN and we use the resulting density ϕ(tj) with tj = 2πj/N for j = 1, · · · , N in the single-layer
potential. We evaluate the single-layer potential using two methods: (1) PTRN and (2) asymptotic
PTRN , the new method given in (4.16). We modify the body-fitted grid described above for the
evaluation of the double-layer potential to evaluate exterior points. The solution is evaluated on a grid
of 200 equispaced points along each normal starting at the boundary until we reach a distance 1/κmax

from the boundary.

Figure 7: [Left] Plot of the absolute error (log10-scale) in computing the single-layer potential using
PTR128 for the boundary r(t) = 1.55 + 0.4 cos 5t for the Neumann data, g(y) = ∂v

∂n with v(x) =
(x − x0)/|x − x0|2, x0 = (0.1, 0.4). [Right] Plot of the absolute error (log10-scale) in computing the
single-layer potential using asymptotic PTR128 given in (4.16) for the same problem. The “×” symbols
on the boundary indicates the points corresponding to t∗ = 0, t∗ = π/2 and t∗ = π.

In Fig. 7 we show the absolute error (log10-scale) in computing the single-layer potential using
the PTR128 and using asymptotic PTR128. The single-layer potential kernel is not as sharply peaked
as the double-layer potential kernel, so the error in evaluating the single-layer potential is less than
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the error when evaluating the double-layer potential. Even so, we still observe a boundary layer of
thickness O(1/N) in which the error is O(1) due to aliasing when using PTRN . Asymptotic PTRN

effectively reduces the error in the boundary layer. To give an indication of this improvement, the
L∞ error is 0.113 for PTR128 and 5.39× 10−5 for asymptotic PTR128. In Fig. 8, we plot the error in
computing the single-layer potential evaluated at the points indicated in Fig. 7 (t∗ = 0, t∗ = π/2 and
t∗ = π) as a function of ε with 0 < ε < κ(t∗)/κmax. These plots show that the asymptotic method
reduces the error by at least 3 orders of magnitude for small ε. We find similar results over all values
of t∗. For the case in which t∗ = π, the error of asymptotic PTRN becomes larger than that for
PTRN for 0.36 < ε < 0.52. For this particular boundary curve, κmax is attained at t∗ = π. Hence,
the body-fitted grid at t∗ = π plots the single-layer potential over 0 < ε < 1. For this range of ε, we
consider points outside the boundary layer where PTRN is competitive with, and may even become
more accurate than asymptotic PTRN . In fact, that is what is observed in Fig. 8 for t∗ = π.
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Figure 8: Plot of the absolute error as a function of ε made in evaluating the single-layer potential for
different t∗ using PTR128 (solid curve) and using asymptotic PTR128 (dashed curve).

5 General implementation

In the results presented above, we are using a body-fitted grid, in which evaluation points are found
by moving along the normal into the domain from boundary integration points. Often the solution
is needed at more generally defined points. Asymptotic PTRN tacitly assumes in (3.5) for interior
problems, or (4.6) for exterior problems, that y∗, is the unique minimum distance from the boundary
to the evaluation point, x. In the examples, the closest point on the boundary, y∗ coincides with a
PTRN grid point from which we extended in the normal direction. We discuss here the more general
problem.

Suppose we have an evaluation point in the domain, x. Then the first problem to address is whether
x is, in fact, close enough to the boundary to warrant special attention and requires use of asymptotic
PTRN . To solve this problem, we make use of the identity for the double-layer potential [20],

1

2π

∫
∂D

ny · (x− y)

|x− y|2
dσy =


−1 x ∈ D
− 1

2 x ∈ ∂D
0 x ∈ R2 \D

. (5.1)

Evaluating (5.1) using PTRN suffers from the same aliasing problem that the more general layer
potential evaluations do. Thus, we use it to determine if x lies within the boundary layer. To do this,
we set a user-defined threshold for the error. If the error in evaluating (5.1) using PTRN is less than
this threshold value, we keep the result computed using PTRN . Otherwise, we use the appropriate
asymptotic approximation.
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To use these asymptotic approximations, we must determine the parameter, t∗, where t∗ =
min0≤t<2π |x − y(t)|2. For a general boundary, this problem may not have a unique solution. In
practice, we find a unique minimizer for evaluation points that are identified to be in the boundary
layer using PTRN evaluation of (5.1). Once t∗ is determined, all other quantities required for the
asymptotic approximations follow. Finally, we evaluate the solution of the boundary value problem at
hand at any point x using either PTRN or asymptotic PTRN .

We present results of this generalized method for evaluation of the double-layer potential and
single-layer potential for the same problems presented in Section 3.4 and 4.3, respectively. We use
a threshold of 1 × 10−8, as described above, to determine when the evaluation point is inside the
boundary layer and asymptotic PTRN method is to be used. In Fig. 9 we show the error in computing
the double-layer potential using PTR256 and asymptotic PTR256 when solving on a Cartesian grid with
meshsize h = 0.005 within the boundary curve. Similarly, we present the evaluation of the single-layer
potential in Fig. 10. Here, we are computing on a Cartesian grid with meshsize h = 0.005 exterior to
the boundary curve. These results show, similar to the results while considering a body-fitted grid,
that the error made by asymptotic PTRN is several orders of magnitude smaller than those made
by PTRN . However, there are more variations in these errors because y∗ does not always coincide
with a quadrature point. We choose to use 256 quadrature points here as this is what is actually
needed to solve the boundary integral equations for the densities such that µ(t)|y′(t)| and ϕ(t)|y′(t)|
are sufficiently resolved. We were able to use less points for the body-fitted grid as this restriction is
not as strict when y∗ is a quadrature point.

Figure 9: [Left] Plot of the absolute error (log10-scale) in computing the double-layer potential using
PTR256 for the boundary r(t) = 1.55 + 0.4 cos 5t for the Dirichlet data, f(y) = 1

2π log |y − x0| with
x0 = (1.85, 1.65). We evaluate the solution inside the domain on a regular grid. [Right] Plot of the
absolute error (log10-scale) in computing the double-layer potential using asymptotic PTR256 given in
(3.28) for the same problem. The asymptotic method is used in a boundary layer determined by a
threshold on the error from evaluating (5.1).

6 Conclusions

We have presented a new method to address the close evaluation problem. When solving boundary
value problems using boundary integrals equation methods, the solution is evaluated at desired points
within the domain by numerically evaluating layer potentials. Using the same quadrature rule that is
used to solve the integral equation for this evaluation achieves high order accuracy everywhere in the
domain, except close to the boundary where an O(1) error is incurred. The new method developed here
takes advantage of the knowledge of the sharply peaked kernel of layer potentials close to the boundary
to reduce this error by several orders of magnitude. We have used asymptotic methods to analyze the
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Figure 10: [Left] Plot of the absolute error (log10-scale) in computing the single-layer potential using
PTR256 for the boundary r(t) = 1.55 + 0.4 cos 5t for the Neumann data, g(y) = ∂v

∂n with v(x) =
(x−x0)/|x−x0|2, x0 = (0.1, 0.4). [Right] Plot of log10 of the absolute error (log10-scale) in computing
the single-layer potential using the asymptotic PTR256 given in (4.16) for the same problem. The
asymptotic method is used in a boundary layer determined by a threshold on the error from evaluating
(5.1).

kernels of the double- and single-layer potentials to relieve the numerical method from having to
integrate over this sharply peaked kernel. The resulting method is straightforward to implement.
We have presented results for both the interior Dirichlet problem and exterior Neumann problem for
Laplace’s equation and show a reduction in error of four to five orders of magnitude in the solution
evaluation close to the boundary. Furthermore, we have presented how to generalize this method to
solve within the whole domain, including how to determine when to use the new asymptotic method.

This asymptotic method has been recently applied to acoustic scattering problems by sound-soft
obstacles [9]. For those problems, the sharp peaks in the kernels for the single- and double-layer
potentials, both which are needed, have the same character as those for Laplace’s equation discussed
here. Hence, only small modifications are needed to apply these methods to wave propagation problems.
We are currently extending this asymptotic method to three-dimensional problems. Furthermore, we
are working on different applications which include extending the method presented here to the Stokes
equations and studying surface plasmons.
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