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Abstract

Accurate evaluation of layer potentials near boundaries is needed in many applications, in-
cluding fluid-structure interactions and near-field scattering in nano-optics. When numerically
evaluating layer potentials, it is natural to use the same quadrature rule as the one used in the
Nystrom method to solve the underlying boundary integral equation. However, this method is
problematic for evaluation points close to boundaries. For a fixed number of quadrature points,
N, this method incurs O(1) errors in a boundary layer of thickness O(1/N). Using an asymp-
totic expansion for the kernel of the layer potential, we remove this O(1) error. We demonstrate
the effectiveness of this method for interior and exterior problems for Laplace’s equation in two
dimensions.

Keywords: Boundary integral equations, Laplace’s equation, Layer potentials, Nearly singular
integrals, Close evaluations.

1 Introduction

Boundary integral equation methods are useful for solving boundary value problems for linear, elliptic,
partial differential equations [13, 16]. Rather than solving the partial differential equation directly,
one represents the solution as a layer potential, an integral operator applied to a density. The density
is the solution of an integral equation on the boundary of the domain that includes the prescribed
boundary data. This formulation offers several advantages for the numerical solution of boundary
value problems. First, the dominant computational cost is from the integral equation on the boundary
whose dimension is lower than that of the domain. Second, this boundary integral equation can be
solved to very high order using Nystrom methods [2, 11]. Finally, the solution, given by this layer
potential, can be evaluated anywhere in the domain without restriction to a particular mesh. For these
reasons, boundary integral equations have found broad applications, including in fluid mechanics and
electromagnetics.

One particular challenge in using boundary integral equation methods is the so-called close evalu-
ation problem [4, 14]. Since a layer potential is an integral over the boundary, it is natural to evaluate
it numerically using the same quadrature rule used in the Nystrom method to solve the boundary
integral equation. In that case, we say that the layer potential is evaluated using its native quadrature
rule. Numerical evaluation of the layer potential using its native quadrature rule inherits the high
order accuracy associated with solving the boundary integral equation, except for points close to the
boundary. For these close evaluation points, the native quadrature rule produces an O(1) error. This
O(1) error is due to the nearly singular behavior of the layer potential, which is due to the layer
potential’s sharply peaked kernel.

For many problems, close evaluation of the layer potential is not needed. For example, consider the
classical scattering problem in which a wave is incident on an obstacle [8]. For this problem, one seeks
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to compute the scattered field for evaluation points far away from the obstacle where measurements
are taken. However, there are several problems that require accurate layer potential evaluations close
to the boundary of the domain. For example, modeling of micro-organisms swimming, suspensions of
droplets, and blood cells in Stokes flow use boundary integral methods [22, 3, 18, 15]. The key to
these problems is the accurate computation of velocity fields or forces close to the boundary as these
quantities provide the physical mechanisms leading to locomotion and other phenomena of interest.
Another example is in the field of plasmonics [17], where one seeks to gain control of light at the
sub-wavelength scales for applications such as nano-antennas [1, 20] and sensors [19, 21]. Surface
plasmons are sub-wavelength fields localized at interfaces between nano-scale metal obstacles and
their surrounding dielectric background medium. Thus, these problems require accurate computation
of electromagnetic fields near interfaces. For these reasons, we are motivated to address the close
evaluation problem.

The close evaluation problem for layer potentials has been studied previously for Laplace’s equation.
For example, Beale and Lai [5] have studied this problem in two dimensions by first regularizing the
nearly singular kernel and then adding corrections for both the discretization and the regularization.
The result of this approach is a uniform error in space. This method has been extended to three-
dimensional problems [6]. Helsing and Ojala [14] have studied the Dirichlet problem in two dimensions
by combining a globally compensated quadrature rule along with interpolation to achieve very accurate
results over all regions of the domain. Barnett [4] has also studied this problem in two dimensions. In
that work, Barnett has established a bound for the error associated with the periodic trapezoid rule.
We make use of this result in our work below. To address the O(1) error in the close evaluation problem,
Barnett has used surrogate local expansions with centers placed near, but not on, the boundary. This
method leads to very accurate evaluation of the layer potential close to the boundary. As an alternative
to these methods, we develop a new method that exploits the behavior of the kernel within the layer
potential to address the close evaluation problem. We analytically determine the asymptotic behavior
of the kernel and use this expansion to evaluate the layer potential with significantly less error close
to the boundary. Furthermore, this new method is straightforward to numerically implement.

In this paper, we study the close evaluation problem in two dimensions for Laplace’s equation. We
use a Nystrom method based on the periodic trapezoid rule (PTR) to solve the boundary integral
equation. We study the double-layer potential for the interior Dirichlet problem and the single-layer
potential for the exterior Neumann problem. For both of these problems, we introduce an asymptotic
expansion for the sharply peaked kernel of the layer potential for close evaluation points, which is the
main cause for error. Using the Fourier series of this asymptotic expansion, we compute its contribution
to the layer potential with spectral accuracy. Through several examples, we show that this asymptotic
method effectively reduces errors in the close evaluation of layer potentials.

The remainder of this paper is as follows. In Section 2 we study in detail the illustrative example
of the interior Dirichlet problem for a circular disk. For this problem, we obtain an explicit error when
using the PTR to evaluate the double-layer potential. This error motivates the use of an asymptotic
expansion for the sharply peaked kernel in the general method we develop in Section 3 to evaluate the
double-layer potential for the interior Dirichlet problem. In Section 4, we extend this method to the
single-layer potential for the exterior Neumann problem. We discuss the general implementation of
these methods in Section 5.

2 Illustrative example: interior Dirichlet problem for a circu-
lar disk

In this section, we illustrate the close evaluation problem by considering the interior Dirichlet problem
for Laplace’s equation in the circular disk of radius a,

Au=0 inD={r<a}, (2.1a)
u=f ondD={r=a}. (2.1b)
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Figure 1: [Left] Plot of the kernel, K(t — t*), defined in (2.5) with a = 1 for » = 0.9 (dot-dashed
curve), 0.95 (dashed curve), and 0.99 (solid curve). [Right] Plot of the kernel, K (¢t — t*), with a = 1,
and r = 0.99 (solid curve), and the corresponding piecewise linear approximation associated with the
128-point PTR (dot-dashed curve).

It is well understood that the solution of (2.1) is given by Poisson’s formula [23]. Here, we seek the
solution as the double-layer potential [16],

_ 1 n, (x-y) o
wx) =g [ P vy (22)

Here, x € D denotes the evaluation point, y € dD denotes the variable of integration, n, denotes
the unit, outward normal at y, and do, denotes a differential boundary element. The density, u(y),
satisfies the following boundary integral equation,

1 1 e
—5H(y) = o — e u(y)doy = f(y), (2.3)
from which we determine that
1 /
= — do, —2 . 2.4
wy) =5 — i f(y')doy —2f(y) (2.4)

To numerically evaluate (2.2), we substitute the parameterization, x = (r cost*,rsint*), and y =
(acost,asint), with r < a, and t*,¢ € [0, 27], and obtain

1 [ ar cos(t — t*) — a? 1 [
* — = — K — t* . 2
u(r,t) 27 /0 {aQ + 72 — 2ar cos(t — t*)] pit)dt 27 Jo (t = #)u()at (2:5)

Using the N-point PTR with points 27j/N for j = 1,--- , N, to approximate (2.5), we obtain

w(r, ) ~ UN (1, #) = ;Viv;f{ (2;3 - t*) i (2]7\?7) . (2.6)

The error, UN (r,t*) —u(r, t*), is not uniform in D. In particular, U¥ is very accurate for evaluation
points far away from the boundary. On the other hand, it is O(1) when r ~ a. The reason for this
large error is due to the kernel, K (¢t —t*). In Fig. 1, we show plots of K as a function of t —¢*. The left
plot of Fig. 1 shows that K becomes sharply peaked about ¢ = t* when r ~ a. We do not evaluate the
double-layer potential on the boundary. Nonetheless, because K becomes sharply peaked as r — a,
we say that the double-layer potential is nearly singular.



Figure 2: Contour plot of log,, of the absolute value of the asymptotic error given by (2.15) with a =1
and N = 128.

For N fixed, the N-point PTR is unable to capture this sharp peak about ¢ = t* when r ~ a. The
right plot of Fig. 1 shows that the piecewise linear approximation of K used by the 128-point PTR
will grossly overestimate the magnitude of the double-layer potential for » = 0.99. It is this error that
leads to the O(1) errors produced by the PTR for close evaluation points. Barnett [4] has shown that
this error is O(1) for a —r = O(1/N). In light of this result, we say that the error exhibits a boundary
layer of thickness O(1/N) in which it undergoes rapid growth.

Using the error associated with the PTR [10], we find U defined in (2.6) satisfies

[ee)

UN(r,t") = u(r,t*)+ Y plIN], (2.7)
e
where o
ﬁ[k]:% [ K= e ar, (2.8)

The error in (2.7) is the aliasing of high frequencies. To determine p[k] explicitly, we use the Fourier
series representation of the kernel,

ar cos(t — t*) — a® 1 1 & lm|
K(t—t) = = 573 ) e, 0
( ) a2 + 12 —2arcos(t—t*) 22 ; ( Y
and of the density
P = D alnle, 210

to find

K(t—t)u :__ Z eint _ 1 i (£>‘mle—imt* i ﬂ[n]ei(m-‘rn)t. (2.11)
m=—o0

n=-—oo - n=—oo

Substituting (2.11) into (2.8), and rearranging terms, we find that

k] = —alk] — % i (g)m (eimt*ﬂ[k +m] + e ™ ik — m]) . (2.12)



We now obtain the error in using the PTR to evaluate the double-layer potential by substituting
(2.12) into (2.7) which yields

EN(r, %) = UN (r, ) —u(r, t*) = i{ “[IN] - % i [(g)m (N = ] +ﬂ*[lN+m}eimt*)}}

3 {eam = L S (i g mieo )]

Here, we have assumed p is real, so fi[—k] = f*[k], where [-]* denotes complex conjugation. Suppose
we have chosen N to be large enough such that for p solved using (2.4), we have g[IN] <« 1 for [ > 0.
For that case, only terms in (2.13) proportional to 4[IN —m] will substantially contribute to the error.
By neglecting the other terms, we obtain

Z Z (i> [Re{A[IN —m]} cos(mt*) + Im{a[IN — m]} sin(mt*)]. (2.14)

=1 m=1

Equation (2.14) is the asymptotic error made by the PTR approximation of the double-layer po-
tential. The key point is that this error is not uniform for r € [0,a). When r < a, we see that the
error is much smaller than when r ~ a. Consider the specific case in which g = 1, so that 4[0] =1
and fi[k] = 0 for all k # 0. For that case, (2.14) simplifies to

EN(’I’ t*) ~ (5)2]\’ — (E)NCOS(Nt*) .
7 1+ (2)2N*2(£)NCOS(Nt*)

a

(2.15)

According to (2.15), |[EN(a(1 —¢),t*)| = O((1 — &)V) = O(e==V), and |EN (r,t*)| — 1/2 as r — a.
These results show that EV has a boundary layer of thickness O(1/N) where it exponentially increases
to values that are O(1). Fig. 2 shows a plot of (2.15) over the entire circular disk and a close-up near
the boundary. These plots show the boundary layer about r = a where the error attains O(1) values.
In practice, we would like to set N based on the resolution required to solve the boundary integral
equation. It is neither desirable nor practical to increase NV just to reduce aliasing in the evaluation of
the double-layer potential. In light of this, we make the following observations.

e Equation (2.13) gives the error incurred by the N-point PTR to approximate the double-layer
potential. This error is due to aliasing. Equation (2.14) gives the asymptotic approximation of
this error when the N-point grid sufficiently samples pu.

e The aliasing error is not uniform with respect to r. For the case in which 4 = 1, the asymptotic
error simplifies to (2.15). From this result, we find that the error grows rapidly and becomes
O(1) in a boundary layer of thickness O(1/N) near the boundary. This boundary layer is shown
in Fig. 2.

e For points within the boundary layer, the sharply peaked kernel causes aliasing due to insufficient
resolution. Fig. 1 shows how the sharp peak of the kernel when r/a = 0.99 is under-resolved on
the 128-point PTR grid.

When using the PTR to evaluate (2.5), the derivation of the error suggests an alternative to compute
the double-layer potential for close evaluation points. We substitute (2.9) and (2.10) into (2.5) and

obtain
N/2—1

Z K*[n)jnle™ ™ ~ Z K*[n]an)e™ ™" (2.16)

n=-—00 n=—N/2

Since the coefficients, ji[n] for n = —N/2,--- | N/2—1, can be computed readily using the Fast Fourier
Transform, we introduce the truncated sum as an approximation in (2.16). The decay of fi[n] controls



Figure 3: Sketch of the quantities introduced in (3.5) to study evaluation points close to the boundary.

the error of this approximation. Therefore, choosing N to accurately solve the boundary integral
equation yields a spectrally accurate approximation of the double-layer potential.

For general problems, we do not know K [n] explicitly as we do here, so we compute an asymptotic
expansion of the sharply peaked kernel instead. We determine the Fourier coefficients of this asymp-
totic expansion explicitly. Hence, we evaluate its contribution to the double-layer potential using an
approximation like the one in (2.16). By removing the kernel’s sharp peak in this way, we are left with
a smooth function to integrate using the PTR. We present this technique in evaluating the double-layer
potential for the interior Dirichlet problem for Laplace’s equation in Section 3, and in evaluating the
single-layer potential for the exterior Neumann problem for Laplace’s equation in Section 4.

3 Double-layer potential for the interior Dirichlet problem

In this section, we generalize the ideas introduced in Section 2 for the close evaluation problem for the
interior Dirichlet problem. Consider a simply connected, open set denoted by D C R?, with analytic
boundary dD. Let D = DU AD. The function v € C%(D) N C*(D) satisfies

Au=0 in D, (3.1a)
u=f ondD, (3.1b)
with f an analytic function. We seek u as the double-layer potential [16],
1
w0 =5 [ Kxyuly)do, xeD, (32)
T JoD
with x—y
Kxy)=n, —. 3.3
( ) Y |X _ y‘g ( )
The density, u, satisfies the boundary integral equation,
1 1
—5h@)+ 5 [ K.y nly)ay = f(). € oD. (3.4)
T JoD
In what follows, we assume that we have solved (3.4) using the N-point PTR.
To evaluate (3.2) when x is close to the boundary, we set
x=y" — Con (3.5)

[



where y* is the closest point to x on the boundary, nj is the unit, outward normal at y*, x* is the signed
curvature at y*, and ¢ is a small parameter. Fig. 3 gives a sketch of these quantities. Substituting
(3.5) into (3.3) yields

K <y* - 6*

||

We have written K in (3.6) to reveal its inherent dependence on the stretched variable, y = y* +
eY/|k*|.

*

o y> _ |k*| n, - |[k*|(y” —y)/e—ny-ny
v’ e [r*(y* —y)/el* —2ny - [s*|(y* —y)/e +1

(3.6)

3.1 Matched asymptotic expansion of the kernel

We determine the matched asymptotic expansion of (3.6) [7]. Consider first the outer expansion in
which y* and y are held fixed and € — 0T, so that |Y| — oo. To leading order, we find that

_|"$*|ny'Y _ n, - (y" —y)
e [Y[? ly* —yl?

Ko~ (3.7)

The error of (3.7) is O(e). Since this outer expansion corresponds to the kernel in (3.4), it follows that

1
2T oD

Ko (y* — y)uly)doy = f(y°) + guly"). (38)

The inner expansion is determined by substituting the stretched variable, Y, into (3.6). We seek
an explicit parameterization of this inner limit using y(¢) = (y1(¢), y2(t)), with ¢ € [0, 27]. It follows
that do, = |y’(¢t)|d¢, the unit tangent is 7,(t) = (y1(¢),v5(¢))/]y’(t)], the outward unit normal is
ny(t) = (44(8), —y,(1))/ly’(2)], and the signed curvature is () = (5} ()w(1) — v} (4 (1)/Iy' ().
Let y* = y(t*) and «* = s(¢*) with t* € [0,27]. We introduce the stretched parameter, t = t* + T,
and find by expanding about ¢ = 0 that

y(" +eT) = y(t") + Ty’ (t")|my (") — %62T2 [7ly" () Py (87) = (74 (87) -y () 7y (t7)] + O(%).

(3.9)

It follows that )
n,(t" +eT) - " |(y(t") —y({t" +eT)) = —§€2T2'y* + 0(53)7 (3.10)

1 )
n, (t°) - [r*|(y(t") —y (" +eT)) = §€2T27* +0(%), (3.11)
n,(t* +eT) -ny(t*) =1— %52T2|7*|2 + 0(53)7 (3.12)
and

Rty (t") —y(t* +eT))]> = > T? ]| + O(e?), (3.13)

with v* = sgn[k*]|x*y’(t*)|?. Here, sgn[z] = x/|z| for x # 0 and sgn[z] = 0 for z = 0. Substituting

(3.10) — (3.13) into (3.6), we find that
—& — 12Ty + O(e3)
2T?|y*| +e2+0(e?)

K™ (Tse) = |s(t")] (3.14)

Next, we substitute €272 ~ 2—2 cos(t—t*) into (3.14) and determine that the leading order asymptotic
behavior of K™ is given by

—(7" +&) + 7" cos(t — )
@] +£?) — 2]y cos(t — )

K0(t—t%5€) ~ |r(t")] (3.15)
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Figure 4: [Left] Plot of the kernel, K, given in (3.6) (solid curve) and the leading order behavior of its
inner expansion, K' given in (3.15) (dashed curve) and its outer expansion, K°' given in (3.7) (dotted
curve) as a function of t—t* with t* = 7 and ¢ = 0.1 for the boundary curve, r(¢) = 140.3 cos 5¢. [Right]
Lo—error of the matched asymptotic expansion given in (3.18) evaluated at t* = 7 for ¢ = 0.0001,
0.001, 0.01, and 0.1. These computed errors are plotted as circles. The solid curve gives the result of
fitting this data to the function, CeP. This fit produced p = 1.2034 indicating the O(g) error of the
matched asymptotic expansion.

At worst, the error of (3.15) is O(e).
To form the leading order matched asymptotic expansion, we first evaluate (3.7) in the limit as
y — y* and find that

*

.Km“—a—%?, y =y (3.16)

Next, we evaluate (3.15) in the limit as ¢ — 0% and find that

*

Km%—%,a%m. (3.17)

Therefore, the matched asymptotic expansion for the kernel of the double-layer potential is given by

*

K:Km+Km+%+O@,s%Uﬂ (3.18)

with K°U given in (3.7) and K™ given in (3.15). The error of this matched asymptotic expansion has
O(e) error because the error of K°" given by (3.7) is O(¢), and K™ given by (3.15) is at most O(e).
For example, we plot K, K", and K°" in Fig. 4 as a function of ¢t —¢* with ¢* = 7 and € = 0.1 for the
boundary curve r(t) = 1+ 0.3 cos 5¢. The right plot shows the Loo-error made by (3.18) as a function
of . The solid curve is the linear fit through these data and has slope 1.2034 consistent with the O(e)
error.

3.2 Fourier coefficients of K'®

The inner expansion given by (3.15) accurately captures the sharp peak of the kernel in the limit as
e — 0%. Fig. 4 gives an example which clearly shows that K™ accurately captures the sharp peak
of K about t = t*. To avoid using the PTR to integrate over this sharp peak, we seek the Fourier

coefficients,
. 1 [ )
K"n]=— K™ (t;e)e” ™ dt, (3.19)
2w 0
so that we may use an approximation similar to that given in (2.16). To do so, we rewrite (3.15) as
[k (t*)| 3 A0 — Aj cos(t — t*)

K™(t—t"e) =
( i) Co 1+ Cicos(t—t*) "’

(3.20)



with Ag = 2(v* +¢), A1 =%, Co = 2]y*| + €2, and C; = —2|y*|/Cy. Equation (3.20) gives K'* as a
rational function of trigonometric polynomials which have been studied by Geer [12] in the context of
constructing Fourier-Padé approximations. Since |C}| < 1, we have

1+p° (AO +A1 ) —0

. - p n=

K™n)={ 177 , (3.21)
2 (4247 + Au(pl=t 4 pHY)) om0

where p = (\/1 - C? - 1) /Ch.
We find that we can improve on our approximation by considering the specific case in which the

boundary is a circle of radius a. For that case, K°" = —x*/2 which cancels with the asymptotic
matching term in (3.18). If we set

Ao =2(v* +e —elv*)), (3.22a)
Ay =" —ely, (3.22b)
Co = 2(]7*| — ev*) + &2, (3.22¢)
Cy = —2(|y*| - &97)/Co, (3.224)

instead of the coefficients defined above, we find that (3.20) gives the exact evaluation of the kernel
at r = a(1l — ). For this reason, we use (3.22) in (3.20) and (3.21) in practice. These coefficients just
include the 3T terms in the asymptotic expansion of K™ for a general boundary.

To compute the contribution to the double-layer potential from K™, we use the approximation

1 27 N/2 1
— [ KMt —t*;e)u(t)|y'(t)|dt ~ Z K™ [n)ji, [n]e ™ (3.23)
2 0 N2
with )
~ 1 " —in
bl = 5= [ uoly @t (3.24)

We use (3.21) and compute (3.24) using the Fast Fourier Transform to evaluate the approximation
n (3.23). Provided that N is chosen to solve boundary integral equation (3.4) so that wu(t)|y’(t)| is
sufficiently resolved, the approximation in (3.23) is spectrally accurate.

3.3 Evaluating the double-layer potential

The new method developed here for close evaluation of the double-layer potential uses (3.18). For
convenience, let us introduce the residual kernel,

*

K=K — K" _ Kin % (3.25)
K= O(e) and more importantly, it does not have a sharp peak about ¢ = t*. We rewrite the double-

layer potential as

* € * 1 ’r * / 1 o out * /
u (y _ mny) =5/ K(t—t*:e)u(t)|y (t)|dt+§/o KM (t =t e)u(t)]y'(t)|dt

27 * 2
v [ KM=y o L [ o 620
Substituting (3.8) and (3.23) into (3.26), we obtain
€ R e g K 1 N .
u(vr - mm) =g [ |RC- e+ S o O i) e Y. R llinle

(3.27)



Applying the N-point PTR with ¢; = 275 /N to the remaining integral in (3.27), we arrive at

. N/2-1

N
(v - o) = ) -0+ u(tj)Iy’(tj)|+f(y(t*))+;u(t*>+n_z;w2 K™ e

(3.28)

Equation (3.28) gives our method for computing the double-layer potential for close evaluation

points. It avoids aliasing incurred by the sharp peak of K™ by using (3.23). It replaces integration

of K°U by substituting the boundary integral equation (3.8). The N-point PTR is now used only to
integrate the term with the kernel, K + x* /2.

3.4 Numerical results

We present results of this method for evaluating the double-layer potential by computing the harmonic
function, u(x) = — 5= log [x — x| with the source xo = (1.85,1.65). We compute the solution interior
to the boundary curve, r(t) = 1.55+0.4 cos 5¢. The Dirichlet data in (3.1b) is determined by evaluating
the harmonic function on the boundary. Boundary integral equation (3.4) is solved using the PTR and
we use the resulting density, p(t;) with t; = 27§ /N for j = 1,--- , N in the double-layer potential. We
evaluate the double-layer potential using two methods: (1) the PTR and (2) the asymptotic PTR, the
new method given in (3.28). We present the solution on a body-fitted grid in which evaluation points
are found by moving normal into the domain from boundary grid points. The solution is evaluated on
a grid of 200 equispaced points along each normal starting at the boundary until we reach a distance
1/Kmax from the boundary, where fmax = maxo<i<or [£(t*)|. This grid captures the boundary layer,
but does not coincide exactly with it since the boundary layer depends on the local curvature. For
example, for regions of high curvature, this body-fitted grid extends beyond the boundary layer.

In Fig. 5 we show the log;, of the absolute error in computing the double-layer potential using
the 128-point PTR and using the asymptotic PTR on this body-fitted grid. These results show that
the asymptotic PTR produces errors that are several orders of magnitude smaller than those of the
PTR. To give an indication of this improvement, the L., error is 8.03 for the PTR and 1.85 x 10~*
for the asymptotic PTR. To examine this error in more detail, we show in Fig. 6 a plot of the error
in computing the double-layer potential evaluated at the points indicated in Fig. 5 (¢* =0, t* = 7/2,
and t* = ) as a function of e. These three cases are plotted over different ranges of € corresponding
to 0 < € < K(t*)/Kmax- We observe that the asymptotic method does significantly better than the
PTR for small € as expected. It reduces the O(1) error by at least four orders of magnitude. We find
similar results over all values of t*.

4 Single-layer potential for the exterior Neumann problem

We now extend this new asymptotic method to study the close evaluation of the single-layer potential.
We consider the exterior Neumann problem,

Av=0 inR*\D, (4.1a)
g—z =g ondD, (4.1b)

with ¢ denoting an analytic function satisfying

/ g(y)do, = 0. (4.2)
oD

We seek v as the single-layer potential [16],

o) = 5 [ Seey)ey)do,. xeBAD. (4.3)
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Figure 5: [Left] Plot of log;, of the absolute error in computing the double-layer potential using the
128-point PTR for the boundary r(t) = 1.55 + 0.4 cos 5¢ for the Dirichlet data, f(y) = i log |y — xo|
with x¢o = (1.85,1.65). [Right] Plot of log;, of the absolute error in computing the double-layer
potential using the asymptotic PTR given in (3.28) with N = 128 for the same problem. The “x”
symbols on the boundary indicates the points corresponding to t* = 0, t* = 7/2, and t* = 7.

t'=0 =73 tt=m
A S eomsticern
10° — -asymptotic PTR 100 — -asymptotic PTR 100 — -asymptotic PTR
-2 2
\9— 10 § 10
@10 @104
108 N T 10°®
1
108 108
0 0.02 0.04 0.06 0.08 0 0.2 0.4 0.6 0.8
€ € €

Figure 6: Plot of the absolute error as a function of € made in evaluating the double-layer potential
for different ¢* values using the 128-point PTR (solid curve) and using the asymptotic PTR (dashed
curve).

with
S(x,y) = —log|x —yl. (4.4)
The density, ¢(y), satisfies the boundary integral equation,
1 1 oS(y,y'")
—= — — do, = oD. 4.5
e+ 50 [ ey day = aly), v e (45)
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To study the close evaluation of (4.3), we now set

3

_u* * 4.6

Substituting (4.6) into (4.4), we obtain

* € * * 1 * * * * *
S(y +|H*|ny,y> = —loge + log |k |—§log (|/<e (y —y)/6|2+2ny-|/<; |(y —y)/6+1). (4.7)

Just as we have done for K in (3.6), we have written (4.7) to show the underlying dependence on the
stretched variable, y = y* + €Y /|x*|.

The outer expansion of (4.7) is S°"* ~ —log|y* — y|. Because this outer expansion is singular,
we do not use it here. To compute the inner expansion, S, we introduce the stretched parameter,
t = t*+€T into the same parameterization of the boundary used for the double-layer potential. Making
use of (3.10) and (3.12), we find by expanding as ¢ — 0T that

. 1
S™(Tse) =log |k*| — 3 log (*T?%7*| + & + O(e?)) . (4.8)
Substituting e2T? ~ 2 — 2cos(t — t*), we find that to leading order,

STt —t"5¢e) ~log |k*| — B log ((2v*] 4+ €2) — 2|7*| cos(t — t*)) . (4.9)

4.1 TFourier coefficients of S»

Using the modified coefficients introduced in (3.22), we write (4.9) as
St —t"e) ~log |k — 3 log Cy — 3 log[1 + Cy cos(t — t¥)]. (4.10)

We now seek to compute

. 1 1 ("1 :
S™n] = 6n0 |log |k*| — 3 log CO] - %/0 3 log[1 + Cj cos(t — t*)]e~ " dt, (4.11)

with J,, 0 denoting the Kronecker delta. To compute the integral in (4.11), we start with

d vy Crsin(t —t¥)
g log[1 4+ Cy cos(t — t*)] = 15 Croos(t — )" (4.12)

The right-hand side of (4.12) is another example of a rational trigonometric function studied by
Geer [12]. Tt can be readily shown that

1 [P sin(t—t) . i1+ p?
- intqy — g Ty ( Inl-1 _ |n\+1) : 4.13
27 /0 1+ Cy cos(t — t*)e bgn(n)2 1—p? P P (4.13)

where p = (\/ 1- 012> /C1. Tt follows from term-by-term integration of the Fourier series with these
coefficients that

L1 Cil+p% (1
N loglfflfflogCOf?l1 p2 (p)log(lp) n=0,
Sl =9 o 4,2 AP (4.14)
G bxp <|n|—1_p|n|+1) n 0.
4|n| 1 — p?
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4.2 Evaluating the single-layer potential

Given the inner expansion computed above, our method for evaluating the single-layer potential is to

compute an approximation of

e 1 2m 1 2r

o(v e mm) =g [ Sa- ey o o [ e rapo o @)
k¥ 21 Jo 2m Jo

with § = §—5™, We use an N-point PTR to evaluate the first integral with kernel, S, and a truncated

convolution sum to evaluate the second integral with kernel, S,

N N/2—1
- 1 . . I
v <y + |K*|ny> ~ st(tj — )ty (t;)] + Z S [n] @y [n)e ", (4.16)

J=1 n=—N/2

where we compute
D 1 o —in
Pylnl = o / ety (t)]e ™ dt, (4.17)
™ Jo

using the Fast Fourier Transform. Just as with the double-layer potential, provided that N is chosen
so that it solves boundary integral equation (4.5) with sufficient accuracy, the truncated convolution
sum in (4.16) is spectrally accurate.

4.3 Numerical examples

We present results for the evaluation of the single-layer potential by computing the harmonic function,
v(x) = (x — X0)/|x — Xo|?, with the source xq = (0.1,0.4). We compute the solution exterior to the
the boundary curve, r(t) = 1.55+ 0.4 cos 5t. The Neumann data in (4.1b) is determined by computing
the normal derivative of the harmonic function on the boundary. Boundary integral equation (4.5) is
solved using the PTR and we use the resulting density ¢(¢;) with ¢; = 27j/N for j =1,--- , N in the
single-layer potential. We evaluate the single-layer potential using two methods: (1) the PTR and (2)
the asymptotic PTR, the new method given in (4.16). We modify the body-fitted grid described above
for the evaluation of the double-layer potential to evaluate exterior points. The solution is evaluated
on a grid of 200 equispaced points along each normal starting at the boundary until we reach a distance
1/Kmax from the boundary.

In Fig. 7 we show the log;, of the absolute error in computing the single-layer potential using
the 128-point PTR and using the asymptotic PTR. The single-layer potential kernel is not as sharply
peaked as the double-layer potential kernel, so the error in evaluating the single-layer potential is less
than the error when evaluating the double-layer potential. Even so, we still observe a boundary layer
of thickness O(1/N) in which the error is O(1) due to aliasing when using the PTR. The asymptotic
PTR effectively reduces the error in the boundary layer. To give an indication of this improvement,
the Lo error is 0.113 for the PTR and 5.39 x 10~° for the asymptotic PTR. In Fig. 8, we plot the error
in computing the single-layer potential evaluated at the points indicated in Fig. 7 (t* = 0, t* = 7/2
and t* = 7) as a function of € with 0 < € < K(t*)/Kmax. These plots show that the asymptotic method
reduces the error by at least 3 orders of magnitude for small e. We find similar results over all values
of t*. For the case in which t* = 7, the error of the asymptotic PTR becomes larger than that for
the PTR for 0.36 < ¢ < 0.52. For this particular boundary curve, knax is attained at t* = w. Hence,
the body-fitted grid at t* = 7 plots the single-layer potential over 0 < € < 1. For this range of ¢, we
consider points outside the boundary layer where the PTR is competitive with, and may even become
more accurate than the asymptotic PTR. In fact, that is what is observed in Fig. 8 for t* = 7.

5 General implementation

In the results presented above, we are using a body-fitted grid, in which evaluation points are found
by moving normal into the domain from boundary integration points. Often the solution is needed

13
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Figure 7: [Left] Plot of log;, of the absolute error in computing the single-layer potential using the
128-point PTR for the boundary r(¢t) = 1.55 + 0.4 cos5t for the Neumann data, g(y) = g—:’l with
v(x) = (x —X0)/|x — x0|?, xo = (0.1,0.4). [Right] Plot of log;, of the absolute error in computing the
single-layer potential using the asymptotic PTR given in (4.16) with N = 128 for the same problem.

The “x” symbols on the boundary indicates the points corresponding to t* = 0, t* = 7/2 and ¢* = 7.

t" =0 t'=172 tt=m
10° 10° 2 10°
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Figure 8: Plot of the absolute error as a function of € made in evaluating the single-layer potential for
different t* using the 128-point PTR (solid curve) and using the asymptotic PTR (dashed curve).

at more generally defined points. The asymptotic PTR tacitly assumes in (3.5) for interior problems,
or (4.6) for exterior problems, that y*, is the unique minimum distance from the boundary to the
evaluation point, x. In the examples, the closest point on the boundary, y* coincides with the PTR
grid point from which we extended in the normal direction. We discuss here the more general problem.

Suppose we have an evaluation point in the domain, x. Then the first problem to address is
whether x is, in fact, close enough to the boundary to warrant special attention and requires use of the
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asymptotic PTR. To solve this problem, we make use of the identity for the double-layer potential [16],

1 ( ) -1 xeD
—/ X Yo, ={ -1 xeoD . (5.1)
o Jop =] gD

Evaluating (5.1) using the N-point PTR suffers from the same aliasing problem that the more general
layer potential evaluations do. Thus, we use it to determine if x lies within the boundary layer. To
do this, we set a user-defined threshold for the error. If the error in evaluating (5.1) using the PTR
is less than this threshold value, we keep the result computed using the PTR. Otherwise, we use the
appropriate asymptotic approximation.

To use these asymptotic approximations, we must determine the parameter, t*, where t* =
ming<;<or [x — y(¢)|?. For a general boundary, this problem may not have a unique solution. In
practice, we find a unique minimizer for evaluation points that are identified to be in the boundary
layer using the PTR evaluation of (5.1). Once t* is determined, all other quantities required for the
asymptotic approximations follow. Finally, we evaluate the solution of the boundary value problem at
hand at any point x using either the PTR or asymptotic PTR.

We present results of this generalized method for evaluation of the double-layer potential and single-
layer potential for the same problems presented in Section 3.4 and 4.3, respectively. We use a threshold
of 1x1078, as described above, to determine when the evaluation point is inside the boundary layer and
the asymptotic PTR method is to be used. In Fig. 9 we show the error in computing the double-layer
potential using the 256-point PTR and the asymptotic PTR when solving on a Cartesian grid with
meshsize h = 0.005 within the boundary curve. Similarly, we present the evaluation of the single-layer
potential in Fig. 10. Here, we are computing on a Cartesian grid with meshsize h = 0.005 exterior to
the boundary curve. These results show, similar to the results while considering a body-fitted grid,
that the error made by the asymptotic PTR is several orders of magnitude smaller than those made
by the PTR. However, there are more variations in these errors because y* does not always coincide
with a quadrature point. We choose to use 256 quadrature points here as this is what is actually
needed to solve the boundary integral equations for the densities such that p(¢)|y’(¢)| and o(¢)|y’(¢)|
are sufficiently resolved. We were able to use less points for the body-fitted grid as this restriction is
not as strict when y* is a quadrature point.

5 Error: PTR
0 0
1
> 0 -5 -5
-1
-10 -10
-2
-2 0 2
T T

Figure 9: [Left] Plot of log, of the absolute error in computing the double-layer potential using the
256-point PTR for the boundary r(t) = 1.55 4 0.4 cos 5t for the Dirichlet data, f(y) = 5= log|y — xo|
with xo = (1.85,1.65). We evaluate the solution inside the domain on a regular grid. [Right] Plot of
log;, of the absolute error in computing the double-layer potential using the asymptotic PTR given
in (3.28) with N = 256 for the same problem. The asymptotic method is used in a boundary layer
determined by a threshold on the error from evaluating (5.1).
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Figure 10: [Left] Plot of log;, of the absolute error in computing the single-layer potential using
the 256-point PTR for the boundary r(t) = 1.55 4 0.4 cos 5¢ for the Neumann data, g(y) = g—” with
v(x) = (x —X0)/|x — x0|%, xo = (0.1,0.4). [Right] Plot of log;, of the absolute error in computing the
single-layer potential using the asymptotic PTR given in (4.16) with N = 256 for the same problem.
The asymptotic method is used in a boundary layer determined by a threshold on the error from
evaluating (5.1).

6 Conclusions

We have presented a new method to address the close evaluation problem. When solving boundary
value problems using boundary integrals equation methods, the solution is evaluated at desired points
within the domain by numerically evaluating layer potentials. Using the same quadrature rule that is
used to solve the integral equation for this evaluation achieves high order accuracy everywhere in the
domain, except close to the boundary where an O(1) error is incurred. The new method developed here
takes advantage of the knowledge of the sharply peaked kernel of layer potentials close to the boundary
to reduce this error by several orders of magnitude. We have used asymptotic methods to analyze the
kernels of the double- and single-layer potentials to relieve the numerical method from having to
integrate over this sharply peaked kernel. The resulting method is straightforward to implement.
We have presented results for both the interior Dirichlet problem and exterior Neumann problem for
Laplace’s equation and show a reduction in error of four to five orders of magnitude in the solution
evaluation close to the boundary. Furthermore, we have presented how to generalize this method to
solve within the whole domain, including how to determine when to use the new asymptotic method.

This asymptotic method has been recently applied to acoustic scattering problems by sound-soft
obstacles [9]. For those problems, the sharp peaks in the kernels for the single- and double-layer
potentials, both which are needed, have the same character as those for Laplace’s equation discussed
here. Hence, only small modifications are needed to apply these methods to wave propagation problems.
We are currently extending this asymptotic method to three-dimensional problems. Furthermore, we
are working on different applications which include extending the method presented here to the Stokes
equations and studying surface plasmons.
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