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This work focuses on the development of an algorithm for the prediction of transformer core deformation, using a fully coupled
magneto-mechanical approach. An imposed magnetic flux method coupled with finite element modeling is employed for the magnetic
resolution. The constitutive law of the material is considered with a simplified multi-scale model (SMSM) describing both magnetic
and magnetostrictive anisotropies. Magnetostriction is introduced as an input free strain of a mechanical problem to get the
deformation and displacement fields. A 3D estimation of acoustic power is carried out to evaluate the global core deformation and
acoustic noise level. The numerical process is applied to a three-phase transformer made of Grain Oriented (GO) FeSi core, leading
to a set of noise estimation for different flux excitations and core geometries.

Index Terms—Magnetostriction, power transformers, noise, iron-silicon alloys, finite element method.

I. INTRODUCTION - OBJECTIVES

THE ELECTRIC power of aircraft onboard systems is
increasing with the proliferation of comfort equipment

and the gradual replacement of hydraulic actuators by electric
actuators. As a consequence, higher power transformers are
needed to feed the different electric devices. This evolution
usually means bigger transformers and higher weight, leading
to more noise emission which is related to their size and
surface. There are two ways to make the transformer on
aircraft more powerful but lightweight with relatively low
noise emission. One way is to develop high-performance
materials with high power density and low magnetostriction.
Materials such as iron-cobalt alloys saturate at nearly 2.35T
[1]. They are ideal to increase the power density of the
transformers. Unfortunately, iron-cobalt alloys generate high
magnetostriction [2], [3]. Materials such as some iron-nickel
alloys generate nearly no magnetostriction, but their high-
stress sensitivity [4] and low magnetic saturation strongly
limit their use [5]. Another way proposed in this paper is to
properly design the structure of transformer core, at a given
material, offering the less global core deformation due to
magnetostriction, and then noise emission.

The noise of transformer is mainly caused by the inter-
actions between the transformers magnetic stray field and
the current-carrying winding loops [6] and also by periodic
deformations of sheets of the transformer core. This de-
formation has two origins: i) elastic strain associated with
magnetic forces appearing on the free surface and volume; ii)
spontaneous magnetostriction depending on the local magnetic
state of the material [7]. Studies have shown, on the other
hand, that the junction of the transformer core pieces strongly
contributes to the noise generation [8]. For the application of

small transformers in the aircraft considered in this paper, core
sheets are preferred in the form of ’E’ and ’I’, or ideally non-
cut in the form of ’8’. Since there is only little air-gap between
each electrical sheet of the transformer core, magnetic forces
are negligible [9]. Core deformation due to magnetostriction
is then considered as the main source of noise emission.

This work proposes a complete modeling chain of such a
transformer, from the magnetic flux excitation to the noise es-
timation. Other mechanisms coming from assembly precision
and air gaps may also have an influence on the sound emission
but are not considered in this modeling chain. In section II,
a state of the art is presented dedicated to the recent works
in this field. In section III, a fully coupled simplified multi-
scale model (SMSM) is introduced, describing both magnetic
and magnetostrictive anisotropy. In section IV, the structure
of studied stacked transformer core is described, followed by
a brief recall of the homogenization strategy, leading to a
2D modeling of a multi-layer transformer. In section V, the
global modeling strategy is introduced, including the magneto-
static problem solving, the mechanical feedback loop, the
equivalent force computation, the elastodynamic modeling
and the acoustic power estimation. By imposing directly the
magnetic flux in limbs, displacement fields and acoustic power
estimation of the transformer core are finally obtained. In
section VI, GO FeSi alloy with strong anisotropy is chosen
to test this modeling chain because of its high permeability
and low magnetostriction in the easy magnetization direction.
Applications to an ’8-shaped’ stacked core made of GO FeSi
sheet in the form of ’E’ and ’I’ are carried out as examples. In
section VII, a set of computations is carried out with different
geometries keeping the same mass and winding sections. A
map of acoustic power is finally obtained, leading to design
guidelines that offer higher power density at a lower noise
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level.

II. STATE OF THE ART

Recently, magnetostriction induced vibration on electric
devices such as electric machines [10], [11] and inductors
[12], has received more and more attention. Studies of magne-
tostriction induced vibration and noise on power transformers
are numerous: Mizokami et al. [13] demonstrate that the
compression stress along rolling direction of the electrical steel
increases magnetostriction and noise level. Zhu et al. [14]
find that filling the multi-joint gaps with nanocrystalline soft
magnetic composite material decreases magnetostriction and
vibration of the core because of an improved distribution of
magnetic flux. Hsu et al. [15] propose a new method to reduce
the transformer core noise by re-arranging the step-lapped
joint structure. Efforts are made to study the correlation of
magnetostriction variation [16], DC bias [17], magnetostriction
force spectrum [18], harmonic voltages [19], climbings [20]
and magnetic hysteresis [21] on power transformer noise
emission.

In terms of experimentation, vibration and deformation of a
test transformer core are measured by means of accelerometers
which give the acceleration of certain points [17], or by means
of a laser scanning vibrometer, giving a 3D field of surface
speed [22], [23]. Both need to consider the suspension of the
core and post-processing of the measurement to correct the
rigid body movement [9]. Direct measurement of noise is also
carried out, allowing the comparison of different transformer
cores [24] and the study of the physical parameters’ influences,
leading to an experience deduced noise computation equation
[25].

In terms of modeling, efforts are made to estimate mag-
netostriction induced deformation, vibration and noise emis-
sion of the power transformer core. Hu et al. [26] give a
complete finite element analysis modeling chain from current
injection to the noise emission. Shuai et al. [23] push it
even further to the optimization step, taking efficiency and
vibration as criterions. But both of them use an isotropic and
linear material model, which strongly limits the accuracy of
their computation. Similar studies [27], [28], [29] are carried
out by implementing an anisotropic, nonlinear and strain-
dependant material model to simulate the vibration due to
magnetostriction. However, the magnetic circuits they worked
on seem to be far from a laminated transformer core.

Despite strong recent efforts in this field, no commercial
software nor academic code is yet available to estimate and
optimize the global deformation or noise level of a laminated
transformer core, with the consideration of material anisotropy,
nonlinearity of the magneto-mechanical behavior and stress
dependence. They are the motivations of this work.

This article is based on our previous work [9], briefly re-
called hereafter. It dealt with the prediction of the deformation
of a multilayer transformer stacked ’E-I’ core. The problem
was solved by a stepping sequential approach: first magnetic
resolution with current excitation, second mechanical resolu-
tion. A weakly coupled SMSM describing both magnetic and
magnetostrictive anisotropies was used as the constitutive law

of the material. The transformer core structure was modeled
in 2-D, and a homogenization technique was implemented to
take the anisotropic behavior of each layer into consideration
and define an average behavior. A three-layer transformer
prototype was fabricated with GO FeSi. Good agreements
were obtained by comparing the experimental measurements
and the modeling results.

However, it is well known that the power of transformer
is related to the excitation tension, proportional to magnetic
flux. In the previous modeling chain, the current was imposed,
making difficult the comparison of different core structures at
the same power level. It was consequently hard to tell which
core structure generates less noise only by looking at the
strain distribution. Moreover, the deformation induced stress
has an impact on the material properties, which also needs
proper studies. The stress dependence of magnetic material is
non-negligible, especially for ’E-I’ stacked core where layers
tend to deform in different ways introducing self-stress. The
improvements proposed in this paper are finally the followings:

1) a feedback loop of magnetostriction induced stress is im-
plemented, leading to fully coupled modeling chain with
a more accurate prediction of the magneto-mechanical
fields.

2) the magnetic flux is directly imposed in the limbs,
facilitating core analysis and comparison at the same
power level.

3) a block of post-processing is added, allowing the com-
putation of acoustic power. This gives a new criterion
for optimization of the core structure.

4) an optimization process is carried out for core dimen-
sions, in order to minimize acoustic vibrations of an E-I
transformer core with interleaved RD and TD layers.

These improvements authorise the optimization process of the
transformer cores.

III. CONSTITUTIVE LAW

The constitutive law used for the modeling is a simpli-
fied version of a full multi-scale magneto-mechanical model
(MSM) [30], [31]. In the complete version, the considered
scales are the magnetic domain, the single crystal and the
polycrystalline (macroscopic) scales. This model allows an
accurate modeling of the anhysteretic magnetic and magne-
tostrictive behavior of ferro/ferrimagnetic materials, and takes
the effect of mechanical stress into account. The number of
internal variables of such model is nevertheless too high to be
implemented in a complex structure model with many degrees
of freedom. The simplified version (SMSM) has been proposed
in [32] and developed in [9].

This SMSM considers a magnetic material (usually poly-
crystalline) as an equivalent single-crystal. This equivalent sin-
gle crystal consists of magnetic domains oriented in different
directions. Local magnetization of domain family α (1) is a
vector of norm the magnetization saturation Ms oriented in
the direction ~γα.

~Mα = Ms~γ
α (1)
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Local free energy of a magnetic domain family (α) oriented
in direction ~γα is expressed as the sum of four contributions.

Wα
tot = Wα

mag +Wα
an +Wα

me +Wα
conf (2)

Wα
mag is the Zeeman energy, introducing the effect of

the applied magnetic field on the equilibrium state. Wα
mag

(equation (3) - where µ0 is the vacuum permeability) tends
to align the local magnetization ~Mα along the magnetic field
~H considered as homogeneous over the crystal.

Wα
mag = −µ0

~Mα · ~H (3)

Wα
an is an anisotropy energy term related to the crystal-

lographic texture of the polycrystal and the magneto crys-
talline anisotropy (4). K1 is a physical anisotropy constant
representing the anisotropy level. P is a 4th order tensor that
describes the symmetries (cubic symmetry for FeSi). Q is a
simple transformation matrix from crystal frame (CF) to the
sample frame (SF).

Wα
an = K1 (~γα ⊗ ~γα) :

(
Q ·Q · P · tQ · tQ

)
: (~γα ⊗ ~γα)

(4)
Wα
me is the magneto-elastic energy (5). It is written as a

function of the free magnetostriction strain εαµ of the domain
family α (given by equation (6) in the CF and equation (7)
in the SF) and of the stress tensor σ over the crystal. λ100

(resp. λ111) is the saturation magnetostriction strain along the
direction < 100 > (resp. < 111 >) of the single crystal. γ1,
γ2 and γ3 are the direction cosines of the magnetization vector
in the CF.

Wα
me = −σ : εαµ (5)

εαµCF =
3

2

λ100(γ2
1 − 1

3 ) λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100(γ2
2 − 1

3 ) λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100(γ2
3 − 1

3 )


CF

(6)
εαµ = Q · εαµCF · tQ (7)

Wα
conf is a configuration energy term, which allows some

peculiar initial distribution of domains (residual stress effect,
demagnetizing surface effect...). Its simplified expression for
a thin electrical sheet is expressed as in (8). C is an adjusting
constant that defines the maximum level of the configuration
energy. γz is the out-of-plane component of magnetic domain
direction ~γα in SF.

Wα
conf = C (γz)

2 (8)

A Boltzmann like function is used to calculate the volume
fraction fα of domain α:

fα =
exp (−AsWα

tot)∑
α exp (−AsWα

tot)
(9)

where As is an adjusting parameter related to the initial sus-
ceptibility. Macroscopic quantities are obtained by averaging
the microscopic quantities over the single crystal volume (10).
εµ is the free magnetostrictive strain tensor at the macroscopic
scale.

~M =
∑
α

fα ~M
α and εµ =

∑
α

fαε
α
µ (10)

SMSM allows finally the computation of the macroscopic
anhysteretic magnetostriction and magnetization at a given
magnetic field level ~H . We define on the other hand the
differential magnetic susceptibility tensor χ. It is given by (11)
and can be derived from the SMSM as proposed in [33]. This
is added in the SMSM as an output of the model, essential for
the non-linear magnetic resolution using the Newton-Raphson
method.

χ =
∂ ~M

∂ ~H
= µ0As

(
M2
s

∑
α

fα~γ
α ⊗ ~γα − ~M ⊗ ~M

)
(11)

IV. GEOMETRY OF STACKED TRANSFORMER CORE AND
HOMOGENIZATION STRATEGY FOR 2D REPRESENTATION

+

Sheet 'I'

Sheet 'I'

+

Sheet 'E'

Sheet 'E'Sheet 'E'

layer family 1 layer family 2

Fig. 1: Transformer core layers : layer family 1 (left) with ’I-
shaped’ sheet (red region) on top and ’E-shaped’ sheet (yellow
region) on bottom; layer family 2 (right) with ’E-shaped’ sheet
on top and ’I-shaped’ sheet on bottom. White arrows indicate
the easy magnetization direction.

 Coils

 Zone mix 

 Zone mix 

 Zone pure 

Magnetic flux 
injection

Phase 1 Phase 2 Phase 3

W1

W2 W2 W2

x

y

z
Fig. 2: Equivalent 2D model with coils and magnetic flux
excitation.

A transformer stacked core is assembled with hundreds
of layers. Typically, a layer is assembled anti-parallel to its
neighbour layer, forming two layer families, each consisting
of an ’E-shaped’ sheet and an ’I-shaped’ sheet, as illustrated
in Fig.1. f1 and f2 define the section (or volume) fraction of
layer family 1 (’E-shaped’ sheet upside and ’I-shaped’ sheet
downside) and layer family 2 (’E-shaped’ sheet downside and
’I-shaped’ sheet upside) respectively. Since magnetic materials
are often anisotropic, the easy magnetization directions of ’E-
shaped’ sheets and ’I-shaped’ sheets are oriented differently,
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leading to inhomogeneous behavior from layer to layer (Fig.2).
To take this z-axis inhomogeneity into account for 2D model-
ing, a homogenization strategy of a heterogeneous problem
is required to extract the average behavior. The following
assumptions are considered:

• Sheets are usually very thin, allowing to assume a 2D
homogeneous magnetic field using the classical tangential
magnetic field continuity condition.

• Sheets are considered perfectly stuck together, allowing
to assume a homogeneous displacement field at the
interface between two sheets. Homogeneous strain can
consequently be considered in the sheet plane.

• The transformer is supposed mechanically unloaded and
thin enough to consider out-of-plane stress free conditions
on upper and lower surfaces.

• Elastic and magnetostrictive strains are considered suffi-
ciently small to allow us an additive description (between
elastic and magnetostrictive strains) of the total deforma-
tion.

With the mentioned magnetic and mechanical hypotheses,
mixing rules (12)-(16) are applied [9].

~M = f1
~M1 + f2

~M2 (12)

~B = f1
~B1 + f2

~B2 (13)

χ = f1χ1 + f2χ2 (14)

εµ = f1εµ1 + f2εµ2 (15)

σ = f1σ1 + f2σ2 (16)

f1 + f2 = 1, and in real transformer with hundreds of layers
f1 ≈ f2 ≈ 0.5.

V. GLOBAL MODELING STRATEGY

The global modeling strategy is summarized in Fig.3. This
fully coupled magneto-mechanical problem is solved at two
stages: magnetic resolution coupled with mechanical feedback
loop using a quasi-static approach in the time domain in the
first step, then harmonic mechanical resolution and acoustic
power estimation in the frequency domain in a second step.
Magnetic resolution is carried out with imposed magnetic
flux. SMSM is then engaged to take into account anisotropy,
nonlinearity and stress dependency of the material. An ho-
mogenization rule is then applied, leading to an average
behaviour of the different family layers. At the end of each
magnetic iteration, an equivalent force is computed from the
free magnetostriction strain. The mechanical feedback loop
is carried out in parallel with the magnetic resolution loop.
Through the static mechanical resolution, the total deformation
of the structure is computed, leading to induced strain in each
family layer. This is injected into SMSM to adapt the material
behaviour under stress. Harmonic mechanical resolution and
acoustic power are carried out in the frequency domain to
avoid the transient state and obtain better efficiency.

Magnetic resolution loop

Mechanical feedback loop

Magnetic Field 
Calculation

✏µ

~H

Equivalent 
Force 

FFT 

Time domain

Frequency domain

Static Mechanical 
Resolution  

~Feq

Elasticity Elasticity

++� �
~M

SMSM 
(TD)

SMSM 
(RD)

Homogenization

Harmonic Mechanical 
Resolution 

Acoustic Power 
Estimation 

Un

~M1
~M2✏µ1 ✏µ2

Fig. 3: Global modeling strategy.

A. Magnetic resolution with imposed magnetic flux method

One important criterion for power transformer design is
the power-to-mass ratio (transmitted power per unit mass),
which is proportional to the magnetic flux φ circulating in the
transformer core. It is interesting to compare the core defor-
mation and excitation current of different cores at the same
imposed magnetic flux. Besides, transformers are normally
driven with voltage, which is proportional to the magnetic flux
in each phase. Imposing balanced magnetic flux often leads
to unbalanced currents in the coils, because of the unbalanced
reluctance in most of the transformer parts.

To simplify this problem, the modeling is carried out
under magnetic quasi-static assumption (induced current not
considered). Since the constitutive model is anhysteretic, mag-
netic hysteresis and dynamic behavior are not considered in
this paper. The imposed magnetic flux is first discretized in
the time domain. The magnetic resolution uses an iterative
Newton-Raphson method: a magnetic flux φ is imposed; the
magnetization ~M is arbitrarily defined at the first loop allowing
a first estimation of the magnetic field ~H . The differential
magnetic susceptibility χ is then updated, using the SMSM
and the homogenization rules. The procedure is iterated until
convergence.

The following part gives some details on the magnetic field
computation. A unit current potential vector ~T0 is defined to
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get I ~∇ × ~T0 = ~j, with ~j and I respectively the unknown
current density and current amplitude in the coils. Combined
with induction flux conservation equation div( ~B) = 0, the
weak formulation is shown in (17). Ω is the integration
domain, υ is a test function. µ0 and ν0 are respectively
the vacuum permeability and reluctivity. ϕ is the magnetic
scalar potential, leading to the magnetic field computation
~H = −~∇ϕ+ I ~T0.

A second equation (18) is obtained from the total magnetic
energy formulation φI =

∫
Ω
I ~T0 · ~B dΩ [34]. The non-linear

problem is solved at a given applied flux leading to current
value I in the coils and magnetic scalar potential ϕ.

F1(ϕ, I) =

∫
Ω

~B · ~∇υ dΩ = 0

=

∫
Ω

µ0

(
−~∇ϕ+ I ~T0 + ~M

)
· ~∇υ dΩ (17)


F2(ϕ, I) =

∫
Ω

~T0 · ~B dΩ− φ = 0

=

∫
Ω

µ0

(
−~∇ϕ+ I ~T0 + ~M

)
· ~T0 dΩ− φ(18)

At a given moment, this quasi-static non-linear magnetic
problem is solved using the Newton-Raphson method. As a
consequence, the problem defined by equation (17) and (18)
is developed in first order Taylor series, where i = 1, 2:

Fi (ϕ+ ∆ϕ, I + ∆I) = Fi (ϕ, I) +
∂Fi
∂ϕ

∆ϕ+
∂Fi
∂I

∆I = 0

(19)
this problem is then discretized, leading to the iterative rela-
tion (20) and (21). µprd is the differential relative magnetic
permeability tensor for the pth iteration, obtained from χp

(µprd = χp + 1). ∆ϕ and ∆I give the difference between
iterations (∆ϕ = ϕp+1 − ϕp, ∆I = Ip+1 − Ip).∫

Ω

µ0µ
p
rd · ~∇υ · ~∇(∆ϕ) dΩ

−
∫

Ω

µ0µ
p
rd · ~T0 · ~∇υ(∆I) dΩ

=

∫
Ω

~Bp · ~∇υ dΩ (20)



−
∫

Ω

µ0µ
p
rd · ~T0 · ~∇(∆ϕ) dΩ

+

∫
Ω

µ0µ
p
rd · ~T0 · ~T0(∆I) dΩ

= φ−
∫

Ω

~Bp · ~T0 dΩ (21)

The electromagnetic system constituted by (20) and (21),
is extended in this paper to a three phase problem. Consid-
ering a three phase transformer in star configuration without
neutral, it is possible to add a closure equation for current:
I1 + I2 + I3 = 0. (22) gives the new global weak formulation
system of equations, with m indicating the number of degrees
of freedom. Components in (22) are defined in (23)-(27). i

and j denote respectively the index of row and column of
each component, and k is the number of phases. am∗m b1 − b3 b2 − b3

bt1 − bt3 c1 − c3 0

bt2 − bt3 0 c2 − c3

·
 ∆ϕm∗1

∆I1 −∆I3
∆I2 −∆I3

 =

 dm∗1

e1 − e3

e2 − e3


(22)

Using an imposed magnetic flux computation at each phase
φk, two kinds of unknowns are solved at once: ϕ is vector
gathering the magnetic scalar potential values at the nodes; Ik
is the kth phase current.

aij =

∫∫
Ω

µ0µrd · ~∇ϕi · ~∇υj dΩ (23)

bik = −
∫∫

Ω

µ0µrd · ~∇υi · ~T0(k) dΩ (24)

ck =

∫∫
Ω

µ0
~T0(k) · ~T0(k) dΩ (25)

di =

∫∫
Ω

~∇υi · ~Bi dΩ (26)

ek = φk −
∫∫

Ω

~B · ~T0(k) dΩ (27)

After resolution of this non-linear electro-magnetic system,
Ik and ϕ are obtained by accumulating ∆Ik and ∆ϕ. ~M and
εµ field are the output of the SMSM at each time step.

B. Equivalent force

The free magnetostrictive strain εµ computed from the
SMSM is then transformed into a nodal equivalent force ~Feq
[35][36], that should produce the same deformation as the one
produced by the free magnetostriction. In the variational form,
nodal equivalent forces at node i are expressed as in (28):

F v,ieq = −
∫

Ω

(grads(~v
i) : C : εµ) dΩ (28)

with C the stiffness tensor of the medium, ~vi a vectorial test
function associated with the i-th component of the displace-
ment (each component being discretized by a nodal scalar
element function), F v,ieq the nodal equivalent force of node i
in the direction of ~v and grads the symmetric gradient. The
nodal equivalent force is then transformed into equivalent force
density ~feq , simply by dividing the force by the surface of the
dual element associated with each node. This equivalent force
density is then loaded as a body force of a pure mechanical
problem.

C. Mechanical feedback loop

Magnetostriction induced deformations create stress fields
that modify the magneto-mechanical behaviour of materials.
This influence is usually considered negligible in power trans-
formers due to the low magnetostriction of the materials that
are employed. This magnetostriction is nevertheless not null,
and can differ strongly from one layer to another at the
same contact point. Because layers in the real transformer
are assembled together, creating a uniform displacement and
consequently a uniform deformation, the elastic deformation
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can strongly differ from one layer to another at the same
point. The local stress can consequently vary strongly through
the layers, even if its average value remains small. To the
author’s knowledge, such kind of configuration has never been
tested. The mechanical feedback introduced in the loop in time
domain is designed as an independent computation block in
parallel with the magnetic loop. It can be activated in order
to take the induced stress into consideration, or deactivated to
economize the computation time.

In this mechanical feedback loop, the static mechanical
resolution is carried out first, taking equivalent force density as
mechanical loadings (29). This leads to the total strain field ε,
sum of the elastic and free magnetostriction strains (30), where
εel1 (εel2) and εµ1 (εµ2) are respectively the elastic and free
magnetostriction strains in layer family 1 (layer family 2).

~feq = −−→divσ̃ with: σ̃ = C : ε (29)

ε = εel1 + εµ1 = εel2 + εµ2 (30)

Magnetostriction induced stress at the structure level for each
layer is finally obtained by a simple linear elastic relation (31).

σ1 = C : εel1 and σ2 = C : εel2 (31)

This stress is injected in the SMSM in the magnetic loop,
leading to a fully coupled magneto-mechanical solution. In
practice, the convergence procedure can be stabilized by the
introduction of a relaxation coefficient.

D. Harmonic mechanical resolution

In order to avoid the transient computation which normally
takes a huge amount of time, equivalent forces at each time
step are computed in the frequency space using a Fast Fourier
Transformation (FFT) method. This vibration problem is then
considered as a purely harmonic linear elastic problem. De-
formation and displacement fields at each harmonic are then
obtained by applying (32) to each harmonic component of this
equivalent force density ~fneq as mechanical excitation, where
ωn is the pulsation of the nth harmonic, β is the damping
coefficient and ρ the mass density.

−→
divσ̃n + ~fneq = −ρ(ωn)2~un + jβρ(ωn)~un (32)

with: σ̃n = C : εn and εn = εnel+ε
n
µ = grads~u

n (33)

εn and εnel are the total and elastic strain of the nth harmonic
and εnµ the magnetostrictive one. The plane stress assumption
is considered. An inverse Fourier Transformation is then
applied, leading to the displacement of all nodes over the time.

E. Acoustic power

The displacement field is obtained for each harmonic from
the mechanical resolution, leading to the estimation the vibra-
tion generation induced by core deformation. A block of post-
treatment is next added, calculating the acoustic power Pac.
Acoustic power is an integration of the sound intensity ~Iac
along the external oriented surface of the considered structure
~s (34). ~Inac is the nth harmonic of sound intensity, which is the

product of the nth sound pressure Pnac and particule velocity
~V n (effective value) (35).

Pac =

∫
s

~Iac d~s =

∫
s

∑
n

~Inac d~s (34)

~Inac = Pnac~V
n = Z0(V n)2~n (35)

~n is a unit vector of the particle velocity direction. Z0 is the
acoustic impedance, which equals 409.4 Pa s/m at the room
temperature in free space. Sound pressure Pnac is expressed as:
Pnac = Z0

~V n. A strong advantage of the formulation is that
the acoustic power is neither room-dependent nor distance-
dependent.

In this paper, the acoustic power is estimated using a fictive
3D structure extruded from the 2D simulation. The total
surface can be computed, once the thickness of the transformer
core is given. Out of plane component of the total strain εzz is
obtained from the in-plane components (36). ν is the Poisson
ratio.

εzz =
1− 2ν

1− ν ε
µ
zz −

ν

1− ν (εxx + εyy) (36)

From εzz , the movement in direction ~z of the computation
area is obtained. The contribution of this surface is then added
to get the total acoustic power.

VI. APPLICATION TO GO FESI CORE

GO FeSi is chosen as the magnetic material for this study
because of its strong anisotropy. This material is processed
in such a way that it offers better magnetic properties in its
easy magnetization direction (rolling direction RD), due to a
dominant quantity of domains oriented along this direction.
On one hand, this material is the best example to verify the
homogenization law and the correct implementation of the
SMSM in the modeling chain. On the other hand, it may
be a good candidate for this application if the advantages
brought by the RD are higher than the drawbacks brought
by the transversal direction (TD).

Fig.4-5 allow to compare the magnetic and magnetostric-
tive behaviors for a magnetic field applied along RD and
TD, illustrating the strong anisotropy of GO material, and
especially a very low magnetostriction amplitude along RD.
SMSM parameters of GO are set according to experimental
results [30] (given in table I). SMSM gives magnetic and
magnetostrictive behaviors under stress, with traction (positive
value) and compression (negative value) stress applied in the
direction of magnetic field. 1

1

• As the Grain-Oriented FeSi is very close to monocristal, the SMSM
gives similar results compaired to the MSM.

• A comparson of modeling and measured material behavior, together
with the parameters used in MSM, are given in [Hubert & Daniel 2008
- JMMM].

• The behavior of the Grain-Oriented FeSi under stress, together with the
results comparison of MSM and measurements is already done in [K.J.
Rizzo, O.Hubert and L.Daniel, IEEE Transactions on Magnetics, 46, 2
(2010) 270-273.]
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Transformer stacked core made of GO FeSi shown in Fig.2
is first modeled, with its reference dimensions 213mm ×
202mm. The width of yokes (W1) and limbs (W2) is set as
40mm (W1 = W2 = W = 40mm). Hundreds of layers are

TABLE I: Physical constants used for SMSM.

Param. FeSi GO Unit

Ms 1.61×106 A/m
K1 38 kJ.m−3

λ100;λ111 23.5 ; -4.5 ppm
C 5000 J.m−3

As 20×10−3 m3/J

concerned, leading to a volume fraction of layer family 1 and
2 equal to each other (f1 = f2 = 0.5). A 40mm transformer
core thickness is supposed for the computation of the acoustic
power at the border. All three phases are excited by sinusoidal
magnetic flux (see Fig.2), with a phase-shift of 2π

3 from each
other. The working frequency is set at 400Hz. Current in each
phase is computed as a result of the magnetic resolution.

The finite element problems are solved using FreeFem++
[37] including the SMSM as a dynamically linked and par-
allelized function. Computation is processed on a personal
computer of 8 cores with a clock 3.2GHz. Fig.6 shows
the current in the three phases as function of time for a
magnetic flux excitation corresponding to a maximal induction
of Bmax = 1.2T . Displacement field is shown in Fig.7 at
instants t1 and t2 (indicated in Fig.6) as examples. t1 is
the initial computation step, t2 corresponds to 1

8 period. The
deformed core shape is shown with a scale factor of 20000
for better visibility.

The constitutive behavior of materials is fully coupled. It
means that some stress fields do exist and that they influence
the overall behavior of the structure. Stress components of
layer family 1 (σ1xx, σ1yy and σ1xy) and layer family 2
(σ2xx, σ2yy and σ2xy) are shown respectively in Fig.8 and
Fig.9. In this example, they are given at instant t2. We observe
first that the stress levels reached for the two layer families
are the same but extremal values are positioned symmetrically
with respect to the x axis. Indeed the two layer families are
geometrically symmetric with respect to this axis and they are
considered at the same volume fraction for the calculation.
We observe secondly that the stress level is relatively small in
most of the areas except for some specific regions:

1) regions of connections between the E-shaped and I-
shaped sheets present some stress concentrations espe-
cially for components σ1xx and σ2xx (up to 1.3MPa).
These stress concentrations are associated with the 90
degrees rotation of the easy direction, creating large
magnetostriction variations.

2) some parts of the yokes undergo homogeneous stress
along Y direction (σ1yy and σ2yy) reaching about
2.4MPa of magnitude. These stresses are due to the
difference in magneto-mechanical properties between
TD and RD layers deposited alternately.

3) shear stresses are especially significant at the internal
corners of the structure (reaching ±0.3MPa).

It must be, on the other hand, underlined that this stress
distribution is changing during an excitation period. Plots are
given at time t2 and are different at other times. Moreover
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even if the stress level is not high, previous works have
demonstrated that the magnetic and magnetostrictive behavior
of GO materials are strongly stress sensitive even at a low
level [38]. The shear stress concentration at the internal corners
could finally have a significant effect because it is positioned
where the highest values of the magnetic flux densities are
located. The numerical calculation will allow to appreciate the
global effect of stress. It must be noticed that the calculation
of a magneto-mechanical equivalent stress would be possible
following [39] in order to appreciate the global effect of the
stress field without any huge numerical implementation.

The root mean square (RMS) of the current in phase 1,
2 and 3 is respectively 7.98, 4.29 and 7.98 Ampere-turn,
under no-load condition. This non-balanced current typical
for a three-phase three-limb power transformer, because the
magnetic reluctance for each phase is different. Average RMS
of three phases is 6.97 Ampere-turn, defined as IRMS(avg) =√

(I2
RMS1 + I2

RMS2 + I2
RMS3)/3 which directly relates to en-

ergy loss by Joule effect. The shape of the current is deformed
comparing to an ideal sinusoidal form. This is due to the
non-linear permeability, and the interaction between phases.
The total harmonic distortion (THD) describing the harmonic
distortion is defined as the ratio of the sum of the amplitude of
all harmonic components to the amplitude of the fundamental
frequency:

THD =

√
I2
2nd + I2

3rd + I2
4th + ...

I1st
(37)

THD of phases 1st, 2nd and 3rd are respectively 10.1%, 27.9%

and 10.1%.
To study the effect of mechanical feedback loop, a test

computation is carried out using weakly coupled model (me-
chanical feedback loop deactivated) as comparison, with the
magnetic flux excitation discretized in 80 steps. The compar-
ison is summed up in table II. Fully coupled model leads
to more current, higher current distortion and more acoustic
power compared to weakly coupled model, showing clearly
that the stresses degrade the material properties. However, the
influence of this induced stress is lower than 10% in general.
On an 8-core CPU with a clock 3.2GHz, a single computation
using strongly coupled model takes about 20 hours, depending
on the magnetic loadings and other settings. However, the
simulation using a weakly coupled model only takes about
7 hours, leading to a simulation result similar enough to
the strongly coupled one. In order to make the optimization
process possible, the optimization process presented in the next
section is carried out using the weakly coupled model.

TABLE II: Comparison of fully coupled and weakly coupled
model.

Fully
coupled

Weakly
coupled Unit

IRMS(avg) 6.97 6.66 At
THD phase 1,3 10.1 8.3 %
THD phase 2 27.9 23.7 %

Pac 1.63 1.56 µW
Computation time 3.30 1.45 hrs

VII. OPTIMIZATION OF CORE GEOMETRY

As shown in Fig.7, core deformation is mainly concentrated
at the yokes where the magnetic field go from the rolling
direction to the transversal direction (mixed zone), leading
to huge magnetostriction induced deformation. Intuitively,
one might think that increasing the width of the yokes and
decreasing the width of the limbs in order to keep a constant
mass would lead to an interesting solution to reduce the noise.
Indeed, such transformation allows a new distribution of flux
density: flux density is increased for parts along RD that
exhibit a low magnetostriction; flux density is decreased for
parts along TD that exhibit a high magnetostriction, leading
to the reduction of the global deformation of the system. The
initial width of yokes and limbs is W . In order to verify this
pre-concidered idea, the new width of the yokes is defined by:
W1 = αW , with α a geometry coefficient. The width of the
limbs is recalculated, in order to keep the mass and winding
surface constant. Some examples of modified geometries are
illustrated in Fig.10 for various α.

A series of simulations is carried out with imposed maxi-
mum magnetic flux density from 1.2T to 1.5T , for α varying
from 0.8 to 1.2. In the case of excitation 1.5T at α = 1.0,
the magnetic saturation is reached in limbs. No numerical
solution exists for thinner limbs. Indeed, it is not possible to
impose magnetic flux density higher than saturation. Average
RMS and THD of current are shown in Fig.12 and Fig.13.



9

0

4e+5

8e+5

-5e+5

1.3e+6

(a)

-1e+6

0

1e+6

2e+6

-1.25e+6

2.4e+6

(b)

-2e+5

0

2e+5

-3e+5

3e+5

(c)

Fig. 8: Induced stress in-plane components for layer family 1 at instant t2

0

4e+5

8e+5

-5e+5

1.3e+6

(a)

-1e+6

0

1e+6

2e+6

-1.25e+6

2.4e+6

(b)

-2e+5

0

2e+5

-3e+5

3e+5

(c)

Fig. 9: Induced stress in-plane components for layer family 2 at instant t2

= 1.2

= 0.8

= 1.0
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As the magnetic flux is imposed with a sine waveform, non-
linearity and saturation of the material influence directly the
amplitude and distortion of excitation current. At low magnetic
flux excitation, a smaller current is enough to magnetize the
transformer core. At high magnetic flux excitation, average
RMS and THD increase rapidly with the flux excitation.
By decreasing the geometry coefficient α (limbs wider and
yokes thinner), average RMS and THD of the current increase
dramatically because of the saturation in yokes. From an

electric point of view, the optimized design of transformer
core is obtained for a geometry coefficient close to α = 1.05
at high magnetic excitation, where average RMS and THD of
current are both minimum. At low magnetic excitation, the
average RMS and THD of current continue to decrease as α
increases. Optimum point for low magnetic excitation may be
higher than α = 1.2. This leads to the lowest joule losses.

The acoustic power is shown in Fig.14. The acoustic power
is an interesting indicator of global deformation level, that
may be related to the sound emission. At a given maximum
flux density, the acoustic power varies with the geometry
coefficient α.

For high α, the width of the yokes is larger than that of the
limbs, leading to low flux density and then low deformation
in yokes, where magnetic flux lines up to TD and normally
creates large deformation. As the α goes extremely high, the
deformation in limbs becomes larger because of the saturation.
For low α, the width of the yokes is smaller than that of
the limbs, so that saturation first appears in yokes, leading
to a huge deformation. On the other hand, the optimum α
corresponding to the minimum acoustic power changes with
the magnetic induction. For B = 1.2T at α = 1.0, optimum
α locates at 1.1, which means yokes wider than limbs. This
verifies the speculation made previously that by increasing the
width of yokes and decreasing the induction in the transversal
direction of the lamination, the noise can be reduced. As the
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magnetic flux increases, the optimum α decreases. It reaches
1.0 at B = 1.5T . At this high level of excitation, where all
areas of the transformer core are almost saturated, acoustic
power is no more sensitive to the geometry variations. Other
mechanisms coming from assembly precision and air gaps
may also have an influence on the sound emission but are
not considered in this simulation. It has been verified that the
optimized geometry remains roughly the same when the fully
coupled SMSM is used.

VIII. CONCLUSION

This complete fully coupled modeling chain, from three
phase magnetic flux injection to the 2D deformation and
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acoustic power estimation of the transformer core, gives great
practicality for transformer core design. Phase current cou-
pling, magnetic flux excitation (voltage excitation), material
anisotropy, magnetostriction induced stress and multi-layer
homogenization are taken into account, leading to an easy
comparison of different core structures and materials. Opti-
mization of geometry can be carried out considering electric
and acoustic aspects. For a GO FeSi ’E-I’ transformer, it has
been shown that the geometry coefficient α should be set to a
value between 1.0 and 1.1 depending on the excitation level
to reduce the acoustic emission.
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