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ABSTRACT

The purpose of this paper, which is largely self-contained though it is a difficult task, is to
revisit the mathematical foundations of General Relativity (GR) after one century, in the light of
the formal theory of systems of partial differential equations and Lie pseudogroups (D.C. Spencer,
1970) or Algebraic Analysis, namely a mixture of differential geometry and homological algebra
(M. Kashiwara, 1970). In particular, we shall justify the claim:

GR is not coherent with any one of the above three domains.

• Systems: In dimension 4 only, the 9 Bianchi identities that must be satisfied by the 10 compo-
nents of the Weyl tensor are described by a second order operator and have thus nothing to do with
the 20 first order Bianchi identities for the 20 components of the Riemann tensor. This result has
been recently confirmed by A. Quadrat (INRIA) using new computer algebra packages.

• Groups: The kernel of the canonical projection of the Riemann bundle onto the Weyl bundle,
induced by the canonical inclusion of the classical Killing system (Poincaré group) into the confor-
mal Killing system (Conformal group), namely the so-called Ricci bundle of symmetric 2-tensors,
has only to do with the second order jets of the conformal Killing system.

• Modules: The 10 linearized second order Einstein equations are parametrizing the 4 first order
Cauchy stress equations but cannot be parametrized themselves. As a byproduct of this negative
result, the 4 Cauchy stress equations have nothing to do with the 4 divergence-type equations
usually obtained from the Bianchi identities by contraction of indices.

These purely mathematical results question the origin and existence of gravitational waves.
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1) INTRODUCTION

The first motivation for studying the methods used in this paper has been a 1000$ challenge
proposed in 1970 by J. Wheeler in the physics department of Princeton University while the author
of this paper was a student of D.C. Spencer in the closeby mathematics department:

Is it possible to express the generic solutions of Einstein equations in vacuum by means of the
derivatives of a certain number of arbitrary functions like the potentials for Maxwell equations ?.

Then, being already in contact with M.P. Malliavin as I gave a seminar on the ”Deformation
Theory of Algebraic and Geometric Structures ” [55], I presented in 1995 a seminar at IHP in
Paris, proving the impossibility to parametrize Einstein equations, a result I just found. Meeting
with the participants in a café after the seminar, one of them called my attention on a recently
published translation from japanese of the 1970 master thesis of M. Kashiwara that he just saw
on display in the library of the Institute [20]. This has been a real ”shock” and the true starting
of the story. In the meantime, following U. Oberst [34,35], a few persons were trying to adapt
these methods to control theory and, thanks to J.L. Lions, I have been able to advertise about
this new approach in a european course, held with succes during 6 years [41] and continued for
5 other years in a slightly different form [45]. However, we may say that ”the battle died down
because there has been nobody left to carry on the fight ” [67]. By chance I met A. Quadrat, a good
PhD student interested by control and computer algebra and we have been staying alone because
the specialists of Algebraic Analysis were pure mathematicians, not interested at all by applications.

Now, let us start with a completely different approach. Indeed, looking at any textbook of
mechanics and using the well known Newton formula, the movement of a body of mass m falling
freely in the constant gravitational field ~g is described by ~f = m~γ with ~f = m~g and ~γ = d~v

dt , that

is by the 2 purely geometrical equations d~x
dt = ~v, d~vdt = ~g and by ∂~g

∂x = 0, that we may rewrite as:







d~x
dt − ~v = 0 derivative of a zero order jet - first order jet
d~v
dt − ~g = 0 derivative of a first order jet - second order jet
∂~g
∂x − 0 = 0 derivative of a second order jet - third order jet

It is only after following the course of D.C. Spencer on jet theory that we understood this was
just one way to describe the Spencer operator, namely to identify the speed with a first order jet
(Lorentz rotation) and the gravity with a second order jet. Accordingly, the accelerometers on a
gyroscopic platform in a rocket are thus only able to measure the three components of the Spencer
operator described by the middle line. This comment has been the main physical motivation for
using the conformal group of space-time with vanishing third order jets, adopting a quite different
philosophy and framework compared to G. Nordström [31] and H. Weyl [66]. With more details,
a section of a jet bundle of order q can be represented locally by functions (fk(x), fk

i (x), f
k
ij(x), ...)

transforming like the respective derivatives (fk(x), ∂if
k(x), ∂ijf

k(x), ...) up to order q but in such
a way that ∂if

k(x) − fk
i (x) 6= 0, ∂if

k
j (x) − fk

ij(x) 6= 0, ... and so on.

A second physical motivation has been to understand the ” analogies ” described by E. Mach
[1,27,28], G. Lippmann [1,24,25] and H. von Helmholtz [9,44] at the end of the 19th century while
discovering that they were implicitly used in the finite element approach to the following tabular
dealing with variational calculus along the Poincaré duality scheme geometry ↔ physics [37] but
precise definitions will be given in the forthcoming sections (See [43] and [44], p 740-786, for more
details):
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THEORY

ELASTICITY HEAT ELECTROMAGNETISM

GEOMETRY

DISPLACEMENT TEMPERATURE POTENTIAL

DEFORMATION GRADIENT FIELD

DEFORMATION EQUATIONS CURL FIELD EQUATIONS

PHYSICS

STRESS HEAT FLUX INDUCTION

STRESS EQUATIONS HEAT EQUATION INDUCTION EQUATIONS

COUPLINGS

HOOKE LAW FOURIER LAW MINKOWSKI LAW

DIAGONAL { Photoelasticity, Piezzoelectricity, Thermoelectricity, ...}

GROUP THEORY → SPENCER SEQUENCE

ELASTICITY HEAT
ELECTROMAGNETISM

⊕ GRAVITATION

{ξk(x), ξki (x) | k 6= i} ξrr (x) ξrri = Ai







∂iξ
k − ξki = Xk

,i

∂iξ
k
j − ξkij = Xk

j,i

∂iξ
r
r − ξrri = Xi







∂iξ
r
r,j − ∂jξrr,i = Fij

1
2 (∂iξ

r
rj + ∂jξ

r
ri) = Rij







∂iX
k
,j − ∂jXk

,i +Xk
i,j −Xk

j,i = 0

∂iX
k
l,j − ∂jXk

l,i +Xk
li,j −Xk

lj,i = 0
∂iXj − ∂jXi + Fij = 0 ∂iXl,j − ∂jXl,i = 0

where the rows are successively describing POTENTIAL, FIELD and FIELD EQUATIONS like
in the previous tabular. As we shall see in Section 4, ⊕ is the direct sum T ∗⊗ T ∗ ≃ S2T

∗ ⊕∧2T ∗
with standard notations and, using the fact that the third order jets vanish, we have set:

Xr
r,i = Xi, Xr

rj,i = Xj,i = Rij +
1

2
Fij = ∂iξ

r
rj − ξrrij = ∂iξ

r
rj 6= Xi,j ∀n ≥ 3

Accordingly, the field is a section of Ĉ1 parametrized by the first Spencer operator D1 and thus

killed by D2 in the initial part Ĉ0
D1−→ Ĉ1

D2−→ Ĉ2 of the Spencer sequence with Ĉr = ∧rT ∗ ⊗ R̂2

and dim(R̂2) = 15 in the case of the conformal Killing equations on space-time. It is essential to
notice that the field is a 1-form with value in a Lie equation. Of course, the metric and Riemann
tensor cannot exist in this scheme because we shall see that ... they are in another differential
sequence and only the Ricci part is surprisingly left as we shall explain in Section 4. However, such
a result, which is coherent with the ideas of both the Cosserat brothers [13] (first row), Weyl [66]
and Nordström [31] (second and third row), cannot be explained by standard tensorial methods
and could not have been found before 1975 because of the lack of any convenient mathematical
framework for dealing with second and third order jets [50, 51].
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EXAMPLE 1.1 : Cosserat Elasticity Theory
If we restrict our study to the group of isometries of the euclidean metric ω in dimension n ≥ 2,
exhibiting the Janet and the Spencer sequences is not easy at all because the corresponding Killing
operator Dξ = L(ξ)ω = Ω ∈ S2T

∗, which involves the Lie derivative L and provides twice the
so-called infinitesimal deformation tensor of continuum mechanics, is not involutive. In order to
overcome this problem, one must differentiate once by considering also the Christoffel symbols
γ and add the operator L(ξ)γ = Γ ∈ S2T

∗ ⊗ T with the well known Levi-Civita isomorphism
j1(ω) = (ω, ∂xω) ≃ (ω, γ). Introducing the bundle ∧rT ∗ of completely skewsymmetric covariant
tensors or r-forms and the exterior derivative d with d2 = d◦d ≡ 0, we have the Poincaré sequence:

∧0T ∗ d−→ ∧1T ∗ d−→ ∧2T ∗ d−→ ...
d−→ ∧nT ∗ −→ 0

For Lie groups of transformations, we shall prove that the Spencer sequence is locally isomorphic to
the tensor product of the Poincaré sequence by the Lie algebra of the underlying Lie group. Hence,
the bigger is the group involved, the bigger are the dimensions of the Spencer bundles, contrary to
what happens in the Janet sequence where the first Janet bundle has only to do with differential
invariants. This rather philosophical comment, namely to replace the Janet sequence by the Spencer
sequence, must be considered as the crucial key for understanding the work of the brothers E. and
F. Cosserat in 1909 [13, 42], the best picture being that of Janet and Spencer playing at see-saw.
Also, contrary to what happens in the Janet sequence with D, the formal adjoint of the Spencer
operator D1 brings as many dual equations as the number of parameters [68].

When n = 2, one has n(n + 1)/2 = 3 parameters, namely 2 translations and 1 rotation with
infinitesimal generators ∂1, ∂2 and x1∂2− x2∂1. The following commutative diagram only depends
on the left commutative square and each operator generates the compatibility conditions (CC) of
the previous one with j2(ξ)(x) = (ξk(x), ∂iξ

k(x), ∂ijξ
k(x)) and D = Φ0 ◦ j2:

0 0 0
↓ ↓ ↓

0 −→ Θ
j2−→ 3

D1−→ 6
D2−→ 3 −→ 0 Spencer

↓ ↓ ↓
0 −→ 2

j2−→ 12
D1−→ 16

D2−→ 6 −→ 0
‖ ↓ Φ0 ↓ Φ1 ↓ Φ2

0 −→ Θ −→ 2
D−→ 9

D1−→ 10
D2−→ 3 −→ 0 Janet

↓ ↓ ↓
0 0 0

Even in this elementary case, the reader will fast discover that only working out the middle row
is at the limit of what can be done by hand (exercise) and that it finally seems quite ”magical ”

that the induced upper row has to do with the Poincaré sequence 1
d−→ 2

d−→ 1→ 0.

More generally, for n ≥ 2 arbitrary, the adjoint of the first Spencer operator D1 provides the
Cosserat equations which can be parametrized by the adjoint of the second Spencer operator D2

because it is well known that the Poincaré sequence is self-adjoint up to sign. A delicate theorem of
homological algebra on the vanishing of the so-called extension modules (Section 3) finally proves
that the adjoint of the Lie operator D (stress equations) can also be parametrized by the adjoint of
its compatibility conditions D1. As a byproduct, the following result does not seem to be known:
•The parametrization of the Cosserat couple-stress equations is first order.
•The parametrization of the Cauchy stress equations (Airy [2] when n = 2, Beltrami [5] and
Maxwell [29] or Morera [30] when n = 3, Einstein [50, 54] when n = 4) is second order.

When n = 2, the Killing system brings ξ11 = 0, ξ12 + ξ21 = 0, ξ22 = 0, ξrij = 0 and the adjoint of
D1 provides the Cosserat couple-stress equations (Compare to [64]!). Indeed, lowering the upper
indices by means of the (constant) euclidean metric, we just need to look for the factors of ξ1, ξ2
and ξ1,2 in the integration by parts of the sum:
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σ11(∂1ξ1 − ξ1,1) + σ12(∂2ξ1 − ξ1,2) + σ21(∂1ξ2 − ξ2,1) + σ22(∂2ξ2 − ξ2,2) + µr(∂rξ1,2 − ξ1,2r)
in order to obtain the force f = (f1, f2) and the momentum m by the formulas ([13], p 137):

∂1σ
11 + ∂2σ

12 = f1, ∂1σ
21 + ∂2σ

22 = f2, ∂1µ
1 + ∂2µ

2 + σ12 − σ21 = m

Finally, we obtain the nontrivial first order parametrization σ11 = ∂2φ
1, σ12 = −∂1φ1, σ21 =

−∂2φ2, σ22 = ∂1φ
2, µ1 = ∂2φ

3 + φ1, µ2 = −∂1φ3 − φ2 by means of the three arbitrary func-
tions φ1, φ2, φ3, in a coherent way with the Airy second order parametrization obtained if we set
φ1 = ∂2φ, φ

2 = ∂1φ, φ
3 = −φ when µ1 = 0, µ2 = 0 [48] .

The adjoint of the second order Riemann operator D1 : Ω→ R = ∂11Ω22 + ∂22Ω11− 2∂12Ω12 is
nothing else but the second order parametrization σ11 = ∂22φ, σ

22 = ∂11φ, σ
12 = σ21 = −∂12φ of

the classical Cauchy stress equations by means of the single Airy function φ which has therefore
nothing to do with any metric.

More generally, using the conformal Killing system with ξ11 = ... = ξnn = (1/n)ξrr and n = 4,
we may similarly introduce tr(σ) = ωijσ

ij = −σ44 ∼ ρ as usual in relativistic mechanics and obtain:

σijξi,j = (σ11ξ1,1 + ...) + (σ12ξ1,2 + σ21ξ2,1 + ...) =
1

n
tr(σ)ξrr +

∑

i<j
(σij − σji)ξi,j

in the conformal case, when σ is arbitrary. Integrating now by parts the summation:

nσij(∂iξ
j − ξj,i) + gi(∂iξ

r
r − ξrri) + gij(∂iξ

r
rj − 0)

in order to find the adjoint of D1, we obtain therefore the so-called virial equations [53]:

∂iσ
ij = 0, σij − σji = 0 ∂jg

j + tr(σ) = 0, ∂ig
ij + gj = 0

and thus ∂ijg
ij = tr(σ) ∼ ρ. If (gij = gji) is the symmetric tensor density dualizing (Rij = Rji)

with gij = ψωij by isotropy, we get the Newton law ωij∂ijψ ∼ ρ. Finally, if (gij = −gji) is the
EM induction dualizing the EM field (Fij = −Fji), we obtain at once:

∂ig
ij + gj = 0 ⇒ ∂ijg

ij = 0 ⇒ ∂jg
j = 0 ⇒ tr(σ) = 0

as conjectured by Weyl in [66]. Accordingly, there is no conceptual difference between the Cosserat
couple-stress equations, the Newton equations of gravitation and the Maxwell equations of EM, in a
coherent way with the preceding tabular. Therefore, the main problem left and solved in section 4
is to understand why only the Ricci tensor is appearing in this scheme, with a unique reference to
the splitting T ∗ ⊗ T ∗ ≃ S2T

∗ ⊕ ∧2T ∗ but without any reference to the Riemann or Weyl tensors.

EXAMPLE 1.2: Classical Elasticity Theory
In classical elasticity, the stress tensor density σ = (σij = σji) existing inside an elastic body is
a symmetric 2-tensor density introduced by A. Cauchy in 1822. The corresponding Cauchy stress
equations can be written as ∂rσ

ir = f i where the right member describes the local density of forces
applied to the body, for example gravitation. With zero second member, we study the possibility
to ”parametrize ” the system of PD equations ∂rσ

ir = 0, namely to express its general solution by
means of a certain number of arbitrary functions or potentials, called stress functions. Of course,
the problem is to know about the number of such functions and the order of the parametrizing
operator. In what follows, the space has n local coordinates x = (xi) = (x1, ..., xn). For n = 1, 2, 3
one may introduce the Euclidean metric ω = (ωij = ωji) while, for n = 4, one may consider the
Minkowski metric. A few definitions used thereafter will be provided later on.
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• n = 2: The stress equations become ∂1σ
11 + ∂2σ

12 = 0, ∂1σ
21 + ∂2σ

22 = 0. Their second order
parametrization σ11 = ∂22φ, σ

12 = σ21 = −∂12φ, σ22 = ∂11φ has been provided by George Biddell
Airy (1801-1892) in 1863 [2]. It can be simply recovered in the following manner:

∂1σ
11 − ∂2(−σ12) = 0 ⇒ ∃ϕ, σ11 = ∂2ϕ, σ

12 = −∂1ϕ
∂2σ

22 − ∂1(−σ21) = 0 ⇒ ∃ψ, σ22 = ∂1ψ, σ
21 = −∂2ψ

σ12 = σ21 ⇒ ∂1ϕ− ∂2ψ = 0 ⇒ ∃φ, ϕ = ∂2φ, ψ = ∂1φ

We get the second order system:







σ11 ≡ ∂22φ = 0
−σ12 ≡ ∂12φ = 0
σ22 ≡ ∂11φ = 0

1 2
1 •
1 •

which is involutive with one equation of class 2, 2 equations of class 1 and it is easy to check that
the 2 corresponding first order CC are just the stress equations.

• n = 3: Things become quite more delicate when we try to parametrize the 3 PD equations:

∂1σ
11 + ∂2σ

12 + ∂3σ
13 = 0, ∂1σ

21 + ∂2σ
22 + ∂3σ

23 = 0, ∂1σ
31 + ∂2σ

32 + ∂3σ
33 = 0

A direct computational approach has been provided by Eugenio Beltrami (1835-1900) in 1892
[5], James Clerk Maxwell (1831-1879) in 1870 [29] and Giacinto Morera (1856-1909) in 1892 [30]
by introducing the 6 stress functions φij = φji in the Beltrami parametrization obtained by con-
sidering:

σ11 = ∂33φ22 + ∂22φ33 − 2∂23φ23

σ12 = σ21 = ∂13φ23 + ∂23φ13 − ∂33φ12 − ∂12φ33
and the additional 4 relations obtained by using a cyclic permutation of (1, 2, 3). The system:































σ11 ≡ ∂33φ22 + ∂22φ33 − 2∂23φ23 = 0
−σ12 ≡ ∂33φ12 + ∂12φ33 − ∂13φ23 − ∂23φ13 = 0
σ22 ≡ ∂33φ11 + ∂11φ33 − 2∂13φ13 = 0
σ13 ≡ ∂23φ12 + ∂12φ23 − ∂22φ13 − ∂13φ22 = 0
−σ23 ≡ ∂23φ11 + ∂11φ23 − ∂12φ13 − ∂13φ12 = 0
σ33 ≡ ∂22φ11 + ∂11φ22 − 2∂12φ12 = 0

1 2 3
1 2 3
1 2 3
1 2 •
1 2 •
1 2 •

is involutive with 3 equations of class 3, 3 equations of class 2 and no equation of class 1. The 3 CC
are describing the stress equations which admit therefore a parametrization ... but without any
geometric framework, in particular without any possibility to imagine that the above second order
operator is nothing else but the formal adjoint of the Riemann operator, namely the (linearized)
Riemann tensor with n2(n2 − 1)/2 = 6 independent components when n = 3 [54].

Surprisingly, the Maxwell parametrization is obtained by keeping φ11 = A, φ22 = B, φ33 = C
while setting φ12 = φ23 = φ31 = 0. However, the fact that this system is involutive can only be
found after effecting the linear change of coordinates x1 → x1 + x3, x2 → x2 + x3, x3 → x3 and
it is easy to check that the 3 CC obtained just amount to the desired 3 stress equations when
coming back to the original system of coordinates. Again, if there is a geometrical background, this
change of local coordinates is hidding it totally. The Morera parametrization is obtained similarly
by keeping now φ23 = L, φ13 =M,φ12 = N while setting φ11 = φ22 = φ33 = 0.

• n ≥ 4: As a direct computational way cannot be applied, we don’t know if a parametrization
may exist and in any case no analogy with the previous situations n = 1, 2, 3 could be used. More-
over, no known differential geometric background could be used at first sight in order to provide
a hint towards the solution. Now, if n = 4, ω is the Minkowski metric and φ = GM/r is the
gravitational potential, then φ/c2 ≪ 1 and a perturbation Ω ∈ S2T

∗ of ω may satisfy in vacuum
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the 10 second order (linearized) Einstein equations for the 10 Ω:

2Eij ≡ ωrs(dijΩrs + drsΩij − driΩsj − dsjΩri)− ωij(ω
rsωuvdrsΩuv − ωruωsvdrsΩuv) = 0

by introducing the corresponding second order Einstein operator S2T
∗ Einstein−→ S2T

∗ : Ω → E
with Eij = Rij − 1

2ωijR and R = ωijRij when n = 4 [50,51]. For n ≥ 4, this is a second order
involutive system with n(n− 1)/2 equations of class n and thus α = n(n+ 1)/2− n(n− 1)/2 = n
equations of class n − 1 providing the well known n div first order involutive CC induced from
the Bianchi identities. The ” founding stone ” of General relativity (GR) is that the Einstein
operator is parametrizing the Cauchy stress equations. However, by analogy with the Maxwell
equations of electromagnetism (EM), the challenge of parametrizing Einstein equations themselves
has been proposed in 1970 by J. Wheeler for 1000 $ and solved negatively in 1995 by the author
who only received 1 $. We shall see that, exactly as before and though it is quite striking, the
key ingredient will be to use the linearized Riemann tensor considered as a second order opera-
tor [49,50,54]. As an even more striking fact, we shall discover that the condition n ≥ 4 has only
to do with the Spencer cohomology for the symbol of the classical and conformal Killing equations.

The next tricky example will prove that the possibility to exhibit different parametrizations of
the stress equations that we have presented has surely nothing to do with the proper mathematical
background of elasticity theory !.

EXAMPLE 1.3: PD Control Theory
Let us consider the (trivially involutive) inhomogeneous first order PD equations with two inde-
pendent variables (x1, x2), two unknown functions (η1, η2) and a second member ζ:

∂2η
1 − ∂1η2 + x2η2 = ζ ⇔ D1η = ζ

Multiplying on the left by a test function λ and integrating by parts, the corresponding adjoint
system of PD equations is:

{

η1 → −∂2λ = µ1

η2 → ∂1λ+ x2λ = µ2 ⇔ ad(D1)λ = µ

Using crossed derivatives, we get λ = ∂2µ
2 + ∂1µ

1 + x2µ1 and substituting, we get the two CC:

{

∂22µ
2 + ∂12µ

1 + x2∂2µ
1 + 2µ1 = ν1

∂12µ
2 + ∂11µ

1 + 2x2∂1µ
1 + x2∂2µ

2 + (x2)2µ1 − µ2 = ν2
1 2
1 •

This system is involutive and the corresponding generating CC for the second member (ν1, ν2) is:

∂2ν
2 − ∂1ν1 − x2ν1 = 0

Therefore ν2 is differentially dependent on ν1 but ν1 is also differentially dependent on ν2.
Multiplying the first equation by the test function ξ1, the second equation by the test function ξ2,
adding and integrating by parts, we get the canonical parametrization Dξ = η:

{

µ2 → ∂22ξ
1 + ∂12ξ

2 − x2∂2ξ2 − 2ξ2 = η2

µ1 → ∂12ξ
1 − x2∂2ξ1 + ξ1 + ∂11ξ

2 − 2x2∂1ξ
2 + (x2)2ξ2 = η1

1 2
1 •

of the initial system with zero second member. This system is involutive and the kernel of this
parametrization has differential rank equal to 1 because ξ1 or ξ2 can be given arbitrarily.
Keeping now ξ1 = ξ while setting ξ2 = 0, we get the first minimal parametrization ξ → (η1, η2):

{

∂22ξ = η2

∂12ξ − x2∂2ξ + ξ = η1
1 2
1 •

This system is again involutive and the parametrization is minimal because the kernel of this
parametrization has differential rank equal to 0. With a similar comment, setting now ξ1 = 0

7



while keeping ξ2 = ξ′, we get the second minimal parametrization ξ′ → (η1, η2):

{

∂11ξ
′ − 2x2∂1ξ

′ + (x2)2ξ′ = η1

∂12ξ
′ − x2∂2ξ′ − 2ξ′ = η2

which is again easily seen to be involutive by exchanging x1 with x2.

Leaving now physics for mathematics, the content of the paper becomes clear enough:
• In Section 2 we provide a self-contained survey of the formal theory of systems of OD or PD
equations, only caring about the results that will be absolutely needed for understanding the next
Section.
• In Section 3 we provide in a similar way the main results of algebraic analysis and biduality, only
caring about the results that will be absolutely needed for understanding the last Section.
• In Section 4 we combine these results in order to revisit the mathematical foundations of GR.

Though the matters involved are difficult, we point out that we have only presented the strict
minimum of mathematics needed in order to deal with the mathematical foundations of GR in
the sense that all results will be used and advise the reader not to look at the last section with-
out reading the two preceding ones in the order they are presented, even though they are deeply
interacting between themselves. We do believe that all the results presented are new and cannot
therefore even provide other modern references.
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2) DIFFERENTIAL SYSTEMS

If E is a vector bundle over the base manifold X with projection π and local coordinates
(x, y) = (xi, yk) projecting onto x = (xi) for i = 1, ..., n and k = 1, ...,m, identifying a map
with its graph, a (local) section f : U ⊂ X → E is such that π ◦ f = id on U and we write
yk = fk(x) or simply y = f(x). For any change of local coordinates (x, y)→ (x̄ = ϕ(x), ȳ = A(x)y)
on E, the change of section is y = f(x) → ȳ = f̄(x̄) such that f̄ l(ϕ(x) ≡ Al

k(x)f
k(x). The

new vector bundle E∗ obtained by changing the transition matrix A to its inverse A−1 is called
the dual vector bundle of E. Differentiating with respect to xi and using new coordinates yki
in place of ∂if

k(x), we obtain ȳlr∂iϕ
r(x) = Al

k(x)y
k
i + ∂iA

l
k(x)y

k. Introducing a multi-index
µ = (µ1, ..., µn) with length | µ |= µ1 + ... + µn and prolonging the procedure up to order q,
we may construct in this way, by patching coordinates, a vector bundle Jq(E) over X , called the
jet bundle of order q with local coordinates (x, yq) = (xi, ykµ) with 0 ≤| µ |≤ q and yk0 = yk.
Hence, we may use the notation yxx or y(2), y12 or y(1,1) and so on. For a later use, we shall set
µ+ 1i = (µ1, ..., µi−1, µi + 1, µi+1, ..., µn) and define the operator jq : E → Jq(E) : f → jq(f) on
sections by the local formula jq(f) : (x) → (∂µf

k(x) | 0 ≤| µ |≤ q, k = 1, ...,m). Finally, a jet
coordinate ykµ is said to be of class i if µ1 = ... = µi−1 = 0, µi 6= 0. As the background will always
be clear enough, we shall use the same notation for a vector bundle and its set of sections [38-41].

DEFINITION 2.1: A system of PD equations of order q on E is a vector subbundle Rq ⊂ Jq(E)
locally defined by a constant rank system of linear equations for the jets of order q of the
form aτµk (x)ykµ = 0. Its first prolongation Rq+1 ⊂ Jq+1(E) will be defined by the equations

aτµk (x)ykµ = 0, aτµk (x)ykµ+1i + ∂ia
τµ
k (x)ykµ = 0 which may not provide a system of constant rank as

can easily be seen for xyx − y = 0⇒ xyxx = 0 where the rank drops at x = 0.

The next definition will be crucial for our purpose.

DEFINITION 2.2: A system Rq is said to be formally integrable if the Rq+r are vector bundles
∀r ≥ 0 (regularity condition) and no new equation of order q + r can be obtained by prolonging
the given PD equations more than r times, ∀r ≥ 0.

Finding an intrinsic test has been achieved by D.C. Spencer in 1965 [63] along coordinate
dependent lines sketched by Janet as early as in 1920 [19, 38] and Gröbner in 1940 [16], as we
already said. The key ingredient, missing explicitly before the moderrn approach, is provided by
the following definition.

DEFINITION 2.3: The family gq+r of vector spaces over X defined by the purely linear equa-
tions aτµk (x)vkµ+ν = 0 for | µ |= q, | ν |= r is called the symbol at order q+r and only depends on gq.

The following procedure, where one may have to change linearly the independent variables if
necessary, is the heart towards the next definition which is intrinsic even though it must be checked
in a particular coordinate system called δ-regular (See [13] and [14] for more details):

• Equations of class n: Solve the maximum number β = βn
q of equations with respect to the jets

of order q and class n. Then call (x1, ..., xn) multiplicative variables.

−−− −−−−−−−−−−−−−
• Equations of class i: Solve the maximum number of remaining equations with respect to the
jets of order q and class i. Then call (x1, ..., xi) multiplicative variables and (xi+1, ..., xn) non-
multiplicative variables.

−−−−−−−−−−−−−−−−−
• Remaining equations equations of order ≤ q − 1: Call (x1, ..., xn) non-multiplicative variables.

DEFINITION 2.4: A system of PD equations is said to be involutive if its first prolongation
can be achieved by prolonging its equations only with respect to the corresponding multiplicative
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variables. The numbers αi
q = m(q+n− i− 1)!/((q− 1)!(n− i)!)− βi

q will be called characters and

α1
q ≥ ... ≥ αn

q = α = m− β. For an involutive system, (yβ
n
q +1, ..., ym) can be given arbitrarily.

Though the preceding description was known to Janet (he called it : ”modules de formes en
involution”), surprisingly he never used it explicitly. In any case, such a definition is far from being
intrinsic and the hard step will be achieved from the Spencer cohomology that will also play an im-
portant part in the so-called reduction to first order, a result no so well known today as we shall see.

Let us consider Jq+1(E) with jet coordinates {ylλ | 0 ≤| λ |≤ q + 1} and J1(Jq(E)) with jet
coordinates {zkµ, zkµ,i | 0 ≤| µ |≤ q, i = 1, ..., n}. The canonical inclusion Jq+1(E) ⊂ J1(Jq(E)) is
described by the two kinds of equations:

zkµ,i − zkµ+1i = 0, 0 ≤| µ |≤ q − 1

zkµ+1j ,i − z
k
µ+1i,j = 0, | µ |= q − 1

or using the parametrization zkµ,i = ykµ+1i for | µ |= q with zkµ = ykµ, ∀0 ≤| µ |≤ q.

Let T be the tangent vector bundle of vector fields onX , T ∗ be the cotangent vector bundle of 1-
forms onX and ∧sT ∗ be the vector bundle of s-forms onX with usual bases {dxI = dxi1∧...∧dxis}
where we have set I = (i1 < ... < is). Also, let SqT

∗ be the vector bundle of symmetric q-covariant
tensors. Moreover, if ξ, η ∈ T are two vector fields on X , we may define their bracket [ξ, η] ∈ T
by the local formula ([ξ, η])i(x) = ξr(x)∂rη

i(x) − ηs(x)∂sξ
i(x) leading to the Jacobi identity

[ξ, [η, ζ]]+[η, [ζ, ξ]]+[ζ, [ξ, η]] = 0, ∀ξ, η, ζ ∈ T . We have also the useful formula [T (f)(ξ), T (f)(η)] =
T (f)([ξ, η]) where T (f) : T (X)→ T (Y ) is the tangent mapping of a map f : X → Y . Finally, we
may introduce the exterior derivative d : ∧rT ∗ → ∧r+1T ∗ : ω = ωIdx

I → dω = ∂iωIdx
i ∧dxI with

d2 = d ◦ d ≡ 0 in the Poincaré sequence:

∧0T ∗ d−→ ∧1T ∗ d−→ ∧2T ∗ d−→ ...
d−→ ∧nT ∗ −→ 0

In a purely algebraic setting, one has [38,63]:

PROPOSITION 2.5: There exists a map δ : ∧sT ∗ ⊗ Sq+1T
∗ ⊗ E → ∧s+1T ∗ ⊗ SqT

∗ ⊗E which
restricts to δ : ∧sT ∗ ⊗ gq+1 → ∧s+1T ∗ ⊗ gq and δ2 = δ ◦ δ = 0.

Proof: Let us introduce the family of s-forms ω = {ωk
µ = vkµ,Idx

I} and set (δω)kµ = dxi ∧ωk
µ+1i .

We obtain at once (δ2ω)kµ = dxi ∧ dxj ∧ ωk
µ+1i+1j = 0 and aτµk (δω)kµ = dxi ∧ (aτµk ωk

µ+1i) = 0.
Q.E.D.

The kernel of each δ in the first case is equal to the image of the preceding δ but this may no
longer be true in the restricted case we set:

DEFINITION 2.6: We denote by Bs
q+r(gq) ⊆ Zs

q+r(gq) and H
s
q+r(gq) = Zs

q+r(gq)/B
s
q+r(gq) re-

spectively the coboundary space im(δ), cocycle space ker(δ) and cohomology space at ∧sT ∗⊗gq+r

of the restricted δ-sequence which only depend on gq and may not be vector bundles. The symbol
gq is said to be s-acyclic if H1

q+r = ... = Hs
q+r = 0, ∀r ≥ 0, involutive if it is n-acyclic and finite

type if gq+r = 0 becomes trivially involutive for r large enough. Finally, SqT
∗ ⊗ E is involutive

∀q ≥ 0 if we set S0T
∗ ⊗ E = E.

THEOREM 2.7: (Integrability/involutivity criterion) A systemRq ⊂ Jq(E) is formally integrable
(involutive) if πq+1

q : Rq+1 → Rq is an epimorphism of vector bundles and gq is 2-acyclic (involutif).

From now on, we shall suppose that Rq is involutive and that we are only dealing with vector
bundles, in particular that gq is a vector bundle and that the projection Rq−1 of Rq in Jq−1(E)
is thus also a vector bundle (See [38, 41, 44] for more details). The following technical result will
prove to be quite useful later on for our purpose [38, 63]:

10



PROPOSITION 2.8: We may define the Spencer bundles by the isomorphisms:

Cr = ∧rT ∗ ⊗Rq/δ(∧r−1T ∗ ⊗ gq+1) ≃ δ(∧rT ∗ ⊗ gq)⊕ ∧rT ∗ ⊗Rq−1

In particular one has C0 = Rq and Cn = ∧nT ∗ ⊗Rq−1.

Proof: The first commutative ad exact diagram:

0 0 0
↓ ↓ ↓

0→ gq+1 → T ∗ ⊗Rq → C1 → 0
↓ ↓ ‖

0→ Rq+1 → J1(Rq) → C1 → 0
↓ ↓ ↓

0→ Rq = Rq → 0
↓ ↓
0 0

shows that C1 ≃ T ∗ ⊗ Rq/gq+1. The general case finally depends on the following commutative
and exact diagram by using a (non-canonical) splitting of the right column:

0 0 0
↓ ↓ ↓

∧r−1T ∗ ⊗ gq+1
δ→ ∧rT ∗ ⊗ gq δ→ δ(∧rT ∗ ⊗ gq) → 0

‖ ↓ ↓
∧r−1T ∗ ⊗ gq+1 → ∧rT ∗ ⊗Rq → Cr → 0

↓ ↓ ↓
0 → ∧rT ∗ ⊗Rq−1 = ∧rT ∗ ⊗Rq−1 → 0

↓ ↓
0 0

When r = n, the equality δ(∧n−1T ∗ ⊗ gq+1) = ∧nT ∗ ⊗ gq gives the last result.
Q.E.D.

Accordingly, the inclusion Rq+1 ⊂ J1(Rq) can be considered as a new first order system over
Rq, called first order reduction or Spencer form. The same procedure is valid for the inclusion
Jq+1 ⊂ J1(Jq(E)). One obtains [38-41, 44]:

PROPOSITION 2.9: The first order reduction is formally integrable (involutive) whenever Rq

is formally integrable (involutive). In that case, the reduction has no longer any zero order equation.

Having in mind control theory, it just remains to modify the Spencer form in order to generalize
the Kalman form from OD equations to PD equations. Here is the procedure that must be followed
in the case of a first order involutive system with no zero order equation.

• Look at the equations of class n solved with respect to y1n, ..., y
β
n.

• Use integrations by part like:

y1n − a(x)yβ+1
n = dn(y

1 − a(x)yβ+1) + ∂na(x)y
β+1 = ȳ1n + ∂na(x)y

β+1

• Modify y1, ..., yβ to ȳ1, ..., ȳβ in order to ”absorb” the various yβ+1
n , ..., ymn only appearing in the

equations of class n.

PROPOSITION 2.10: The new equations of class n only contain yβ+1
i , ..., ymi with 0 ≤ i ≤ n−1

while the equations of class 1, ..., n− 1 no more contain yβ+1, ..., ym and their jets.

Proof: The first assertion comes from the absorption procedure. Now, if ym or ymi should ap-
pear in an equation of class ≤ n−1, prolonging this equation with respect to the non-multiplicative
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variable xn should bring ymn or ymin and (here involution is essential) we should get a linear com-
bination of equations of various classes prolonged with respect to x1, ..., xn−1 only, but this is
impossible.

Q.E.D.

A similar proof provides at once (See next Section for the definition):

COROLLARY 2.11: Any torsion element, if it exists, only depends on ȳ1, ..., ȳβ.

For an involutive system of order q in solved form, we shall use to denote by ypri the principal
jet coordinates, namely the leading terms of the solved equations in the sense of involution. Ac-
cordingly, any formal derivative of a principal jet coordinate is again a principal jet coordinate.
The remaining jet coordinates will be called parametric jet coordinates and denoted by ypar. We
shall use a ”trick” in order to study the parametric jet coordinates. Indeed, the symbol of jq is
the zero symbol and is thus trivially involutive at any order q. Accordingly, if we introduce the
multiplicative variables x1, ..., xi for the parametric jets of order q and class i, the formal derivative
or a parametric jet of strict order q and class i by one of its multiplicative variables is uniquely
obtained and cannot be a principal jet of order q + 1 which is coming from a uniquely defined
principal jet of order q and class i. We have thus obtained the following technical Proposition
which is very useful in actual practice:

PROPOSITION 2.12: The principal and parametric jets of strict order q of an involutive system
of order q have the same Janet board if we extend it to all the classes that may exist for both sets,
in particular the respective empty classes.

EXAMPLE 2.13: With n = 3,m = 1, q = 2, let us consider the linear second order system R2

defined by the three PD equations

Φ1 ≡ Py = y33 = 0, Φ2 ≡ Qy = y23 − y11 = 0, Φ3 ≡ Ry = y22 = 0

which is homogeneous and thus automatically formally integrable but g2 is not involutive though
finite type because g4 = 0 (Exercise). Elementary computations of ranks of matrices shows that
the δ-map defined by a 3× 3 matrix:

0→ ∧2T ∗ ⊗ g3 δ−→ ∧3T ∗ ⊗ g2 → 0

is an isomorphism and g3 is thus 2-acyclic, a crucial intrinsic property [38, 44] totally absent from
any ”old” work and that will be used in order to study the conformal group of space-time and
Einstein equations. We have y123 − y111 = 0 and thus par = {y, y1, y2, y3, y11, y12, y13, y111} with
dim(R3) = 8 = 2n according to Macaulay (See ([26, 48] for more details). Finally, comparing to
the Poincaré sequence for R3, we notice the identities:

Ψ1 ≡ QΦ3 −RΦ2 = 0,Ψ2 ≡ RΦ1 − PΦ3 = 0,Ψ3 ≡ PΦ2 −QΦ1 = 0⇒ PΨ1 +QΨ2 +RΨ3 ≡ 0

and obtain the strictly exact sequence made by second order operators:

0→ Θ→ 1→ 3→ 3→ 1→ 0

which is nevertheless far from being a Janet sequence because only R4 is involutive.

The main use of involution is to construct canonical differential sequences made up by suc-
cessive compatibility conditions (CC). In particular, when Rq is involutive, the linear differential

operator D : E
jq→ Jq(E)

Φ→ Jq(E)/Rq = F = F0 of order q with space of solutions Θ ⊂ E is said
to be involutive and one has the canonical linear Janet sequence ([41], p 144):

0 −→ Θ −→ E
D−→ F0

D1−→ F1
D2−→ ...

Dn−→ Fn −→ 0

where each other operator is first order involutive and generates the CC of the preceding one while
the Janet bundles are defined by:
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Fr = ∧rT ∗ ⊗ Jq(E)/(∧rT ∗ ⊗Rq + δ(∧r−1T ∗ ⊗ Sq+1T
∗ ⊗ E))

For a later use in Section 4 and in the Conclusion, it is important to notice that the canonical Janet
sequence, like the Poincaré sequence, can be ”cut at any place ”, that is can also be constructed
anew from any intermediate operator. The numbering of the Janet bundles has thus nothing to do
with that of the Poincaré sequence for the exterior derivative, contrary to what many physicists still
believe. Moreover, the fiber dimension of the Janet bundles can be computed at once inductively
from the board of multiplicative and non-multiplicative variables that can be exhibited for D by
working out the board for D1 and so on. For this, the number of rows of this new board is the
number of dots appearing in the initial board while the number nb(i) of dots in the column i just in-
dicates the number of CC of class i for i = 1, ..., n with nb(i) < nb(j), ∀i < j and we have therefore:

THEOREM 2.14: The successive first order operators D1, ...,Dn are automatically in reduced
Spencer form.

DEFINITION 2.15: The Janet sequence is said to be locally exact at Fr if any local section
of Fr killed by Dr+1 is the image by Dr of a local section of Fr−1. It is called locally exact if
it is locally exact at each Fr for 0 ≤ r ≤ n. The Poincaré sequence is locally exact, that is a
closed form is locally an exact form but counterexamples may exist ([38], p 373). More generally,
a differential sequence is said to be formally exact if each operator involved generates the CC of
the preceding one. It is said to be strictly exact (involutive) if all the operators are also formally
integrable (involutive). It is said to be canonical if it is strictly exact and all the operators can be
defined by a single formula, that is ”altogether ” and not only ”step by step ”.

In actual practice, the following theorem will be of constant use, in particular for systems with
constant coefficients that are not involutive [40,54]:

THEOREM 2.16: If a differential operator D = Φ ◦ jq : E −→ F0 is such that Rq = ker(Φ) is
formally integrable and s ≥ 0 is the smallest number of prolongations needed in such a way that
the symbol gq+s = ρs(gq) becomes 2-acyclic, then the order of the generating CC D1 : F0 −→ F1

is equal to s+ 1.

EXAMPLE 2.17: When studying the conformal Killing system Dξ = L(ξ)ω = A(x)ω for the
Euclidean metric ω, obtained by eliminating the function factor A(x), we shall see in Section 4
that F0 = {(Ωij) ∈ S2T

∗ | tr(Ω) ≡ ωijΩij = 0} and this second order system is trivially formally
integrable because it is an homogeneous system with constant coefficients. We have the commu-
tative diagram with exact rows and exact δ-columns but the first:

0 0 0
↓ ↓ ↓

0→ g4 → S4T
∗ ⊗ T → S3T

∗ ⊗ F0 → F1 → 0
↓ ↓ ↓

0→ T ∗ ⊗ g3 → T ∗ ⊗ S3T
∗ ⊗ T → T ∗ ⊗ S2T

∗ ⊗ F0 → 0
↓ ↓ ↓

0→ ∧2T ∗ ⊗ g2 → ∧2T ∗ ⊗ S2T
∗ ⊗ T → ∧2T ∗ ⊗ T ∗ ⊗ F0 → 0

↓ ↓ ↓
0→ ∧3T ∗ ⊗ g1 → ∧3T ∗ ⊗ T ∗ ⊗ T → ∧3T ∗ ⊗ F0 → 0

↓ ↓ ↓
0 0 0

leading to the short exact sequence 0→ F1 → ∧2T ∗⊗g2 δ−→ ∧3T ∗⊗g1 → 0 with F1 = H2
2 (g1) 6= 0.

We have dim(g1) = 4, dim(g2) = 3, g3 = 0⇒ g4 = 0 and respective fiber dimensions:
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0 0
↓ ↓

0 → 45 → 50 → 5 → 0
↓ ↓

0→ 0 → 90 → 90 → 0
↓ ↓ ↓

0→ 9 → 54 → 45 → 0
↓ ↓ ↓

0→ 4 → 9 → 5 → 0
↓ ↓ ↓
0 0 0

It follows that g2 and thus g1 cannot be 2-acyclic while g3 = ρ2(g1) = 0 is trivially involutive
with q = 1, r = 2. Moreover, in order to convince the reader about the powerfulness of these
new methods, we invite him to prove that H2

1 (g1) = 0 by exhibiting the short exact sequence

0 → T ∗ ⊗ g2 δ−→ ∧2T ∗ ⊗ g1 δ−→ ∧3T ∗ ⊗ T → 0. It does not seem that these Vessiot structure
equations of order 3 are known but this result has been recently checked by A. Quadrat with new
computer algebra packages [54].

DEFINITION 2.18: If χ = χidx
i ∈ T ∗ and we set χµ = (χ1)

µ1 ...(χn)
µn , the map σχ(D) : E → F

defined by the matrix aτµk (x)χµ is called the symbol of D at χ ∈ T ∗ and we have ([38], p 155-160):

THEOREM 2.19: If D is involutive, the symbol sequence:

0→ ker(σχ(D))→ E
σχ(D)−→ F0

σχ(D1)−→ ...
σχ(Dn)−→ Fn → 0

is exact if and only if χ ∈ T ∗ is such that the rank of σχ(D) has its maximum value.

COROLLARY 2.20: We have:

∑n

r=0
(−1)rdim(Fr) = m− α = β > 0 ⇔

∑n

r=0
(−1)rdim(Cr) = α

EXAMPLE 2.21: ([26],§38, p 40 where one can find the first intuition of formal integrability)
With n = 3,m = 1, q = 2, the system y11 = 0, y13 − y2 = 0 is neither formally integrable nor
involutive. Indeed, we get d3y11− d1(y13− y2) = y12 and d3y12− d2(y13 − y2) = y22, that is to say
each first and second prolongation does bring a new second order PD equation. Considering the
new system y22 = 0, y12 = 0, y13 − y2 = 0, y11 = 0, the question is to decide whether this system
is involutive or not. One could use Janet/Gröbner algorithm but with no insight towards involu-
tion. In such a simple situation, as there is no PD equation of class 3, the evident permutation
of coordinates (1, 2, 3) → (3, 2, 1) provides the following involutive second order system with one
equation of class 3, 2 equations of class 2 and 1 equation of clas 1:















Φ4 ≡ y33 = 0
Φ3 ≡ y23 = 0
Φ2 ≡ y22 = 0
Φ1 ≡ y13 − y2 = 0

1 2 3
1 2 •
1 2 •
1 • •

We have α = α3
2 = 0, α2

2 = 0, α1
2 = 2 and the corresponding CC system is easily seen to be the

following involutive first order system in reduced Spencer form:















Ψ4 ≡ d3Φ3 − d2Φ4 = 0
Ψ3 ≡ d3Φ2 − d2Φ3 = 0
Ψ2 ≡ d3Φ1 − d1Φ4 +Φ3 = 0
Ψ1 ≡ d2Φ1 − d1Φ3 +Φ2 = 0

1 2 3
1 2 3
1 2 3
1 2 •
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The final CC system is the involutive first order system in reduced Spencer form:

{

Ω ≡ d3Ψ1 − d2Ψ2 + d1Ψ
4 −Ψ3 = 0 1 2 3

We get therefore the Janet sequence:

0 −→ Θ −→ 1
D−→ 4

D1−→ 4
D2−→ 1 −→ 0

and check that the Euler-Poincaré characteristic, that is the alternate sum of dimensions of the
Janet bundles, is 1 − 4 + 4 − 1 = α = 0 and thus det(σχ(D1)) = 0. Using the fact that d33
commutes with d13 − d2, we get the formally exact sequence 0→ Θ→ 1→ 2→ 1→ 0 with again
1−2+1 = 0, which is formally exact but not strictly exact and thus far from being a Janet sequence.

Equivalently, we have the involutive first Spencer operator D1 : C0 = Rq
j1→ J1(Rq) →

J1(Rq)/Rq+1 ≃ T ∗ ⊗Rq/δ(gq+1) = C1 of order one induced by the Spencer operator D : Rq+1 →
T ∗ ⊗ Rq : ξq+1 → j1(ξq) − ξq+1 = {∂iξkµ − ξkµ+1i | 0 ≤| µ | q} which is well defined because both
Jq+1(E) and T ∗⊗ Jq(E) may be considered as sub-bundles of J1(Jq(E)). Introducing the Spencer
bundles Cr = ∧rT ∗⊗Rq/δ(∧r−1T ∗⊗gq+1), the first order involutive (r+1)-Spencer operator Dr+1 :
Cr → Cr+1 is induced by D : ∧rT ∗⊗Rq+1 → ∧r+1T ∗⊗Rq : α⊗ ξq+1 → dα⊗ ξq+(−1)rα∧Dξq+1.
Indeed, differentiating the first equation below and substracting the second, we have:

aτµk (x)ξkµ(x) ≡ 0, aτµk (x)ξkµ+1i (x) + ∂ia
τµ
k (x)ξkµ(x) ≡ 0⇒ aτµk (x)(∂iξ

k
µ(x) − ξkµ+1i(x)) ≡ 0

We obtain therefore the canonical linear Spencer sequence ([14], p 150):

0 −→ Θ
jq−→ C0

D1−→ C1
D2−→ C2

D3−→ ...
Dn−→ Cn −→ 0

as the canonical Janet sequence for the first order involutive system Rq+1 ⊂ J1(Rq).

The canonical Janet sequence and the canonical Spencer sequence are both induced by the
Spencer operator along the following comutative diagrams ( See [41], p 391 for details):

∧rT ∗ ⊗Rq+1
D−→ ∧r+1T ∗ ⊗Rq ∧rT ∗ ⊗ Jq+1(E)

D−→ ∧r+1T ∗ ⊗ Jq(E)
↓ ↓ ↓ ↓
Cr

Dr+1−→ Cr+1 Fr
Dr+1−→ Fr+1

↓ ↓ ↓ ↓
0 0 0 0

They can be connected by a commutative diagram (See Section 3) where the Spencer sequence
is induced by the locally exact central horizontal sequence which is at the same time the Janet
sequence for jq and the Spencer sequence for Jq+1(E) ⊂ J1(Jq(E)) ([41], p 153). Surprisingly, this
result will become a key piece of machinery for the applications of Section 4 (See [50-55] for recent
papers providing more details on applications of these results to engineering and mathematical
physics, in particular continuum mechanics, gauge theory and general relativity).

For a later use and in order to explain a result provided in the Introduction, we have:

PROPOSITION 2.22: The Spencer sequence for the Lie operator describing the infinitesimal
action of of a Lie group G is (locally) isomorphic to the tensor product of the Poincaré sequence
by the Lie algebra G = Te() where e ∈ G is the identity element.

Proof: Using the notations of the Introduction, we may introduce a basis {θτ = θiτ (x)∂i}
of infinitesimal generators of the action with τ = 1, ..., dim(G) and the commutation relations
[θρ, θσ] = cτρσθτ discovered by S. Lie giving the structure constants c of G (See [41] and [55] for
more details). Hence any element λ ∈ G can be written λ = {λτ =| λτ = cst}. Gauging such an
element, that is to say replacing the constants by functions or, equivalently, introducing a mapX →
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∧0T ∗ ⊗ G : (x) → (λτ (x)), we may introduce locally a map ∧0T ∗ ⊗ G → T : λτ (x) → λτ (x)θkτ (x)
or, equivalently, vector fields ξ = (ξi(x)∂i) ∈ T of the form ξk(x) = λτ (x)θkτ (x), keeping the index
i for 1-forms. More generally, we can introduce a map :

∧rT ∗ ⊗ G → ∧rT ∗ ⊗ Jq(T ) = λ→ λ⊗ jq(θ) = Xq : λ
τ (x)→ λτ (x)∂µθ

k
τ (x)

that we can lift to the element λ ⊗ jq+1(θ) = Xq+1 ∈ ∧rT ∗ ⊗ Jq+1(T ). It follows from the def-
initions that DrXq = DXq+1 by introducing any element of Cr(T ) through its representative
Xq ∈ ∧rT ∗ ⊗ Jq(T ). We obtain therefore the crucial formula:

DrXq = DXq+1 = D(λ⊗ jq+1(θ)) = dλ⊗ jq(θ) + (−1)rλ ∧Djq+1(θ) = dλ⊗ jq(θ)
allowing to identify, at least locally, the Spencer sequence for jq with the Poincaré sequence. We
let the reader prove that the map ∧0T ∗ ⊗ G → Jq(T ) is injective when the action is effective. We
obtain therefore an isomorphism ∧0T ∗ ⊗ G → Rq ⊂ Jq(T ) when q is large enough allowing to
exhibit, again at least locally, an isomorphism between the canonical Spencer sequence and the
tensor product of the Poincaré sequence by G when q is large enough in such a way that Rq is
involutive, that is gq = 0. As shown in the Introduction, it is finally important to notice that such
a property does not exist for the canonical Janet sequence.

Q.E.D.

REMARK 2.23: We now provide the explicit form of the n finite nonlinear elations of the con-
formal group of transformations and their infinitesimal counterpart with ∀1 ≤ r, s, t ≤ n:

y =
x− x2b

1− 2(bx) + b2x2
⇒ θs = −

1

2
x2δrs∂r + ωstx

txr∂r ⇒ ∂rθ
r
s = nωstx

t,

where the underlying metric is used for the scalar products x2, bx, b2 involved. The complexity
of the corresponding formulas explains why the previous result showing the importance of second
order jets have not been already known and used ([53], p 35).

EXAMPLE 2.24: In order to emphasize the importance of dealing with vector bundles in the
differential geometric setting of this section and with differential fields or projective modules in
the differential algebraic setting of the next section, we provide a tricky example of a linear system
with coefficients in a true differential field which is not just a field of rational functions in the inde-
pendent variables. With n = 2,m = 1, q = 2, let us consider the non-linear second order systemR2:

{

y22 − 1
3 (y11)

3 = 0
y12 − 1

2 (y11)
2 = 0

1 2
1 •

obtained by equating to zero two differential polynomials. Doing crossed derivatives, it is easy to
check that the system is involutive and allows to define a true differential extension K of k = Q

which is isomorphic to k(y, y1, y2, y11, y111, ...) if we set for example d2y1 = y12 = 1
2 (y11)

2 and so
on. By linearization, we get the following linear second order involutive system R2 defined over K:

{

Y22 − (y11)
2Y11 = 0

Y12 − y11Y11 = 0
1 2
1 •

The various symbols of the first system are vector bundles over R2 while the symbols of the sec-
ond system are vector spaces over K. As an exercise in order to understand the problems that
may arise in general, we invite the reader to study similarly the non-linear second order system
y22 − 1

2 (y11)
2 = 0, y12 − y11 = 0 and conclude. The interested reader may look at ([41],VI.B.3 ,p

273 and VI.B.7 p 275) for criteria providing differential fields and based on the Spencer 2-acyclicity
property of the symbol at order q ([41], Prop. III.1.3, p 92 and Theorem III.C.1, p 95).
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3) DIFFERENTIAL MODULES

As a rough motivation for introducing modules and residues, let us recall that
√
3 = 1, 732...

or ex = 1 + x + x2

2 + ... cannot be stored on a computer. In order to avoid such a difficulty, we
may introduce the field K = Q and a polynomial P ≡ y2 − 3 ∈ K[y] or a (linear) differential
polynomial P ≡ dy − y ∈ K[d]y = Dy in order to consider the (prime) ideal p ⊂ K[y] generated
by P or the differential module of equations I ⊂ Dy generated similarly by P in the corresponding
short exact sequences of residues whereM = K[y]/p on one side andM = Dy/DI on the other side:

0→ p→ K[y]
p−→M → 0, 0→ I → Dy

p−→M → 0

while calling ȳ the image of y under the canonical projection p. Of course ȳ can be denoted by
any other symbol like η or

√
3 or ex and the only problem will be to add the word ”differential ”

in concepts coming from pure algebra. A similar approach has been use in ” differential algebra ”
for dealing with nonlinear differential polynomials (See [21, 44] for more details).

Let A be a unitary ring, that is 1, a, b ∈ A ⇒ a + b, ab ∈ A, 1a = a1 = a and even an integral
domain (ab = 0⇒ a = 0 or b = 0) with field of fractions K = Q(A). However, we shall not always
assume that A is commutative, that is ab may be different from ba in general for a, b ∈ A. We say
that M = AM is a left module over A if x, y ∈M ⇒ ax, x + y ∈M, ∀a ∈ A or a right module MB

over B if the operation of B on M is (x, b)→ xb, ∀b ∈ B. If M is a left module over A and a right
module over B with (ax)b = a(xb), ∀a ∈ A, ∀b ∈ B, ∀x ∈M , then we shall say that M = AMB is a
bimodule. Of course, A = AAA is a bimodule over itself. The category of left modules over A will
be denoted by mod(A) while the category of right modules over A will be denoted by mod(Aop).
We define the torsion submodule t(M) = {x ∈ M | ∃0 6= a ∈ A, ax = 0} ⊆ M and M is a torsion
module if t(M) = M or a torsion-free module if t(M) = 0. We denote by homA(M,N) the set
of morphisms f : M → N such that f(ax) = af(x). In particular homA(A,M) ≃ M because
f(a) = af(1) and we recall that a sequence of modules and maps is exact if the kernel of any map
is equal to the image of the map preceding it.

When A is commutative, hom(M,N) is again an A-module for the law (bf)(x) = f(bx) as we
have (bf)(ax) = f(bax) = f(abx) = af(bx) = a(bf)(x). In the non-commutative case, things are
more complicate and we have:

LEMMA 3.1: Given AM and ANB, then homA(M,N) becomes a right module over B for the
law (fb)(x) = f(x)b. Similarly, given AMB and AN , then homA(M,N) becomes a left module
over B for the law (bf)(x) = f(xb).

Proof: In order to prove the first result we just need to check the two relations:

(fb)(ax) = f(ax)b = af(x)b = a(fb)(x),

((fb′)b”)(x) = (fb′)(x)b” = f(x)b′b” = (fb′b”)(x).

The proof of the second result could be achieved similarly.
Q.E.D.

DEFINITION 3.2: A module F is said to be free if it is isomorphic to a (finite) power of A
called the rank of F over A and denoted by rkA(F ) while the rank rkA(M) of a module M is the
rank of a maximum free submodule F ⊂M . It follows from this definition that M/F is a torsion
module. In the sequel we shall only consider finitely presented modules, namely finitely generated

modules defined by exact sequences of the type F1
d1−→ F0 −→M −→ 0 where F0 and F1 are free

modules of finite ranks m0 and m1 often denoted by m and p in examples.
A module P is called projective if there exists a free module F and another (projective) module
Q such that P ⊕ Q ≃ F . Accordingly, a projective (free) resolution of M is a long exact se-

quence ...
d3−→ P2

d2−→ P1
d1−→ P0

p−→ M −→ 0 where P0, P1, P2, ... are projective (free) modules,
M = coker(d1) = P0/im(d1) and p is the canonical projection. Such a situation may be shortly

described by X
p→M → 0 where X is a complex that may not be exact in general.
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We have the useful proposition that we shall only prove in the commutative case [44]:

PROPOSITION 3.3: For any short exact sequence 0 → M ′
f−→ M

g−→ M” → 0, we have the
relation rkA(M) = rkA(M

′) + rkA(M”).

Proof: Whenever x ∈M and 0 6= s ∈ A, the image of 1
s ⊗ x ∈ K⊗AM induced by g in K⊗A is:

1

s
⊗ g(x) = t

st
⊗ g(x) = 1

st
⊗ tg(x) = 1

st
g(tx), ∀0 6= t ∈ A

Hence, the kernel of g : K⊗AM → K⊗AM” is made by all previous elements x ∈ M such that
∃0 6= t ∈ A with g(tx) = tg(x) = 0. As the initial sequence is exact, we may find x′ ∈ M ′ such
that tx = f(x′), a result leading to:

1

s
⊗ x =

t

st
⊗ x =

1

st
⊗ tx =

1

st
⊗ f(x′)

and the kernel of g : K⊗AM → K⊗AM” is thus equal to the image of f : K⊗AM
′ → K⊗AM .

Hence, if F is a maximum free submodule of M , we have the quite useful short exact sequence
0→ F →M →M/F → 0 whereM/F is a torsion module over A andK⊗AM/F = 0⇒ K⊗AF ≃
K⊗AM ⇒ rkA(M) = dimK(K⊗AM) because, if we have tx̄ = 0 with t 6= 0, we have thus:

1

s
⊗ x̄ =

t

st
⊗ x̄ =

1

st
⊗ tx̄ = 0.

Q.E.D.

Then, tensoring by M over A the short exact sequence 0 → A → K → K/A → 0, we obtain
the other useful long exact sequence:

0→ t(M) −→M −→ K⊗AM → K/A⊗AM → 0

The following proposition will be used many times in Section 4, in particular for exhibiting the
Weyl tensor from the Riemann tensor ([4],p 73)([61],p 33) :

PROPOSITION 3.4: If one has a short exact sequence:

0 −→M ′

u
←−
f−→M

v
←−
g−→M ′′ −→ 0

then the three following conditions are equivalent:
• There exists a monomorphism v :M ′′ →M called lift of g and such that g ◦ v = idM ′′ .
• There exists an epimorphism u :M →M ′ called lift of f and such that u ◦ f = idM ′ .
• There exist isomorphisms ϕ = (u, g) : M → M ′ ⊕M ′′ and ψ = f + v : M ′ ⊕M ′′ →M that are
inverse to each other and provide an isomorphism M ≃ M ′ ⊕M ′′ with f ◦ u + v ◦ g = idM and
thus ker(u) = im(v).

Proof: When u is given with u ◦ f = idM ′ , the only tricky point is to induce v by chasing in the
following commutative and exact diagram:

0 0 0
↓ ↓ ↓

0→ M ′

u
←−
f−→ M

g−→ M” → 0
‖ ‖ ↓v

0→ M ′
f−→ M

idM−f◦u−→ M
↓ ↓
0 0
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Then, for any x” ∈ M”, we can find x ∈ M such that g(x) = x” and we obtain g ◦ v(x”) =
g ◦v ◦g(x) = g(x) = x” because g ◦f = 0 and thus g ◦v = idM”. It follows that f ◦u◦v+v ◦g ◦v =
v ⇒ f ◦ (u ◦ v) = 0⇒ u ◦ v = 0 because f is a monomorphism.

Q.E.D.

DEFINITION 3.5: In the above situation, we say that the short exact sequence splits. The
short exact sequence 0→ Z→ Q→ Q/Z→ 0 cannot split over Z.

DEFINITION 3.6: A resolution of a short exact sequence 0 → M ′
f−→ M

g−→ M” → 0

of A-modules is a short exact sequence 0 → X ′
f−→ X

g−→ X” → 0 of exact complexes such

that X
p−→ M → 0, X ′

p′

−→ M ′ → 0, X”
p”−→ M” → 0 are resolutions and we shall say

that the sequence of complexes is over the sequence of modules. Such a definition can also
be used when the complexes are not exact and we have the long exact connecting sequence
... → Hi(X) → Hi(X”) → Hi−1(X

′) → ... if we introduce the homology Hi(X) of a decreas-
ing complex Xi+1 → Xi → Xi−1 with a similar result for the cohomology of increasing complexes.
In particular, if any two are exact, the third is exact too ([44], Theorem II.1.15, p 196-203).

Using the notation M∗ = homA(M,A), for any morphism f : M → N , we shall denote by
f∗ : N∗ → M∗ the morphism which is defined by f∗(h) = h ◦ f, ∀h ∈ homA(N,A) and satisfies
rkA(f) = rkA(im(f)) = rkA(f

∗), ∀f ∈ homA(M,N)(See [45], Corollary 5.3, p 179). We may take

out M in order to obtain the deleted sequence ...
d2−→ P1

d1−→ P0 −→ 0 and apply homA(•, A) in

order to get the sequence ...
d∗

2←− P ∗1
d∗

1←− P ∗0 ←− 0.

PROPOSITION 3.7: The extension modules ext0A(M) = ker(d∗1) = homA(M,A) = M∗ and
extiA(M) = ker(d∗i+1)/im(d∗i ), ∀i ≥ 1 do not depend on the resolution chosen and are torsion
modules for i ≥ 1. Using homA(•, N), one can similarly define extiA(M,N) with ext0A(, N) =
homA(M,N) and the extiA(M,N) vanish ∀i > 0 whenever M is a projective module (See [8, 17,
32, 33, 44, 51, 61] for more details).

Let A be a differential ring, that is a commutative ring with n commuting derivations {∂1, ..., ∂n},
that is ∂i∂j = ∂j∂i = ∂ij , ∀i, j = 1, ..., n while ∂i(a+b) = ∂ia+∂ib and ∂i(ab) = (∂ia)b+a∂ib, ∀a, b ∈
A. We shall use thereafter a differential integral domain A with unit 1 ∈ A whenever we shall
need a differential field Q ⊂ K = Q(A) of coefficients, that is a field (a ∈ K ⇒ 1/a ∈ K) with
∂i(1/a) = −(1/a2)∂ia, in order to exhibit solved forms for systems of partial differential equations
as in the preceding section. Using an implicit summation on multi-indices, we may introduce the
(noncommutative) ring of differential operators D = A[d1, ..., dn] = A[d] with elements P = aµdµ
such that | µ |<∞ and dia = adi + ∂ia. The highest value of |µ| with aµ 6= 0 is called the order of
the operator P and the ring D with multiplication (P,Q) −→ P ◦Q = PQ is filtred by the order q of
the operators. We have the filtration 0 = D−1 ⊂ D0 ⊂ D1 ⊂ ... ⊂ Dq ⊂ ... ⊂ D∞ = D. Moreover,
it is clear that D, as an algebra, is generated by A = D0 and T = D1/D0 with D1 = A ⊕ T if
we identify an element ξ = ξidi ∈ T with the vector field ξ = ξi(x)∂i of differential geometry, but
with ξi ∈ A now. It follows that D = DDD is a bimodule over itself, being at the same time a
left D-module DD by the composition P −→ QP and a right D-module DD by the composition
P −→ PQ with DrDs = Dr+s, ∀r, s ≥ 0 in any case.

If we introduce differential indeterminates y = (y1, ..., ym), we may extend diy
k
µ = ykµ+1i to

Φτ ≡ aτµk ykµ
di−→ diΦ

τ ≡ aτµk ykµ+1i + ∂ia
τµ
k ykµ for τ = 1, ..., p. Therefore, setting Dy1 + ...+Dym =

Dy ≃ Dm and calling I = DΦ ⊂ Dy the differential module of equations, we obtain by residue the

differential module orD-moduleM = Dy/DΦ, introducing the canonical projectionDy
p−→M → 0

and denoting the residue of ykµ by ȳkµ when there can be a confusion. Introducing the two
free differential modules F0 ≃ Dm0 , F1 ≃ Dm1 , we obtain equivalently the free presentation

F1
d1−→ F0

p−→ M → 0 of order q when d1 = D = Φ ◦ jq. We shall moreover assume that D pro-
vides a strict morphism (see below) or, equivalently, that the corresponding system Rq is formally
integrable ([15]). It follows thatM can be endowed with a quotient filtration obtained from that of
Dm which is defined by the order of the jet coordinates yq in Dqy. We have therefore the inductive
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limit 0 = M−1 ⊆ M0 ⊆ M1 ⊆ ... ⊆ Mq ⊆ ... ⊆ M∞ = M with diMq ⊆ Mq+1 but it is important
to notice that DrDq = Dq+r ⇒ DrMq = Mq+r, ∀q, r ≥ 0 ⇒ M = DMq, ∀q ≥ 0 in this particular
case. It also follows from noetherian arguments and involution that DrIq = Iq+r , ∀r ≥ 0 though
we have in general only DrIs ⊆ Ir+s, ∀r ≥ 0, ∀s < q. We shall set Gq = Mq/Mq−1 and introduce
the graded module G = gr(M) = ⊕qGq which is a module over the polynomial ring gr(D) ≃ K[χ].
As A ⊂ D, we may introduce the forgetful functor for : mod(D)→ mod(A) : DM → AM . In this
paper, we shall go as far as possible with such an arbitrary differential ring A though, in actual
practice and thus in most of the examples considered, we shall use a differential field K [21, 41].
We shall also assume that the ring A is a noetherian ring (integral domain) in such a way that D
becomes a (both left and right) noetherian ring (integral domain).

More generally, introducing the successive CC as in the preceding section while changing slightly
the numbering of the respective operators, we may finally obtain the free resolution of M , namely

the exact sequence ...
d3−→ F2

d2−→ F1
d1−→ F0

p−→ M −→ 0 where p is the canonical projection.
Also, with a slight abuse of language, when D = Φ ◦ jq is involutive as in section 2 and thus
Rq = ker(Φ) is involutive, one should say that M has an involutive presentation of order q or that
Mq is involutive and DrMq =Mq+r, ∀q, r ≥ 0 because DrDq = Dq+r, ∀q, r ≥ 0.

REMARK 3.8: In actual practice, one must never forget that D = Φ ◦ jq acts on the left on
column vectors in the operator case and on the right on row vectors in the module case. For
this reason, when E is a (finite dimensional) vector bundle over X/(finite dimensional) vector
space over K, we may apply the correspondence J∞(E) ↔ D⊗KE

∗ : Jq(E) ↔ Dq⊗KE
∗ with

πq+1
q : Jq+1(E) → Jq(E) ↔ Dq ⊂ Dq+1 and E∗ = homK(E,K) between jet bundles and left

differential modules in order to be able to use the double dual isomorphism E ≃ E∗∗ in both
cases. We shall say that D(E) = D ⊗K E∗ = ind(E∗) is the the left differential module induced

by E∗. Hence, starting from a differential operator E
D−→ F , we may obtain a finite presentation

D⊗KF
∗ D

∗

−→ D⊗KE
∗ →M → 0 and conversely, while keeping the same operator matrix if we act

on the right of row vectors. This is a rather subtle point in the litterature where sometimes a dot is
used on the left of D in the module sense or on the right in the operator sense, depending whether
we have an action on the right or on the left. We consider that this is a rather confusing notation
because we have the composition D1 ◦ D = 0 along the arrows in the operator framework while we
have the composition D∗ ◦D∗1 = 0 along the arrows in the module framework, like a transposion of
matrices. In actual practice, it is much better to keep the same operator matrix acting on the left
of column vectors in the operator framework but acting by composition on the right of row vectors,
the main difference being the position of the indices for the implicit summations.

EXAMPLE 3.9: With n = 2,m = 3, p = 3 and K = Q, let us consider the linear first order
involutive system with only 1 CC:







y22 +y32 −y31 −y21 = 0
y12 −y32 −y31 −y21 = 0
y11 −2y31 −y21 = 0

1 2
1 2
1 •

⇒ D =





0 d2 − d1 d2 − d1
d2 −d1 −d2 − d1
d1 −d1 −2d1





We have det(σχ(D)) = 0 but maxχrk(σχ(D)) = 2, a result leading to rk(M) = 1. Now, setting
z = y1 − y2 − 2y3, we get z1 = 0, z2 = 0 and z is a torsion element of M . However, setting
z′ = y2 + y3, we have z′2 − z′1 = 0 and z′ is also a torsion element of M in such a way that t(M)
is generated by z and z′. The torsion-free module M/t(M) is defined by y3 = −y2 = y1 and is
a free module isomorphic to D which is thus projective. Accordingly, the short exact sequence
0→ t(M)→M →M/t(M)→ 0 splits withM ≃ t(M)⊕M/t(M) leading to the inclusion D ⊂M .
We finally obtain the Janet sequence and corresponding resolution of M :

0→ Θ→ 3
D−→ 3

D1−→ 1→ 0 ⇔ 0→ D
D1→ D3 D→ D3 p→M → 0

The reader may look at [52] for the purity filtration 0 ⊂ Dz ⊂ t(M) ⊂ M with strict inclusions
and more details on this example.
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EXAMPLE 3.10: (See the Bose conjecture and Example 5.27 in [45], p 216) With n = 3,m = 3
and K = Q, let us consider the differential moduleM defined by the two differentially independent
PD equations:

y312 − y23 − y3 = 0, y322 − y13 = 0

We let the reader transform this systems into an involutive system as an exercise in order to find
rkD(M) = 1 but we shall obtain the same result by pointing out that both y1 and y2 are differ-
entially dependent on y3 and thus y2 is differentially dependent on y1 [21, 41]. Elimination of y3

provides the only CC d3z = 0 with z = y222−y112+y1 and t(M) is generated by z. One can also use
the criterion with 5 steps for testing the torsion-freeness. It follows that the torsion-free module
M ′ =M/t(M) can be defined by the 3 PD equations:

y312 − y23 − y3 = 0, y322 − y13 = 0, y222 − y112 + y1 = 0

This system admits an injective parametrization:

u22 = y1, u12 − u = y2, u3 = y3 ⇒ u = y112 − y222 − y2

a result showing that M ′ ≃ D is a free differential module which is therefore projective and the
short exact sequence 0 → t(M) → M → M/t(M) → 0 splits according to Proposition 3.4 with
M ≃ t(M) ⊕M/t(M). It is difficult to find similar examples because, as we shall see in Section
4 with Einstein equations, the existence of such a splitting is not always fulfilled (See [11, 12] and
the corresponding criterion in [56-57] and [58], Theorem 4).
If we consider now the system Φ2 ≡ y23 = y312 − y3,Φ1 ≡ y13 = y322. It is clear that the system
without second member is trivially involutive with no CC and thus y3 may be given arbitrary. The
tricky question is to look for a compatible differential constraint on (y1, y2) in such a way that y3

could remain arbitrary and, for example, y13 = 0 ⇒ y322 = 0 is not convenient. In order to find a
possibility, let us consider the involutive system:























































y233 = d3Φ
2

y133 = d3Φ
1

y223 = d2Φ
2

y123 = d2Φ
1

y222 − y112 + y1 = 0
y213 = d1Φ

2

y113 = d1Φ
1

y23 = Φ2

y13 = Φ1

1 2 3
1 2 3
1 2 •
1 2 •
1 2 •
1 • •
1 • •
• • •
• • •

We are left with the only CC d22Φ
2 − d12Φ1 + Φ1 = 0 which is trivially satisfied because we have

the identity (y31222−y322)−y31222+y322 ≡ 0. Though striking it may look like, we shall see in Section
4 that this is just the situation considered for introducing gravitational waves !.

EXAMPLE 3.11: The exterior derivative in the Janet sequence ∧0T ∗ d−→ T ∗
d−→ ∧2T ∗ explains

the above comments when K = Q. In the operator sense, then ∧0T ∗, T ∗ and ∧2T ∗ are both
represented by column vectors though they are exterior forms. In the module framework we have

the dual Janet sequence of left D-modules D ⊗ ∧2T d∗

−→ D ⊗ T d∗

−→ D where:

P ⊗ di ∧ dj → Pdi ⊗ dj − Pdj ⊗ di, P ⊗ di → Pdi

Accordingly, if f ∈ ∧0T ∗ → α = (αi = dif) ∈ T ∗ in the operator way, the implicit summation
P iαi = P i(dif) = (P idi)f in the module way is explaining the Remark.

EXAMPLE 3.12: In elasticity theory, we may rewrite the Beltrami parametrization of the
Cauchy stress equations as follows, after exchanging the third row with the fourth row:
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



d1 d2 d3 0 0 0
0 d1 0 d2 d3 0
0 0 d1 0 d2 d3





















0 0 0 d33 −2d23 d22
0 −d33 d23 0 d13 −d12
0 d23 −d22 −d13 d12 0
d33 0 −2d13 0 0 d11
−d23 d13 d12 0 −d11 0
d22 −2d12 0 d11 0 0

















≡ 0

as an identity where 0 on the right denotes the zero operator. However, the standard implicit
summation used in continuum mechanics (See [49] for more details) is, when n = 3:

σijΩij = σ11Ω11 + 2σ12Ω12 + 2σ13Ω13 + σ22Ω22 + 2σ23Ω23 + σ33Ω33

= Ω22d33Φ11 +Ω33d22Φ11 − 2Ω23d23Φ11 + ...
= Ω23d13Φ12 +Ω13d23Φ12 − Ω12d33/Phi12 − Ω33d12/Phi12 + ...

because the stress tensor density σ is supposed to be symmetric in continuum mechanics.
Integrating by parts in order to construct the adjoint operator as in the Introduction, we get:

Φ11 −→ d33Ω22 + d22Ω33 − 2d23Ω23

Φ12 −→ d13Ω23 + d23Ω13 − d33Ω12 − d12Ω33

and so on, obtaining therefore the striking relations:

Riemann = ad(Beltrami) ⇐⇒ Beltrami = ad(Riemann)

between the (linearized ) Riemann tensor and the Beltrami parametrization.
As we already said, the brothers E. and F. Cosserat proved in 1909 that such an assumption may
be too strong because it only takes into account density of forces and ignores density of couples,
that is must be replaced by the so-called Cosserat couple-stress equations. We have proved in
many books and papers that these equations are just described by the formal adjoint of the Spencer
operator D1 for the Killing system, a reason for using in physics the Spencer sequence rather than
the Janet sequence [39, 40, 42, 68]. In any case, taking into account the factor 2 involved by
multiplying the second, third and fifth row by 2, we get the new 6× 6 matrix with rank 3:

















0 0 0 d33 −2d23 d22
0 −2d33 2d23 0 2d13 −2d12
0 2d23 −2d22 −2d13 2d12 0
d33 0 −2d13 0 0 d11
−2d23 2d13 2d12 0 −2d11 0
d22 −2d12 0 d11 0 0

















SYMMETRIC MATRIX ⇒ SELF-ADJOINT OPERATOR

It is only in Section 4 that we shall be able to explain the relation of this striking result with
Einstein equations but the reader must already understand that, if we need to revisit in such a
deep way the mathematical foundations of elasticity theory, we also need to revisit in a similar
way the mathematical foundations of EM and GR as in [50-53].

In Section 2, the formal integrability of a system has been used in a crucial way in order to
construct various differential sequences. Therefore, the algebraic counterpart provided by the next
definition and proposition will also be used in a crucial way too in order to construct resolutions
of a differential module [20, 44, 60, 62], though in a manner which is not so natural when dealing
with applications to mathematical physics [7,8,17,32,33,61]. For this reason, we invite the reader
to follow closely the arguments involved on the illustrating examples provided. To sart with, if M
and N are two filtred differential modules and f : M → N is a differential morphism, that is a
D-linear map with f(Pm) = Pf(m), ∀P ∈ D, then f will be called an homomorphism of filtred
modules if it induces A-linear maps fq =Mq → Nq. Chasing in the following commutative diagram:
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0 0
↓ ↓
Mq

fq−→ Nq → coker(fq) → 0
↓ ↓ ↓
M

f−→ N → coker(f) → 0

while introducing im(f) = I ⊆ N, im(fq) = Iq ⊆ Nq, we may state:

DEFINITION 3.13: A differential morphism f is said to be a strict homomorphism if the two
following equivalent properties hold:
1) There is an induced monomorphism 0→ coker(fq)→ coker(f), ∀q ≥ 0.
2) fq(Mq) = f(M) ∩Nq, that is Iq = I ∩Nq.
A sequence made by strict morphisms will be called a strict sequence. In order to fulfill the con-
ditions of the definition, it is most of the time necessary to ”shift ” the filtration of a differential
module M by setting M(r)q =Mq+r in such a way that q could be negative and we shall therefore
always assume that Mq = 0, ∀q ≪ 0.

PROPOSITION 3.14: If we have a strict short exact sequence 0 → M ′
f−→ M

g−→ M” → 0
in which ∃q ≫ 0 such that DrMq = Mq+r, ∀r ≥ 0, then ∃q′, q” ≫ 0 such that DrM

′
q′ =

M ′q′+r, DrM”q” = M”q”+r, ∀r ≥ 0 and conversely. We may thus assume that q = q′ = q” in
both cases by choosing q ≫ 0. More generally, an exact sequence of filtred differential modules is
strictly exact if and only if the associated sequence of graded modules is exact in a way dualizing
the differential geometric framework, on the condition to shift conveniently the various filtrations
involved.

Proof: First of all, setting G = gr(M), G′ = gr(M ′), G” = gr(M”), we have the commutative and
exact diagram:

0 0 0
↓ ↓ ↓

0→ M ′q−1
fq−1−→ Mq−1

gq−1−→ M”q−1 → 0
↓ ↓ ↓

0→ M ′q
fq−→ Mq

gq−→ M”q → 0
↓ ↓ ↓

0→ G′q
grq(f)−→ Gq

grq(g)−→ G”q → 0
↓ ↓ ↓
0 0 0

Indeed, as g is a strict epimorphism, it follows that gq is surjective ∀q ≥ 0. Also, as f is a monomor-
phism, then fq is also a monomorphism ∀q ≥ 0 by restriction. Moreover, as f is also strict, we
obtain successively by chasing:

ker(gq) = f(M ′) ∩Mq = f(M ′q) = fq(M
′
q) = im(fq)

It follows that the two upper rows are exact and the bottom row is thus exact too ∀q ≥ 0 from the
snake theorem in homological algebra [8, 17, 32, 44, 45, 52, 61, 62].

This result provides the short exact sequence 0→ G′
gr(f)−→ G

gr(g)−→ G”→ 0 of graded modules.
Let us now consider the following commutative diagram with maps such as ξ⊗m→ ξm and where
the upper row is exact because D1 ≃ A⊕ T is free over A:

0→ D1⊗AM
′
q

f−→ D1⊗AMq
g−→ D1⊗AM”q → 0

↓ ↓ ↓
0→ M ′q+1

fq+1−→ Mq+1
gq+1−→ M”q+1 → 0

If the central map is surjective, then the map on the right is also surjective, that is D1Mq =
Mq+1 ⇒ D1M”q =M”q+1 and thus q = q”. This is the typical situation met in a finite presenta-
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tion of a system already considered. Moreover, D1M
′
q ⊆M ′q+1 ⇒ TG′q ⊆ G′q+1 like in the following

commutative and exact diagrams where the left one is holding for a (formally integrable) system
while the corresponding right one is holding for an arbitrary filtred module M with gr(M) = G:

0 0 0 0
↓ ↓ ↑ ↑

0→ gq+1 → T ∗ ⊗Rq T⊗AMq → Gq+1 → 0
↓ ↓ ↑ ↑

0→ Rq+1 → J1(Rq) D1⊗AMq → Mq+1

↓ ↓ ↑ ↑
0→ Rq = Rq → 0 0→ Mq = Mq → 0

↓ ↓ ↑ ↑
0 0 0 0

In these diagrams, the upper morphism is the composition gq+1
δ−→ T ∗⊗gq → T ∗⊗Rq in the system

diagram and the composition T⊗AMq → T⊗AGq → Gq+1 in the module diagram. Accordingly, a
chase is showing that D1Mq = TMq +Mq ⊆Mq+1 with equality if and only if TGq = Gq+1.
From noetherian arguments for polynomial rings in commutative algebra, it follows that G′ is
finitely generated and we may choose for q′ the maximum order of a minimum set of generators.
Conversely, if DrM

′
q′ =M ′q′+r, DrM”q” = M”q”+r, ∀r ≥ 0, we may choose q = sup(q′, q”) and we

have thus D1M
′
q =M ′q+1, D1M”q =M”q+1 ⇒ D1Mq =Mq+1, using again the snake theorem.

As a byproduct, it is always possible to find q ≫ 0 such that we could have at the same time
DrMq =Mq+r, DrM

′
q =M ′q+r, DrM”q =M”q+r, ∀r ≥ 0 in the two situations considered.

We end this proof with a comment on the prolongation of symbols and graded modules which, in
our opinion based on more than thirty years spent on computing and applying these dual concepts,
is not easy to grasp. For this, let us consider the corresponding diagrams:

0 0 0 0
↓ ↓ ↑ ↑

0→ gq+1 → Sq+1T
∗ ⊗ E Sq+1T⊗AE

∗ → Gq+1 → 0
↓ δ ↓ δ ↑ δ∗ ↑ δ∗

0→ T ∗ ⊗ gq → T ∗ ⊗ SqT
∗ ⊗ E T⊗ASqT⊗AE

∗ → T⊗AGq → 0

Indeed, exactly as we have in general Rq+1 ⊆ ρ1(Rq) ⇒ gq+1 ⊆ ρ1(gq), there is no correspond-
ing concept in module theory without a reference to a presentation. In the differential geometric
framework, ρ1(gq) is the reciprocal image of δ, that is the subset (not always a vector bundle !) of
Sq+1T

∗ ⊗ E made by elements having an image in T ∗ ⊗ gq under δ.
Q.E.D.

EXAMPLE 3.15: Though this is not evident at first sight when m = 1, n = 2, A = Q[x1, x2],
we invite the reader to prove that the third order linear system y222 + x2y2 = 0, y111 + y2 − y = 0
has the same formal solutions as the third order system y111 − y = 0, y2 = 0 which is defined over
Q, a result leading to the generating involutive third order linear system y222 = 0, y122 = 0, y112 =
0, y111 − y = 0, y22 = 0, y12 = 0, y2 = 0. We have M0 = {ȳ},M1 = {ȳ, ȳ1},M2 = {ȳ, ȳ1, ȳ11} = M
while using only parametric jets because d1ȳ11 = ȳ111 = ȳ and thus D1I1 = I2, D1I2 ⊂ I3 with a
strict inclusion, DI3 = I. (See the similar Examples III.2.64 and III.3.11 in [44] for the details).

Roughly speaking, homological algebra has been created in order to find intrinsic properties
of modules not depending on their presentations or even on their resolutions and we now exhibit
another approach by defining the formal adjoint of an operator P and an operator matrix D:

DEFINITION 3.16: Setting P = aµdµ ∈ D ad←→ ad(P ) = (−1)|µ|dµaµ ∈ D, we have ad(ad(P )) =
P and ad(PQ) = ad(Q)ad(P ), ∀P,Q ∈ D. Such a definition can be extended to any matrix of
operators by using the transposed matrix of adjoint operators and we get:

< λ,Dξ >=< ad(D)λ, ξ > + div (...)

from integration by part, where λ is a row vector of test functions and <> the usual contraction.
We quote the useful formulas [ad(ξ), ad(η)] = ad(ξ)ad(η) − ad(η)ad(ξ) = −ad([ξ, η]), ∀ξ, η ∈ T
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(care about the minus sign) and rkD(D) = rkD(ad(D)) as in ([41], p 339-341).

LEMMA 3.17: If f ∈ aut(X) is a local diffeomorphisms on X , we may set x = f−1(y) = g(y)
and we have the identity:

∂

∂yk
(

1

∆(g(y))
∂if

k(g(y)) ≡ 0.

PROPOSITION 3.18: If we have an operator E
D−→ F , we may obtain by duality an operator

∧nT ∗ ⊗ E∗ ad(D)←− ∧nT ∗ ⊗ F ∗.

EXAMPLE 3.19: In order to understand how the Lemma is involved in the Proposition, let us
revisit relativistic electromagnetism (EM) in the light of these results when n = 4. First of all,

we have dA = F ⇒ dF = 0 in the sequence ∧1T ∗ d−→ ∧2T ∗ d−→ ∧3T ∗ and the field equations
of EM (first set of Maxwell equations) are invariant under any local diffeomorphism f ∈ aut(X).

By duality, we get the sequence ∧4T ∗ ⊗ ∧1T ad(d)←− ∧4T ∗ ⊗ ∧2T ad(d)←− ∧4T ∗ ⊗ ∧3T which is locally

isomorphic (up to sign) to ∧3T ∗ d←− ∧2T ∗ d←− ∧1T ∗ and the induction equations ∂iF ij = J j of
EM (second set of Maxwell equations) are thus also invariant under any f ∈ aut(X). Indeed, using
the last lemma and the identity ∂ijf

lF ij ≡ 0, we have:

∂

∂yk
(
1

∆
∂if

k∂jf
lF ij) =

1

∆
∂if

k ∂

∂yk
(∂jf

lF ij) =
1

∆
∂i(∂jf

lF ij) =
1

∆
∂jf

l∂iF ij

Accordingly, it is not correct to say that the conformal group is the biggest group of invariance
of Maxwell equations in physics as it is only the biggest group of invariance of the Minkowski
constitutive laws in vacuum [36]. Finally, according to Proposition 2.20, both sets of equations can
be parametrized independently, the first by the potential, the second by the so-called pseudopoten-
tial in a totally independent way (See the last section of this paper and [44], p 492 for more details).

Now, with operational notations, let us consider the two differential sequences:

ξ
D−→ η

D1−→ ζ

ν
ad(D)←− µ

ad(D1)←− λ

where D1 generates all the CC of D. Then D1 ◦D ≡ 0⇐⇒ ad(D) ◦ ad(D1) ≡ 0 but ad(D) may not
generate all the CC of ad(D1). Passing to the module framework, we just recognize the definition
of ext1D(M). Now, exactly like we defined the differential module M from D, let us define the
differential module N from ad(D). Then ext1D(N) = t(M) does not depend on the presentation of
M . In particular, if D is formally surjective (differentially independent PD equations), then M is
torsion-free if d(N) ≤ n − 2 and projective if d(N) = −1 that is if exti(N) = 0, ∀0 ≤ i ≤ n. For
example, the div operator for n = 3 is torsion-free but not projective because ext3(N) 6= 0. More
generally, changing the presentation of M may change N to N ′ but we have [23], ([44],p 651),
([45],p 203):

THEOREM 3.20: The modules N and N ′ are projectively equivalent, that is one can find two
projective modules P and P ′ such that N ⊕ P ≃ N ′ ⊕ P ′ and we obtain therefore extiD(N) ≃
extiD(N ′), ∀i ≥ 1.

Having in mind that D is a A-algebra, that A is a left D-module with the standard action
(D,A) −→ A : (P, a) −→ P (a) : (di, a) −→ ∂ia and that D is a bimodule over itself, we have only
two possible constructions leading to the following two definitions:

DEFINITION 3.21: We may define the right D-module M∗ = homD(M,D) or the inverse
system R = homA(M,A) of M and set Rq = homA(Mq, A) as the inverse system of order q.

If G = gr(M) is the graded module ofM with G = ⊕∞q=0Gq, we have the short exact sequences
0→Mq →Mq+1 → Gq+1 → 0 of modules over A and it is tempting to compare them to the dual
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short exact sequences 0 → gq+1 → Rq+1 → Rq → 0 that were used in the previous section. How-
ever, applying homA(•, A) to the first sequence does not in general provide a short exact sequence
(See the end of Example 3.30), unless the first sequence splits, that is if we replace vector bundles
over X used in Section 2 by finitely generated projective modules over A. We shall rather prefer to
use the field of fractions K = Q(A) in order to deal only with finite dimensional vector spaces over
K or use the fact that K = Q(A) is an injective module over A and deal with homA(•,K) in order
to obtain exact sequences. From the injective limit of the filtration of M we deduce the projective
limit R = R∞ −→ ... −→ Rq −→ ... −→ R1 −→ R0. It follows that fq ∈ Rq : ykµ −→ fk

µ ∈ A with

aτµk fk
µ = 0 defines a section at order q and we may set f∞ = f ∈ R for a section of R. For a ground

field of constants k, this definition has of course to do with the concept of a formal power series
solution. However, for an arbitrary differential ring A or differential field K, the main novelty of
this new approach is that such a definition has nothing to do with the concept of a formal power
series solution as illustrated in the next examples. Nevertheless, in actual practice, it is always
simpler to deal with a differential field K in order to have finite dimensional vector spaces at each
order q for applications.

We shall now study with more details the module M versus the system R when D = K[d].
First of all, as K is a field, we obtain in particular the Hilbert polynomial dimK(Mq+r) =

dimK(Rq+r) =
αn−r

q

d! rd + ... where the intrinsic integer αn−r
q is called the multiplicity of M and

is the smallest non-zero character, that is αn−r
q 6= 0, αn−r+1 = ... = αn

q = 0. We use to set
dD(M) = d(M) = d ⇒ cdD(M) = cd(M) = n − d = r, rkD(M) = rk(M) = α. Accordingly, M
is a torsion module over D if and only if α = 0. Now, If M is a module over D and m ∈ M ,
then the cyclic differential submodule Dm ⊂ M is defined by a system of OD or PD equations
for one unknown and we may look for its codimension cd(Dm). A similar comment can be done
for any differential submodule M ′ ⊂M . Sometimes, a single element m ∈M , called differentially
primitive element, may generate M if Dm =M .

As D = DDD is a bimodule, then M∗ = homD(M,D) is a right D-module according to
Lemma 3.1 and we may thus define a right module ND by the ker/coker long exact sequence

0←− ND ←− F ∗1
D∗

←− F ∗0 ←−M∗ ←− 0.

THEOREM 3.22: We have the side changing procedures M = DM → MD = ∧nT ∗⊗AM and
ND → N = DN = homA(∧nT ∗, ND) with D((MD)) =M and D(ND) = N .

Proof: According to the above Theorem, we just need to prove that ∧nT ∗ has a natural right
module structure over D. For this, if α = adx1 ∧ ...∧dxn ∈ ∧nT ∗ is a volume form with coefficient
a ∈ A, we may set α.P = ad(P )(a)dx1 ∧ ...∧ dxn when P ∈ D. As D is generated by A and T , we
just need to check that the above formula has an intrinsic meaning for any ξ = ξidi ∈ T . In that
case, we check at once:

α.ξ = −∂i(aξi)dx1 ∧ ... ∧ dxn = −L(ξ)α
by introducing the Lie derivative of α with respect to ξ, along the intrinsic formula L(ξ) = i(ξ)d+
di(ξ) where i() is the interior multiplication and d is the exterior derivative of exterior forms.
According to well known properties of the Lie derivative, we get :

α.(aξ) = (α.ξ).a − α.ξ(a), α.(ξη − ηξ) = −[L(ξ),L(η)]α = −L([ξ, η])α = α.[ξ, η].

Using the anti-isomorphism ad : D → D : P → ad(P ), we may also introduce the adjoint functor
ad : mod(D) → mod(Dop) : M → ad(M) with for(M) = for(ad(M)) and m.P = ad(P )m, ∀m ∈
M, ∀P ∈ D. We obtain:

m.(PQ) = ad(PQ)m = (ad(Q)ad(P ))m = ad(Q)(ad(P )m) = (m.P ).Q, ∀P,Q ∈ D
We have an A-linear isomorphism ad(M) ≃ MD : m → m ⊗ α in mod(Dop). Indeed, with
α = dx1 ∧ ... ∧ dxn and any d among the di in place of ξ, we get m.d = ad(d)m = −dm and
m.P = ad(P )m in ad(M) while (m ⊗ α)d = −dm ⊗ α, ∀m ∈ M because div(d) = 0 and thus
L(d)α = 0. Accordingly, the previous isomorphism is right D-linear.
In order to study the case of D = DD, considered as a left D-module over D, we shall compare
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ad(D), Dr and DD. According to the last isomorphism obtained, we just need to study the iso-
morphim ad(D) ≃ DD : P → ad(P ). Indeed, we get P → P.Q = ad(Q)P 6= PQ and obtain
therefore P.Q→ ad(P.Q) = ad(ad(Q)P ) = ad(P )ad(ad(Q)) = ad(P )Q, a result showing that this
isomorphism is also right D-linear.

Q.E.D.

REMARK 3.23: The above results provide a new light on duality in physics. Indeed, as the
Poincaré sequence is self-adjoint (up to sign) as a whole and the linear Spencer sequence for a
system of finite type is locally isomorphic to copies of that sequence, it follows in this case from
Proposition 3.7 that ad(Dr+1) parametrizes ad(Dr) in the dual of the Spencer sequence while
ad(Dr+1) parametrizes ad(Dr) in the dual of the Janet sequence, a result highly not evident at
first sight because Dr and Dr+1 are totally different operators. The reader may look at the next
section or to [50, 51, 53, 55] for recent applications to mathematical physics, in particular to Gauge
Theory and General Relativity.

Now, if A,B are rings and AM,BLA,BN are modules, using the second part of Lemma 3.1 and
the relation l⊗am = la⊗m with the left action b(l⊗m) = bl⊗m, ∀a ∈ A, ∀b ∈ B, ∀l ∈ L, ∀m ∈M ,
we may provide the so-called adjoint isomorphism as in ([61], Th 2.11, p. 37), saying that there
is a one-to-one correspondence between maps of the form L ⊗ M → N and maps of the form
M → hom(L,N) or, fixing an element m ∈ M , providing a parametrization set of maps of the
form L→ N in both cases:

PROPOSITION 3.24: ϕ : homB(L⊗AM,N)
≃−→ homA(M,homB(L,N))

Proof: If f : L⊗AM → N is a B-morphism, one may define ϕ(f) : M → homB(L,N) as a -A-
morphism by the formula (ϕ(f)(m))(l) = f(l⊗m). It follows that ϕ is a monomorphism because it
is defined on the basis of simple tensors in L⊗AM and it remains to check that it is an epimorphism
by constructing an inverse ψ. For this, starting with a A-morphism g :M → homB(L,N), we just
define ψ(g) = f by f(l ⊗m) = (g(m))(l). We have in particular:

(ϕ(f)(am))(l) = f(l ⊗ am) = f(la⊗m) = (ϕ(f)(m))(la) = a(ϕ(f)(m))(l)

and thus ϕ(f)(am) = a(ϕ(f)(m)) in a coherent way with homA and Lemma 3.1.
Q.E.D.

With M = DM,L = ADD, N = AA and 1 ∈ A ⊂ D, one obtains the isomorphism:

homA(M,A) = homA(D⊗DM,A) ≃ homD(M,homA(D,A))

where (ϕ(f))(1) = f(m) if we identifym with 1⊗m. However, even thoughM is a leftD-module by
assumption and homA(D,A) is also a left D-modules with (Qh)(P ) = h(PQ), ∀h ∈ homA(D,A),
for any P,Q ∈ D because of Lemma 3.1, there is no similar reason ”a priori ” that homA(M,A)
could also be a left D-module. In particular, we have (ah)(P ) = h(Pa) 6= h(aP ) = a(h(P )), for
any a ∈ A and any h ∈ homA(D,A), unless A is a ring of constants.

ACCORDINGLY, THIS APPROACH IS NOT CONVENIENT AND MUST BE MODIFIED
WHEN A IS A TRUE DIFFERENTIAL RING OR K IS A TRUE DIFFERENTIAL FIELD,
THAT IS WHEN D IS NOT COMMUTATIVE.

The next crucial theorem will allow to provide the module counterpart of the differential geo-
metric construction of the Spencer operator provided in Section 2 (Compare to [7] and [62]). For
a more general approach, we shall consider a differential ring A with unity 1 and set D = A[d].

THEOREM 3.25: When M and N are left D-modules, then homA(M,N) and M⊗AN are left
D-modules. In particular R = homA(M,A) is also a left D-module for the Spencer operator.
Moreover, if M and N are right D-modules, then homA(M,N) is a left D-module. Moreover, if
M is a left D-module and N is a right D-module, then M⊗AN is a right D-module.

27



Proof: Let us define for any f ∈ homA(M,N):

(af)(m) = af(m) = f(am) ∀a ∈ A, ∀m ∈M
(ξf)(m) = ξf(m)− f(ξm) ∀ξ = ξidi ∈ T, ∀m ∈M

It is easy to check that ξa = aξ+ξ(a) in the operator sense and that ξη−ηξ = [ξ, η] is the standard
bracket of vector fields. We have in particular with d in place of any di:

((da)f)(m) = (d(af))(m) = d(af(m))− af(dm) = (∂a)f(m) + ad(f(m))− af(dm)
= (a(df))(m) + (∂a)f(m)
= ((ad+ ∂a)f)(m)

We may then define for any m⊗ n ∈M⊗AN with arbitrary m ∈M and n ∈ N :

a(m⊗ n) = am⊗ n = m⊗ an ∈M⊗AN

ξ(m⊗ n) = ξm⊗ n+m⊗ ξn ∈M⊗AN

and conclude similarly with:

(da)(m ⊗ n) = d(a(m⊗ n)) = d(am⊗ n)
= d(am)⊗ n+ am⊗ dn
= (∂a)m⊗ n+ a(dm)⊗ n+ am⊗ dn
= (ad+ ∂a)(m⊗ n)

Using A or K = Q(A) in place of N , we finally get (dif)
k
µ = (dif)(y

k
µ) = ∂if

k
µ − fk

µ+1i that is we
recognize exactly the Spencer operator that we have used in the second Section and thus:

(di(djf))
k
µ = ∂ijf

k
µ − (∂if

k
µ+1j + ∂jf

k
µ+1i) + fk

µ+1i+1j ⇒ di(djf) = dj(dif) = dijf

In fact, R is the projective limit of πq+r
q : Rq+r → Rq in a coherent way with jet theory [44]. In the

more specific case of homA(D,A), the upper index k is not present and we have thus (af)µ = afµ
with (dif)µ = ∂ifµ − fµ+1i , ∀f ∈ D∗, ∀a ∈ A, ∀i = 1, ..., n (Compare to [26], chapter 4, where the
Spencer operator is lacking). This left D-module structure on homA(D,A) is quite different from
the one provided by Lemma 3.1 but coincide with it up to sign when A = k.
Finally, if M and N are right D-modules, we just need to set (ξf)(m) = f(mξ) − f(m)ξ, ∀ξ ∈
T, ∀m ∈M and conclude as before. Similarly, if M is a left D-module and N is a right D-module,
we just need to set (m⊗ n)ξ = m⊗ nξ − ξm⊗ n.

Q.E.D.

REMARK 3.26: The A-module homA(M,N) cannot be endowed with any left or right differen-
tial structure when M =MD and N = DN . Similarly, the A-module M⊗AN cannot be endowed
with any differential structure when M = MD and N = ND. Also, according to the previous
results, when M = DM is given one can construct:

• The right D-module M∗ = homD(M,D) by using the bimodule structure of D = DDD.
• The left D-module R = homA(M,A) for the Spencer operator.

The second situation is the one studied by Macaulay in [26] and we provide a few examples.

REMARK 3.27: A section f ∈ R : ykµ → fk
µ ∈ A may not provide a formal power series solution.

Accordingly, it may be useful to exhibit f as a formal (in general infinite) summation E ≡ fk
µa

µ
k = 0

called modular equation by Macaulay ([26], §59, p 67) and to set diE ≡ (∂if
k
µ − fk

µ+1i)a
µ
k = 0.

Equivalently, one can use ∂i on the coefficients of E in A and set dia
µ
k = 0 if µi = 0 or dia

µ
k = −aµ−1ik

if µi > 0. When A = K = k is a field of constants and m = 1, we recover exactly the notation of
Macaulay (up to sign) but the link with the Spencer operator has never been provided.

EXAMPLE 3.28: With n = 3,m = 1, q = 2,K = Q(x1, x2, x3), the tricky example y33−x2y11 =
0, y22 = 0 provided by Janet (See [14] and [16] for more details) is such that dimK(R) = 12 < ∞
because par = {y, y1, y2, y3, y11, y12, y13, y23, y111, y113, y123, y1113}. Also, R can be generated
by the unique modular equation E ≡ a1113 + x2a1333 + a12333 = 0 with d2E = 0, because

28



y12333 − y1113 = 0, y1333 − x2y1113 = 0 and all the jets of order > 5 vanish (Exercise).

EXAMPLE 3.29: With n = 3,m = 1, q + 2 and K = Q, let us consider again the second order
system R2 defined by the 3 PD equations:

y33 = 0, y23 − y11 = 0, y22 = 0

Such a system is homogeneous and thus automatically formally integrable but g2 with dim(g2) = 3
is not involutive though finite type because dim(g3) = 1 and g4 = 0. An elementary computation
of the rank of a 3× 3 matrix shows that the δ-map:

0→ ∧2T ∗ ⊗ g3 δ−→ ∧3T ∗ ⊗ g2 → 0

is an isomorphism and thus g3 is 2-ayclic. This crucial intrinsic property, lacking from any ”old ”
work, will be a key tool for studying the conformal group of space-time in the next section. We
have the following commutative and exact diagram where dim(E) = 1, dim(F0) = 3, dim(F1) =
18− 15 = 3 (From the second row):

0 0 0 0
↓ ↓ ↓ ↓

0→ g5 → S5T
∗ → S3T

∗ ⊗ F0 → T ∗ ⊗ F1 → 0
↓ δ ↓ δ ↓ δ ‖

0→ T ∗ ⊗ g4 → T ∗ ⊗ S4T
∗ → T ∗ ⊗ S2T

∗ ⊗ F0 → T ∗ ⊗ F1 → 0
↓ δ ↓ δ ↓ δ ↓

0→ ∧2T ∗ ⊗ g3 → ∧2T ∗ ⊗ S3T
∗ → ∧2T ∗ ⊗ T ∗ ⊗ F0 → 0

↓ δ ↓ δ ↓ δ
0→ ∧3T ∗ ⊗ g2 → ∧3T ∗ ⊗ S2T

∗ → ∧3T ∗ ⊗ F0 → 0
↓ ↓ ↓
0 0 0

and the long exact sequence:

0→ S6T
∗ → S4T

∗ ⊗ F0 → S2T
∗ ⊗ F1 → F2 → 0

giving dim(F2) = 28 − 45 + 18 = 1 and providing the following free resolution with second order
operators:

0→ D → D3 → D3 → D →M → 0

where the Euler-Poincaré characteristic is equal to 1−3+3−1 = 0 asM is defined by a finite type
system. With a slight abuse of language while shifting the various filtrations, we may say that we
have a strict resolution because all the operators involved, being homogeneous, are formally inte-
grable though not involutive. This is not a Janet sequence but we notice that the first and second
Spencer sequences coincide because we have dim(R) = dim(R3) = 1+ 3+ 3+ 1 = 8 as g4 = 0 and
par = {y, y1, y2, y3, y11, y12, y13, y111}. We let the reader prove that R ≃ R3 is generated by the
single modular equation E ≡ a111 + a123 = 0.

EXAMPLE 3.30: With n = 1,m = 1, q = 2, A = Q[x] ⇒ K = Q(x) an thus k = Q, let
us consider the second order system yxx − xy = 0. We successively obtain by prolongation
yxxx− xyx− y = 0, yxxxx− 2yx− x2y = 0, yxxxxx− x2yx− 4xy = 0, yxxxxxx− 6xyx− (x3 +4)y = 0
and so on. We obtain the corresponding board:

order y yx yxx yxxx yxxxx yxxxxx yxxxxxx ...
2 −x 0 1 0 0 0 0 ...
3 −1 −x 0 1 0 0 0 ...
4 −x2 −2 0 0 1 0 0 ...
5 −4x −x2 0 0 0 1 0 ...
6 −(x3 + 4) −6x 0 0 0 0 1 ...
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Let us define the sections f ′ and f” by the following board where d = dx:

section y yx yxx yxxx yxxxx yxxxxx yxxxxxx ...
f ′ 1 0 x 1 x2 4x x3 + 4 ...
f” 0 1 0 x 2 x2 6x ...
df ′ 0 −x 0 −x2 −2x −x3 −6x2 ...
df” −1 0 −x −1 −x2 −4x −x3 − 4 ...

in order to obtain df ′ = −xf”, df” = −f ′. Though this is not evident at first sight, the two
boards are orthogonal over K in the sense that each row of one board contracts to zero with each
row of the other though only the rows of the first board do contain a finite number of nonzero
elements. It is absolutely essential to notice that the sections f ′ and f” have nothing to do with
solutions because df ′ 6= 0, df” 6= 0 on one side and also because d2f ′ − xf ′ = −f” = 1

xdf
′ 6= 0

even though d2f”− xf” = 0 on the other side. As a byproduct, f ′ or f” can be chosen separately
as unique generating section of the inverse system over K (care) and we may write for example
f ′ → E′ ≡ a0 + xaxx + axxx + x2axxxx + ... = 0 while f”→ E” ≡ ax + xaxxx + 2axxxx + ... = 0.
Finally, setting f = af ′ + bf”, we have df = (∂a)f ′ + (∂b− xa)f” = 0⇔ ∂2a− xa = 0, b = ∂a. If
a = P/Q with P,Q ∈ Q[x] and Q 6= 0, we obtain easily :

Q2∂2P − 2Q∂P∂Q− PQ∂2Q+ 2P (∂Q)2 − xPQ2 = 0

If deg(P ) = p, deg(Q) = q, the four terms on the left have the same degree p + 2q − 2 while the
last term has degree p+ 2q + 1 and thus Q 6= 0⇒ P = 0⇒ a = 0⇒ b = 0, a result showing that
there is no solution in K. We invite the reader to treat similarly the case xyx−y = 0 as an exercise.

COROLARY 3.31: The structures of leftD-modules existing therefore onM⊗AN and homA(N,L)
are now coherent with the adjoint isomorphism for mod(D):

ϕ : homD(M⊗AN,L)
≃−→ homD(M,homA(N,L)) , ∀L,M,N ∈ mod(D)

It follows that we have also R = homA(M,A) ≃ homD(M,homA(D,A)) but in a quite different
framework.

Proof: With ϕ(f) = g, the third result is entrelacing the two left structures that we have
just provided through the formula (g(m))(n) = f(m ⊗ n) ∈ N defining the map ϕ whenever
f ∈ homD(M⊗AN,L) is given. Using any ξ ∈ T , we get successively in L (Compare to [7], Propo-
sition 2.1.3, p 54):

(ξ(g(m)))(n) = ξ((g(m))(n)) − (g(m))(ξn)
= ξ(f(m⊗ n))− f(m⊗ ξn)
= f(ξ(m⊗ n))− f(m⊗ ξn)
= f(ξm⊗ n+m⊗ ξn)− f(m⊗ ξn)
= f(ξm⊗ n)
= (g(ξm))(n)

and thus ξ(g(m)) = g(ξm), ∀m ∈M or simply ξ ◦ g = g ◦ ξ.
For any g ∈ homD(M,homK(N,L)), we may define the inverse ψ of ϕ through the formula
ψ(g)(m ⊗ n) = (g(m))(n) ∈ L by checking the bilinearity over A of (m,n) → (g(m))(n) and
studying as before the action of any ξ ∈ T .

The last result is more tricky and we provide two different proofs with D∗ = homA(D,A).

If M is finitely presented, applying homD(•, D∗) to a free presentation Dp D−→ Dm →M → 0, we
obtain the exact sequence 0 → homD(M,D∗) → D∗m → D∗p because homD(D,D∗) = D∗. As
any module over D is a module over A, applying homA(•, A) to the same sequence, we get the
exact sequence 0 → homA(M,A) → D∗m → D∗p and thus an isomorphism R = homA(M,A) ≃
homD(M,D∗).
More generally, because A is a commutative ring, we have the isomorphism of left D-modues:

M⊗AN ≃ N⊗AM : m⊗ n→ n⊗m, ∀m ∈M, ∀n ∈ N
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as we check at once for any a ∈ A, ξ ∈ T,m ∈M,n ∈ N :

a(m⊗ n) = am⊗ n = m⊗ an→ n⊗ am = a(n⊗m)

ξ(m⊗ n) = ξm⊗ n+m⊗ ξn→ n⊗ ξm+ ξn⊗m = ξ(n⊗m)

ans we may therefore exchange M and N . Acordingly, when M = DM,N = DD,L = DA with
(P, a)→ P (a) ∈ A, we obtain:

homD(M,homA(D,A)) ≃ homD(M⊗AD,A) ≃ homD(D⊗AM,A) ≃ homD(D,homA(M,A))
≃ homA(M,A)

Q.E.D.

REMARK 3.32: We emphasize once more that the left D-structure on homA(D,A) used in [7]
is coming from the right action of D on D = DD through the formula (ξf)(P ) = f(Pξ), ∀ξ ∈
T, ∀f ∈ homA(D,A) and therefore does not provide in general the structure of differential module
defined by the formula (ξf)(P ) = ξ(f(P ))− f(ξP ) as in the theorem.

COROLLARY 3.33: Using the bimodule structure of D = DDD, we get a right structure on
DD⊗ADM according to the last Theorem and a compatible left structure defined by Q(P ⊗m) =
QP ⊗m. With a hat for omission, we may set :

d∗(P ⊗m⊗ ξ1 ∧ ... ∧ ξr) =
∑

i(−1)i−1(P ⊗m)ξi ⊗ ξ1 ∧ ... ∧ ξ̂i ∧ ... ∧ ξr
+
∑

i<j(−1)i+jP ⊗m⊗ [ξi, ξj ] ∧ ξ1 ∧ ... ∧ ξ̂i ∧ ... ∧ ξ̂j ∧ ... ∧ ξr
Comparing to the standard definition of the exterior derivative, it is easy to check that d∗ ◦ d∗ = 0

Q.E.D.

REMARK 3.34: When D = Φ◦ jq is an arbitrary but regular operator of order q, we may ”cut ”
the Janet sequence at F0 in two parts by introducing the systems Br = im(ρr(Φ)) ⊆ Jr(F0) with
B0 = F0 and Br+1 ⊆ ρr(B1) projecting onto Br, ∀r ≥ 0. When D is involutive, then B1 ⊆ J1(F0)
is also involutive with Br+1 = ρr(B1), ∀r ≥ 0 and we have the commutative and formally exact
”fundamental diagram 1 ” linking the second Spencer sequence and the Janet sequence:

0 0 0
↓ ↓ ↓

0→ Θ
jq−→ C0

D1−→ C1
D2−→ ...

Dn−→ Cn → 0
↓ ↓ ↓

0→ E
jq−→ C0(E)

D1−→ C1(E)
D2−→ ...

Dn−→ Cn(E) → 0
‖ ↓ Φ0 ↓ Φ1 ↓ Φn

0→ Θ→ E
D−→ F0

D1−→ F1
D2−→ ...

Dn−→ Fn → 0
↓ ↓ ↓
0 0 0

where the epimorphisms Φ1, ...,Φn are successively induced by the epimorphism Φ0 = Φ, the canon-
ical projection of C0(E) = Jq(E) onto F0 = Jq(E)/Rq with C0 = Rq. It is known that the central
sequence is locally exact. As we already pointed out that gq was a vector bundle, introducing
the projection Rq−1 of Rq into Jq−1(E), we have Cn ≃ ∧nT ∗ ⊗ Rq−1, Cn(E) ≃ ∧nT ∗ ⊗ Jq−1(E)
and thus Fn ≃ ∧nT ∗ ⊗ (Jq−1(E)/Rq−1). It is not at all evident that the dual of this diagram is
nothing else but the resolution of the short exact sequence 0→ I → Dm →M → 0 considered in
Definition 3.6. Indeed, dualizing the diagram of Proposition 2.8, we obtain at once the following
commutative and exact diagram:
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0 0 0
↑ ↑ ↑

∧r−1T⊗AGq+1
δ∗← ∧rT⊗AGq ← Z(∧rT⊗AGq) ← 0

‖ ↑ ↑
∧r−1T⊗AGq+1 ← ∧rT⊗AMq ← C∗r ← 0

↑ ↑ ↑
0 ← ∧rT⊗AMq−1 = ∧rT⊗Mq−1 ← 0

↑ ↑
0 0

Applying the dual Spencer operator ∧rT⊗AMq → ∧r−1T⊗AMq+1, we obtain the strictly exact
second Spencer sequence SSPq(M):

0→ D⊗AC
∗
n → D⊗AC

∗
n−1 → ...→ D⊗AC

∗
1 → D⊗AMq →M → 0

which is a resolution of M stabilizing the filtration at order q only by means of induced differential
modules. Accordingly, the last two differential morphisms, induced by the morphisms P ⊗ξ⊗m→
Pξ⊗m−P ⊗ ξm and P ⊗m→ Pm of the sequence ...→ D⊗AT⊗AMq → D⊗AMq+1 →M → 0,
dualize the exact sequence 0→ Rq+r+1 → Jr+1(C0)→ Jr(C1) as in ([15], p 367-369).

In the opinion of the author based on thirty years of explicit applications to mathematical
physics (general relativity, gauge theory, theoretical mechanics, control theory), the differential
geometric framework is quite more natural than the differential algebraic framework. The simplest
example being the fact that the so-called Cosserat equations of elasticity theory, discovered by the
brothers Eugène and François Cosserat as early as in 1909, are nothing else but the formal adjoint
ad(D1) of the first Spencer operator D1 for the Killing equations in Riemannian geometry [40, 47].
In particular, it must be noticed that the very specific properties of the Janet sequence, namely
that it starts with an involutive operator of order q ≥ 1 but the n remaining involutive operators
D1, ...,Dn are of order 1 and in (reduced) Spencer form cannot be discovered from the differential
module point of view. However, the importance of the torsion-free condition/test for differential
modules is a novelty brought from the algebraic setting and known today to be a crucial tool for
understanding control theory [44]. Finally, the situation in the present days arrived to a kind of
”vicious circle ” because the study of differential modules is based on filtration and thus formal
integrability while computer algebra is based on Gröbner bases as a way to sudy the same questions
but by means of highly non-intrinsic procedures as we saw.

We may compare the differential algebraic framework with its differential geometric counterpart.
Indeed, using notations coherent with the ones of the previous section, if now D = Φ ◦ jq : E → F
is an operator of order q with dim(E) = m, dim(F ) = p, we may consider the exact sequences

0 → Rq+r → Jq+r(E)
ρr(Φ)−→ Jr(F ) by introducing the r-prolongation of Φ, induce the Spencer

operator D : Rq+r+1 → T ∗ ⊗ Rq+r when r ≥ 0 and pass to the projective limit R = R∞.
In actual practice, when r = 1 we have aτµk fk

µ = gτ ⇒ aτµk fk
µ+1i + (∂ia

τµ
k )fk

µ = gτi and thus

aτµk (∂if
k
µ − fk

µ+1i) = ∂ig
τ − gτi , a procedure that can be easily extended to any value of r > 0.

As a byproduct, the link existing with infinite jets can be understood by means of the following
commutative and exact diagram:

0→ R → J(E)
ρ(Φ)−→ J(F )

↓ d ↓ d ↓ d
0→ T ∗ ⊗R → T ∗ ⊗ J(E)

ρ(Φ)−→ T ∗ ⊗ J(F )
where df = dxi ⊗ dif . Hence, using the Spencer operator on sections, we may characterize R by
the following equivalent properties (See [41], Proposition 10, p 83 for a nonlinear version that can
be used in Example 2.22):

1) f ∈ R is killed by ρr(Φ) (no differentiation of f is involved ), ∀r ≥ 0.
2) f ∈ R⇒ dif ∈ R (a differentiation of f is involved ), ∀i = 1, ..., n.
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As an equivalent differential geometric counterpart of the above result, we may also define the
r-prolongations ρr(Rq) = Jr(Rq) ∩ Jq+r(E) of a given system Rq ⊂ Jq(E) of order q by applying
successively the following formula involving the Spencer operator of the previous section:

ρ1(Rq) = J1(Rq) ∩ Jq+1(E) = {fq+1 ∈ Jq+1(E) | fq ∈ Rq, Dfq+1 ∈ T ∗ ⊗Rq}
Now, if we have another system Rq+1 ⊆ ρ1(Rq) ⊂ Jq+1(E) of order q + 1 and projecting onto Rq,
we have the commutative and exact diagram:

0 0
↓ ↓

0→ gq+1 → ρ1(gq)
↓ ↓

0→ Rq+1 → ρ1(Rq)
↓ ↓

0→ Rq = Rq → 0
↓ ↓
0 0

Chasing in this diagram, it follows that Rq+1 = ρ1(Rq) if and only if gq+1 = ρ1(gq). Otherwise,

we may start afresh with R
(1)
q = πq+1

q (Rq+1) (See Lemma III.2.46 in [44] for details).

Dualizing the Spencer operator acting in the two diagrams presented at the end of the previous
section, we get the two commutative diagrams of induced left D-modules:

0 0 0 0

↓ ↓ ↓ ↓

D ⊗ C
∗

r

D∗

r
−→ D ⊗ C

∗

r−1 D ⊗ F
∗

r

D
∗

r
−→ D ⊗ F

∗

r−1

↓ ↓ ↓ ↓

D ⊗∧r
T ⊗Mq

d∗

−→ D ⊗ ∧r−1
T ⊗Mq+1 D ⊗ ∧r

T ⊗Dq ⊗ E
∗ d∗

−→ D ⊗∧r−1
T ⊗Dq+1 ⊗ E

∗

with the inclusions:

C∗0 =Mq ⇒ ∧rT ⊗Mq−1 ⊂ C∗r ⊂ ∧rT ⊗Mq ⊂ ∧rT ⊗Mq+1

THEOREM 3.35: The operator d∗ : D ⊗ ∧rT ⊗Mq → D ⊗ ∧r−1T ⊗Mq+1 is described by the
formula:

d∗(P ⊗m⊗ ξ1 ∧ ... ∧ ξr) =
∑

i(−1)i−1(P ⊗m)ξi ⊗ ξ1 ∧ ... ∧ ξ̂i ∧ ... ∧ ξr
+
∑

i<j(−1)i+j(P ⊗m)⊗ [ξi, ξj ] ∧ ... ∧ ξ̂i ∧ ... ∧ ξ̂j ∧ ... ∧ ξr
Proof: Let us introduce a left structure on D ⊗ M by using the left structure already exhib-
ited in the last Theorem with DD and DM by setting a(P ⊗ m) = aP ⊗ m = P ⊗ am and
ξ(P ⊗m) = ξP ⊗m+P ⊗ξm. Then let us introduce a right structure with DD and DM by setting
(P ⊗m)Q = PQ⊗m. We check at once for any P,Q ∈ D, ξ ∈ T,m ∈M :

(ξ(P ⊗m))Q = (ξP ⊗m+ P ⊗ ξm)Q = ξPQ⊗m+ PQ⊗ ξm = ξ((P ⊗m)Q)

We may thus introduce a morphism d∗ : D ⊗∧rT ⊗M → D ⊗∧r−1T ⊗M by the above formula:

d∗(P ⊗m⊗ ξ1 ∧ ... ∧ ξr =
∑

i(−1)i−1(P ⊗m)ξi ⊗ ξ1 ∧ ... ∧ ξ̂i ∧ ... ∧ ξr
+
∑

i<j(−1)i+j(P ⊗m)⊗ [ξi, ξj ] ∧ ... ∧ ξ̂i ∧ ... ∧ ξ̂j ∧ ... ∧ ξr
where a ”hat ” is used for omission, or simply:

d∗(P ⊗m⊗ di1 ∧ ... ∧ dir =
∑

s
(−1)s−1(P ⊗m)dis ⊗ di1 ∧ ... ∧ d̂is ∧ ... ∧ dir

Having in mind a similar formula existing for the exterior derivative in the Poincaré sequence, it
is easy to check that d∗ ◦ d∗ = 0. However, it is not evident at all to establish a link with the
Spencer operator and we notice that there are almost no references to Spencer in the literature on
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D-modules [7, 20, 62]. For this, let us start with the simple example of the sequence:

0→ E
j2−→ J2(E)

d−→ T ∗ ⊗ J1(E)

where we have used sections and the notation d instead of D in order to avoid any confusion. With
n = 1,m = 1, d = dx, we have the operators:

f
j2−→





f
df
d2f



 ,





f
fx
fxx





d−→
(

df − fx
dfx − fxx

)

and the operator matrix identity:

(

d −1 0
0 d −1

)





1
d
d2



 =

(

0
0

)

More genrally, we have in the operator sense:

Pµ,i(dif
k
mu − fk

µ+1i) = (Pµ,idi)f
k
µ − Pµ,ifk

µ+1i

that is a composition with di on the right and a shift by one step to increasing order because
diy

k
µ = ykµ+1i and | µ+ 1i |=| µ | +1.

Q.E.D.

COROLLARY 3.36: Dualizing the canonical Spencer sequence, we get the strictly exact canon-
ical sequence of left D-modules and D-morphisms:

0→ D ⊗ C∗n
D∗

n−→ ...
D∗

2−→ D ⊗ C∗1
D∗

1−→ D ⊗ C∗0 →M → 0

where C∗n = ∧nT ⊗Mq−1, C
∗
0 =Mq and the last two morphisms are induced by:

D ⊗ T ⊗Mq → D ⊗Mq+1 : P ⊗ ξ ⊗m→ Pξ ⊗m− P ⊗ ξm, D ⊗Mq →M : P ⊗m→ Pm

COROLLARY 3.37: Similarly, dualizing the canonical Janet sequence, we get the strictly exact
canonical sequence of left D-modules and D-morphisms:

0→ D ⊗ F ∗n
D∗

n−→ ...
D∗

1−→ D ⊗ F ∗0
D∗

−→ D ⊗ E∗ →M → 0

where we have the short exact sequences:

0→ Rq → Jq(E)→ F0 → 0 ⇔ 0→ F ∗0 → Dq ⊗ E∗ →Mq → 0

and the last morphism just provides the definition of M in a more intrinsic way than the cokernel
Dp → Dm →M → 0 already used.
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4) APPLICATIONS

In this last section, we shall only deal wih linear or linearized differential operators. However,
as explained with details in [38-41, 55], there is a nonlinear counterpart using the nonlinear Janet
sequence coming from the Vessiot structure equations and a nonlinear Spencer sequence. However,
the so-called vertical machinery involved, that is a systematic use of fibered manifolds and vertical
bundles, is much more difficult though we have chosen the notations of this paper in such a way
that the interested reader may easily adapt them. As for the quoted Vessiot structure equations,
they have been totally ignored during more than one century for reasons that are not scientific at
all (See [50] and the original letters presented in [40] for explanations).

Collecting all the results so far obtained, if a differential operator D is given in the framework
of differential geometry, we may keep the same operator matrix in the framework of differential
modules which are left modules over the ring D of linear differential operators. We may also apply
duality over D, that is apply homD(•, D), provided we deal now with right differential modules or
use the operator matrix of ad(D) and deal again with left differential modules obtained through
the left ↔ right conversion procedure. In actual practice, it is essential to notice that the new
operator matrix may be quite different from the only transposed of the previous operator, even if we
are dealing with constant coefficients.

DEFINITION 4.1: If a differential operator ξ
D−→ η is given, a direct problem is to find (gen-

erating) compatibility conditions (CC) as an operator η
D1−→ ζ such that Dξ = η ⇒ D1η = 0.

Conversely, given η
D1−→ ζ, the inverse problem will be to look for ξ

D−→ η such that D1 generates
the CC of D and we shall say that D1 is parametrized by D if such an operator D is existing.

REMARK 4.2: Of course, solving the direct problem (Janet, Spencer) is necessary for solving the
inverse problem. However, though the direct problem always has a solution, the inverse problem
may not have a solution at all and the case of the Einstein operator is one of the best non-trivial
PD counterexamples (Compare [44] to [67]). It is rather striking to discover that, in the case of OD
operators, it took almost 50 years to understand that the possibility to solve the inverse problem
was equivalent to the controllability of the corresponding control system (Compare [34] to [44])
and the situation will be probably similar in GR as the above result has been first found in 1994
according to the Introduction of this paper.

As ad(ad(P )) = P, ∀P ∈ D, any operator is the adjoint of a certain operator and we get:

FORMAL TEST 4.3: The double duality test needed in order to check whether t(M) = 0 or
not and to find out a parametrization if t(M) = 0 has 5 steps which are drawn in the following
diagram where ad(D) generates the CC of ad(D1) and D′1 generates the CC of D = ad(ad(D)):

ζ′ 5
D′

1

ր
4 ξ

D−→ η
D1−→ ζ 1

3 ν
ad(D)←− µ

ad(D1)←− λ 2

THEOREM 4.4: We have D1 parametrized by D ⇔ D1 = D′1 ⇔ t(M) = 0 ⇔ ext1(N) = 0 in
the differential module framework. In particular, a necessary condition for an operator D1 to be
parametrizable by an operator D is that maxχrk(σχ(D1)) < dim(F0) with a strict inequality.

COROLLARY 4.5: In the differential module framework, if F1
D1−→ F0

p−→ M → 0 is a finite
free presentation of M = coker(D1) and we already know that t(M) = 0 by using the preceding

Theorem, then we may obtain an exact sequence F1
D1−→ F0

D−→ E of free differential mod-
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ules where D is the parametrizing operator. However, there may exist other parametrizations

F1
D1−→ F0

D′

−→ E′ called minimal parametrizations such that coker(D′) is a torsion module and we
have thus rkD(M) = rkD(E).

• n = 2: The Airy parametrization of the Cauchy stress equations when n = 2 gives rk(E) = 1 and
we have thus only 1 potential, namely the Airy function, that is the parametrization is trivially
minimal. When constructing a dam as in the Introduction of [43], we may transform a problem of
3-dimensional elasticity into a problem of 2-dimensional elasticity by supposing that the axis x3

is perpendicular to the river with Ωij(x
1, x2), ∀i, j = 1, 2 but Ω33 = 0 because of the rocky banks

of the river and we may introduce the two Lamé constants (λ, µ) in order to describe the usual
constitutive relations of an homogeneous isotopic medium as follows:

σ =
1

2
λ tr(Ω)ω + µΩ ⇔ µΩ = σ − λ

2(λ+ µ)
tr(σ)ω

even though σ33 = 1
2λ(Ω11 +Ω22) =

1
2λtr(Ω) 6= 0 and thus σ33 = λ

2(λ+µ) (σ
11 +σ22) where we have

introduced the Poisson coefficient ν = λ
2(λ+µ) .

Let us consider the right square of the diagram below with locally exact rows:

2
Killing−→ 3

Riemann−→ 1
... ↓↑

...

2
Cauchy←− 3

Airy←− 1

Taking into account the formula 5.1.4 of [15] and substituting the Airy parametrization, we obtain:

R ≡ d11Ω22 + d22Ω11 − 2d12Ω12 = 0 ⇒ µR ≡ λ+ 2µ

2(λ+ µ)
△△φ = 0 ⇒ △△φ = 0

As we shall see in the next paragraph, the origin of elastic waves is shifted by one step to the left
square of the diagram.

• n = 3: The Beltrami parametrization of the Cauchy stress equations when n = 3 gives rk(E) = 6
and we have thus 6 potentials. However, Maxwell/Morera parametrizations of the stress equations
when n = 3 both give rk(E′) = 3 and we have thus 3 potentials only. Paying a tribute to History,
we shall set Beltrami = ad(Riemann) and we have the following dual commutative and exact
diagrams:

3
Killing−→ 6

Riemann−→ 6
Bianchi−→ 3→ 0

0← 3
Cauchy←− 6

Beltrami←− 6 ←− 3
‖ ↑
6

Maxwell←− 3

Accordingly, the canonical parametrization has 6 potentials while any minimal parametrization
has 3 potentials. We finally notice that the Cauchy operator is parametrized by the Beltrami
operator which is again parametrized by the adjoint of the Bianchi operator obtained by lineariz-
ing the Bianchi identities existing for the Riemann tensor, a property not held by any minimal
parametrization as we already noticed.
We now explain the origin and existence of elastic waves in this framework, pointing out first of all
that any earthquake allows to verify the different types of waves propagating with different speeds.
In addition to these types of waves, there also exists specific waves propagating on the surface
of materials, like the Rayleigh waves discovered in 1885, with an exponential decay of amplitude
and a different speed vR, inviting the reader to visit the so-called whispering cupola of St Paul’s
Cathedral in London.
For this, let us consider the left square of the diagram below with locally exact rows:
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3
Killing−→ 6

Riemann−→ 6
... ↓↑

...

3
Cauchy←− 6

Beltrami←− 6

where the central vertical maps are described by the symmetric 6 × 6 matrix of the well known
constitutive laws for homogeneous isotropic media and its inverse:

σ =
1

2
λ tr(Ω)ω + µΩ ⇔ µΩ = σ − λ

3λ+ 2µ
tr(σ)ω

with tr(σ) = ωijσ
ij and tr(Ω) = ωijΩij . Substituting in the Cauchy equations ∂iσ

ij = f j, we
finally get:

(λ + µ) ~∇ (~∇.~ξ ) + µ△ ~ξ = ~f

Using the standard formula ~∇ ∧ (~∇ ∧ ~ξ ) = ~∇(~∇.~ξ ) − △~ξ, we have to consider two particular
situations providing longitudinal and transversal waves with respective speeds vR < vT < vL when
f j = ρ ∂2~ξ/∂t2 with mass ρ per unit volume [42]:







~∇.~ξ = 0 ⇒ µ△~ξ = ~f ⇒ vT =
√

µ
ρ

~∇ ∧ ~ξ = 0 ⇒ (λ+ 2µ)△~ξ = ~f ⇒ vL =
√

λ+2µ
ρ

Taking into account Proposition 3.18 and formula (5.1.6) of [15] allowing to exhibit gravitational
waves while dualizing in arbitrary dimension n, we may consider the change of stress functions
with inverse now depending on n:

Φ̄ij = Φij −
1

2
ωijtr(Φ) ⇔ Φij = Φ̄ij −

1

(n− 2)
ωijtr(Φ̄)

It follows that, for n = 3, we have Φ11 = −(Φ̄22 + Φ̄33) and Φ12 = Φ̄12 that can be extended by
circular permutation of (1, 2, 3). We obtain therefore, whenever ∂iΦ̄

ij = 0:

σ11 = −d33(Φ11 +Φ33)− d22(Φ11 +Φ22)− 2d23Φ23

= −△Φ11 + d11Φ11 − (d33Φ33 + d23Φ23)− (d22Φ22 + d23Φ23)
= −△Φ11 + d11Φ11 + d13Φ13 + d12Φ12

= −△Φ11

σ12 = d13Φ23 + d23Φ13 − d33Φ12 + d12(Φ11 +Φ22)
= −△Φ12 + (d11Φ12 + d13Φ23) + (d22Φ12 + d23Φ13) + d12(Φ11 +Φ22)
= −△Φ12 − d12Φ22 − d12Φ11 + d12(Φ11 +Φ22)
= −△Φ12

where we have omitted the ”bar ” and use the formal d instead of the partial ∂ for simplicity.
Of course, the potential Φ has nothing to do with the perturbation Ω of the metric ω.

• n = 4 We shall prove below that the Einstein parametrization of the stress equations is neither
canonical nor minimal in the following diagrams:

4
Killing−→ 10

Riemann−→ 20
Bianchi−→ 20 −→ 6 → 0

‖ ↓ ↓
10

Einstein−→ 10
div−→ 4 → 0

0← 4
Cauchy←− 10

Beltrami←− 20 ←− 20
‖ ↑
10

Einstein←− 10

obtained by using the fact that the Einstein operator is self-adjoint, where by Einstein operator
we mean the linearization of the Einstein equations at the Minkowski metric, the 6 terms being
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exchanged between themselves [45, 50]. Indeed, setting Eij = Rij − 1
2ωijR with R = ωijRij , it is

essential to notice that the Ricci operator is not self-adjoint because we have for example:

λij(ωrsdijΩrs)
ad−→ (ωrsdijλ

ij)Ωrs

and ad provides a term appearing in −ωijR but not in 2Rij because we have, as in (5.1.4) of [15]:

tr(Ω) = ωrsΩrs ⇒ R = ωrsdrstr(Ω)− drsΩrs

The upper div induced by Bianchi has nothing to do with the lower Cauchy stress equations,
contrary to what is still believed today while the 10 on the right of the lower diagram has nothing
to do with the perturbation of a metric which is the 10 on the left in the upper diagram. It also
follows that the Einstein equations in vacuum cannot be parametrized as we have the following
diagram of operators recapitulating the five steps of the parametrizability criterion (See [44, 45]
for more details or [55, 67] for a computer algebra exhibition of this result):

Riemann 20
ր

4
Killing−→ 10

Einstein−→ 10

4
Cauchy←− 10

Einstein←− 10

As a byproduct, we are facing only two possibilities, both leading to a contradiction:

1) If we use the operator S2T
∗ Einstein−→ S2T

∗ in the geometrical setting, the S2T
∗ on the left has

indeed someting to do with the perturbation of the metric but the S2T
∗ on the right has nothing

to do with the stress.

2) If we use the adjoint operator ∧nT ∗⊗S2T
ad(Einstein)←− ∧nT ∗⊗S2T in the physical setting, then

∧nT ∗ ⊗ S2T on the left has of course something to do with the stress but the ∧nT ∗ ⊗ S2T on the
right has nothing to do with the perturbation of a metric.

• It remains therefore to compute all the dimensions and ranks for an arbitrary dimension n ≥ 3.
For this, we notice that the successive prolongations ρr(Φ) : Jq+rE → Jr(F0) defined by dνΦ

τ = zτν
for 0 ≤| ν |≤ r have kernel Rq+r . The symbol morphism σr(Φ) : Sq+rT

∗ ⊗ E → SrT
∗ ⊗ F0 with

kernel gq+r is induced by the projection of ρr(Φ) onto ρr−1(Φ) (See [40], p 163 or [41], p 253] for
details). If we use such a procedure for a first order system with no zero or first order CC, we have
q = 1, E = T, F0 = J1(T )/R1. The Killing system R1 is formally integrable (R2 involutive) if and
only if ω has constant Riemannian curvature:

ρkl,ij = c(δki ωlj − δkj ωli)

with c = 0 when ω is the flat Minkowski metric [14, 41, 50]. In general, we may apply the Spencer
δ-map to the top row obtained with r = 2 in order to get the first commutative diagram allowing
to determine F1:

0 0 0
↓ ↓ ↓

0→ g3 → S3T
∗ ⊗ T → S2T

∗ ⊗ F0 → F1 → 0
↓ δ ↓ δ ↓ δ

0→ T ∗ ⊗ g2 → T ∗ ⊗ S2T
∗ ⊗ T → T ∗ ⊗ T ∗ ⊗ F0 → 0

↓ δ ↓ δ ↓ δ
0→ ∧2T ∗ ⊗ g1 → ∧2T ∗ ⊗ T ∗ ⊗ T → ∧2T ∗ ⊗ F0 → 0

↓ δ ↓ δ ↓
0→ ∧3T ∗ ⊗ T = ∧3T ∗ ⊗ T → 0

↓ ↓
0 0

with exact rows and exact columns but the first that may not be exact at ∧2T ∗ ⊗ g1. We shall
denote by B2(g1) the coboundary as the image of the central δ, by Z2(g1) the cocycle as the kernel
of the lower δ and by H2(g1) = Z2(g1)/B

2(g1) the Spencer δ-cohomology at ∧2T ∗ ⊗ g1.
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Going one step further on in the differential sequence and using the fact that the Riemann operator
and the Weyl operator are both second order operators when n ≥ 4, we may define the vector
bundle F2 by the top row of the following second commutative diagram in order to look for the
corresponding Bianchi operator F1 → F2:

0 0 0 0
↓ ↓ ↓ ↓

0→ g4 → S4T
∗ ⊗ T → S3T

∗ ⊗ F0 → T ∗ ⊗ F1 → F2 → 0
↓ ↓ ↓ ‖

0→ T ∗ ⊗ g3 → T ∗ ⊗ S3T
∗ ⊗ T → T ∗ ⊗ S2T

∗ ⊗ F0 → T ∗ ⊗ F1 → 0
↓ ↓ ↓ ↓

0→ ∧2T ∗ ⊗ g2 → ∧2T ∗ ⊗ S2T
∗ ⊗ T → ∧2T ∗ ⊗ T ∗ ⊗ F0 → 0

↓ ↓ ↓
0→ ∧3T ∗ ⊗ g1 → ∧3T ∗ ⊗ T ∗ ⊗ T → ∧3T ∗ ⊗ F0 → 0

↓ ↓ ↓
0→ ∧4T ∗ ⊗ T = ∧4T ∗ ⊗ T → 0

↓ ↓
0 0

In the classical Killing system, g1 ⊂ T ∗ ⊗ T is defined by ωrj(x)ξ
r
i + ωir(x)ξ

r
j = 0 ⇒

ξrr = 0, g2 = 0, g3 = 0. Applying the previous diagram, we discover that the Riemann tensor
(ρkl,ij) ⊂ ∧2T ∗ ⊗ T ∗ ⊗ T is a section of the vector bundle F1 = H2(g1) = Z2(g1) with:

dim(F1) = (n2(n+ 1)2/4)− (n2(n+ 1)(n+ 2)/6)
= (n2(n− 1)2/4)− (n2(n− 1)(n− 2)/6)
= n2(n2 − 1)/12

by using either the top row or the left column and call (linearized) Riemann operator the sec-
ond order operator F0 → F1. We obtain at once the well known properties of the (linearized)
Riemann tensor through the chase involved, namely (ρkl,ij) ∈ ∧2T ∗ ⊗ T ∗ ⊗ T is killed by both
δ and σ0(Φ). However, we have no indices for F1 and cannot therefore exhibit the Ricci tensor
or the Einstein tensor of GR by means of the usual contraction or trace. We recall briefly their
standard definitions by stating ρij = ρji = ρri,rj ⇒ ρ = ωijρij ⇒ ǫij = ρij − 1

2ωijρ. Similarly,
going one step further, the (linearized) Bianchi operator is the first order operator F1 → F2 with
F2 = H3(g1) = Z3(g1) ⇒ dim(F2) = dim(∧4T ∗ ⊗ T ) − dim(∧3T ∗ ⊗ g1) = n2(n2 − 1)(n − 2)/24
as in ([40], p 168-171). This approach is relating for the first time the concept of Riemann tensor
candidate, introduced by Lanczos and others, to the Spencer δ-cohomology of the Killing symbols.

Counting the differential ranks is now easy because R1 is formally integrable with finite type
symbol and thus R2 is involutive with symbol g2 = 0. We get:

rk(Killing) = rk(Cauchy) = n⇒ rk(Riemann) = dim(S2T
∗)−n = (n(n+1)/2)−n = n(n−1)/2

rk(Bianchi) = (n2(n2 − 1)/12)− (n(n− 1)/2) = n(n− 1)(n− 2)(n+ 3)/12

that is rk(Bianchi) = 3 when n = 3 and rk(Bianchi) = 14 = 20 − 6 when n = 4. Collecting all
the results, we obtain that the canonical parametrization needs n2(n2− 1)/12 potentials while any
minimal parametrization only needs n(n − 1)/2 potentials [54]. The Einstein parametrization is
thus ” in between ” because n(n− 1)/2 < n(n+1)/2 < n2(n2− 1)/12, ∀n ≥ 4. We may summarize
the previous results by means of the following initial part of a differential sequence which is not a
Janet sequence because the classical Killing operator is not involutive:

0→ Θ→ T
Killing−→

1
S2T

∗ Riemann−→
2

F1
Bianchi−→

1
F2 −→

1
F3 → ...

The conformal Killing system R̂1 ⊂ J1(T ) is defined by eliminating the function A(x) in the
system L(ξ)ω = A(x)ω. It is also a Lie operator D̂ with solutions Θ̂ ⊂ T satisfying [Θ̂, Θ̂] ⊂ Θ̂.
Its symbol ĝ1 is defined by the linear equations ωrjξ

r
i + ωirξ

r
j − 2

nωijξ
r
r = 0 which do not depend

on any conformal factor and is finite type when n ≥ 3 because g3 = 0 but ĝ2 is now 2-acyclic only
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when n ≥ 4 and 3-acyclic only when n ≥ 5 [38-41, 53, 55]. It is known that R̂2 and thus R̂1 too
(by a chase) are formally integrable if and only if ω has zero Weyl tensor:

σk
l,ij ≡ ρkl,ij −

1

(n− 2)
(δki ρlj − δkj ρli + ωks(ωljρsi − ωliρsj)) +

1

(n− 1)(n− 2)
(δki ωlj − δkj ωli)ρ = 0

We may use later on the formula idM − f ◦ u = v ◦ g of Proposition 3.4 in order to split the short
exact sequence induced by the inclusions R1 ⊂ R̂1 ⇒ g1 ⊂ ĝ1:

0 −→ S2T
∗ −→ F1 −→ F̂1 −→ 0

according to the Vessiot structure equations, in particular if ω has constant Riemannian curvature
and thus ρij = ρri,rj = c(n− 1)ωij ⇒ ρ = ωijρij = cn(n− 1). Using the same diagrams as before,

we discover that the Weyl tensor is a section of the vector bundle F̂1 = H2(ĝ1) 6= Z2(ĝ1). As a

byproduct, the (linearized) Weyl operator F̂0 → F̂1 is of order 2 with a symbol ĥ2 ⊂ S2T
∗ ⊗ F̂0

which is not 2-acyclic by applying the δ-map to the short exact sequence:

0→ ĝ3+r −→ S3+rT
∗ ⊗ T σ2+r(Φ)−→ ĥ2+r → 0

and chasing through the commutative diagram thus obtained with r = 0, 1, 2. As ĥ3 becomes
2-acyclic after one prolongation of ĥ2 only, it follows that the generating CC for the Weyl operator
are of order 2 when n = 4 and order 1 only when n ≥ 5, a result that can be checked by computer
algebra [55, 59]. Accordingly, the so-called Bianchi identities for the Weyl tensor that can be found
in the literature are not CC at all in the strict sense of the definition as they do not involve only
the Weyl tensor. These results could not have been discovered by Lanczos and followers because
the formal theory of Lie pseudogroups and the Vessiot structure equations are still not known today.

With more details when n = 4, we have the short exact sequence:

0→ S4T
∗ ⊗ T −→ S3T

∗ ⊗ F̂0 −→ T ∗ ⊗ F̂1 → 0

because we have dim(F̂2) = −4× 35 + 20× 9− 4× 10 = −140 + 180− 40 = 0

We may also use the snake lemma in order to exhibit the two short exact sequences:

0→ Z3(ĝ1)→ ∧3T ∗ ⊗ ĝ1 δ−→ ∧4T ∗ ⊗ T → 0 ⇒ 0→ ∧2T ∗ ⊗ ĝ2 δ−→ Z3(ĝ1)→ F̂2 → 0

dim(F̂2) = (dim(∧3T ∗ ⊗ ĝ1)− dim(∧4T ∗ ⊗ T )))− dim(∧2T ∗ ⊗ ĝ2) = ((4 × 7)− 4)− (6 × 4) = 0

Hence the generating CC for the Weyl operator are of order 2 when n = 4 and this result can
be checked by computer algebra [11, 12, 55, 59] in a coherent way with the following long exact
sequence:

0→ S5T
∗ ⊗ T → S4T

∗ ⊗ F̂0 → S2T
∗ ⊗ F̂1 → F̂2 → 0

providing dim(F̂2) = (10×10)− (35×9)+(56×4) = 9 and the strictly exact differential sequence:

0→ Θ̂→ 4
CKilling−→

1
9

Weyl−→
2

10 −→
2

9 −→
1

4→ 0

with respective orders under the arrows, because the Euler-Poincaré characteristic must vanish.

We may summarize these results, which do not seem to be known, by the following differential
sequences where the order of an operator is written under its arrow:

• n = 3: 3 −→
1

5 −→
3

5 −→
1

3→ 0

• n = 4: 4 −→
1

9 −→
2

10 −→
2

9 −→
1

4→ 0

• n = 5: 5 −→
1

14 −→
2

35 −→
1

35 −→
2

14 −→
1

5→ 0

We shall revisit the previous results by showing that, in fact, all the maps and splittings exist-
ing for the Killing operator are coming from maps and splittings existing for the conformal Killing
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operator, though surprising it may look like. As these results are based on a systematic use of the
Spencer operator, they are neither known nor acknowledged.

PROPOSITION 4.6: Recalling that F1 = H2(g1) = Z2(g1) in the Killing case, we have the
commutative diagram:

0 0 0
↓ ↓ ↓

Z2(g1) ⊂ Z2(T ∗ ⊗ T ) −→ S2T
∗

↓ ↓ ↓ δ
∧2T ∗ ⊗ g1 ⊂ ∧2T ∗ ⊗ T ∗ ⊗ T −→ T ∗ ⊗ T

↓ δ ↓ δ ↓ δ
∧3T ∗ ⊗ T = ∧3T ∗ ⊗ T −→ ∧2T ∗
↓ ↓ ↓
0 0 0

Proof: First of all, we must point out that the surjectivity of the bottom δ in the central column
is well known from the exactness of the δ-sequence for S3T

∗ and thus also after tensoring by T .
However, the surjectivity of the bottom δ in the left clumn is not evident at all as it comes from a
delicate circular chase in the preceding diagram, using the fact that the Riemann and Weyl oper-
ators are second order operators. Then, setting ϕij = ρrr,ij = −ϕji and ρij = ρri,rj 6= ρji, we may

define the central map by ρkl,ij → ρij − 1
2ϕij and the bottom map by ω⊗ ξ → i(ξ)ω by introducing

the interior product i(). We obtain at once −(ρrr,ij + ρri,jr + ρrj,ri) = (ρij − 1
2ϕij)− (ρji− 1

2ϕji) and
the bottom diagram is commutative, clearly inducing the upper map. If we restrict to the Killing
symbol, then ϕij = 0 and we obtain ρij − ρji = 0 ⇒ (ρij = ρji) ∈ S2T

∗, that is the classical
contraction allowing to obtain the Ricci tensor from the Riemann tensor but there is no way to go
backwards with a canonical lift. A similar comment may be done for the conformal Killing symbol
and the 1

2 coefficient.
Q.E.D.

Using the previous diagram allowing to define both F1 = H2(g1) and F̂1 = H2(ĝ1), we obtain
the commutative and exact diagram:

0 0 0
↓ ↓ ↓

0→ Z2(g1) −→ ∧2T ∗ ⊗ g1 δ−→ ∧3T ∗ ⊗ T → 0
↓ ↓ ‖

0→ Z2(ĝ1) −→ ∧2T ∗ ⊗ ĝ1 δ−→ ∧3T ∗ ⊗ T → 0
↓ ↓ ↓

0→ ∧2T ∗ = ∧2T ∗ −→ 0
↓ ↓
0 0

THEOREM 4.7: We have the following commutative and exact ”fundamental diagram 2 ”:

0
↓

0 S2T
∗

↓ ↓
0 −→ Z2(g1) −→ H2(g1) −→ 0
↓ ↓ ↓ JANET

0 −→ T ∗ ⊗ ĝ2 δ−→ Z2(ĝ1) −→ H2(ĝ1) −→ 0
↓ ↓ ↓

0 −→ S2T
∗ δ−→ T ∗ ⊗ T ∗ δ−→ ∧2T ∗ −→ 0

↓ ↓
0 0

SPENCER
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The following theorem will provide all the classical formulas of both Riemannian and conformal
geometry in one piece but in a totally unusual framework not depending on any conformal factor:

THEOREM 4.8: All the short exact sequences of the preceding diagram split in a canonical way,
that is in a way compatible with the underlying tensorial properties of the vector bundles involved.
With more details:

T ∗ ⊗ T ∗ ≃ S2T
∗ ⊕ ∧2T ∗ ⇒ Z2(ĝ1) = Z2(g1) + δ(T ∗ ⊗ ĝ2) ≃ Z2(g1)⊕ ∧2T ∗

⇒ H2(g1) ≃ H2(ĝ1)⊕ S2T
∗

Proof: First of all, we recall that:

g1 = {ξki ∈ T ∗ ⊗ T | ωrjξ
r
i + ωirξ

r
j = 0} ⊂ ĝ1 = {ξki ∈ T ∗ ⊗ T | ωrjξ

r
i + ωirξ

r
j −

2

n
ωijξ

r
r = 0}

⇒ 0 = g2 ⊂ ĝ2 = {ξkij ∈ S2T
∗ ⊗ T | nξkij = δki ξ

r
rj + δkj ξ

r
ri − ωijω

ksξrrs}

Now, if (τkli,j) ∈ T ∗ ⊗ ĝ2, then we have:

nτkli,j = δkl τ
r
ri,j + δki τ

r
rl,j − ωliω

ksτrrs,j

and we may set τrri,j = τi,j 6= τj,i with (τi,j) ∈ T ∗ ⊗ T and such a formula does not depend on any
conformal factor. We have:

δ(τkli,j) = (τkli,j − τklj,i) = (ρkl,ij) ∈ B2(ĝ1) ⊂ Z2(ĝ1)

with:

Z2(ĝ1) = {(ρkl,ij) ∈ ∧2T ∗ ⊗ ĝ1) | δ(ρkl,ij) = 0} ⇒ ϕij = ρrr,ij 6= 0

δ(ρkl,ji) = (
∑

(l,i,j)
ρkl,ij = ρkl,ij + ρki,jl + ρkj,li) ∈ ∧3T ∗ ⊗ T

• The splitting of the lower row is obtained by setting (τi,j) ∈ T ∗ ⊗ T ∗ → (12 (τi,j + τj,i)) ∈ S2T
∗

in such a way that (τi,j = τj,i = τij ∈ S2T
∗)⇒ 1

2 (τij + τji) = τij .
Similarly, (ϕij = −ϕji) ∈ ∧2T ∗ → (12ϕij) ∈ T ∗ ⊗ T ∗ and (12ϕij − 1

2ϕji) = (ϕij) ∈ ∧2T ∗.

• The splitting of the central vertical column is obtained by using Proposition 3.4 from a lift of the
epimorphism Z2(ĝ1)→ ∧2T ∗ → 0 which is obtained by lifting (ϕij) ∈ ∧2T ∗ to (12ϕij) ∈ T ∗ ⊗ T ∗,
setting τrri,j =

1
2ϕij and applying δ to obtain (τrri,j− τrrj,i = 1

2ϕij − 1
2ϕji = ϕij) ∈ B2(ĝ1) ⊂ Z2(ĝ1).

• Now, let us define (ρi,j = ρri,rj 6= ρj,i) ∈ T ∗ ⊗ T ∗. Hence, elements of Z2(g1) are such that:

ϕij = ρrr,ij = 0, ϕij − ρi,j + ρj,i = 0⇒ (ρij = ρi,j = ρj,i = ρji) ∈ S2T
∗

while elements of Z2(ĝ1) are such that:

(ρrr,ij = ϕij = ρi,j − ρj,i = τi,j − τj,i 6= 0) ∈ ∧2T ∗

Accordingly, (ρi,j− 1
2ϕij = ρj,i− 1

2ϕji) ∈ S2T
∗. More generally, we may consider ρkl,ij−(τkli,j−τklj,i)

with τrri,j =
1
2ϕij . Such an element is killed by δ and thus belongs to Z2(ĝ1) because each member

of the difference is killed by δ. However, we have ρrr,ij − (τrri,j − τrrj,i) = ϕij − ϕij = 0 and the

element does belong indeed to Z2(g1), providing a lift Z2(ĝ1)→ Z2(g1)→ 0.

• Of course, the most important result is to split the right column.For this, using again Proposition
3.4, we may take into account the fact that (idM−f ◦u)◦f = f−f ◦idM ′ = f−f = 0 in order to ob-
tain a lift of H2(g1)→ H2(ĝ1)→ 0 if we know a lift H2(g1)→ S2T

∗ → 0. As this will be the hard
step, we first need to describe the monomorphism 0 → S2T

∗ → H2(g1) which is in fact produced
by a diagonal north-east snake type chase. Let us choose (τij = τi,j = τj,i = τji) ∈ S2T

∗ ⊂ T ∗⊗T ∗.
Then, we may find (τkli,j) ∈ T ∗ ⊗ ĝ2 by deciding that τrri,j = τi,j = τj,i = τrrj,i in Z

2(ĝ1) and apply

δ in order to get ρkl,ij = τkli,j − τkk,lj,i such that ρrr,ij = ϕij = 0 and thus (ρkl,ij) ∈ Z2(g1) = H2(g1).
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We obtain:

nρkl,ij = δkl τ
r
ri,j − δkl τrrj,i + δki τ

r
rl,j − δkj τrrli − ωks(ωliτ

r
rs,j − ωljτ

r
rs,i)

= (δki τlj − δkj τli)− ωks(ωliτsj − ωljτsi)

in such a way that, contracting in k and i while setting τ = ωijτij , ρ = ωijρij , we get:

nρij = nτij − τij − τij + ωijτ = (n− 2)τij + ωijτ = nρji ⇒ nρ = 2(n− 1)τ

Substituting, we finally obtain τij =
n

(n−2)ρij − n
2(n−1)(n−2)ωijρ and thus the tricky formula:

ρkl,ij =
1

(n− 2)
(δki ρlj − δkj ρli)− ωks(ωliρsj − ωljρsi))−

1

(n− 1)(n− 2)
(δki ωlj − δkj ωli)ρ

Contracting in k and i, we check that ρij = ρij indeed, obtaining therefore the desired canonical lift
H2(g1) → S2T

∗ → 0 : ρki,lj → ρri,rj = ρij . Finally, using again Proposition 3.4, the epimorphism

H2(g1)→ H2(ĝ1)→ 0 is just described by the formula:

σk
l,ij = ρkl,ij −

1

(n− 2)
(δki ρlj − δkj ρli − ωks(ωliρsj − ωljρsi)) +

1

(n− 1)(n− 2)
(δki ωlj − δkj ωli)ρ

which is just the way to define the Weyl tensor. We notice that σr
r,ij = ρrr,ij = 0 and σr

i,rj = 0 by

using indices or a circular chase showing that Z2(ĝ1) = Z2(g1)+ δ(T ∗⊗ ĝ2). This purely algebraic
result only depends on the metric ω and does not depend on any conformal factor. In actual
practice, the lift H2(g1) → S2T

∗ is described by ρkl,ij → ρri,rj = ρij = ρji but it is not evident at

all that the lift H2(ĝ1)→ H2(g1) is described by the strict inclusion σk
l,ij → ρkl,ij = σk

l,ij providing
a short exact sequence as in Proposition 3.4 because ρij = ρri,rj = σr

i,rj = 0 by composition.

• The splitting of the central row could be obtained similarly by using the fact that the diagram
is symmetric with respect to the north-west axis.

Q.E.D.

COROLLARY 4.9: When n ≥ 4, each component of the Weyl tensor is a torsion element killed
by the Dalembertian whenever the Einstein equations in vacuum are satisfied by the metric. Hence,
there exists a second order operator Q such that we have an identity:

2 ◦Weyl = Q ◦Ricci
Proof: According to Proposition 3.7, each extension module exti(M) is a torsion module, ∀i ≥ 1.
It follows that each additional CC in D′1 which is not already in D1 is a torsion element as it
belongs to this module. One may also notice that:

rkD(Einstein) =
n(n+ 1)

2
− n =

n(n− 1)

2
, rkD(Riemann) =

n(n+ 1)

2
− n =

n(n− 1)

2

The differential ranks of the Einstein and Riemann operators are thus equal, but this is a pure
coincidence because rkD(Einstein) has only to do with the div operator induced by contracting
the Bianchi identities, while rkD(Riemann) has only to do with the classical Killing operator
and the fact that the corresponding differential module is a torsion module because we have a

Lie group of transformations having n + n(n−1)
2 = n(n+1

2 parameters (translations + rotations).
Hence, as the Riemann operator is a direct sum of the Weyl operator and the Einstein or Ricci
operator according to the previous theorem, each component of the Weyl operator must be killed
by a certain operator whenever the Einstein or Ricci equations in vacuum are satisfied. Also, as
no coordinate may have a particular importance, there is a good deal of chance that there is a
unique operator for each component. It has been a great surprise for my former PhD student A.
Quadrat (INRIA) when, after using very recent computer algebra packages that he has developped
for studying extension modules, he discovered that ... it was just the Dalembertian operator and
the computer produced automatically the identity of the Theorem [59, 60].
It is at that time that the author of this paper, who has bee a student of A. Lichnerowicz ([18],
exercise 7.7]) and Y. Choquet-Bruhat ([10], p 206]), just remembered a technical result that has
been, many times but in vain, compared with the EM wave equations 2F = 0 easily obtained
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when the second set of Maxwell equations in vacuum is satisfied, avoiding therefore the Lorenz (no
”t” !) gauge condition for the EM potential. Indeed, let us start with the Minkowski constitutive
law with electric constant ǫ0 and magnetic constant µ0 such that ǫ0µ0c

2 = 1 in vacuum:

Frs =
1

µ0
ω̂riω̂sjFij ∼ ωriωsjFij

where ω̂ij = | det(ω) |−1/nωij ⇒| det(ω̂) |= 1, F ∈ ∧2T ∗ is the EM field and the induction F is
thus a contravariant skewsymmetric 2-tensor density. From the Maxwell equations we have:

∂rFij + ∂iFjr + ∂jFri = 0, ∇rFri = 0 ⇒ ∇rFri = 0

⇒ 2Fij = ∇r∇rFij = ∇r(∇iFrj −∇jFri) = 0

We reproduce now this classical but tricky computation using essentially the Bianchi identities:

∑

(r,i,j)
∇rρ

k
l,ij ≡ ∇rρ

k
l,ij +∇iρ

k
l,jr +∇jρ

k
l,ri = 0 ⇒ ∇rρrl,ij −∇iρlj +∇jρli = 0

∇r(
∑

(r,i,j)
∇rρkl,ij) ≡ ∇r∇rρkl,ij +∇r∇iρkl,jr +∇r∇jρkl,ri = 0

⇒ ∇r∇rρkl,ij +∇i∇rρkl,jr +∇j∇rρkl,ri + [∇r,∇i]ρkl,jr + [∇r,∇j ]ρkl,ri = 0

⇒ ∇r∇rρkl,ij +∇i∇rρkl,jr +∇j∇rρkl,ri + (
∑

quadratic) = 0

ρkl,ij = −ρki,jl − ρkj,li = ρik,jl + ρjk,li = (ρij,kl + ρil,jk) + (ρjl,ki + ρij,kl) = 2ρij,kl − ρkl,ij

⇒ ρkl,ij = ρij,kl ⇒ ∇rρij,rl = ∇iρlj −∇jρli ⇒ ∇rρjr −
1

2
∇jρ = 0

2ρkl,ij = (∇i(∇kρlj −∇lρkj))− (i↔ j) + (
∑

quadratic)

Of course, we have:

2ρij = ∇r∇sρsi,rj +∇r∇jρir = ∇r∇sρrj,si +∇r∇jρir = ∇r(∇rρij −∇jρir) +∇r∇jρir = 2ρij

because the Ricci tensor only satisfies ∇rρjr − 1
2∇jρ = 0.

Linearizing at the Euclidean metric for n = 2, 3 or at the Minkowski metric for n = 4, we get:

2Rkl,ij = di(dkRlj − dlRkj)− dj(dkRli − dlRki)

The Corollary follows at once by using the splitting formula:

σk
l,ij = ρkl,ij − (

∑

ρrs) ⇒ Σk
l,ij = Rk

l,ij − (
∑

Rrs)

Finally, using the div-type relation satisfied by the Einstein tensor:

ǫij = ρij −
1

2
ωijρ ⇒ Eij = Rij −

1

2
ωijR ⇒ drE

r
j = ωridrEij = drR

r
j −

1

2
djR = 0

we get:

2Rij = 2Rij − dr(diRr
j )− dj(drRr

i ) + dj(diR)
= 2Rij − di(drRr

j )− dj(drRr
i ) + dijR

= 2Rij − 1
2di(djR)− 1

2dj(diR) + dijR
= 2Rij

in a coherent manner with the corresponding non-linear result already obtained.
Q.E.D.

More generally, we have:
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COROLLARY 4.10: Constitutive relations C1 ↔ ∧nT ∗⊗C∗1 provide wave equations for the field.

Proof: Using Proposition 2.20 and the last Theorem, we may identify the field as a section
(Aτ

i (x)dx) ∈ T ∗ ⊗ G killed by d, that is such that ∂iA
τ
j − ∂jA

τ
i = 0. By duality and a result

first found by H. Poincaré in 1901 [37, 46], we may introduce the parametrization ∧0T ∗ ⊗ G d−→
T ∗ ⊗ G : λτ (x) → ∂iλ

τ (x) = Aτ
i (x) and obtain the induction equations from the following varia-

tional procedure:

F =

∫

V

ϕ(A)dx⇒ δF =

∫

V

∂ϕ

∂A
δAdx =

∫

V

Ai
τ∂iδλ

τdx = −
∫

V

(∂iAi
τ )δλ

τdx+ div(...)

Hence, induction equations in vacuum can be written as ∂iAi
τ = 0 and constitutive relations es-

tablish a (self-adjoint) isomorphism A ↔ A (See [43] for more details and examples). If we have
only one constitutive coefficient like in Corollary 4.8 for EM, that is A ∼ A locally, then we obtain
ωij∂ijA = 0.

Q.E.D.

The reader may understand that if this new approach brings the need to revisit the mathemat-
ical foundations of GR, it also brings the need to revisit the mathematical foundations of Gauge
Theory (GT) as well, because we have seen in the Introduction and will justify in the Conclusion
that the EM field is a section of T ∗ ⊗ ĝ2 ⊂ T ∗ ⊗ R̂2 = Ĉ1.

The next Example will prove at once that Algebraic Analysis may provide results that cannot
be obtained or even imagined in a classical framework.

EXAMPLE 4.11: We shall study for simplicity the case n = 4 with K = Q but the generalization
to an arbitrary dimension n ≥ 4 is immediate. First of all we have the long exact sequence:

0→ D6 −→ D20 Bianchi−→ D20 Riemann−→ D10 Killing−→ D4 →M → 0

which is a resolution of the differential module M = coker(Killing) and we check that we have
indeed 6− 20+20− 10+4 = 0. Accordingly, we have N ′ = coker(Riemann) ≃ im(Killing) ⊂ D4

and thus N ′ is torsion-free with rk(N ′) = 4− 0 = 4 = n because rk(M) = 0.
It follows that N ′ just describes the so-called ” gauge transformations” used in the study of gravi-
tational waves because it is isomorphic to the submodule of D4 generated by the classical Killing
equations ([15], (5.1.9), p 135]).
Now, using the lift exhibited in the last Theorem, the fact that div is induced by Bianchi and the
short exact sequence:

0→ F2 → ∧3T ∗ ⊗ g1 δ−→ ∧4T ∗ ⊗ T → 0 ⇒ F2 ⊂ ∧3T ∗ ⊗ T ∗ ⊗ T
we have the following commutative and exact diagram where N = coker(Einstein):

0
↓

0 0 0 t(N)
↓ ↓ ↓ ↓

0 −→ D4 div−→ D10 Einstein−→ D10 −→ N → 0
↓ ↓ ↓ ‖ ↓

0→ D6 −→ D20 Bianchi−→ D20 Riemann−→ D10 −→ N ′ → 0
‖ ↓ ↓ ↓ ↓

0→ D6 −→ D16 −→ D10 0 0
↓ ↓ ↓
0 0 0

The monomorphism 0→ D4 → D10 dualizes the composition of epimorphisms:

∧3T ∗ ⊗ T ∗ ⊗ T → ∧2T ∗ ⊗ T ∗ ω−→ ∧2T ∗ ⊗ T → T ∗
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describing the two successive contractions of indices needed in the last Corollary and the use of
the metric ω for raising an index. We obtain from Proposition 3.3 that rk(N) = 10− 10+4 = 4 =
rk(N ′) = n. It also follows from Proposition 3.3 that the kernel of the canonical induced epimor-
phism N → N ′ → 0 is the torsion module t(N) because its rank is rk(N)−rk(N ′) = 4−4 = 0 and
thus N ′ ≃ N/t(N) is effectively a torsion-free module. Moreover, we may introduce the cokernel of
the canonical monomorphism on the left side, in particular 0→ D10 → D20 which is isomorphic to
D10 and a snake/diagonal chase in the previous diagram allows to exhibit the long exact connecting
sequence:

0→ D6 −→ D16 −→ D10 −→ N −→ N ′ → 0

providing the long exact sequence:

0→ D6 −→ D16 −→ D10 −→ t(N)→ 0

This is an additional reason to bring the Weyl tensor and the Weyl operator in order to describe
the 10 generators of t(N) in a way similar to the one used in Example 3.10. However, it must be
noticed that one cannot find canonical morphisms between the classical and conformal resolutions
constructed similarly because we recall that, for n = 4 (only), the CC of the Weyl operator are of
order 2 and not 1 like the Bianchi CC for the Riemann operator.

However, it follows from the last Theorem that the short exact sequence 0→ D10 −→ D20 −→
D10 → 0 splits with D20 ≃ D10 ⊕D10 but the existence of a canonical lift D20 → D10 → 0 in the
above diagram does not allow to split the right column and thus N 6= N ′ ⊕ t(N).
Hence, one can only say that the space of solutions of Einstein equations in vacuum contains the
generic solutions of the Riemann operator which are parametrized by arbitrary vector fields. As
for the torsion elements, we have t(N) = coker(D16 → D10) and we may thus represent them
by the components of the Weyl tensor, killed by the Dalembertian. This module interpretation
of the so-called gauge transformations and torsion elements may thus question the proper origin
and existence of gravitational waves because coker(div) on the left part of the diagram has strictly
nothing to do with the generalized Cauchy stress tensor which cannot appear anywhere in this
diagram as we already said.

Of course, nonlinear versions using the corresponding nonliner Spencer sequences exist but are
much more difficult and out of the scope of this paper [39-41, 49].
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5) CONCLUSION

When constructing inductively the Janet sequences for two involutive systems Rq ⊂ R̂q ⊂
Jq(E), the Janet sequence for Rq projects onto the Janet sequence for R̂q, that is we may define

inductively canonical epimorphisms Fr → F̂r → 0 for r = 0, 1, ..., n. This result can also be ob-
tained from the general formulas allowing to define the Janet bundles globally by chasing in the
following commutative and exact diagram:

0
↓

0→ ∧rT ∗ ⊗Rq + δ(∧r−1T ∗ ⊗ Sq+1T
∗ ⊗ E) → ∧rT ∗ ⊗ Jq(E) → Fr → 0

↓ ‖ ↓
0→ ∧rT ∗ ⊗ R̂q + δ(∧r−1T ∗ ⊗ Sq+1T

∗ ⊗ E) → ∧rT ∗ ⊗ Jq(E) → F̂r → 0
↓
0

It follows fom the short exact sequences 0 → Cr → Cr(E)
Φr−→ Fr → 0 allowing to define the

Spencer bundles inductively that the kernels of the canonical epimorphisms Fr → F̂r → 0 are
isomorphic to the cokernels of the canonical monomorphisms 0→ Cr → Ĉr ⊂ Cr(E) and we may
say that Janet and Spencer play at see-saw. This result can also be obtained from the formulas
allowing to define the Spencer bundles globally by chasing in the following commutative and exact
diagram:

0 0 0
↓ ↓ ↓

0→ δ(∧r−1T ∗ ⊗ gq+1) → ∧rT ∗ ⊗Rq → Cr → 0
↓ ↓ ↓

0→ δ(∧r−1T ∗ ⊗ ĝq+1) → ∧rT ∗ ⊗ R̂q → Ĉr → 0

showing that the Spencer sequence for Rq is contained into the Spencer sequence for R̂q.
When dealing with applications, we have set E = T and considered systems of finite type Lie
equations determined by Lie groups of transformations. Accordingly, we have obtained in par-
ticular Cr = ∧rT ∗ ⊗ Rq ⊂ ∧rT ∗ ⊗ R̂q = Ĉr ⊂ Cr(T ) when comparing the classical and con-
formal Killing systems, but these bundles have never been used in physics. Therefore, instead
of the classical Killing system R2 ⊂ J2(T ) defined by Ω ≡ L(ξ)ω = 0 and Γ ≡ L(ξ)γ = 0 or
the conformal Killing system R̂2 ⊂ J2(T ) defined by Ω ≡ L(ξ)ω = A(x)ω and Γ ≡ L(ξ)γ =
(δki Aj(x) + δkjAi(x) − ωijω

ksAs(x)) ∈ S2T
∗ ⊗ T , we may introduce the intermediate differential

system R̃2 ⊂ J2(T ) defined by L(ξ)ω = Aω with A = cst and Γ ≡ L(ξ)γ = 0, for the Weyl group
obtained by adding the only dilatation with infinitesimal generator xi∂i to the Poincaré group.
We have R1 ⊂ R̃1 = R̂1 but the strict inclusions R2 ⊂ R̃2 ⊂ R̂2 and we discover exactly the group
scheme already considered in the Introduction, both with the need to shift by one step to the left
the physical interpretation of the various differential sequences used. Indeed, as ĝ2 ≃ T ∗, the first

Spencer operator R̂2
D1−→ T ∗ ⊗ R̂2 is induced by the usual Spencer operator R̂3

D−→ T ∗ ⊗ R̂2 :
(0, 0, ξrrj, ξ

r
rij = 0)→ (0, ∂i0− ξrri, ∂iξrrj − 0) and thus projects by cokernel onto the induced opera-

tor T ∗ → T ∗ ⊗ T ∗. Composing with δ, it projects therefore onto T ∗
d→ ∧2T ∗ : A→ dA = F as in

EM and so on by using he fact that D1 and d are both involutive or the composite epimorphisms

Ĉr → Ĉr/C̃r ≃ ∧rT ∗ ⊗ (R̂2/R̃2) ≃ ∧rT ∗ ⊗ ĝ2 ≃ ∧rT ∗ ⊗ T ∗ δ−→ ∧r+1T ∗. The main result we have
obtained is thus to be able to increase the order and dimension of the underlying jet bundles and
groups as we have:

POINCARE GROUP ⊂ WEYL GROUP ⊂ CONFORMAL GROUP
that is 10 < 11 < 15 when n = 4 like in the introduction, proving therefore that:
The mathematical structures of electromagnetism and gravitation only depend on second order jets.

As all these results are of a purely mathematical nature and not known, it will not be possible
to ignore them any longer in a near future.
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[8] Bourbaki, N.: Algèbre, Ch. 10, Algèbre Homologique, Masson, Paris (1980).
[9] de Broglie, L.: Thermodynamique de la Particule isolée, Gauthiers-Villars, Pris 1964).
[10] Choquet-Bruhat, Y.: Introduction to General Relativity, Black Holes and Cosmology, Oxford
University Press (2015).
[11] Chyzak, F.,Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear control
systems over Ore algebras, Appl. Algebra Engrg. Comm. Comput., 16, 319-376, 2005.
[12] Chyzak, F., Quadrat, A., Robertz, D.: OreModules: A symbolic package for the study of
multidimensional linear systems, Springer, Lecture Notes in Control and Inform. Sci., 352, 233-
264, 2007.
http://wwwb.math.rwth-aachen.de/OreModules
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C. R. Acad/ Sc. Paris, 82, 1425-1428 (1876).
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[36] Ougarov, V.: Théorie de la Relativité Restreinte, MIR, Moscow, 1969, (french translation,
1979).
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