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Abstract

A growing interest of automotive industry in the use of high performance steels is observed.

These materials are obtained thanks to complex manufacturing processes whose parameters fluc-

tuations lead to strong variations of microstructure and mechanical properties. The on-line mag-

netic non-destructive monitoring is a relevant response to this problem but it requires fast models

sensitive to different parameters of the forming process. The plastic deformation is one of these

important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress appli-

cation and especially to plastic strains. In this paper, a macroscopic approach using the kinematic

hardening is proposed to model this behavior, considering a plastic strained material as a two

phase system. Relationship between kinematic hardening and residual stress is defined in this

framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and in-

troduced inside the so-called magneto-mechanical multidomain modeling to represent the effect

of plastic strain. The modeling approach is complemented by many experiments involving mag-

netic and magnetostrictive measurements. They are carried out with or without applied stress,

using a dual-phase steel deformed at different levels. The main interest of this material is that the

mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks

to simple experiments. It is shown how this model can be extended to single phase materials.

Keywords: Magneto-mechanics, plastic straining, kinematic strengthening, magnetostriction,

anhysteretic behavior, dual-phase steel, multiscale modeling

1. Introduction

Since the early works of Mateucci and Villari, mechanical stress has been known to signif-

icantly change the magnetic behavior of materials (see for instance the works reported in [1])

as well as their magnetostrictive behavior [2]. Many other works have shown that macroscopic

magnetic behavior is sensitive to any mechanical loading depending on the loading level (elas-

tic, plastic), the loading sign (tension, compression), and the loading nature (static or dynamic,

uniaxial or multiaxial stress). The correlation between mechanical, metallurgical and magnetic
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states has received increasing attention these last years due to the new ability and requirement to

perform magnetic non-destructive monitoring (NDM) of materials and structures [3, 4, 5]. Steel

manufacturers, for example, plan to generalize the implementation of in-situ magnetic NDM

[6, 7, 8] to control the mechanical and metallurgical state of high performance steels (dual-

phase, TRIP and TWIP steels [9, 11, 12, 13]). The mechanical behavior of these steels is highly

sensitive to the thermo-mechanical history of the material (heat treatments, rolling rate...) and

especially sensitive to small variations in the process (e.g. furnace temperature) [9, 10]. For

example, the small plastic strains experienced after a skin-pass of a dual-phase steel exhibiting a

yield strength of about 450MPa (DP780) can be easily detected by a magnetic measurement.

Plastic strain leads to strong non linear changes in the magnetic behavior [1, 14, 15, 16, 17].

Experiments performed with various carbon steels [18, 19, 20, 21, 22, 23], electrical steels [16,

17, 24, 25], iron-cobalt [26, 27] or nickel alloys [1] have shown that the degradation occurs at

the early stages of plastic strain [28, 29]. This change of magnetic behavior (usually qualified

as a ”degradation” since magnetic losses are increased and permeability decreased) is associated

with a change of magnetostrictive behavior [20, 22, 30, 31] that can not be neglected in a general

objective of understanding and modeling. Figure 1 illustrates, for instance, the strong change of

magnetic and magnetostrictive behavior of a common iron-silicon electrical steel submitted to a

very low plastic strain after a tensile test [30].
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Figure 1: Influence of a very small plastic straining (0.01%) on the anhysteretic magnetic and magnetostrictive behavior

of non-oriented 3%silicon-iron [30] - quantities are defined in the next sections.

The influence of plastic deformation on the magnetic state has been studied by many authors,

some of them interested by physical mechanisms at the local scale [32, 33, 14], the others look-

ing at the influence of cutting (and associated plasticity) on the global response of an electrical

machine [34, 35, 36]. Interactions between the magnetic microstructure (magnetic domains and

walls) and the mechanical microstructure (dislocations, grains, stress fields) are the basis of the

phenomenon.

The formulation of an accurate magneto-plastic coupling model provides a correlation be-

tween the plastic state and the magnetic behavior parameters. Several authors have tried to

express the degradation of the magnetic state as a function of the dislocation density and pinning

centers for domain walls [37, 38] and to integrate it into macroscopic approaches. Indeed the
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microstructural defect density increases significantly with the plastic deformation (isolated dis-

locations, dislocation tangles and walls,..). Some phenomenological models couple the magnetic

behavior and plasticity via the dislocation density [39]. However, the evolution of the dislocation

density is much more regular with the accumulated plastic strain than the evolution of magnetic

properties [16, 17]. To represent the plastic state, other authors have thought to use the con-

figuration of dislocations [40, 41] by correlating the degradation of the magnetic state with the

hardening of the material. This approach was then clarified in [17] where a link has been made

between the magnetic state of a plastically deformed sample and the internal stress level. It is

found that the plastic deformation is usually accompanied by a generation of internal stress. The

effect of plasticity can be then interpreted as a heterogeneous strain effect, whose amplitude and

wavelength depend on the microstructural configurations. This mechanical approach was not im-

mediately retained in the scientific community. Most authors still prefer the phenomenological

approaches making a link between the change of magnetic parameters (coercive field, magnetic

susceptibility, core losses) to the plastic strain level [16, 42, 35, 29] or the stress level reached

during deformation [21]. The consequence is that few of these models are able to propose a

complete relationship between the stress path including multiaxial state and plastic deformation

and the magnetic behavior.

A micro-macro modeling has been previously proposed to reach this goal. This model de-

scribes the influence of plastic strain on the overall magneto-mechanical behavior [25, 30]. It

first involves a microcrystalline plasticity approach where the material is defined by its orienta-

tion distribution function (ODF). Since plastic flow is different from one grain to another due to

different grain sizes and orientations, the stress field becomes heterogeneous and leads to residual

stresses when the material is unloaded. The next step consisted in introducing the residual stress

tensor solution of the first problem as a loading at the grain scale of a magnetic multiscale and

multiaxial model able to describe magnetic and magnetostrictive behaviors [43]. This model was

applied to non-oriented Fe-3%Si and simulations of the effect of plasticity are consistent with ex-

perimental observations [25, 30]. However, this approach was limited to the plastic deformation

range corresponding to intergranular internal stresses. In addition, only the monotonic loading

was taken into account and only at the unloaded state. The principle of considering the plasticity

as an internal stress state is preserved in the new proposition presented in the paper. Lastly, the

challenge is to simplify the micro-macro approach to reduce the computation time for potential

NDM applications and make this approach more accessible to the magnetic materials community.

In this paper a macroscopic approach for the modeling of the influence of plastic deforma-

tion on the magnetic and magnetostrictive behaviors of ferromagnetic materials is proposed. The

main assumption is that the material must be considered as a two phase material, with a mechani-

cally ”hard” phase and a mechanically ”soft” phase (high and low yield strength) and appropriate

volume fractions. The material is plastically strained leading to a residual stress field that can be

related to the macroscopic quantity called kinematic hardening (or kinematic strenghtening, or

backstress). Since stress fields are multiaxial, a magneto-mechanical equivalent stress criterion

is applied to calculate the corresponding uniaxial mechanical loading [45]. The exact same two

phases material is next considered for the magnetic modeling: the so-called multidomain mod-

eling is applied to each phase as already done in [46] for Fe-Al-B alloys. Stresses calculated

from the kinematic hardening and strain incompatibilities are used as loadings of the magnetic

problem. The average modeling magnetic and magnetostrictive behaviors are finally obtained at

a given level of plastic deformation. A superimposed macroscopic stress can be considered if
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appropriate.

This theoretical approach is complemented by several experiments involving magnetic and

magnetostrictive measurements implemented using a DP780 steel where (mechanically) hard

and soft phases are clearly defined. Results obtained using this material allow on the other hand

to illustrate various points highlighted in the modeling section. Former experimental results are

finally discussed in light of the proposed new approach.

2. Magnetic and mechanical states, associated variables

2.1. Magnetic state and associated variables

Magnetic materials are media which can be magnetized in presence of magnetic field. Their

magnetic state can be described by the relationship between two vectors: the magnetic field

H⃗ and the magnetization M⃗. The magnetic behavior is given by: M⃗ = χH⃗ where χ is the

second order magnetic susceptibility tensor. It depends non linearly on the magnetic field and

M⃗ describes therefore a non-linear evolution as a function of H⃗. The norm of the magnetization

reaches a saturation value noted Ms which is function of the material composition.

Under an alternative magnetic field, the magnetization forms a hysteresis loop illustrating the

irreversibility of the magnetic behavior and the presence of dissipative phenomena. This loop

is usually characterized by the magnetic field at zero magnetization called coercive field Hc

and its area which defines the energy losses per cycle. Figure 2 illustrates the typical uniaxial

M(H) behavior of the DP780 steel. Anhysteretic and cyclic behaviors carried out at f=0.1Hz are

reported (see paragraph 4.3 for details about the experimental procedure).
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Figure 2: Magnetic behavior of DP780 steel - cyclic and anhysteretic behaviors.

The application of a magnetic field also induces a deformation of the material. The phe-

nomenon is called magnetostriction and represented by the deformation tensor Eµ. It is a spon-

taneous intrinsic deformation of the material. It depends on the material’s magnetic state and
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is representative of a local state coupling. The amplitude of deformation depends on many mi-

crostructural parameters such as the magnetic domains distribution and saturation magnetostric-

tion (λ100 and λ111 for a cubic symmetry material).

The evolution of the macroscopic deformation relative to the magnetic field Eµ(H⃗)(or associated

magnetization M⃗) describes the magnetostrictive behavior of the material. This behavior is non-

linear, usually considered as irreversible, and sometimes non monotonic. The magnetostriction

in the direction of applied field reaches a saturation value noted λs which is a function of the

material composition and the ODF. Figure 3 illustrates the typical evolution of magnetostriction

measured in the direction of the applied field E
µ

//
(M) for the DP780 steel (with E

µ

//
= tn⃗.Eµ

.n⃗, n⃗

denoting the direction of applied field). The anhysteretic behavior and cyclic behavior1 carried

out at f=0.1Hz are reported (see paragraph 4.3 for details about the experimental procedure).
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Figure 3: Magnetostrictive behavior of DP780 steel - cyclic and anhysteretic behaviors.

A plastic deformation usually strongly changes both magnetic and magnetostrictive behaviors

as outlined in the introduction.

2.2. Mechanical state and associated variables

The mechanical behavior of a material is defined by its stress vs. strain response. Strain

and stress are second order symmetric tensors denoted respectively E and Σ. The elasto-plastic

response is commonly defined by a mathematical relationship developed in plasticity theory. In

the framework of linear elasticity stress and elastic strain are related by the constant fourth order

stiffness tensor C so that:

Σ = C ∶ Ee (1)

1The irreversible character of cyclic magnetostriction is mainly due to filtering effects (low-pass 10Hz filtering for

data plotted in Figure 3).
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The elastic limit (elastic-plastic transition) is defined by a yield surface in the stress space

defined as a scalar function f (Σ) = 0 depending on the criterion employed (equivalent stress

Σeq) and the reference yield strength Σy:

f (Σ) = Σeq(Σ) − Σy (2)

The flow rules (expression of plastic straining Ep as function of the stress path) are usually the

framework of associated plasticity for standard materials [47]. A normality hypothesis associated

with the Hill principle leads to:

Ė
p = λ̇d f (Σ)

dΣ
(3)

where λ̇ denotes the hardening parameter that can be related to the plastic strain tensor de-

pending on the chosen yield function. An additivity hypothesis (valuable for small elastic de-

formation) leads to the calculation of the total deformation after time integration of equation

(3):

E = Ee + Ep (4)

The Σ(E) relationship is illustrated in Figure 4 for the DP780 steel in the case of a tensile

test (axial stress Σ and longitudinal deformation E - rational representation). Complementary

hardening rules allow one to describe a progressive change of the yield surface during plastic

straining and the relationship between multiaxial stress and multiaxial plastic straining rates.

The so-called isotropic hardening, R, gives the change of size of the yield surface; the kinematic

hardening X gives the yield surface translation in the stress space.
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Figure 4: Tensile test of a DP780 steel - true stress / strain representation.

2.3. Definition of kinematic hardening

It is well established that, in most metallic materials, the stress/strain Σ(E) tension- com-

pression test shows a dissymmetry in the yield strength (figure 5). Indeed, the yield strength
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in compression is weaker than in tension after a tensile strengthening, leading to a shift of the

elastic domain. This phenomenon is the Bauschinger effect. The same kind of dissymmetry is

observed when loading begins by a compression. The Bauschinger effect can be directly related

to the metallurgical state of the material. It is an indicator of the material heterogeneity: the

more heterogeneous the structure, the stronger the Bauschinger effect. Heterogeneities in the

material can be either intra-granular (dislocation tangles and walls) and/or inter-granular (strain

incompatibilities) depending on the plastic strain level [48, 49]. The stress field consecutive to

these configurations is usually called internal stress and the Bauschinger effect is its mechanical

signature. Most metallic materials display this phenomenon.

Σ

Ε

Initial tensile

yield stress

Tensile yield stress

after tensile strengthening

Compressive yield stress

after tensile strengthening

Initial compressive

yield stress

New elastic domain

Initial elastic domain

Figure 5: Uniaxial tension-compression test and illustration of the Bauschinger effect.

This effect is taken into account in plasticity rules via the kinematic hardening tensor X

[47, 48]. Considering a von Mises criterion, an isotropic hardening R, a stress Σ, and a yield

strength Σy, the yield function is given by:

f (Σ) =
√

2

3
(S −X) ∶ (S −X) − R − Σy (5)

with

S = Σ − 1

3
tr(Σ)I (6)

the stress deviator.

X is the center of the yield surface in the deviatoric plane as illustrated in Figure 6. This

tensor is deviatoric. The two usual flow rules that describe the kinematic stress rate Ẋ as function

of plastic strain rate are the linear Prager and the non-linear Armstrong and Frederick rules [47].
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Figure 6: Translation of von Mises yielding surface associated to kinematic hardening X: (a) initial yield surface; (b)

yield surface after strengthening.

We will suppose that the mechanical behavior of the materials considered for application

of the modeling proposed in this paper are simple enough to be described by the mechanical

variables detailed above.

3. Macroscopic modeling of the influence of plastic straining on magnetic behavior

3.1. A previous multiscale modeling of the effect of plasticity

The experimental studies reporting the effect of plastic straining on the magnetic behavior are

numerous (few of them report the associated changes in the magnetostriction behavior). No sat-

isfying model has been proposed except the micro-macro model associated with the multiscale

magnetic model that is reviewed in this section. The only few existing macroscopic models are

polynomial functions where parameters vary with the plastic strain level [35, 29]. Variation of

parameters is usually strongly non linear with plastic strain level (or cumulative plasticity when

a multiaxial loading is considered) and applicable for only one particular loading history. On

the other hand, some works showed that plastic strains can be interpreted as internal stresses

with a characteristic wavelength linked to the deformation level [17, 50]. Indeed several authors

remarked that plastic straining and applied stress lead to comparable effects on the magnetic be-

havior [2, 51, 20, 21, 22]. The first assumptions and modeling approaches were made by Astié

[40] for high purity iron and discussed in terms of kinematic hardening by Hubert [17] for a

non-oriented 3%silicon-iron alloy. The first numerical application used a multiscale approach

[25, 30].

The multiscale modeling procedure uses sequently the calculation of local stress field and the

multiscale magnetic modeling. Magnetization and magnetostriction behaviors are finally cal-

culated. Reference [25] explains in details how the local plastic straining is calculated using

microplasticity tools. References [43] and [44] explain in details the principle of multiscale

modeling of magneto mechanical behavior. In this approach the effect of plastic straining on

the magnetic and magnetostrictive behaviors is only explained by stress heterogeneities and as-

sociated magneto-elastic effects through the magneto-elastic energy term. No complementary
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parameter is introduced that makes this modeling the first physically based model able to de-

scribe the effect of plastic straining in a multiaxial framework.

Nonetheless the micro macro approach requires the precise knowledge of plastic microscopic

parameters (grain size distribution, crystallographic orientations, hardening rules at the crystal

scale), that makes this model not easy to extend to other materials. The micro-macro approach

leads on the other hand to highly time consuming calculations which makes it irrelevant for a

NDM procedure.

The new macroscopic approach proposed below uses a much more simple direct relationship

between kinematic hardening and magnetic quantities.

3.2. Mechanical modeling

3.2.1. General framework

As detailed in the previous paragraph, plastic straining leads to multiaxial residual stresses

at the grain scale. The multigrain plastic medium can be considered as a multiphased composite

medium. The simplest description of such a medium is to consider a two phase medium, as

initially proposed by Mughrabi [49], with a soft phase s and a hard phase h, meaning that the s

phase exhibits a lower yield strength and strengthening than the h phase. fs and fh indicate the

volume fraction of s and h phases. The representative volume element (RVE) made of these two

phases is submitted to stress tensor Σ. Ee, Ep and E denote the elastic, plastic and total strain

tensors respectively so that :

E = Ee +Ep = C−1 ∶ Σ +Ep (7)

C indicates the stiffness tensor of the medium. The same decomposition can be made for

each phase:

ǫh = ǫe
h + ǫ p

h
= C−1

h ∶ σh + ǫ p

h
ǫ s = ǫe

s + ǫ p
s = C−1

s ∶ σs + ǫ p
s (8)

where Cs and Ch indicate the stiffness tensor of the soft and hard phases. Macroscopic stress and

strain Σ and E always verify:

Σ = fhσh + fsσs E = fhǫh + fsǫ s (9)

The local stress is given on the other hand by the Hill’s relationship [53] so that:

σs = Σ +C∗ ∶ (E − ǫ s) σh = Σ +C∗ ∶ (E − ǫh) (10)

C
∗ indicates the Hill’s constraint tensor. Strains are separated in elastic and plastic parts.

After few calculations, the Berveiller-Zaoui relationship is obtained [54].

σs = Bs ∶ Σ +Cacc
s ∶ (Ep − ǫ p

s )
σh = Bh ∶ Σ +Cacc

h ∶ (Ep − ǫ p

h) (11)

C
acc
s and C

acc
h are two fourth order accommodation stiffness tensors. Bs and Bh are two stress

localization tensors depending on Hill’s constraint, macroscopic and local (hard or soft) stiffness

tensors. It is next possible to define two residual stress tensors Ds and Dh satisfying:

σs = Bs ∶ Σ +Ds

σh = Bh ∶ Σ +Dh
(12)
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and
fsDs + fhDh = 0

fsBs + fhBh = I (13)

On the other hand an isotropic flow rule is considered for the hard and soft phases. Moreover

a von Mises criterion is used for each phase. It is assumed though this description that the

kinematic hardening is only linked to the interphase heterogeneities. Yield functions for both

phases are:

f (σs) = √ 3
2
ss ∶ ss − σys −Rs

f (σh) = √ 3
2
sh ∶ sh −σyh −Rh

(14)

si, σyi and Ri are respectively the deviatoric tensor, yield strength and isotropic hardening of

phase i.

The macroscopic yield function is expressed as a function of the macroscopic deviatoric

stress tensor S, yield strength Σy, isotropic R and kinematic X hardening components using a von

Mises criterion:

f (Σ) =
√

3

2
(S −X) ∶ (S −X) − Σy − R (15)

It should be noted that only the knowledge of the macroscopic stress state and the kinematic

hardening is sufficient to define the stress state in each phase. This avoids a fastidious and

imprecise estimation of the constitutive behavior of each phase, including localization operators

and accommodation tensors.

3.2.2. Virtual loading-unloading tensile test

Figure 7 shows the different yield functions in the deviatoric plane for the particular case of

50% hard and 50% soft phases. Due to the von Mises criterion, all yield functions are circles.

The RVE composed of soft and hard phases without initial residual stress is submitted to a pro-

portional loading along axis (A) in the deviatoric plane. Due to isotropic hardening, the initial

yield functions (blue and red plain lines) and final yield functions of both phases keep the same

center at zero stress (point O). The initial yield function of the RVE corresponds to the initial

yield function of the soft phase. The elastic domain increases in size due to isotropic hardening

of the soft phase first, and isotropic hardening of the hard phase next, at higher stress level. After

deformation of both phases, the stress point A1 is reached, positioned at a distance between h and

s phases yield functions depending on the ratio of the phases (equal distance in the present case).

When unloaded, the stress in soft phase moves from point B1 to point B2 at the diametric opposite

position in the circle. Because stress heterogeneity between phases and RVE remains constant

in the elastic domain, the macroscopic yield function is delimited by point A2 at the diametric

opposite position of the corresponding circle. Deviatoric vectors
ÐÐ→
B1A1 and

ÐÐ→

B2A2 are equal so

that the center of macroscopic yield function after plastic straining is translated from point O to

point O′. Deviatoric vectors verify:

ÐÐ→

OO′ =ÐÐ→B1A1 =ÐÐ→B2A2 = X (16)

10



SII

SIII

SI

X

(A)

initial yield surface of (s) phase

final yield surface of (s) phase

initial yield surface of (h) phase

final yield surface of (h) phase

initial macroscopic yield surface

final macroscopic yield surface

displacement of the macroscopic

yield surface center

strengthening direction

A1

A2

O

O’

B1

B2

Figure 7: Initial and final (after plastic straining) yield surface of soft and hard phase (in color); Initial and final macro-

scopic yield surface (in black). Ratio chosen for the drawing is 50% hard and 50% soft phases.

The kinematic hardening is finally given by an euclidian difference between macroscopic

deviatoric stress and the deviatoric stress within the soft phase 2:

X = S − ss (17)

It was previously stated that Ds is the residual stress tensor within the soft phase (12). It is

now shown that the kinematic hardening is directly associated to the residual stress within the

2For micro macro modeling, the same approach leads to define the kinematic hardening as the difference between

macroscopic deviatoric stress and the deviatoric stress within the grain exhibiting the lowest yield strength (maximal

Schmid factor).
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soft phase, so that:

X = ((I −Bs) ∶ Σ − 1

3
tr((I −Bs) ∶ Σ)I) − (Ds − 1

3
tr(Ds)I) (18)

or

X = fh

fs

((Bh − I) ∶ Σ − 1

3
tr((Bh − I) ∶ Σ)I) + fh

fs

(Dh − 1

3
tr(Dh)I) (19)

Assuming that the volume fraction of hard and soft phases, stiffness, Hill, and applied stress

tensors are known, an experimental estimation of the quantity X allows to define the stress field

in the two phases except for its hydrostatic part. Considering a homogeneous stiffness medium

(C = Cs = Ch), we get Bs = Bh = I so that the expression of the kinematic hardening is simplified

in:

X = −(Ds − 1

3
tr(Ds)I) (20)

or

X = fh

fs

(Dh − 1

3
tr(Dh)I) (21)

A final stronger simplification is obtained if the medium is considered as isotropic because

residual stress tensors are deviatoric too, leading to:

X = −Ds (22)

or

X = fh

fs

Dh (23)

Conversely, we can get Ds and Dh from the knowledge of X so that we know the local stresses

σs and σh. In isotropic condition, one gets:

σs = Σ −X

σh = Σ + fs

fh
X

(24)

3.2.3. Application to tensile strengthening of isotropic material

A tensile loading of an isotropic material with homogeneous stiffness is considered along

axis x⃗ leading to an axial plastic deformation Ep (figure 8). Material can be reloaded along the

same direction so that the macroscopic stress tensor of magnitude Σ is:

Σ = ⎛⎜⎝
Σ 0 0

0 0 0

0 0 0

⎞⎟⎠
(x⃗,y⃗,⃗z)

(25)

The macroscopic plastic strain tensor is constant, diagonal and deviatoric.

Ep = ⎛⎜⎝
Ep 0 0

0 − E
p

2
0

0 0 − E
p

2

⎞⎟⎠ (26)
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Figure 8: Tensile/compressive stress-strain diagram: associated kinematic and isotropic variables.

Following the Prager or Armstrong-Frederick rules, kinematic hardening is collinear with the

macroscopic plastic strain tensor:

X = ⎛⎜⎝
X 0 0

0 − 1
2
X 0

0 0 − 1
2

X

⎞⎟⎠ (27)

The center of the new yield surface O′ is given by Σ0 = 3
2
X, as illustrated in Figure 8.

3.3. Magnetic modeling

We consider a plastically strained material composed of hard (h) and soft (s) phases. We

assume that the macroscopic stress Σ, kinematic hardening X and volume fraction of s and h

phases are known. We assume on the other hand that the macroscopic field H⃗ is given. The

distribution of phases is supposed isotropic so that the shape considered in the localization pro-

cedure is spherical. Average behaviors are consequently isotropic but only the behaviors in the

strengthening direction are considered in the modeling.

3.3.1. Magnetic field and stress localization

The presence of two phases with two different susceptibilities creates a local perturbation of

the magnetic field leading to a local demagnetizing field. In this condition, the local fields are

not the same as the mean field. In the case of spheroidal inclusion (distribution) [43], the field is

demonstrated as homogeneous on each phase and can analytically be calculated. Considering on

the other hand a linear susceptibility of average medium χm, the local magnetic field in the hard

and soft phases (denoted H⃗h and H⃗s respectively) are given by:
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H⃗s = H⃗ + 1
3+2χm

(M⃗ − M⃗s)
H⃗h = H⃗ + 1

3+2χm
(M⃗ − M⃗h) (28)

where M⃗ is the average magnetization, M⃗s and M⃗h are the local magnetization in the soft and

hard phases. Extension to nonlinear behavior involves to use the sequent susceptibility for the

definition of χm.

χm = ∥M⃗∥/∥H⃗∥ (29)

Averaging operations give:

H⃗ = fsH⃗s + fhH⃗h and M⃗ = fs M⃗s + fh M⃗h (30)

The stress fields within the two phases have been previously defined by σs and σh in equa-

tion (24) for isotropic condition. Magnetostrictive deformation rigorously modifies these stress

field due to supplementary strain incompatibilities. If homogeneous isotropic elastic properties

(Young’s modulus E and Poisson’s ratio ν) and additivity of deformation (total deformation =

elastic deformation + magnetostrictive deformation) are considered, equation 31 gives the sup-

plementary residual stress field that must be considered as applied on a phase i [46]:

σ
r
i = E(7 − 5ν)

15(1− ν2)(Eµ − ǫµi ) (31)

where ǫ
µ

i and Eµ denote the local and average magnetostriction strain tensor respectively.

Since plastic straining and magnetostriction do not occur at the same time and that magnetostric-

tion leads to a usually low deformation level (< 10−5), a superposition can be applied to define

the stress field in the hard and soft phases, leading to:

σs = Σ −X + E(7−5ν)
15(1−ν2)

(Eµ − ǫµs)
σh = Σ + fs

fh
X + E(7−5ν)

15(1−ν2)
(Eµ − ǫµh) (32)

Averaging operations lead to :

Eµ = fsǫ
µ
s + fhǫ

µ

h and Σ = fsσs + fhσh (33)

The magnetostrictive part of residual stress will be considered in the modeling detailed here-

after but its impact on the overall behavior remains low comparing to the effect of residual

stresses associated with plastic straining.

3.3.2. Multidomain modeling

The modeling uses a two-scale (magnetic domains and grain scale) reversible model intro-

duced in [46] and used to model a biphasic Fe-Al-B material. This section will review its main

characteristics.

In this model, the behavior of the whole phase is supposed to be described by the behavior of

only one grain of this phase, after an appropriate choice of loading (magnetic and mechanical)

direction. Indeed, as explained in [56], the behavior of an isotropic polycrystal is necessarily

given by a loading along a specific direction inside the standard crystallographical triangle. This
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direction is not the average direction and may change with stress or magnetic field level because

behaviors are usually non-linear. Nevertheless it is possible, as a first approximation, to consider

that an isotropic behavior is roughly obtained when the loading is corresponding to the average

direction of the standard triangle. In case of cubic symmetry, this direction is defined by spherical

angles (φ, θ) = (38.81○, 77.54○). Following the proposition of [57], a set of 34635 directions

equally distributed in the unit sphere has been used to describe the potential domain directions

of this grain. At each domain α of direction γ⃗α = γue⃗u there is a corresponding magnetization

vector M⃗α = Ms γ⃗α, and a magnetostriction tensor ǫ
µ
α defined in equation (34) in the crystal frame

(CF =(e⃗1,e⃗2,e⃗3)).

ǫ
µ
α = 3

2

⎛⎜⎝
λi

100(γ2
1 − 1

3
) λi

111γ1γ2 λi
111γ1γ3

λi
111γ1γ2 λi

100(γ2
2 − 1

3
) λi

111γ2γ3

λi
111γ1γ3 λi

111γ2γ3 λi
100(γ2

3 − 1
3
)

CF

⎞⎟⎠ (34)

λi
100 and λi

111 are the magnetostriction constants of the phase i. The single crystal correspond-

ing to the phase i is submitted to a magnetic field Hi and uniaxial stress σi applied in direction

x⃗ = cosφsinθe⃗1 + sinφsinθe⃗2 + cosθe⃗3. The contribution to the free energy of a magnetic domain

Wα are the magnetostatic energy WH
α , the magnetocrystalline energy WK

α and the magnetoelastic

energy Wσ
α (35). A configuration energy (36) using a fictitious configuration stress at the phase

scale σ
con f

i may have to be employed to take account of a possible disequilibrium in the initial

domain distribution (see [44] for more details about the configuration terms).

WH
α = −µ0H⃗i.M⃗α Wσ

α = −σi ∶ ǫµα WK
α = K1((γ1γ2)2 + (γ2γ3)2 + (γ1γ3)2) (35)

Wcon f
α = −σcon f

i ∶ ǫµα (36)

The volume fraction fα of a domain α is calculated in function of the free energies using

formula (37) derived from the Boltzmann function:

fα = exp(−As.Wα)
∫
α

exp(−As.Wα)dα
(37)

As is a parameter related to the initial susceptibility χi
0 of the magnetization curve for the

considered phase i:

As = 3χi
0

µ0 M2
s

(38)

By employing fα it is possible to calculate the average magnetization Mi(Hi, σi) and the

average magnetostriction ǫ
µ

i (Hi, σi) in the direction of applied field/stress by using equations

(39).

M⃗i = 1

N
∫
α

fα M⃗α dα ǫ
µ

i = 1

N
∫
α

fα ǫ
µ
α dα Mi = M⃗i.x⃗ ǫ

µ

i = t x⃗.ǫ
µ

i .x⃗. (39)

Both hard and soft phases are modeled separately. Self consistent localization rules (28)

and (32) are used for the calculation of the magnetic field and stress at the phase scale. The
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magnetization and magnetostriction are estimated at each calculation loop and introduced inside

the self consistent rules. The calculation is iterated until convergence of average quantities.

Results are given in term of average magnetization and magnetostriction following:

M⃗(H⃗,Σ,X) = fsM⃗s(H⃗s,σs) + fh M⃗h(H⃗h,σh)
Eµ(H⃗,Σ,X) = fsǫ

µ
s(H⃗s,σs) + fhǫ

µ

h
(H⃗h,σh) (40)

3.3.3. Equivalent stress

As indicated in the paragraph above, the stress introduced in the multidomain modeling must

be a uniaxial stress. The kinematic hardening tensor and residual stress associated with the mag-

netostrictive incompatibilities are nonetheless multiaxial. We have to transform the multiaxial

expression into an uniaxial equivalent one. The retained transformation is defined in [45] follow-

ing:

σeq = 3

2

tn⃗sn⃗ (41)

where s is the deviatoric part of the stress tensor and n⃗ denotes the direction of applied mag-

netic field.

An equivalent magneto-mechanical stress replaces the multiaxial stresses σs and σh accord-

ing to the direction of the magnetic loading n⃗ = x⃗. The equivalent stress is given by:

σ
eq

i = 3

2

t x⃗si x⃗ (42)

Index i indicates s or h phase. si is the deviatoric tensor associated to σs and σh respectively.

Since the hydrostatic part of the tensors is not taken into account and the magnetostriction is

isochoric, the deviatoric stress in the soft and hard phases is directly related to the kinematic

hardening and to the magnetostriction incompatibilities:

ss = S −X + E(7 − 5ν)
15(1 − ν2)(Eµ − ǫµs) sh = S + fs

fh
X + E(7 − 5ν)

15(1 − ν2)(Eµ − ǫµ
h
) (43)

allowing us to define the equivalent stress in the soft and hard phases as:

σ
eq
s = 3

2

t x⃗(S−X+ E(7 − 5ν)
15(1 − ν2)(Eµ−ǫµs))x⃗ σ

eq

h
= 3

2

t x⃗(S+ fs

fh
X+ E(7 − 5ν)

15(1 − ν2)(Eµ−ǫµ
h
))x⃗ (44)

On the other hand, in case of uniaxial plastic deformation along x⃗ axis with axial stress

Σ, axial kinematic hardening 3/2X and axial magnetostrictions Eµ, ǫ
µ
s and ǫ

µ

h
, the magneto-

mechanical equivalent stresses in s and h phases are:

σ
eq
s = Σ − 3

2
X + E(7 − 5ν)

10(1 − ν2)(Eµ − ǫµs ) σ
eq

h
= Σ + fs

fh

3

2
X + E(7 − 5ν)

10(1− ν2)(Eµ − ǫµ
h
) (45)

The following points can be highlighted:
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• In case of iron-based materials (iron-silicon, steels), the magnetostriction amplitude is

small so that the contribution of magnetostriction to the equivalent stress is only a few MPa.

It can be neglected compared to the kinematic hardening and applied stress magnitudes.

The following expressions of equivalent stress are obtained:

σ
eq
s ≈ Σ − 3

2
X σ

eq

h ≈ Σ + fs

fh

3

2
X (46)

The magnetostriction contribution is not considered in the following points.

• In the unloaded state after plastic deformation, the s phase is submitted to compression,

the h phase to tension since X is positive. This result joins the hypotheses of Cullity [2]

in order to interpret the results carried out on a plastically strained iron-silicon alloy (the h

phase actually corresponds to the grain boundaries of the material). This is in accordance

with the results obtained using the microcrystalline approach.

• In order to reduce the equivalent stress in the s phase to zero, a tensile stress must be

superimposed:

Σ = Σ0 = 3

2
X (47)

The equivalent stress in the h phase is however non zero:

σ
eq

h = Σ0

fh
≠ 0 (48)

This result joins the early experimental observations of Langman [51] and some more

recent ones [24] for mild steel and non-oriented 3%Si-Fe alloy respectively. For these

cases, the h phase corresponds to either the grain boundaries, the pearlite phase in steels,

the other grains not suitably oriented for plastic gliding, or dislocation walls and tangles.

It should be noted that Iordache [24] observed a recovery of the behavior of laminated

Fe-3%Si after plastic deformation for a superimposed stress higher than Σ0 (observed for

Σ ≈ 3
2
Σ0 = 9

4
X)3. We remark that: i) there is not a real recovery of magnetic behavior

(all magnetic quantities are lower than the initial ones); ii) the recovery stress corresponds

to an extremum of magnetic quantities. This extremum may be related with the non-

monotonic variation of the magnetic behavior at high tensile stress observed with this

family of materials.

• In order to annul the equivalent stress in the h phase, a compressive stress must be super-

imposed:

Σ = − fs

fh
Σ0 = −3

2

fs

fh
X (49)

The equivalent stress in the s phase is however not zero:

σ
eq
s = −Σ0

fh
≠ 0 (50)

3The author confused the uniaxial and multiaxial kinematic strengthening. X indicates on the one hand the centre

position of yield surface and the value of kinematic strengthening in the kinematic stress tensor on the other hand. These

two definitions are incompatible.
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• A magnetic measurement performed along a direction n⃗ different from the mechanical

loading direction x⃗ leads to an expression of the equivalent stresses dependent on the angle

ψ between the two vectors, following:

σeq
s = (Σ − 3

2
X)(cos2ψ − 1

2
sin2ψ) σ

eq

h
= (Σ + fs

fh

3

2
X)(cos2ψ − 1

2
sin2ψ) (51)

One notable result is that equivalent stress is always zero for ψ = atan(√2). For ψ = 90o

and Σ = 0, the equivalent stresses are half of the magnitude and of opposite sign than for

ψ = 0o, leading to the so-called ”magneto-plastic anisotropy” introduced in [17, 27, 55]

and observed earlier by Langman [51]. These relationships do not apply if the plasticity

is anisotropic. In this case, the kinematic hardening tensor is defined (in the orthotropic

principal frame (u⃗I , u⃗II , u⃗III) with u⃗I = x⃗) by :

X = ⎛⎜⎝
XI 0 0

0 XII 0

0 0 XIII

⎞⎟⎠
(u⃗I ,u⃗II ,u⃗III)

(52)

verifying: XI + XII + XIII = 0. Considering n⃗ ∈ (u⃗I , u⃗II) for example, the expression of

equivalent stresses becomes :

σ
eq
s = (Σ − 3

2
XI)cos2ψ − ( 1

2
Σ + 3

2
XII)sin2ψ

σ
eq

h
= (Σ + fs

fh

3
2
XI)cos2ψ − ( 1

2
Σ − fs

fh

3
2
XII)sin2ψ

(53)

Such an approach could help to interpret the results obtained by Küpferling [52] who

observed some strong differences of magnetic behavior for a pure iron submitted to two

different stress paths at the same deformation level.

Another interesting consequence is that assuming an univocal correlation between mag-

netic or magnetostrictive behavior and equivalent stress, magnetic measurements performed

along different directions (two directions at least) would allow an estimation of the X ten-

sor in a material.

4. Application to dual phase steel

4.1. Material and experimental protocol

A dual phase steel has been used in the study (DP780 Steel from ArcelorMittal). Its mi-

crostructure consisted of about 30%vol of hard (mechanically) martensite islands dispersed in a

soft (ductile) ferritic matrix (figure 9). This composite structure allows for the creation of strong

internal stresses during plasticity whose origin is associated with a strong difference in the yield

stresses of both phases [58]. The material has the ideal microstructure for the proposed study be-

cause it theoretically allows the creation of large magnitude internal stresses at moderate plastic

strain level. From a magnetic consideration, the ferritic matrix can be considered as pure iron.

Several authors reported that the steel martensite is ferromagnetic but exhibits a susceptibility

much lower than the susceptibility of a pearlite-ferrititic steel at the same carbon content and a

high coercive field due to a large amount of various metallurgical products and defects [1, 59].

The mixture of the two phases leads to a soft ferromagnetic material.
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Figure 9: Microstructure of the dual-phase steel - white: martensite islands; black: polycrystalline ferritic matrix.

The samples were 140mm long, 12.5mm wide, and 3mm thick laminations. A MTS uniax-

ial electrohydraulic machine (displacement controlled) has been used to carry out the uniaxial

stress-strain Σ(E) behavior of the material. Unloading/reloading tests allowed us to estimate the

kinematic X and isotropic R hardenings as a function of the plastic strain Ep via a Cottrell’s

method, which is illustrated in Figure 10. The estimation is based on the identification of limits

of the yield surface [48]: maximum stress (tensile test) and minimum stress (compression test).

Note that this technique requires the yield surface to be exceeded when carrying out the compres-

sion test. A strain offset δ must be chosen on the other hand to detect the non linearity associated

with the beginning of plastic flow. The offset chosen during experiments was δ = 0.5 × 10−4.

Σ
 (

M
P

a)

Ε

δ offset

 Elastic domain

     2(Σy+R)

Center position 

of elastic domain

Figure 10: Experimental loading-unloading cycle for the identification of hardening parameters using the Cottrell’s

method.
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The experimental magnetic device enabled magnetic measurements on plastically strained

samples in the unloaded state or under reloaded tensile stress. It was composed of a primary

coil to magnetize the sample, an H-coil for the measurement of the magnetic field, a pick-up coil

(B-coil) to measure the electromotive force, and a set of longitudinal and transverse strain gauges

stuck on both faces of the sheet to estimate the plastic strain level and measure the (longitudinal

and transverse) magnetostrictive behavior. Two ferrite yokes were assembled with the sample to

close the magnetic circuit and reduce the macroscopic demagnetizing field and the form effect.

Measurements have been first performed on unstrained samples providing the reference magnetic

and magnetostrictive state. Measurements have been next performed on samples submitted to an

increasing plastic deformation level Ep: at unloaded state first (Σ = 0) and under increasing

reloaded stress Σ below the new yield strength. It has been verified that unloading and re-loading

remain in the elastic domain.

Magnetic measurements reported hereafter are the anhysteretic magnetic behavior M(H), the

longitudinal and transverse anhysteretic magnetostrictive behavior ǫ
µ

//
(M) and ǫ

µ
⊥(M), and the

hysteretic magnetic behavior M(H) performed at f=0.1Hz. The anhysteretic curves are measured

point by point by applying a sinusoidal magnetic field of mean magnitude H, and of exponentially

decreasing form [60]. Three plastic deformation levels have been investigated: 0.1%, 1% et 3%.

Figure 2 and 3 reported in Section 2.1 refer to the reference anhysteretic and cyclic magnetic and

magnetostrictive behaviors of the material. Figure 4 refers to the nominal true stress- true strain

behavior of the material.

4.2. Identification of model parameters

4.2.1. Identification of kinematic hardening via the Cottrell’s method and modeling

Figure 11 reports the tensile stress-plastic strain behavior of the material. A high level of

kinematic hardening 3/2X is observed in accordance with the strong heterogeneity of the ma-

terial. The isotropic hardening R is, on the contrary, negligible (a small decrease of true flow

stress Σy + R is observed). Two stages are highlighted in the evolution of kinematic hardening:

a first strong increase that saturates immediately reaching 250MPa. The increase of kinematic

hardening is then moderated but remains non linear. At high deformation, the evolution is linear.

We choose to model the kinematic hardening by an addition of three terms (54): one Prager

linear term X1 (55) and two non-linear Armstrong-Frederick terms X2 (56) and X3 (57) where

ṗ indicates the cumulative plastic strain rate (58). Decomposition in two terms (linear and non-

linear) is usual. The second non linear term is employed to simulate the rapid kinematic hard-

ening evolution at the beginning of strengthening. Five parameters have to be identified using

the experimental data. Table 1 gives optimized values of modeling parameters (using a least

square method). Figure 12 shows a comparison between the modeling results and experimental

data. Table 2 regroups the value of 3/2X at the plastic strain levels retained for the magnetic

measurements. The measurement error for this estimation is about ±20MPa in accordance with

the discrepancies observed with the model.

X = X1 +X2 +X3 (54)

with:

Ẋ1 = 2

3
C1Ė

p
(55)

Ẋ2 = 2

3
C2Ė

p − 1

γ2

X2ṗ (56)
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Figure 11: Stress - plastic strain behavior of dual-phase steel - Associated isotropic and kinematic hardening.

C1(MPa) C2(MPa) γ2 C3(MPa) γ3

333 226667 0.00114 6000 0.059

Table 1: Parameters of the kinematic hardening model of dual-phase steel.

Ẋ3 = 2

3
C3Ė

p − 1

γ3

X3ṗ (57)

with

ṗ =
√

2

3
Ė

p ∶ Ėp
(58)

Ep 3/2X (MPa)

0.001 100±20

0.01 270±20

0.03 400± 20

Table 2: Estimation of the stress level corresponding to the centre of yield surface (3/2X) at the plastic strain levels

retained for the magnetic experiments.

4.2.2. Identification of the magnetic parameters for each phase

As indicated in Section 3.3.2 the multidomain model requires parameters for each phase:

ferrite and martensite. The parameter identification needs accurate measurements of the magnetic

and magnetostrictive behaviors of both materials taken seperately. The behavior of ferrite is

assumed to be very close to the behavior of pure iron. The behavior and physical parameters of
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Figure 12: Measurement and modeling of the kinematic hardening

such a material are well documented. The behavior of the martensitic phase is more difficult to

obtain and much less well documented in the literature. Indeed martensite seems to be strongly

sensitive to the carbon content, alloying elements and heat treatments [59]. A procedure detailed

in [9] allowed us to obtain a fully martensitic steel after an appropriate heat treatment of a 0.4wt%

carbon content mild steel (C38 steel). Microhardness and microstructure of DP steel and C38

martensite have been found to be in good agreement. This material is supposed to exhibit the

same magneto-mechanical behavior as the martensite phase in the DP steel.

Magneto-mechanical experiments have been performed on a pure iron sample and on a

quenched C38 sample following the experimental procedure detailed in Section 4.1. Figures

13 and 14 show the experimental results obtained for magnetic and longitudinal magnetostrictive

behavior without an applied stress. As expected, the behavior of DP steel that has been added in

the figure is located between the two other behaviors.

The tables below list the parameters used for the modeling of each phase. Physical parame-

ters for pure iron are well known (magnetocrystalline and magnetostrictive constants, saturation

magnetization). χ0 and σcon f are the only parameters optimized to fit properly the magnetization

curve for χ0 and the magnetostriction curve for σcon f . Physical parameters of martensite are

unable to be found in the literature. An isotropic behavior has been supposed for this second

phase that reduces the magnetostrictive parameters to one. Its value is optimized to fit properly

the magnetostriction curve. χ0, Ms and K1 are optimized thanks to the magnetization curve. The

magnetocrystalline constant K1 has been fixed to a high value to reproduce the high coercivity of

the martensite. Ms has then been reduced from the theoretical value of pure iron to properly fit

the saturation in the measurement range. The configuration energy has not been considered for

this material since the optimization of the magnetostriction saturation value is enough to get an

accurate restitution of the behavior. Other fixed parameters are the loading angles of the multido-

main modeling (φ, θ) = (38.81○, 77.54○) and Young modulus and Poisson ratio (E,ν) = (200GPa,

0.3).

Once the best parameters describing the ferrite and martensite behavior are found, a dual

phase medium can be modeled using volume fractions fs = 0.7 and fh = 0.3. A fixed point
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Figure 13: Anhysteretic magnetic behavior of DP780 steel, pure iron and C38 quenched steel.
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Figure 14: Anhysteretic magnetostrictive behavior of DP780 steel, pure iron and C38 quenched steel.

method is employed to get the average behavior taking account of the stress and magnetic field

localization (convergence is reached after less than 10 loops - computation time is about 2.7 sec-

onds per point using Matlab RO software implemented in a personal computer). Figures 15 and 16

show the modeling results for magnetization longitudinal magnetostriction curves for the three

materials. The modeled behavior for DP780 steel is in very good agreement with the experimen-

tal behavior. The bigger discrepancies concern the magnetostriction behavior especially for pure

iron at intermediate magnetic fields.
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Param. Ms K1 λ100;λ111 χ0 σcon f

Value 1.71×106 48 21;-21 2000 9

Unit A/m kJ.m−3 ppm - MPa

Table 3: Parameters of multidomain modeling for iron (s) phase.

Param. Ms K1 λ100;λ111 χ0 σcon f

Value 1.25×106 500 4.8;4.8 150 0

Unit A/m kJ.m−3 ppm - MPa

Table 4: Parameter for martensite (h) phase.
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Figure 15: Modeling results - anhysteretic magnetic behavior of DP780 steel, pure iron and C38 quenched steel.

4.3. Experimental results and modeling

4.3.1. Effect of applied stress - elastic domain

A positive uniaxial stress is applied on the DP steel sample keeping stress below the yield

limit. This first test allows to observe the behavior of the material and of the model in a condition

where the material is kept in a reversible condition (i.e. X = 0). Experimental and modeling

results are plotted successively for a better appreciation of discrepancies. Figure 17a shows the

initial state and the effect of stress on the anhysteretic magnetic behavior of the DP steel. The

tensile stress has only a moderate influence on the magnetic behavior. This results in a slight

increase in the susceptibility before the Villari reversal (beyond 2000 A/m) and a decrease of

magnetization after this point, as commonly observed for steels. It can be however noticed that

the effect of stress on magnetic susceptibility is non monotonic at high stress intensity. The mag-

netic behavior at Σ=200MPa is for example always below the magnetic behavior at Σ=150MPa.
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Figure 16: Modeling results - anhysteretic magnetostrictive behavior of DP780 steel, pure iron and C38 quenched steel.

This counterintuitive phenomenon was already observed in iron-silicon [62] or iron-cobalt al-

loys [63], in contradiction with the classical magneto-elastic effect. It was interpreted and mod-

eled in a multiscale framework in [62] as an effect of stress on the initial domain configuration

(demagnetizing stress e f f ect). Except concerning the non-monotony at high tensile stress (the

demagnetizing stress effect is not considered in the present paper), the modeling plotted in Figure

17b and the experiments are in good agreement.

Figure 18a shows the initial state and the effect of stress on the anhysteretic magnetostriction

(longitudinal and transverse) of the DP steel. This behavior is clearly much more sensitive to ap-

plied stress than the magnetic behavior. The modeling plotted in Figure 18b gives results in very

good agreement with experiments. The saturation level of magnetostriction is however higher

for the modeling (from 4.5ppm for experiments to 5.8ppm for modeling at 200MPa). This differ-

ence has to be related to the shift procedure applied to the experimental data as explained in [61].

The plot of experimental and modeled ∆E effect in Figure 19 extracted from magnetostriction

results allows an illustration of this point. These results show finally the ability of the model to

reproduce the effect of stress on the magnetic and magnetostrictive behaviors of the DP steel. It

is a prerequisite for modeling the influence of plasticity via a magnetoelastic approach.
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Figure 17: Influence of tensile applied stress below yield strength on the anhysteretic magnetic behavior of DP780 steel.
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Figure 18: Influence of tensile applied stress below yield strength on the anhysteretic magnetostrictive behavior of

DP780 steel - Longitudinal: deformation measured in the direction of applied field; Transverse: deformation measured

perpendicularly to the direction of applied field.
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Figure 19: Comparison model/experiments of anhysteteric longitudinal and transverse ∆E effect for DP780 steel (ex-

tracted from results plotted in Figures 18a and 18b).

4.3.2. Effect of plastic straining on the magnetic and magnetostrictive behaviors

Three different specimens of DP780 steel has been deformed up to 0.1%, 1% and 3% (i.e.

Ep = 0.001, Ep = 0.01 and Ep = 0.03). Their magnetic and magnetostrictive behaviors have been

measured after plastic deformation at unloaded state first, under applied tensile test next. The

uniaxial stress introduced in the modeling of each phase (s: ferrite; h: martensite) is defined by:

σ
eq
s = Σ − 3

2
X + E(7 − 5ν)

10(1 − ν2)(Eµ − ǫµs ) σ
eq

h
= Σ + fs

fh

3

2
X + E(7 − 5ν)

10(1− ν2)(Eµ − ǫµ
h
) (59)

where 3/2X depends on the plastic strain level. Values are reported in the previous Table 2

and come from the Cottrell analysis. The following assumptions are consequently made:

• isotropic distribution of the two phases in the material;

• isotropic distribution of crystallographic orientations in each phase;

• behavior of each phase supposed unchanged with plastic strain.

The last assumption is maybe the weakest because we know that plasticity of the soft phase

(ferrite in the present case) is associated with a significant change of dislocation density that may

change the behavior of the phase. This contribution is not considered in the modeling.

Figure 20a shows the effect of the three plastic strain levels on the magnetic behavior at un-

loaded state (Σ = 0). A strong non linear degradation is observed as reported by many authors

in previous works. The corresponding modeling is plotted in Figure 20b giving results in good

agreement with experimental ones. Figure 21a and 22a report the associated magnetostrictive be-

havior (along longitudinal and transverse directions respectively). The plastic strain acts clearly

as a compressive stress effect as foreseen by the theoretical approach. Modelings reported in

Figure 21b and 22b give results in good qualitative agreement with experiments. The shape of
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the magnetostriction curves at Ep = 0.03 nevertheless exhibits some inflexions that do not seem

physical. This defect is due to the strong simplifications of the multidomain modeling leading

to an dissymmetric rotation of the magnetic moments under stress. This defect disappears when

the full multiscale modeling is employed to model the behavior of each phase. The computation

time is however thousand of times longer for a relatively small improvement.

As a conclusion of this part, it is possible to confirm that the modeling of the effect of plastic

strain on the magnetic behavior through a purely mechanical description (introduction of residual

stress field) is possible and gives some very accurate results for plastic straining up to 3%.
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Figure 20: Anhysteretic magnetic behavior of plastic strained samples at unloaded state.
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Figure 21: Longitudinal anhysteretic magnetostrictive behavior of plastic strained samples at unloaded state.
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Figure 22: Transverse anhysteretic magnetostrictive behavior of plastic strained samples at unloaded state.
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4.3.3. Effect of plastic straining: reloaded state

The plastically strained samples are submitted to an increasing level of tensile stress (remain-

ing in the ”new” elastic domain). The modeling is obtained by using an increasing value of Σ

in equation (59). Magnetization, longitudinal and transverse magnetostrictive measurements are

performed. Figures 23a, 24a and 25a show the evolution of the magnetic behavior of the sample

plastic strained at 0.1%, 1% and 3% respectively and reloaded at various stress levels indicated

in the figures. Figures 23b, 24b and 25b plot the associated modelings. It is remarkable to ob-

serve that the reloading allows to progressively recover the reference (Ep = 0 and Σ = 0) behavior

whatever the plastic strain level. This behavior is in agreement with the residual stress origin

of the initial degradation associated with plastic strain. Indeed, as explained before, the residual

stress in the s phase (σs
eq ≈ Σ − 3/2X) that mostly contributes to the average magnetic behavior,

becomes positive for Σ > 3/2X. If the influence of the second phase (lower quantity and lower

sensitivity to stress) is negligible, the reference behavior could be reached for an applied stress

value theoretically close to 3/2X value. Experimental results are roughly in accordance with this

interpretation. This conclusion seems less clear for the 0.1% strained sample where the tested

re-loaded stress levels are insufficient. Since the modeling is built using the same principles, it

allows a good restitution of the effect of a superimposed applied stress. Particularly, the reference

behavior is clearly reached for a stress value close to 3/2X that confirms the moderated role of the

second phase. This stress denoted Σ
χ
c is called ”magnetic recovery stress”. We observe neverthe-

less that the modeled magnetic behaviors clearly overstep the reference behavior at high stress.

This is not observed in the experiments; it should probably be related to the non-monotonic effect

of tensile stress already observed but not considered in the modeling.
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Figure 23: Anhysteretic magnetic behavior of the sample plastic strained at 0.1% and reloaded at various stress levels.
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Figure 24: Anhysteretic magnetic behavior of the sample plastic strained at 1% and reloaded at various stress levels.
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Figure 25: Anhysteretic magnetic behavior of the sample plastic strained at 3% and reloaded at various stress levels.

Figure 26 plots the initial susceptibility χ0 = (dM/dH)H=0 of the non-deformed and plasti-

cally strained samples as a function of the applied stress for the experiments and modeling. Even

if the magnetic behavior cannot be summarized by χ0, this plot allows an easy observation of

the effects detailed above. The magnetic recovery stress Σ
χ
c is clearly identifiable, as the non-

monotonic effect is not reproduced by the modeling. It can be noticed that the global level of

initial susceptibility predicted by the model is lower than the experimental susceptibility. This

probably comes from the underestimation of the initial susceptibility of the ferrite phase.

Figures 27-32a show the evolution of the longitudinal and transverse magnetostrictive be-

haviors of the sample plastic strained at 0.1%, 1% and 3% respectively and reloaded at various

stress levels indicated in the figures. Figures 27-32b plot the associated modelings in good global
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Figure 26: Initial susceptibility of the samples as function of the reloaded stress.

agreement with the experiments. As for the magnetic behavior, a critical stress allows to recover

the initial magnetostrictive behavior of the material. This ”magnetostriction recovery stress” is

denoted Σ
χ
c and values are close to 3/2X as observed for the magnetic behavior. Below Σ

µ
c , the

material behaves like an unstrained material submitted to a compression. Above Σ
µ
c , the mate-

rial behaves like an unstrained material submitted to tensile stress. The phenomenon reaches a

saturation stage at higher levels of applied stress.
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Figure 27: Anhysteretic longitudinal magnetostrictive behavior of the sample prestrained at 0.1% and reloaded at various

stress levels.
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Figure 28: Anhysteretic transverse magnetostrictive behavior of the sample prestrained at 0.1% and reloaded at various

stress levels.
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Figure 29: Anhysteretic longitudinal magnetostrictive behavior of the sample prestrained at 1% and reloaded at various

stress levels.
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Figure 30: Anhysteretic transverse magnetostrictive behavior of the sample prestrained at 1% and reloaded at various

stress levels.
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Figure 31: Anhysteretic longitudinal magnetostrictive behavior of the sample prestrained at 3% and reloaded at various

stress levels.
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Figure 32: Anhysteretic transverse magnetostrictive behavior of the sample prestrained at 3% and reloaded at various

stress levels.

The so-called ∆E effect (ǫ
µ

//
(M = 0,Σ) see [61]) has been plotted in Figure 33 for all spec-

imens in order to quantify the effect of the stress reloading and to accurately estimate Σ
µ
c . The

magnetostrictive behavior cannot be summarized by this simple parameter ∆E but allows one

to illustrate the major trends. It appears that plastic strain leads to a progressive shift of the

curves in the magnetostriction-stress plane comparable to a frame displacement. The magne-

tostrictive recovery stress Σ
µ
c is corresponding to the stress value at the intersection between the

E
µ

//
(M = 0,Σ) curves and the E

µ

//
= 0 axis. Despite some discrepancies in amplitude and re-

covery stress, the modeling gives results in remarkable agreement with experiments. This result

again proves that the modeling of the plastic strain effect on the behavior of DP780 steel does

not require the consideration of any change of the magnetic behavior of the phases but only the
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stress field associated with plasticity.
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Figure 33: Longitudinal and transverse ∆E effect of the plastic strained samples.
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5. Discussion

5.1. Results analysis, recovery stress

Comparisons between experiments and modeling lead to very interesting results. The me-

chanical approach associated to a two-phase magnetomechanical model proved its efficiency to

reproduce both magnetization and magnetostriction behaviors of plastic strained DP steel (up

to 3% of plastic strain level). Two major defects have been nonetheless identified: 1/ the non-

monotonic variation of the magnetic behavior at high positive stress, not reproduced by the mod-

eling; 2/ a perceptible discrepancy between experimental and modeled recovery stresses.

Concerning the first point, it is possible to introduce in the modeling a demagnetizing stress

factor as introduced in [62] for the full multiscale model. This introduction would have increased

the number of parameters to be identified without fundamentally changing the learnings of the

study. The values reported in Table 5 address the second point. In this table, the experimental

magnetic and magnetostrictive recovery stresses Σ
χ
c and Σ

µ
c have been reported with estimated

evaluation errors. They are compared to the recovery stress evaluated from the modeling results

Σm
c . We observe first that Σm

c values correspond precisely to the 3
2
X values. This result was

expected since only the soft phase significantly participates to the magnetic behavior of the ma-

terial. When Σm
c = 3

2
X the stress in the soft phase is nul. The high tensile stress in the hard phase

has only a minor effect. We observe on the other hand that Σ
χ
c and Σ

µ
c values are in agreement

but slightly different. The recovery stress extracted from the model and evaluated from Cottrell’s

method gives results close to results issued from the magnetic measurements. Measurement er-

rors are high for the lowest plastic strain level due to a too small number of experimental points.

The discrepancy observed at the highest plastic strain level may have different origins. One first

source of discrepancy is associated with the Cottrell’s method itself. The second source of dis-

crepancy is the imperfect modeling of the martensite phase. Indeed K1, Ms, λ100 and λ111 look

more like fitting parameters than physical parameters. Magnetoelastic coupling in the martensite

phase consequently may be badly modeled. Finally, the main assumption of the model based

on the insensitivity of the behavior of each phase to plastic deformation is probably no more

valuable at high strain. Indeed, the wavelength characteristic of the internal stresses associated

with the plasticity decreases with increasing strain [17]. Initially intergranular (interphase by ex-

tension), they become progressively transgranular. The definition of hard and soft phase should

be revisited for high strains.

Ep Σ
χ
c (MPa) Σ

µ
c (MPa) Σm

c (MPa)

0.001 180±50 80±20 100

0.01 300±10 270±10 270

0.03 370±10 330±10 400

Table 5: Recovery stresses - experimentally estimated (Σ
χ
c ,Σ

µ
c ) with errors and foreseen by the model (Σm

c ).

5.2. Limit of the mechanical description of the plastic strain effect on the magnetic behavior

Measurements of the hysteresis loops of the plastically deformed material were performed

simultaneously with anhysteretic measurements. These complementary measurements provide
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information about other magnetic parameters such as the coercive field, remanent magnetiza-

tion and losses. This is an important point since loss characteristics are for example critical

parameters for electrical steels. On the other hand, the former results concerning the influence of

plasticity or reloaded stress usually address this kind of behavior. In this paper, we did not focus

on these behaviors because the modeling proposed is an anhysteretic modeling whose validation

requires only anhysteretic measurements. Figure 34 shows typical magnetic hysteresis loops ob-

tained at 0.1Hz frequency (quasi static condition - same maximum magnetic field Hm=16kA/m)

for the non-deformed and plastic strained samples at unloaded state. As already observed by

many authors, plastic straining drastically changes the loops shape: enlargement, rotation, and

Villari reversal phenomenon are easily observable.
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Figure 34: Hysteresis loops of plastified dual-phase steel at different levels without reloaded stress - f=0.1Hz.

Figures 35 shows the effect of reloaded stress on the coercive field H16000
c (the magnetic

field value extracted from the major loop at M=0) of the plastically strained samples. In the

unloaded state, plasticity leads to a sharp and strongly non-linear change of the coercive field

in accordance with results of literature. We remark first that the applied stress has only a small

influence on the coercive field of the unstrained sample. The variation of coercive field of the

sample strained at 0.1% is low and effect of reloaded stress is weak and difficult to analyze

due to the too small number of loading states. The reloaded stress allows on the contrary a

large recovering of the coercive field of 1% and 3% strained sample. This recovery remains

nonetheless partially incomplete and occurs at stress levels much larger that the recovery stresses

of anhysteretic quantities. This result joins the former results of Iordache obtained on a 3%Si-Fe

alloy [24]. Indeed the coercive field is well known to be very defect sensitive. The irreducible

part of the coercive field can probably be related to the contribution of these defects. These

results show that mechanical description of the plastic strain effect on the magnetic behavior

must be complemented by a metallurgical description.

Results presented in this part are surely insufficient for a complete discrimination between ef-

fects. They have to be complemented by other experiments. Extension to the hysteresis modeling

as proposed in [62] is another important issue.
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Figure 35: Effect of reloading stress on the coercive field of the plastically strained samples.

5.3. Modeling of former experimental results

In this last subsection, we propose a short revisit of some former results in order to improve

their interpretation using the two-phase model. Results concern non-oriented 3%Si-Fe electrical

steel plastic strained at different levels and for which a measurement of the kinematic hardening

have been made (see [17, 24, 27]). The major difference with the present study is that the material

is single phased. Consequently we must use complementary informations to define the volume

fraction of soft and hard phases. For the illustration, we took the example of 3%Si-Fe strained

at 0.5%, 3.6% and 9.8% whose magnetic characterization is detailed in [17]. Table 6 reports

the kinematic hardening associated with each sample and measured using oligocyclic tension-

compression tests. Indeed microstructural observations [64] showed that the kinematic hardening

is mainly due to intergranular strain incompatibilities at low strain, with a high influence of the

area of grain boundaries. A mix of intergranular and transgranular incompatibilities is observed

at intermediate strain and clear high transgranular incompatibilities characterize the stress fields

at the highest strain. These observations allow to conclude that the volume fraction of soft

phases is dominant comparing to the volume fraction of hard phases (in accordance with X-

ray measurements of Cullity [2]). As a simplification, we decided to choose the same ratio

of phases using fs=0.9 and fh=0.1 for the modeling whatever the plastic strain level. Table 7

reports the physical constants for iron-silicon. Magnetostrictive and magnetocystalline constants

and saturation magnetization reported in the table are very well known for this material. The

configuration stress has been chosen at zero for simplification. The value chosen for the initial

susceptibility is a standard value.

Figure 36 plots the modeling results of the magnetization behavior. Figure 37 plots the mod-

eling results of longitudinal magnetostriction behavior. Despite the hypothesis of invariance of

behavior in each phase and the strong simplification concerning the volume fraction of phases,

results are in good qualitative agreement with experiments reported in [17] and [30] for magnetic

measurements and in [30] for magnetostrictive measurements. The final experiments vs. model-

ing comparison concerns the previous results of Cullity [2]. The strong non-linear influence of

plasticity is especially highlighted. Figure 38a reports some longitudinal magnetostriction mea-
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Ep 3/2X (MPa)

0.005 80

0.036 130

0.098 170

Table 6: Kinematic hardening and volume fraction of soft and hard phases at the three considered plastic strain levels.

Param. Ms K1 λ100;λ111 χ0 σcon f

Value 1.61×106 38 23.5;-4.5 3000 0

Unit A/m kJ.m−3 ppm - MPa

Table 7: Parameters of multidomain modeling for 3%Si-Fe alloy.

surements under applied stress (in ksi) for pure iron. The magnetostriction of a plastic strained

sample (3%) in the unloaded state is also reported (dotted lines). The associated modeling (same

stress levels) is plotted in Figure 38b using the parameters of the ferrite phase (Table 3 - except

for χ0=5000 and σcon f=12MPa). Obviously, the volume fraction of the soft and hard phases, as

the magnitude of kinematic hardening are not known. The parameters indicated in the figures are

chosen close to the parameters used for the iron-silicon alloy. The modeling and experimental

results are in very good agreement, despite the global level predicted by the model is about 2

ppm higher than experiments.

These results prove that the modeling approach applied initially to a real bi-phased material

can be extended to many other families of magnetic materials thanks to an appropriate choice

of volume fraction and via the knowledge of the kinematic hardening. The modeling of former

results of Neurath, Makar, Hug, Iordache, Landgraf and many others could be made in the same

way.

The modeling of so-called magnetoplastic anisotropy [17, 55] not represented here is nonetheless

poorly reproduced. Indeed this modeling requires an appropriate description of the effect of high

tensile stress on the magnetic behavior by the introduction of a demagnetizing stress tensor [62].

This point will be addressed in a future communication.
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Figure 36: Two-phase modeling of the influence of plasticity on the magnetic behavior of non-oriented 3%Si-Fe alloy.
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Figure 37: Two-phase modeling of the influence of plasticity on the longitudinal magnetostriction behavior of non-

oriented 3%Si-Fe alloy.
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(a) Experiments - see [2]
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Figure 38: Longitudinal magnetostrictive behavior of pure iron - effect of applied stress (in ksi) vs. effect of a 3% plastic

strain in the unloaded state (dotted lines).

6. Conclusion

In this paper, a two-phase modeling of the magnetic and magnetostrictive behavior of plastic

strained magnetic materials has been proposed. This approach supposes some simple assump-

tions concerning the behavior of both phases or the phase distribution. It supposes the knowledge

of the kinematic strengthening state in the material too, but very few real fitting parameters are

required. The physical principle used in this modeling is to consider that plastic strain acts on the

magneto-mechanical behavior through its associated internal stresses and the magneto-elastic

coupling effect that occurs within the phases. This theoretical approach is complemented by

experimental observations of the complete magnetomechanical behavior of dual-phase steel in-

cluding magnetostriction measurements under applied stress. A hard martensitic second phase

leads to a strong kinematic hardening of the material during plasticity. The anhysteretic mag-

netic measurements allow the estimation of some peculiar uniaxial stress levels able to recover

the magnetic and magnetostrictive behavior (going back to the initial properties of the material).

These stress levels are found to be close to the stress associated with the position of the actual

yield surface centre, thanks to the very low participation of the martensite in the average mag-

netic behavior. It has to be noticed that the pinning effect usually associated with plastic strain

has not been considered in this modeling, explaining why the coercive field variations are in-

sufficiently described. Extension of the modeling to hysteretic behavior is nonetheless possible
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following the principles developed in [62].

On the other hand it has been shown how this approach can be extended to more classical mate-

rials like mild steels, electrical steels and other single phase materials, submitted to plastic strain.

This work offers a new and simple way to model the effect of plasticity (including multiaxial

plasticity [52]) on this wide range of materials.

Finally this work opens an interesting way to estimate the mechanical state in a deformed ma-

terial. Indeed a clear relationship has been made between kinematic hardening and magnetic

behavior in case of a uniaxial tensile test. An interesting feature would be to apply this new ap-

proach to the measurement of the kinematic hardening during a multiaxial testing. It gives some

insight of future magnetic non-destructive monitoring techniques.
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