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Abstract

A methodology to design broadband time-domain impedance boundary conditions (TDIBCs) from the analysis of
acoustical models is presented. The derived TDIBCs are recast exclusively as first-order differential equations, well-suited
for high-order numerical simulations. Broadband approximations are yielded from an elementary linear least squares
optimization that is, for most models, independent of the absorbing material geometry. This methodology relies on a
mathematical technique referred to as the oscillatory-diffusive (or poles and cuts) representation, and is applied to a wide
range of acoustical models, drawn from duct acoustics and outdoor sound propagation, which covers perforates, semi-
infinite ground layers as well as cavities filled with a porous medium. It is shown that each of these impedance models
leads to a different TDIBC. Comparison with existing numerical models, such as multi-pole or extended Helmholtz
resonator, provides insights into their suitability. Additionally, the broadly-applicable fractional polynomial impedance
models are analyzed using fractional calculus.
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I. INTRODUCTION

The modeling of sound absorption in the time domain
(as opposed to the frequency domain) through a time-
domain (acoustic) impedance boundary condition (TDIBC)
has several attractive features for computational aeroacous-
tics,1 such as the ability to handle broadband noise2 in one
fell swoop, or to be coupled with nonlinear partial differ-
ential equations (e.g. Euler). Nonetheless, in practice, the-
oretical3,4 and empirical5,6 models are hardly ever known
in closed form in the time domain, and, when they are, the
corresponding convolutions are numerically costly to com-
pute. TDIBCs, whose development can be traced back to
the early 90s, are an attempt to deal with these two difficul-
ties, by providing simple yet broadly applicable numerical
impedance models, as well as efficient numerical methods
to tackle convolutions. They have found use in several ar-
eas, such as duct acoustics,7 outdoor sound propagation,8

and room acoustics.9

The earliest numerical impedance models were com-
prised of a single polynomial or rational fraction, which
yields in the time domain an ordinary differential equation
(ODE) between the acoustic pressure and normal velocity.
A second-degree polynomial was used by Davis10 to model
an open pipe. Tam and Auriault11 broadened his study

by considering a three-parameter model (proportional-
integral-derivative). Inspired by the progress made in the
computational electromagnetics community, Özyörük et
al.12 followed a heuristic approach to propose an admissi-
ble rational fraction of degree 4; as it can match the behavior
of a ceramic tubular liner until the second resonance, it has
been hailed as the first “broadband” model.

The need for a generic, efficient, broadband TDIBC has
led to the introduction of a new family of models, known as
“multi-pole”. They consist of a discrete sum of elementary
first or second-order low-pass systems. The number N of
systems, as well as their respective gains and poles, are de-
grees of freedom (DoF) of the TDIBC, which translates as a
considerable versatility. Moreover, admissibility conditions
are straightforwardly verified, which is not the case for ra-
tional fractions expressed with polynomials (especially of
higher degree). The drawback is that they lead to N el-
ementary convolutions. Borrowed from the computational
electromagnetic community,13 so-called “recursive” (recur-
rent) convolution techniques have been employed by many
authors.14,15,16,8,17 Bin et al.18 used an alternative imple-
mentation, relying instead on N additional differential equa-
tions. A comprehensive study by Dragna et al.19 showed the
benefit of this technique, known as the auxiliary differential
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equations method, over recursive convolution.
However, multi-pole models are purely numerical. An

alternative was proposed by Rienstra,20 who introduced, on
physical grounds, the extended Helmholtz resonator (EHR)
model. Apart from its polynomial part, it consists in the
impedance of a cavity filled with a non-dispersive medium
having a frequency-independent dissipation. Its similarity
to a single DoF liner model eases the fitting process. Sev-
eral implementations have been proposed.21,7,22

Most of the available TDIBCs are designed to be
generic: this implies that they must be tuned based on
available experimental data, which often proves delicate, as
impedance measurements tend to be associated with signif-
icant uncertainties.23

The objective of this paper is to present how a time-domain
analysis of physical models (known to yield satisfactory fits
in the frequency domain) can be used to design a time-local,
parsimonious, tailored, broadband TDIBC. The analysis re-
lies on a technique known as the diffusive, or poles and
cuts,24 representation, referred to herein as the oscillatory-
diffusive representation. It is demonstrated on a wide range
of models, which covers perforated plates, cavities, as well
as porous media. The link with existing TDIBCs is investi-
gated.

This paper is organized as follows. Sec. II recalls some
basics of impedance modeling. Section III lists the physical
impedance models covered, and demonstrates the wide ap-
plicability of so-called fractional polynomial models. These
are covered in Sec. IV, which lays out the derivation of
the TDIBC using the diffusive representation. Sec. V reuses
the same principles to cover more advanced perforation and
semi-infinite ground layer models. Lastly, Sec. VI covers
cavity models through the oscillatory-diffusive representa-
tion, and highlights their specificity.

II. GENERALITIES ON IMPEDANCE MODELING
Absorbing materials, approximated as locally reacting,

are commonly characterized in the frequency domain by
defining a surface acoustic impedance ẑs that links the
acoustic pressure p and normal inward velocity un through

∀s ∈ C : ℜ [s]> ζ , p̂(s) = ẑs (s) ûn (s) . (1)

The e+st (e+jωt ) convention is used at synthesis for the
Laplace (Fourier) transform; the abscissa of convergence
ζ is 0 for all the models covered herein. Provided that the
causality condition is met, (1) translates in the time domain
as the causal convolution

∀t > 0, p(t) = (zs ?un)(t) , (2)

which is a linear integro-differential equation between p
and un. The material is then modeled as a linear time-
invariant (LTI) system, of input un, output p and causal im-
pulse response zs. The scope of this paper is restricted to

this linear framework, the focus being on recasting (2) as a
more convenient set of ODEs.

Through empirical models, (2) may be used to account
for the presence of a basic flow, as long as it is viscous; for
instance, Kirby and Cummings25 proposed a model which
formally reduces to ẑs (s,u∗), where u∗ is the basic flow fric-
tion velocity. However, a departure from LTI modeling is in-
variably caused by: an inviscid basic flow, modeled with the
Ingard-Myers boundary condition;26 nonlinear phenomena,
such as vortex shedding, that arise from high sound pressure
levels.27 An example of nonlinear impedance model is that
of Melling,5 in which the impedance exhibits a dependency
on the acoustic velocity itself: ẑs (s,un).

Admissibility criteria must be met for (2) to describe
a passive absorbing material,28,20 namely reality, passivity,
causality, and stability. No attempt is made herein to rig-
orously account for these criteria, which are verified by all
the models covered; two mere remarks are given. Firstly, the
Laplace transform is the framework of choice for avoiding
mathematical technicalities as it is always a holomorphic
function29 (within the right half-plane), while the Fourier
transform may actually be a tempered distribution, which
is trickier to manipulate. Secondly, every model that uses
a viscous correction proportional to

√
ω (instead of

√
jω),

originally introduced by Ingard,5 fails the reality condition
due to a lack of hermitian symmetry, i.e. ẑs (s∗) 6= ẑs (s)∗,
where ∗ denotes the complex conjugate. Examples include
the Maa model (Eq. 4 of Ref. 30), and Eqs. 9,13,17,22
of Ref. 31. Throughout this paper, for every multi-valued
function, the principal branch (i.e. that which coincides with
the real-valued function over the real axis) is used.

III. ACOUSTIC IMPEDANCE MODELS
The purpose of this section is to describe the acoustic

impedance models ẑs covered in this paper. The configu-
ration considered herein is a perforated plate, backed by
cavities of length lc and diameter dc. Its surface acoustic
impedance can be split as, assuming the perforation flow is
incompressible,32

ẑs =
ẑp

σ
+ ẑb, (3)

where σ is the porosity, ẑp is the perforation impedance
(also known as a partition impedance), and ẑb is the
impedance of the backing cavity (filled with air or a porous
medium), expressed as

ẑb (s) = jẑc (s)cot [−kc (s) lc] = ẑc (s)coth [jkc (s) lc] , (4)

where kc is the propagation wavenumber within the cav-
ity, and ẑc is the characteristic impedance of the cavity-
filling medium. In outdoor sound propagation, ẑp = 0, and
a common approximation is the semi-infinite ground layer,
whereby wave reflection is neglected, which leads to

ẑs (s) = ẑc (s) . (5)
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Models for ẑp and (ẑc,kc) are given in Sec. A and B, re-
spectively. Their high and low-frequency approximations
are systematically given, as these are specifically covered
in Sec. IV.

A. Perforation impedance models
The impedance of a perforation of length l and diameter

d has originally been derived by Crandall,3 who considered
a Stokes flow within an infinite circular cylinder:

ẑp (s) = ρ0l s [1−Φ(kν
d/2)]−1 (6)

=
+∞

3
ρ0lν

(d/2)2 +2
ρ0l
√

ν

d/2

√
s+ρ0l s+O

[
1

|kν
d/2|

]
(7)

=
0

8
ρ0lν

(d/2)2 +
4
3

ρ0l s+O
[
|kν

d/2|4
]
, (8)

where Φ(x) := 2
x

I1
I0
(x) (In is the modified Bessel function

of the first kind of order n), kν :=
√

s/ν is the wavenumber
associated to viscous diffusion, ρ0 the basic flow density,
and ν the kinematic viscosity. The dimensionless quantity
|kν

d/2| is the Stokes number, and is proportional to the ratio
of the diameter d to the acoustic boundary layer thickness.
When the perforation is instead a slit of width b, the model
is formally similar (chap. 4 of Ref. 32):

ẑp (s) = ρ0l s [1−Ψ(kν
b/2)]−1 (9)

=
+∞

ρ0lν

(b/2)2 +
ρ0l
√

ν

b/2

√
s+ρ0l s+O

[
1

|kν
b/2|

]
(10)

=
0

3
ρ0lν

(b/2)2 +
6
5

ρ0l s+O
[
|kν

b/2|4
]
, (11)

where Ψ(x) := tanh(x)/x. These two models, (6) and (9), serve
as a basis to cover more complex materials.33

In 2007, Atalla and Sgard31 proposed to model perfo-
rates in the same fashion as rigid-frame porous media:

ẑp (s) = ρ0l sα (s) , (12)

where α is the dynamic tortuosity, for which they suggested
the model of Johnson et al. (chap. 5 of Ref. 32):

α (s) = α∞ +
σφ

ρ0

1
s

√
1+ sτ, (13)

where φ denotes the flow resistivity, α∞ the tortuosity, and

τ := ν

[
ρ0α∞

σφΛ/2

]2
a characteristic time expressed with the vis-

cous characteristic length Λ, taken as d/2 or b/2 for perfo-
rated plates. The model (12) is shown able to recover many
existing models (such as the Beranek Ingard model), pro-
vided that α∞ is modified accordingly. Its high and low-
frequency approximations read

ẑp (s) =
+∞

σφ l
√

τ
√

s+α∞ρ0l s+O [1/
√
|sτ|] (14)

=
0

φσ l +α∞ρ0l s
[

1+
σφτ

2α∞ρ0

]
+O

[
|sτ|2

]
. (15)

Adjustment for radiation, viscosity and interaction effects
is commonly achieved by correcting the length l.5,31

B. Backing medium impedance models
Miki6 proposed an empirical model applicable to many

fibrous porous material; to enforce the reality condition, it
must be written as

ẑc

z0
(s) = 1+

0.070
cos bπ

2

[
2πφ

s

]b

(b = 0.632) (16)

jkc (s) =
s
c0

[
1+

0.109
cosr π

2

(
2πφ

s

)r]
(r = 0.618) , (17)

where z0 := ρ0c0 is the characteristic impedance of air.
In their recent thorough study of impedance models for
outdoor sound propagation, Dragna and Blanc-Benon28

showed that five porous medium models can be written as
(see table I of Ref. 28):

ẑc

z0
(s) = qz

[
(s+ω1)(s+ω2)

s(s+ω3)

]1/2

(18)

=
+∞

qz

[
1+

ω1 +ω2−ω3

2
1
s

]
+O

[
1
|s|2

]
(19)

=
0

qz

√
ω1ω2

ω3

1√
s
+O

[√
|s|
]

(20)

jkc (s) = qk
s
c0

[
(s+ω1)(s+ω3)

s(s+ω2)

]1/2

(21)

=
+∞

qk
s
c0

[
1+

ω1 +ω3−ω2

2
1
s

]
+O

[
1
|s|

]
(22)

=
0

qk
s
c0

[√
ω1ω3

ω2

1√
s

]
+O

[
|s|3/2

]
, (23)

where qz and qk are two non-dimensional positive coeffi-
cients and the angular frequencies ωi are positive.
A common model for semi-infinite ground layers is the so-
called variable porosity model:28

ẑc

z0
(s) =

√
ω0

1√
s
+ω1

1
s
, (24)

where the angular frequencies ωi are positive.
By considering a Stokes flow with thermal effects,

Bruneau derived a wavenumber for an air-filled isothermal
cylindrical cavity of diameter dc (see Sec. 3.7 of Ref. 4):

jkc (s) =
s
c0

[
1+(γ−1)Φ(kκ

dc/2)

1−Φ(kν
dc/2)

]1/2

(25)

=
+∞

s
c0

[
1+
√

ν

dc/2

(
γ−1√

Pr
+1
)

1√
s

]
+O [1] (26)

=
0

s
c0

[
2
√

2
√

γν

dc/2

1√
s

]
+O

[
|kν

d/2|3
]
, (27)
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where γ denotes the ratio of specific heat, and κ the ther-
mal diffusivity. For an adiabatic cavity, thermal effects can
be neglected: the Prandtl number Pr is infinite, φ (kκ

dc/2)
is null. Additionally, neglecting viscous effects leads to the
inviscid wavenumber

jkc (s) =
s
c0
. (28)

IV. FRACTIONAL POLYNOMIAL IMPEDANCE
MODELS IN THE TIME DOMAIN
Sec. III has shown that most of the high and low-

frequency approximations of both perforation and semi-
infinite ground layer models are so-called fractional poly-
nomial impedance models (FPIMs), defined as

(ℜ [s]> 0) ẑs
1 (s) = a-α

1
sα

+a0 +aβ sβ +a1s, (29)

where the coefficients a· are non-negative, and (α,β ) is in
]0,1[2. (Note that describing (29) as a fractional polynomial
is an abuse of terminology when α 6= 0.) This section fo-
cuses on the design of a TDIBC for FPIMs, which are a first
step toward more complex models. It is voluntarily detailed
so as to enable a clearer presentation of the more general
developments presented in Sec. V and VI.

The FPIM (29) exhibits two fractional terms, namely
s−α and sβ . In each of the physical models reviewed in
Sec. III, at the notable exception of the empirical Miki
model (16), α or β equals 1/2. Physically, a fractional term√

s is the manifestation of a diffusion process, be it viscous
or thermal. For instance, in perforations or cavities, this dif-
fusion process occurs within a (thermal) viscous boundary
layer, whose thickness δν (δκ ) is given by (see Sec. 2.5.2 of
Ref. 4) δ• =

√
2/
∣∣∣√s/•

∣∣∣, where • denotes ν (κ). As a rule, the
main contribution of this fractional term is on the resistance
(see, for instance, the Crandall model (7)).

This section is broken down in four parts. Sec. A covers
the admissibility of (29). The design of the TDIBC for s−α

is described in Sec. B, while sβ is covered in Sec. C. Opti-
mization strategies are finally discussed in Sec. D. Sec. A is
rather technical, and can be omitted at first reading, as it is
not necessary to understand the subsequent sections.

A. Admissibility in the time domain
The purpose of this section is to justify the admissibil-

ity of (29), which has recently been challenged in the litera-
ture.20 As zs

1 obeys the admissibility conditions mentioned
in Sec. II, it is a causal and tempered distribution. However,
a second, more constructive argument, draws from a theory
of fractional calculus.34 The starting point is to rewrite (29)
as

ẑs
1 (s) = a-α ĥα

1 (s)+a0 +aβ ĥ1-β
1 (s) s+a1s, (30)

where the function ĥα
1 is defined in the frequency domain as

(ℜ [s]> 0) ĥα
1 (s) :=

1
sα

, (31)

and in the time domain as the causal function

(t > 0) hα
1 (t) :=

1
Γ(α) t1−α

, (32)

with Γ denoting the Euler gamma function. The fractional
integration is defined using the Riemann-Liouville formula
(valid for any real number α ≥ 0):

Iα [un] (t) :=
(
hα

1 ?un
)
(t) =

ˆ t

0
hα

1 (t)un (t− τ) dτ. (33)

However, the definition of the fractional derivative requires
more caution. A mere generalization of (33) for α < 0,
known as the Riemann-Liouville fractional derivative, is
unpractical (i.e. is only properly defined in the space of
causal distribution).34 Including a non-null initial condition
on un leads to the fractional derivative in the sense of Ca-
puto,35,34 defined for β ∈]0,1[ as

dβ [un] :=
(
h1-β

1 ? u̇n
)
= I1-β [u̇n] , (34)

where Newton’s notation is used for the time derivative
of un. The Caputo derivative (34) consists in applying the
Riemann-Liouville formula to the time derivative u̇n of un.

Both (33) and (34) are real-valued, causal and passive
operators; in the time domain, (30) converts into the follow-
ing fractional differential equation:

p = a-α Iα [un]+a0un +aβ dβ [un]+a1u̇n. (35)

However insightful (35) may be, its numerical integration
is cumbersome as is. The next two sections, Secs. B and C,
focus on the design of an efficient TDIBC for the fractional
integral and derivative, using the diffusive representation.

B. Fractional integral in the time domain

In this section, we design a TDIBC for the fractional
integral in (29), denoted

(ℜ [s]> 0) ẑ-α
1 (s) := a-α s−α = a-α ĥα

1 (s) . (36)

The diffusive representation of hα
1 , presented in Sec. 1, en-

ables to formulate a continuous TDIBC in Sec. 2, the dis-
cretization of which leads to the TDIBC in Sec. 3.

ℜ[s]

ℑ[s]

0
ĥα

1e(−ξ+)

ĥα
1e(−ξ−)

cut C
Rε

c
Γ
+
R

Γ
−
R

Γ+
ε

Γ−ε Cε

FIG. 1. (Color online) Bromwich path used to compute (37). The jump of
ĥα

1e across the cut is at the origin of the diffusive representation (40).
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1. Diffusive representation

To derive a more computationally practical representa-
tion of ĥα

1 , the starting point is the Bromwich integral

(t > 0) hα
1 (t) =

1
2jπ

ˆ c+j∞

c−j∞
ĥα

1 (s)est ds. (37)

The analytical computation of (37) uses a well-known tech-
nique in complex analysis:36 the conjoint use of the residue
theorem with Jordan’s lemma on a closed path. The subtlety
(and, subsequently, the richness of the model) lies in the
fact that ĥα

1 is only defined in the right half-plane ℜ [s]> 0:
any extension to the left half-plane leads to a multivalued
function. The choice of a cut C on R− enables to define an
extended function ĥα

1e, which coincides with ĥα
1 on the right

half-plane and preserves its hermitian symmetry:

(s ∈ C\R−) ĥα
1e (s) :=

1
sα

. (38)

On the path depicted in Fig. 1, which circumvents the cut,
the residue theorem gives, for all ε > 0 and R > ε :
ˆ c+jR

c−jR
ĥα

1e (s)est ds+
ˆ

ΓR∪Γε∪Cε

ĥα
1e (s)est ds = 0. (39)

After taking the limit R→ ∞ (Jordan’s lemma) then ε → 0,
the only remaining contribution on hα

1 (t) is that of the cut,
which can be merged into one integral:

hα
1 (t) =

ˆ
∞

0
µ

α
1 (ξ )e−ξ t dξ . (40)

The diffusive weight µα
1 , which is the result of ĥα

1e being
multivalued, is proportional to the jump of ĥα

1e across the
cut C :24

(ξ > 0) µ
α
1 (ξ ) =

1
2jπ

[
ĥα

1e
(
−ξ
−)− ĥα

1e
(
−ξ

+
)]

(41)

=
sin(απ)

π
× 1

ξ α
. (42)

The identity (40) is known as the diffusive representation
(also representation by cut) of the convolution kernel hα

1 ;
in the frequency domain, computing its Laplace transform
yields

ĥα
1 (s) =

ˆ
∞

0

µα
1 (ξ )

s+ξ
dξ , (43)

provided that switching the order of integration is licit,
i.e. that the diffusive weight obeys the following well-
posedness condition

ˆ
∞

0

∣∣µα
1 (ξ )

∣∣
1+ξ

dξ < ∞. (44)

The theoretically exact representation (40) gives an insight
into the dynamic of the fractional integral (33): it consists
in a continuum of first-order dynamics, which extends from
high frequencies (ξ � 1, short memory) to low frequencies
(ξ � 1, long memory).

2. Continuous TDIBC

The diffusive representation (43) enables us to rewrite
the fractional impedance model (36) as a continuum of first-
order low-pass systems

ẑ-α
1 (s) = a-α

ˆ
∞

0

µα
1 (ξ )

s+ξ
dξ , (45)

or, equivalently, in the time domain

z-α
1 (t) = a-α

ˆ
∞

0
µ

α
1 (ξ )e−ξ t dξ , (46)

which leads to the following continuous TDIBC

p(t) = a-α

ˆ
∞

0
µ

α
1 (ξ )

(
e−ξ · ?un

)
(t) dξ , (47)

where the original convolution z-α
1 ? un is “reduced” to an

infinity of simpler convolutions, namely e−ξ · ?un. The com-
putational interest of (47) stems from the fact that it can be
recast using only first-order ODEs:

p(t) = a-α

ˆ
∞

0
µ

α
1 (ξ )ϕξ (t) dξ , (48)

where the diffusive (also memory) variables ϕξ are defined
as

ϕξ (t) :=
(
e−ξ · ?un

)
(t)+ϕ0 (ξ )e−ξ t , (49)

and solve the first-order ODE

ϕ̇ξ (t) =−ξ ϕξ (t)+un (t) ϕξ (0) = ϕ0 (ξ ) , (50)

with null initial condition ϕ0 (ξ ) = 0. (ϕ̇ξ denotes the
time derivative of ϕξ .) The continuous TDIBC consists of
(48,50). Mathematically, the fractional integration (33) has
been expressed as an observer of the infinite-dimensional
state space representation (50).

3. Discrete TDIBC

The corresponding discrete TDIBC is simply deduced
from a discretization of the continuous TDIBC (45,46,48),
which yields

(ℜ [s]> 0) ẑ-α
1,num (s) = a-α

Nϕ

∑
k=1

µ̃k

s+ξk
(51)

(t > 0) z-α
1,num (t) = a-α

Nϕ

∑
k=1

µ̃ke−ξkt (52)

(t > 0) p(t) = a-α

Nϕ

∑
k=1

µ̃kϕk (t) , (53)

where the Nϕ poles ξk and gains µ̃k remain to be chosen
(see Sec. D). Each of the Nϕ diffusive variables ϕk := ϕξk
obeys the first-order dynamic (50) with null initial condition
ϕk (0) = 0.

5



C. Fractional derivative in the time domain
In this section, we design a TDIBC for the fractional

Caputo derivative in (29), denoted

(ℜ [s]> 0) ẑβ

1 (s) := aβ sβ = aβ ĥ1-β
1 (s) s. (54)

The diffusive representation of ĥ1-β
1 computed in Sec. B

readily yields

ẑβ

1 (s) = aβ

[ˆ
∞

0

µ
1-β
1 (ξ )

s+ξ
dξ

]
s. (55)

The corresponding continuous TDIBC is therefore

(t > 0) p(t) = aβ

ˆ
∞

0
µ

1-β
1 (ξ )

(
e−ξ · ? u̇n

)
(t) dξ . (56)

By contrast with (47), the elementary convolutions are
e−ξ · ? u̇n instead of e−ξ · ?un. However, by using the identity

e−ξ · ? u̇n =−ξ

[
un (0)

ξ
e−ξ ·+ e−ξ · ?un

]
+un, (57)

the expression (56) can be recast as

p(t) = aβ

ˆ
∞

0
µ

1-β
1 (ξ )

[
−ξ ϕξ (t)+un (t)

]
dξ , (58)

where the diffusive variables ϕξ still obey (50), but with
non-null initial condition ϕ0 (ξ ) = un(0)/ξ . Note that this
non-null initial condition is the very difference between
the fractional derivative in the sense of Caputo and that of
Riemann-Liouville, used by Ostashev et al.16 and Blanc et
al.37

Consequently, the discrete TDIBC reads:

(ℜ [s]> 0) ẑβ

1,num (s) = aβ

[
Nϕ

∑
k=1

µ̃k

s+ξk

]
s (59)

(t > 0) p(t) = aβ

Nϕ

∑
k=1

µ̃k [−ξkϕk (t)+un (t)] , (60)

where the Nϕ poles ξk and gains µ̃k remain to be chosen
(see Sec. D).

D. Optimization strategy
The DoF of the TDIBCs (53) and (60) are the Nϕ poles

ξk and gains µ̃k. The numerical model should be a fair
approximation of the theoretical one, which translates for
ẑ-α

1,num as
Nϕ

∑
k=1

µ̃k

jω +ξk
' ĥα

1 (jω) (61)

on a band of interest [ωmin,ωmax], for Nϕ as small as pos-
sible. On typical aeroacoustical applications,2 an approx-
imation can be considered broadband if the bandwidth is

above 10kHz. As the approximation problem ẑβ

1,num (jω)'
ĥ1-β

1 (jω) jω is formally identical to (61), the same optimiza-
tion process applies. In particular, the same gains can be
used to fit both ĥα

1 and ĥ-α
1 . Note that the discrete TDIBCs

obey a convergence property, i.e. ẑnum→ ẑ on [ωmin,ωmax]
for Nϕ → ∞.

To compute the gains µ̃k, the direct use of the ana-
lytical expression (42) of µα

1 with numerical quadratures
proves not practical, as it leads to non-parsimonious ap-
proximations. A simple yet efficient method consists in a
least-square fit in the frequency domain: the cost function
is defined as24

J (µ̃,ξ ) =
ˆ

ωmax

ωmin

w(ω)

∣∣∣∣∣
Nξ

∑
k=1

µ̃k

jω +ξk
− ĥα

1 (jω)

∣∣∣∣∣
2

dω, (62)

where w is a weight function. In practice, to approximate
ĥα

1 , it is not necessary to optimize simultaneously both the
gains and the poles: the latter can be chosen. The optimiza-
tion procedure then goes as follows. Firstly, a distribution
of Nϕ poles (ξk)k is chosen. Typically, a linear or logarith-
mic placement over [ωmin,ωmax] is satisfactory. Secondly,
the optimal gains µ̃opt are computed from a minimization
of µ̃ 7→ J(µ̃,ξ ). As this is a (overdetermined) linear least
squares optimization problem, it is directly solved through
a pseudo-inverse, without iterations.
An illustration for

√
jω is proposed in Fig. 2, for respec-

tively two and six poles linearly placed between 10Hz and
10kHz. In this case, only a few poles are enough to achieve
a broadband approximation. Note that, since ĥα

1 is indepen-
dent of the considered absorbing material (i.e. of the co-
efficients a·), then so are the gains µ̃k and poles ξk. This
implies that, for FPIMs, the described optimization process
is required only once.

0 2 4 6 8 10
0

0.2

0.4

Frequency f (kHz)

ℜ
[ẑ /

z 0
]=

ℑ
[ẑ /

z 0
] 0 2 4 6 8

Stokes number |kν d/2|

FIG. 2. (Color online) Broadband approximation of the Crandall
model (7), for a perforation of length l = 0.8mm and diameter d =
0.3mm, typical of aeronautical micro-perforated liners. Real poles ξk
are linearly placed between 10Hz and 10kHz. ( ): fractional term
ℜ

[
2 ρ0l

√
ν

d/2

√
jω
]
/z0. ( ): Nϕ = 2 poles at ( ). ( ): Nϕ = 6 poles

at ( ). (Optimization with w(ω) = ω .)

For numerical simulations, it is of paramount impor-
tance that the TDIBC does not adversely impact numerical
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stability (i.e. that it is neutral on the CFL condition, if appli-
cable). In that respect, the key parameter of (60) is the value
of the greatest pole, denoted ξmax: the higher ξmax, the lower
the admissible time-step (remember that Nξ ODEs (50) now
have to be integrated alongside the acoustic variables in the
domain). Therefore, the ability to choose the poles (or, at
least, ξmax) is beneficial. For instance, in Ref. 38, ξmax is
chosen to be inferior to the maximum resolved angular fre-
quency of the spatial discretization scheme.

In this section, the diffusive representation (40) of the
convolution kernel hα

1 enabled to recast FPIMs (29) using
only first-order ODEs (50): see (48) and (58). FPIMs can
therefore be described as consisting of a constant resistance
a0, a mass reactance a1s and two diffusive parts: they are a
particular case of partly diffusive impedance models, which
are covered in the next section.

V. PARTLY DIFFUSIVE IMPEDANCE MODELS IN
THE TIME DOMAIN
The purpose of this section is to further the study

of Sec. IV, by designing TDIBCs for models other than
FPIMs, which are mostly low or high-frequency approxi-
mations. More specifically, the models covered herein are
those that are partly diffusive, referred to as partly dif-
fusive impedance models (PDIMs). (In particular, FPIMs
are PDIMs.) As a rule, physically, PDIMs are impedance
models applicable to perforations and semi-infinite ground
layers. This section presents the analysis of a perforation
model in Sec. A, and of three semi-infinite ground layer
models in Sec. B. It ends with a discussion of multi-pole
models within the framework of PDIMs.

A. Atalla and Sgard perforation model
The Atalla and Sgard perforation model (12) can be

written without approximations as

(ℜ [s]> 0) ẑ2 (s) = a 1
2

√
1+ τs+a1s, (63)

where the coefficients a· and the time-constant τ are non-
negative. To convert (63) in the time domain using a diffu-
sive representation, its diffusive part ĥ2 must be identified.
Intuitively, ĥ2 must be (at least) multivalued and decreasing
at infinity, so that the methodology laid out in Sec. IV can
be applied. Heuristically, the diffusive part is found to be

ĥ2 (s) :=
√

1+ τs−1
s

. (64)

It is a multivalued function, who can be extended to the left
half-plane with a cut C2 in ]−∞,−τ−1[. It admits a diffu-
sive representation (43) whose diffusive weight µ2 can be
computed from the jump across the cut (41), which yields

µ2 (ξ ) =
1
π

√
τξ −1

ξ
1C2 (ξ )

(
C2 :=]τ−1,+∞[

)
. (65)

Compared to the diffusive weight µ1 of FPIMs (42), here,
µ2 is null for any angular frequency ξ below τ−1: this in-
dicates that the dynamic of ĥ2 is comprised of a continuum
of first-order systems whose time constants are strictly su-
perior to τ .

This analysis enables to recast the Atalla and Sgard
model (63) as

ẑ2 (s) = a 1
2
+a 1

2
ĥ2 (s) s+a1s (66)

= a 1
2
+a 1

2

ˆ
∞

τ−1
µ2 (ξ )

s
s+ξ

dξ +a1s. (67)

The identity (67) demonstrates that the Atalla and Sgard
model is a PDIM, which consists in a pure resistance a 1

2
,

a mass reactance a1s, and a diffusive part ĥ2 (s). In the
time domain, it translates into the following causal integro-
differential equation:

p = a 1
2
un +a 1

2

ˆ
∞

τ−1
µ2 (ξ )

(
e−ξ · ? u̇n

)
dξ +a1u̇n. (68)

Using the identity (57), the continuous TDIBC eventually
reads

p = a 1
2
un +a 1

2

ˆ
∞

τ−1
µ2 (ξ )

[
−ξ ϕξ +un

]
dξ +a1u̇n, (69)

where the diffusive variable ϕξ obey the ODE (50) with the
non-null initial condition ϕ0 (ξ ) = un(0)/ξ . The discretiza-
tion of (69), as well as the broadband optimization of the Nϕ

gains µ̃k and poles ξk can be done through the exact same
process as that presented in Sec. IV. The only notable dif-
ference is that the poles ξk now obey ξk > τ−1. The present
analysis has shown how the Atalla and Sgard model should
be numerically approximated.

B. “Square-root type” semi-infinite ground layer model
This section is dedicated to the analysis of “square-root

type” characteristic impedance models (18) used for semi-
infinite ground layers (5). Following the table I of Ref. 28,
three cases must be distinguished, each one covering a dif-
ferent set of models, depending on the values of the angu-
lar frequencies ωi. They are all PDIMs, and, as such, their
analysis follows the same methodology as that exposed for
the Atalla and Sgard model. Therefore, developments have
been kept concise.

The first case consists in ω2 and ω3 being null; the
model then reduces to

(ℜ [s]> 0) ẑ31 (s) = qz

√
s+ω1√

s
. (70)

It is a PDIM, whose diffusive part ĥ31 can be extended to
the left half-plane by defining a cut C31 in ]−ω1,0[; it can
be recast as

ẑ31 (s) = qz +qzĥ31 (s) (71)

= qz +qz

ˆ
ω1

0

µ31 (ξ )

s+ξ
dξ , (72)
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where the diffusive weight µ31 is computed from (41):

µ31 (ξ ) =
1
π

√
ω1−ξ√

ξ
1C31 (ξ ) (C31 :=]0,ω1[) . (73)

Here, the diffusive weight is null for ξ > ω1 : the dynamic
of ĥ31 is comprised of a continuum of first-order systems
whose time constants are strictly inferior to 1/ω1. The cor-
responding continuous TDIBC is:

p = qz un +qz

ˆ
ω1

0
µ31 (ξ )ϕξ dξ , (74)

where the diffusive variables ϕξ obey (50) with the null ini-
tial condition ϕ0 (ξ ) = 0.

The second case consists in ω1 = ω2, which leads to the
following model:

(ℜ [s]> 0) ẑ32 (s) = qz
s+ω1√
s(s+ω3)

. (75)

It is a PDIM, which can be written as

ẑ32 (s) = qz ĥ32 (s)(s+ω1) (76)

= qz

ˆ
ω3

0
µ32 (ξ )

s+ω1

s+ξ
dξ , (77)

where the diffusive weight µ32 of the diffusive part ĥ32 is,
the cut being on ]−ω3,0[:

µ32 (ξ ) =
1
π

1√
ξ (ω3−ξ )

1C32 (ξ ) (C32 :=]0,ω3[) .

(78)
The corresponding time-domain equation is slightly differ-
ent from the ones covered so far:

p = qz

ˆ
ω3

0
µ32 (ξ )

(
e−ξ · ? (u̇n +ω1un)

)
dξ . (79)

Using the diffusive variables (49), the continuous TDIBC
reads

p = qz

ˆ
ω3

0
µ32 (ξ )

[
−(ξ −ω1)ϕξ +un

]
dξ , (80)

where the diffusive variables obey (50) with the non-null
initial condition ϕ0 (ξ ) =

un(0)
ξ−ω1

.
The third and last case consists in ω1, ω2, and ω3 both

non-null and different from one another:

(ℜ [s]> 0) ẑ33 (s) = qz

√
(s+ω1)(s+ω2)

s(s+ω3)
. (81)

It is also a PDIM, which can be recast as

ẑ33 (s) = qz +qzĥ33 (s)

= qz +qz

ˆ
∞

0

µ33 (ξ )

s+ξ
dξ . (82)

The corresponding continuous TDIBC is therefore

p = qz un +qz

ˆ
∞

0
µ33 (ξ )ϕξ dξ , (83)

where the diffusive variables ϕξ obey (50) with ϕ0 (ξ ) = 0.
However, the complication of this case lies in the fact that
the cut depends upon the position of ω3 relative to ω1. Us-
ing the expression (41), we can write

µ33 (ξ ) =
1
π

√∣∣∣∣ (ξ −ω1)(ξ −ω2)

ξ (ξ −ω3)

∣∣∣∣ι (ξ ) , (84)

where the function ι (ξ ) reflects the location of the cut on
the negative real axis. For ω3 > ω2 (beware of the minus
sign), ι (ξ ) = 1]0,ω1[ (ξ )−1]ω2,ω3[ (ξ ), for ω3 between ω1
and ω2, ι (ξ ) = 1]0,ω1[ (ξ )+1]ω3,ω2[ (ξ ), and for ω3 < ω1,
ι (ξ ) = 1]0,ω3[ (ξ )+1]ω1,ω2[ (ξ ).

C. Link with multi-pole models

In Sec. IV and V, six partly diffusive models
(45,55,67,72,77,82) have been covered. They can be writ-
ten in a compact manner as

ẑ(s) = a0 +aµ ĥµ (s)+aη ĥη (s) s+a1 s, (85)

where the coefficients a· are positive, and ĥ• denotes the dif-
fusive representation (43) with the diffusive weight •. For
three of these models, namely (45,72,82), the coefficient aη

is null; once discretized, they reduce to

ẑ(s) = a0 +aµ

Nϕ

∑
k=1

µ̃k

s+ξk
+a1s, (86)

where the gains µ̃k are real. The expression (86) is that of
a multi-pole model, as found in the aeroacoustics litera-
ture,15,17 with three notable specificities. Firstly, the coef-
ficients a· are modeled, not optimized. The gains and poles
follow from the optimization process presented in Sec. D.
Note that, for the models (45,55,67,72,77), the diffusive
part ĥ• is independent of the material (or can be made inde-
pendent using a linear change of variable). The optimization
process is then required only once. Secondly, the poles ξk
may be restricted to a given band, as is the case for (72,82).
Lastly, the poles ξk are real. Although it is possible for a
discrete diffusive representation to lead to complex poles,39

this is not the case for the acoustical models studied so far.
A family of models which exhibits complex poles is cov-
ered in the next section.
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VI. PARTLY OSCILLATORY-DIFFUSIVE
IMPEDANCE MODELS IN THE TIME DOMAIN
The purpose of this section is to study backing cavity

impedance models (4), thus completing the analysis of the
models given in Sec. III. The model analyzed herein is (4)
with a fractional polynomial wavenumber:

(ℜ [s]> 0) ẑ4 (s) = zc coth
[
(a0 +aα sα +a1s)lc

]
, (87)

where α ∈ ]0,1[, the coefficients a· are non-negative, and
zc is frequency-independent. This model is simple enough
to permit a semi-analytical derivation of its time-domain
representation, yet rich enough to cover a wide range of
acoustical models: (17,28) and approximations of (21,25).
Moreover, without the fractional term, i.e. for aα = 0, (87)
reduces to the EHR numerical model,20 widely used for nu-
merical simulations.
This section is organized as follows. Sec. A presents the
derivation of the discrete TDIBC. Sec. B illustrates the
achievable broadband approximations.

A. Time-domain representation
The first step to derive the time-domain representation

is to recast (4) as

ẑ4 (s) = zc +2zc
e−2jkc(s)lc

1− e−2jkc(s)lc
, (88)

which can be rewritten, using the expression of jkc:

ẑ4 (s) = zc +2zcϒe−∆t s ĥ4 (s) , (89)

with the dimensionless coefficient ϒ := e−2a0lc < 1, the time
delay ∆t := 2a1lc, and the function

ĥ4 (s) :=
e−2aα lcsα

1−ϒe−2(a1s+aα sα )lc
. (90)

At first sight, the identity (89) may seem analogous to those
derived for PDIMs, such as (66) or (71). However, the first
major difference is the exponential factor, which translates
in the time domain into a delay:

p(t) = zcun (t)+2zcϒ [h4 (·−∆t)?un] (t) . (91)

Physically, ∆t is the time it takes a normal incidence plane
wave to travel in and out of the inviscid cavity: ∆t = 2lc/vg,
where vg denotes the group velocity. The second major dif-
ference lies in the nature of ĥ4, which does not admit a dif-
fusive representation (43). Indeed, although ĥ4 is a multi-
valued function which can be extended to the left half-plane
with a cut in R−, it also has poles.40 Using the residue the-
orem and Jordan’s lemma (as in (39)) leads to the following
representation

h4 (t) = r0es0t +2
∞

∑
n=1

ℜ
[
rnesnt]+ˆ ∞

0
µ

α
4 (ξ )e−ξ t dξ (92)

ĥ4 (s) =
r0

s− s0
+

∞

∑
n=1

rn

s− sn
+

r∗n
s− s∗n

+

ˆ
∞

0

µα
4 (ξ )

s+ξ
dξ , (93)

which is split between an oscillatory part, associated with
the poles sn and their complex residues rn, and a diffusive
part, linked to the fractional term sα through the diffusive
weight µα

4 . The representation (92) is called the oscillatory-
diffusive (also poles and cuts)24 representation of h4. The
impedance model ẑ4 is said to be a partly oscillatory-
diffusive impedance model (PODIM), whose oscillatory-
diffusive part is ĥ4. As illustrated in Sec. B, the poles sn
are associated to anti-resonances in the frequency domain;
they solve the following fractional polynomial equation in
C (which may not admit a solution for a given n)

(n ∈ Z) a1sn +aα sα
n =−a0 + j

nπ

lc
, (94)

and the complex residues rn are given by

rn := Res
(
ĥ4,sn

)
=

e−2aα lcsα
n

2
(
a1 +αaα sα−1

n
)

lc
. (95)

The poles are paired (i.e. sn is the complex conjugate of
s-n), which reflects the reality condition. The stability con-
dition implies that each pole has a negative real part. Lastly,
the diffusive weight, which is subject to the well-posedness
condition (44), is given by, for ξ > 0,

µ
α
4 (ξ ) =

1
π

sin(2aα lcξ α)

1−2ϒe∆tξ cos(2aα lcξ α)+ϒ2e2∆tξ
. (96)

Without a fractional term (i.e. aα = 0), the diffusive weight
is null, and the representation (92) is purely oscillatory.
By injecting (92) into (91), one can express the continuous
TDIBC associated with ẑ4 as

p(t) = zcun (t)+2zcϒ

[
r0ψ0 (t−∆t)

+2
∞

∑
n=1

ℜ [rnψn] (t−∆t)+
ˆ

∞

0
µ

α
4 (ξ )ϕξ (t−∆t) dξ

]
,

(97)

where there are now two families of additional variables:
the diffusive variables ϕξ , defined by (49), which obey the
first-order real-valued ODE (50) with null initial condition
ϕ0 (ξ ) = 0, and the oscillatory variables ψn := esn· ? un,
which obey the following first-order complex-valued ODE:

(n ∈ N∗) ψ̇n (t) = snψn (t)+un (t) ψn (0) = 0. (98)

In contrast with the TDIBCs derived in Secs. IV and V
(48,58,69,74,80,83), the TDIBC (97) is expressed through
delayed first-order ODEs.

From the above analysis, the following discrete TDIBC
can be proposed

ẑnum
4 (s) = 1+2ϒe−∆t sĥnum

4 (s) , (99)
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where the oscillatory-diffusive part ĥ4 is approximated by

ĥnum
4 (s) :=

r̃0

s− s0
+

Nψ−1

∑
n=1

r̃n

s− sn
+

r̃∗n
s− s∗n

+
Nϕ

∑
k=1

µ̃k

s+ξk
, (100)

whose DoF are the Nψ complex poles sn and gains r̃n, and
the Nϕ real poles ξk and gains µ̃k. To tune ĥnum

4 , an opti-
mization procedure similar to that presented in Sec. IV can
be followed: the poles ξk are chosen, the poles sn are ob-
tained from solving (94), and the gains µ̃k,r̃n are computed
from the minimization of a least-square distance between
ĥ4 and ĥnum

4 , which reduces to computing a pseudo-inverse.
Note that the expression of ĥ4 given by (90) depends upon
a0, aα and a1. Any change of variables will leave at least
two dependencies. Therefore, in contrast to Sec. V, the op-
timization process does depend upon the material.

0 2 4 6 8 10
0

2

4

f (kHz)

ℜ
[ẑ /
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FIG. 3. (Color online) CT57 Broadband modeling. ( ): educed
impedance. 41 ( ): fractional model (101). ( ): EHR model (102).
(The cavity cut-off frequency is above 300kHz.)

B. Application on a ceramic tubular liner
To illustrate the capability of the numerical model (99)

to realize both a parsimonious and broadband approxima-
tion of a physical model, it is herein applied to two models.
A fractional one

ẑFr (s) =
zc

σ
coth

[
(a 1

2

√
s+a1s)lc

]
, (101)

and the EHR model (without its polynomial part)

ẑEHR (s) =
zc

σ
coth

[
(a0 +a1s)lc

]
. (102)

Using, for instance, the Bruneau wavenumber (25), both
models can be fit to experimental data without optimiza-
tion. A widely-used benchmark is the liner CT57.41 It is a
ceramic tubular liner, whose dimensions are a cavity length
lc = 85.6mm, a cavity diameter dc = 0.6mm, and a poros-
ity σ = 57%. In Fig. 3 is proposed a comparison between
experimental data, the fractional model (101) and the EHR
model (102). Both models accurately match the experimen-
tal data, but differ at both low frequencies (see the EHR’s
reactance) and high frequencies. These differences stem
from the two different modelings of visco-thermal losses:

through a fractional term a 1
2

√
s or a frequency-independent

constant a0. The former, which is physically-based, is ex-
pected to be more representative than the latter. However,
additional experimental data (especially over a broader fre-
quency range) could help favor one over the other.
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−10
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10
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sn<0
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ℑ
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n]
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H
z)

FIG. 4. (Color online) First poles (sn)n of ĥ4, given by (94), for three
models. ( ): fractional (101). ( ): EHR (102). ( ): inviscid, i.e. (102) with
a0 = 0. Marker area is proportional to residue magnitude |rn| (95).
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FIG. 5. (Color online) Analysis of the fractional model (101) using (89).
( ): full model (101). ( ): diffusive part of ĥ4 neglected (i.e. oscil-
latory part (rn)n, (sn)n only). ( ): oscillatory part of ĥ4 neglected (i.e.
diffusive part µα

4 only).

To build an approximation to (101) or (102) using the
discrete TDIBC (99), a balance has to be struck between an
accurate approximation of the oscillatory part (Nψ ) and of
the diffusive part (Nϕ ). To that end, insights can be gained
from comparing their relative importance. A plot of the first
pairs of complex poles is proposed in Fig. 4, where the
marker size reflects the magnitude of the associated residue.
For the fractional model, the sequence of residues conver-
gences toward zero, while it remains constant for the EHR
model (see (95)). Practically, this implies that Nψ can be
chosen smaller for the fractional model.
As the EHR model does not have a fractional term, it only
has an oscillatory part; therefore, its numerical approxima-
tion verifies Nϕ = 0. By contrast, Fig. 5 shows that both the
oscillatory and diffusive parts contribute to the fractional
model, each in a specific manner. The diffusive part is im-
portant at low frequency, while the oscillatory part models
the successive anti-resonances: the n-th pair of poles en-
ables to capture the n-th anti-resonance.
Broadband approximations of (101) and (102), using the
optimization process presented earlier, are presented in
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Fig. 6 and 7. It shows that the present analysis can help
build broadband approximations with only an elementary
linear least squares optimization.
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FIG. 6. (Color online) Broadband approximation of the fractional model
(101) with (99). ( ): model (101). ( ): first pair of complex poles
(Nψ = 2) (→first anti-resonance). ( ): 4 pairs of complex poles (Nψ =
8) (→ 4 anti-resonances). ( ): Nϕ = 2 poles ξk at 10Hz and 10kHz for the
diffusive part. (Optimization with w(ω) = 1.)
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FIG. 7. (Color online) Broadband approximation of the EHR model (102)
with (99). ( ): model (102). ( ) : 3 pairs of complex poles (Nψ =
7). ( ): 7 pairs of complex poles (Nψ = 15). No diffusive part (Nϕ = 0).
(Optimization with w(ω) = 1.)

0 2 4 6 8 10
0

2

4

f (kHz)

ℜ
[ẑ /
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FIG. 8. (Color online) Impact of approximating the delay ∆t in (89).
( ): fractional model (101). ( ): 5% error on the delay. ( ):
10% error on the delay.

In numerical simulations, to benefit from the broadband
capacity of (99), the delay ∆t must be approximated as ac-
curately as possible, as illustrated in Fig. 8, which shows

that an error of a few percent is enough to cause significant
differences at high frequency. However, this is numerically
costly, as it requires additional memory.

The link between (physical) cavity impedance models
and (numerical) multi-pole models is provided by (89,93).
With a neglected delay, (99) formally reduces to a multi-
pole model, with both real and complex poles. The real
poles ξk are associated with the diffusive part of (93) (vis-
cous diffusion in the cavity modeled with the sα term),
while the complex poles sn are associated with its oscilla-
tory part. Numerically, the former are chosen (following the
optimization strategy presented in Sec. D), while the latter
are computed from solving (94).

VII. CONCLUSIONS

This paper has shown an analysis of acoustical models,
which relies on the oscillatory-diffusive representation, that
enables to derive theoretically exact continuous TDIBCs.
The corresponding discrete TDIBCs have been shown able
to yield broadband approximations using the output of a
mere linear least squares optimization that is, for most mod-
els, required only once, as it is independent of the material
geometry. Models drawn from both duct acoustics and out-
door sound propagation have been covered. Overall, each
model has lead to a different TDIBC; this contrasts with a
purely empirical one-size-fits-all approach.

Models for both perforation and semi-infinite ground
layers have been covered in Sec. IV and V. Struc-
turally, they have been shown to be partly diffusive
impedance models (PDIMs), and lead to time-local
TDIBCs (48,58,69,74,80,83) that consist of first-order
ODEs. Some of them have been singled out as multi-pole
models (48,74,83), widely employed in the literature. Ad-
ditionally, fractional calculus concepts have been used to
show the admissibility of fractional polynomial impedance
models (FPIMs), see (35).
Sec. VI has covered a cavity impedance model with a frac-
tional polynomial wavenumber. It has been shown to ex-
hibit an oscillatory and a diffusive part, both of which are
delayed, due to the back-and-forth wave motion within the
cavity. The derived TDIBC (97) has been recast using de-
layed first-order ODEs, which provides, for instance, an al-
ternative implementation of the EHR model.

We now list suggestions to further this work. Firstly,
the presented analysis could be extended to cover acous-
tical models which involve Bessel or hyperbolic functions
(6,9,25), as these have only been covered under an approx-
imated form herein. Secondly, the benefit in using a non-
linear least squares optimization method to optimize simul-
taneously the gains (µ̃, r̃) and (real) poles ξ could be in-
vestigated. Lastly, a study of models that cover nonlinear
effects, of particular interest when dealing with perforated
plates, would be a significant advancement to the time-
domain simulation of sound absorption.
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