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Abstract

Thin films and coatings are usually used to give functional properties
to the surface of the underlying substrate but are never seen as load bear-
ing due to a very low film to substrate thickness ratio. However, this ratio
can increase in some specific domains (such as transportation), where the
weight reduction is a high stake. This study deals with the influence of the
thermally grown oxide (TGO) NiO on the evolution of the elastic modulus
of nickel with temperature. For pure nickel, the Young’s modulus evolves
non-linearly with temperature, from room temperature up to 360◦C, corre-
sponding to the Curie temperature of nickel. The amplitude of these vari-
ations can be drastically reduced with the presence of the NiO TGO. The
purpose of this study is to propose a modeling of these phenomenon using
magneto-mechanical approach. A first analytical modeling takes the change
of the saturation magnetization, of the initial anhysteretic susceptibility and
of the maximal magnetostriction with a relaxation of magneto-crystalline
anisotropy concomitant to increasing temperature, into account. The second
modeling is a numerical modeling giving the average behavior of a represen-
tative volume element. It allows a continuous description of the change with
temperature of the Young’s modulus and a clear interpretation of the effect
of a coating. This gives an insight for future promising applications.
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1. Introduction1

Thin films and coatings are generally used to give functional properties to2

the surface of the underlying substrate. For example, they play an important3

role of diffusion barriers to prevent the degradation of the substrate by oxida-4

tion when used at high temperature [1]; they can be used to prevent wear and5

erosion, or to provide lubrication and thermal insulation [2]. Various chemi-6

cal and/or physical deposition techniques (with various compositions) can be7

used or they can develop naturally, resulting for example from the oxidation8

of the surface in a controlled atmosphere (thermally grown oxide TGO) [3].9

Generally, these films are very thin and are not seen as load bearing. In some10

particular applications, such as turbine blades for example, the coating to11

substrate thickness ratio increases, inducing some peculiar mechanical behav-12

iors as observed for Young’s modulus variation of oxidized nickel in a recent13

study [4, 5]. The elastic modulus has been measured from 20◦C up to 600◦C.14

Its evolution with temperature is non-linear and non monotonous from room15

temperature up to 360◦C, corresponding to the Curie temperature of nickel.16

But the amplitude of these variations can be drastically reduced by the TGO.17

18

The non-monotonous Young’s modulus evolution with temperature was19

previously reported by many authors [6, 7, 8], known as temperature depen-20

dent ∆E effect. Its relation with the mechanical or magnetic state of material21

was discussed in the early work of Bozorth [6] who reported experiments from22

Siegel, Quimby and Köster [9].23

24

The influence of TGO on this behavior was not reported since the work25

of Tatat [5] (expect experiments of Huntz interpreted as internal stress re-26

arrangement [10]) and no model was proposed to simulate the variation of27

pure nickel Young’s modulus with temperature and model the influence of28

the oxide layer on this behavior. Actually, it was suspected to arise from a29

long-range modification of the internal stresses within the substrate. This30

interpretation seems accurate considering that stress is well known to change31

significantly the magnetic behavior [6, 7, 11] and the apparent Young’s mod-32
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ulus of a wide range of magnetic materials [12].33

34

The purpose of this paper is to propose a modeling of the variation of35

Young’s modulus of Ni and Ni-NiO layers with temperature using a magneto-36

mechanical approach. As these approaches usually consider the influence of37

multiaxial stress on the magneto-mechanical behavior, they allow an accu-38

rate modeling of both Young’s modulus (seen a stress vs strain ratio for a39

low stress amplitude) and internal stress effect. Experimental results are first40

reminded. Two modeling approaches are then proposed: an analytical mod-41

eling first based on a room temperature ∆E effect modeling [12]; a numerical42

implementation is secondly detailed based on the work of Daniel [13] allowing43

a continuous description of the Young’s modulus variations with temperature44

and taking the TGO, or any other coating nature leading to residual stresses,45

into account.46

2. Experimental results and interpretation47

2.1. Material and experimental features48

A pure (>99%) 2 mm thick polycrystalline nickel has been used for the49

experimental study [4, 5]; the initial grain size of the Ni samples is about50

30 µm. After a soft mechanical polishing, samples have been oxidized in51

synthetic air (80% nitrogen, 20% oxygen) during 1h30 at 1110◦C to form52

NiO coatings and then furnace cooled at approximately 300◦C/h. The spec-53

imen was exposed to an Ar − H2 flow to limit the oxidation prior to the54

target temperature and during cooling. The oxidation was simultaneously55

performed on the two opposite free surfaces of the Ni samples. After oxida-56

tion, the thickness of the NiO coatings has been estimated at 16 µm thick57

(figure 1). Electron Back Scattered Diffraction (EBSD) measurements were58

carried out on a polished sample after oxidation (for a 40mm2 area - 10mm59

× 4mm). Figure 2 shows a typical example of inverse pole figure (with re-60

spect to the normal direction ND) obtained after oxidizing. The grain size of61

the Ni substrate has evolved substantially by growing up to about 280 µm.62

Texture index concludes on the other hand to a quasi-isotropic distribution63

of orientations: the material can be considered as isotropic.64

The elastic properties of the specimens were investigated from room tem-65

perature (RT) up to 600◦C by means of the resonant frequency technique in66

bending mode [14] in the 1-10 kHz range (the temperature range 20◦C to67

600◦C was chosen in order to make sure to measure the material behavior68
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Figure 1: SEM observation of typical NiO oxide layer after oxidizing in synthetic air during
1h30 at 1110◦C.

1 mm 

 

ND  

Figure 2: Inverse pole figure (normal direction ND) obtained by EBSD on the Ni sample
after oxidizing treatment.

well above the Curie temperature). This method is detailed hereafter: In69

the case of a bulk material, the longitudinal Young’s modulus (E) can be70

deduced using the following relation [15]:71

E = 0.9464ρf 2L
4

h2
ζ (1)

where f is the flexural resonance frequency, ρ the density, h and L, the72
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beam thickness (0.5 to 2 mm) and span length (20 to 30 mm), and ζ , a73

correcting factor close to 1. The sample is maintained horizontally between74

steel wires located at the vibration nodes. Both excitation and detection75

are performed using an electrostatic device (capacitance created between the76

sample and a unique electrode). Using this set-up, the Young’s modulus can77

be measured from -150◦C up to 1100◦C without any harmful contact. The78

heating rate can be as low as 1◦C/min and high vacuum (≈ 10−4 Pa) is used79

to hinder or limit the specimen oxidation. The accuracy of this method is80

better than 0.5% for conductive bulk materials whatever the rigidity range.81

An important feature of this technique lies in the very low applied stress82

level, less than 1 MPa.83

84

2.2. Variation of Young’s modulus85

Figure 3 shows the evolution of the Young’s modulus of the specimens86

with temperature [4]. The measurements reported here were performed us-87

ing the same Ni substrate; the Young’s modulus was first measured on the88

laminated state before oxidation, secondly on the two-sides oxidized speci-89

men (i.e. two NiO coatings) and, finally, after removing one and both NiO90

coatings successively by fine polishing (noted as ”peeled off samples” in the91

following). The procedure to remove the oxide, based on conventional met-92

allographic techniques, included an ultimate step of fine chemo-mechanical93

polishing in order to reach a very low roughness without work hardening i.e.94

no additional residual stresses in the sub-surface.95

Two domains are clearly evidenced in figure 3, depending on the tempera-96

ture. Above approximately T = 360◦C, the evolution of the elastic modulus is97

quite similar regardless to the specimen state, characterized by the expected98

linear decrease of the Young’s modulus with the temperature. A slight dif-99

ference between non-oxidized and oxidized substrates can be observed due100

to composite effect: the Young’s modulus of NiO is usually higher than the101

Young’s modulus of pure Ni; its value depends strongly on oxidizing temper-102

ature and oxide porosity [4]. It must be emphasized that the increase of the103

grain size from 30 to 280 µm does not act on the modulus of the substrate104

(the experimental technique integrates all the sample volume).105

106

Below this threshold temperature, the Young’s modulus depends strik-107

ingly on the structural configuration of the specimens:108
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Figure 3: Variation of Young’s modulus with temperature for different specimens.

• the presence of the NiO oxide layer representing only about 3% of the109

total thickness on the Ni substrate significantly influences the value of110

the elastic modulus (apparent Young’s modulus Ea) at a temperature111

range between 90◦C and 360◦C.112

• the variation of the Young’s modulus at 260◦C for oxidized samples can113

be associated to the Néel temperature transition of NiO.114

• the maximum deviation of Ea is about 9% between nickel and nickel-115

oxide.116

2.3. Estimation of residual stresses117

The residual stresses have been determined at RT using the X-ray diffrac-118

tion (XRD) so-called sin2ψ method [16] where ψ is defined as the angle be-119

tween the normal to the sample surface and the normal to the diffracting120
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planes. X-ray measurements were carried out using a four-circle diffractome-121

ter (Seifert XRD 3003) operating at 40 kV and 40 mA, with a Cu X-ray tube122

(λKα= 0.15418 nm) equipped with a 1×1 mm2 point focus and a Ni filter on123

the direct beam path to absorb the Cu Kα radiation. The incident beam was124

collimated using a collimator 1 mm in diameter and targeted on the samples125

mounted on an Eulerian cradle for ψ tilting. The X-ray measurements have126

been performed for fourteen different ψ angles for two independent plane127

families, namely {331} and {420}. The residual stress state was calculated128

from the lattice strains assuming a planar equibiaxial stress state and using129

the X-ray elastic constants [17]. For a polycrystalline quasi-isotropic mate-130

rial of Young’s modulus E and Poisson’s ratio ν, the biaxial residual stress131

state of magnitude σr is given by the slope of sin(θ)−1 = f(sin2ψ) function132

following:133

sin(θ0)

sin(θ)
= σr(

(1 + ν)sin2ψ − 2ν

E
) + 1 (2)

where θ and θ0 indicate the Bragg’s angle of the diffracting plane with134

or without stress respectively. The technique was used to evaluate the resid-135

ual stress level inside both the as-received material and the material after136

oxidation [5]. In the as-received state the material exhibits a high level of137

residual stress in sub-surface that corresponds to a biaxial compression of138

amplitude -130±30 MPa. This surface stress state should be equilibrated by139

an internal bi-tension stress that can unfortunately not be estimated because140

the transition area between these two fields cannot clearly be defined. It can141

be considered that thermal treatment completely reduces this stress field to142

zero since a global recrystallization mechanism occurs.143

144

After oxidation, the internal stresses have only been determined in the145

NiO coatings. Actually the X-Ray diffraction analysis is not possible in the146

Ni layer due to the large grain size. Internal stresses in NiO correspond147

to an equibicompression of amplitude -550±50 MPa [5]. Similar compressive148

stresses values are reported in literature [10, 19]. They mainly result from the149

thermal mismatch coefficients between the coating and the substrate. Indeed150

dilatation coefficients for NiO and Ni are respectively: αNiO =14.5×10−6K−1
151

and αNi =17.5×10−6K−1 [18, 19]. The thermal stresses distribution in the152

Ni layer has been determined from a simple beam analysis integrating the153

experimental values obtained for the oxide coatings thickness and residual154

stress, and considering a global equilibrium (force and momentum equilib-155
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rium). For NiO-Ni-NiO system, the in-plane stress in the Ni substrate is a156

bi-tension and remains constant over the entire thickness (+9±1 MPa), while157

for Ni-NiO the stress decreases linearly from a bi-tension (+18±2 MPa) to158

a bi-compression state (-9±1 MPa) giving an average value of +3±1 MPa.159

After removal of the double oxide coating, it may be assumed that the Ni160

layer is completely internal stress free.161

162

As seen in figure 3 and table 1, internal stresses of few MPa are sufficient163

to significantly modify the apparent Young’s modulus of nickel. Results164

reported in table 1 correspond to the estimated average biaxial stress inside165

the Ni Layer.166

Table 1: Change of ∆E effect with biaxial residual stress level of amplitude σr.

Configuration Cold rolled 2-sides oxidized 1-side oxidized Peeled-off
∆E/E(%) 0 -3 -8 -11
σr(MPa) unknown +9 +3 (average) 0

2.4. Results interpretation167

The non monotonous change of Young’s modulus with temperature and168

effect of TGO cannot be explained by a classical mechanical rule of mixture169

but by magneto-elastic considerations. Ni is a ferromagnetic material ex-170

hibiting magnetic domains below its Curie temperature, TC , equal to 360◦C171

[6].172

The observed evolution of pure Ni Young’s modulus for increasing tem-173

perature was already experimentally reported in literature [6, 7, 8]. This174

deviation from the Hooke’s law is known as the ∆E effect (”∆” for vari-175

ation) and can only be highlighted in the very first stage of stress-strain176

curves [13]. A relation with the magnetic character of the material can be177

made considering:178

1. The phenomenon is strongly dependent on the magnetization M of the179

layer: at the magnetic saturation (M = Ms; Ms: saturation magne-180

tization of the material) the non-linear variation of Young’s modulus181

progressively vanishes.182
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2. Young’s modulus recovers its linear variation with temperature above183

the Curie temperature of the layer (360◦C).184

These points are illustrated in figure 4a.185

(a) (b)

Figure 4: Apparent Young’s modulus of nickel vs. Temperature: (a) effect of mag-
netization to saturation magnetization ratio (I/Is); (b) effect of mechanical condi-
tion (”internal stress”) and thermal annealing [6] - NB: 1012[Dynes/cm2]=102[GPa];
103[Kg/mm2]=9.81[GPa]≈ 10[GPa].

As magnetic properties of ferromagnetic materials depend on the tem-186

perature, the amplitude of ∆E effect can change. In particular, the magne-187

tocrystalline anisotropy (determining for a single crystal the most favorable188

magnetization direction) decreases significantly while the temperature in-189

creases, especially from RT up to 100◦C for Ni [6]. Hence, with increasing190

temperature, the magnetic moments direction becomes progressively more191

sensitive to the mechanical stress, enhancing the ∆E effect. From approxi-192

mately T= 200◦C to the Curie temperature, the spontaneous magnetization193

(and consequently the magnetostriction) of Ni quickly decreases down to 0:194

the ferromagnetic properties disappear (magnetostrictive and exchange con-195

stants progressively decrease to zero). This latter point explains that the ∆E196
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effect is gradually weakened and vanishes at TC when the material becomes197

paramagnetic.198

199

The role of stress is another point to consider. For cold worked nickel (as200

received material), the decrease of Young’s modulus is regular following a201

classical linear variation with temperature (figure 3). Thermal annealing at202

increasing temperature progressively enhances the non-linear phenomenon as203

experimentally observed and reported in figure 4b [6]. The internal stress as-204

sociated to plasticity acts as a magnetic saturation; the stress relieving at in-205

creasing annealing temperature acts as a demagnetization. The effect of oxide206

layers is another typical example of coupling to stress. X-rays measurements207

indicates that the substrate is submitted to residual stresses. Single-layer or208

two-layers situations do not lead to the same stress level. The amplitude of209

non-linearity of Young’s modulus is changed. The highest amplitude of ∆E210

effect is reached for peeled off sample where residual stress reduces to zero.211

212

Considering finally that the measurement method is based on a stress213

loading, a quantitative modeling of these phenomena requires to use a fully214

coupled magneto-mechanical approach and to consider the effect of temper-215

ature on the parameters involved in this coupling.216

3. Modeling217

3.1. ∆E effect definition218

The so-called ∆E effect is one of the manifestations of magneto-elastic219

couplings in ferromagnetic materials [7]. It can be defined as the depen-220

dence of Young’s modulus E of a material on its state of magnetization. The221

Young’s modulus of an originally demagnetized specimen appears to be lower222

(by an amount ∆E) than the Young’s modulus of the same specimen magne-223

tized at saturation (figure 5). Indeed a ferromagnetic material is subdivided224

in magnetic domains. A magnetic domain corresponds to microscopic or-225

ganization of magnetic moments aligned together to minimize the so-called226

exchange energy. Each magnetic domain is magnetized at saturation and227

characterized by a free isochoric strain called magnetostriction. Due to mag-228

neto crystalline energy, orientation of magnetic domains is usually associated229

to crystallographic axes (8 easy directions for nickel - 8 domain families). At230

zero applied stress or magnetic field and without boundary effect, domains231

are equally distributed so that the initial deformation and magnetization are232
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null. An increasing magnetic field leads to a progressive increase of the well233

oriented domain families volume so that macroscopic magnetization and de-234

formation occur (macroscopic magnetostriction ǫµ). An increasing uniaxial235

stress σ leads to a progressive increase of the well oriented domain fami-236

lies of opposite sign so that a macroscopic magnetostriction ǫµ occurs while237

macroscopic magnetization remains null.238

σ 

ε 

Magnetized 

at saturation 

Demagnetized 

−6 −4 −2 0 2 4 6 8

(10   )−4

−150

−100
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150
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ε ε1122

Figure 5: Illustration of the ∆E effect for a tensile-compressive test (ǫ is the total strain);
(a) principle (b) illustration for iron-cobalt alloy [20].

This magnetostriction strain ǫµ is superimposed to the elastic strain ǫel,
so that the total measured strain ǫ is higher than foreseen without magne-
tostriction phenomenon. It is defined by equation (3), all the strains being
measured in the direction parallel to the applied stress.

ǫ = ǫµ + ǫel (3)

Because ǫµ is usually non-linear with stress and saturates, the apparent
Young’s modulus appears non-linear and saturates too. The stress level in-
vestigated using the resonant technique for measurement of Young’s modulus
is very small (<1MPa). The apparent Young’s modulus Ea is given by:

Ea =
( dǫµ

dσ

∣

∣

∣

∣

σ=0

+
dǫel

dσ

∣

∣

∣

∣

σ=0

)

−1
(4)
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In case of a saturated material, the magnetic domain structure has reached
a saturated configuration and the magnetostriction strain cannot evolve any-
more. The apparent Young’s modulus is then defined as:

Ea =
dσ

dǫel

∣

∣

∣

∣

σ=0

(5)

leading to a higher value because dǫµ

dσ
is always positive [12]. This phe-239

nomenon is described by Bozorth [6] and reported in figure 4. In case of a240

highly deformed material, the internal stresses saturate the magnetostriction241

leading to the same effect.242

3.2. Analytical modeling of apparent Young’s modulus243

An analytical modeling of the ∆E effect at RT has been recently proposed244

[12]. This approach is inspired from a multiscale model for the prediction of245

magneto-elastic reversible behavior of ferromagnetic materials presented in246

[13] and in Appendix A. The full multiscale model is used for a numerical247

resolution in section 4. The simplified approach is limited to the situation248

where no magnetic field is applied, so that the magneto-static energy does249

not appear in the definition of the magnetic equilibrium. On the other hand250

it has been supposed that the magneto-crystalline anisotropy energy does251

not participate to the evolution of the magnetostriction strain. In such con-252

ditions, the elastic energy is the only energy term explicitly considered in the253

description of the magnetic equilibrium of a domain.254

255

On the other hand, an isotropic polycrystal can be seen as an aggregate256

of single crystals with random orientation. Polycrystal can be considered257

as a single crystal for which all directions would be easy directions. In one258

domain of such a single crystal, the magnetostriction strain tensor can be259

written (in its own framework):260

ǫ
µ
m =

1

2
λmax





2 0 0
0 −1 0
0 0 −1



 (6)

λmax denotes the maximum magnetostriction strain of the considered261

polycrystal.262

A multiaxial eigen-stress tensor is considered in the macroscopic frame263

(~e1, ~e2, ~e3) following:264
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σ =





σ11 0 0
0 σ22 0
0 0 σ33



 (7)

The transformation matrix from macroscale to domain scale is given by:265

P =





cosθ sinϕ sinθ cosθ cosϕ
sinθ sinϕ −cosθ sinθ sinϕ
cosϕ 0 −sinϕ



 (8)

leading to:266

ǫ
µ
p =t

P ǫ
µ
m P (9)

The magneto-elastic energy is given for a constant by:267

W α
σ = −σ : ǫµp (10)

that can be expressed as function of strain and stress components follow-
ing:

W α
σ = −

λmax

2

(

σ11(3 cos2θ sin2ϕ−1)+σ22(3 sin2θ sin2ϕ−1)+σ33(3 cos2ϕ−1)
)

(11)
Angles θ (0-2π) and ϕ (0-π) define the orientation of domain in the macro-268

scopic frame.269

270

Considering homogeneous stiffness, localization operation is avoided. The271

average magnetostriction is given by:272

ǫ
µ =

∫

α

fαǫ
µ
p (12)

fα indicates the volume fraction of domain α (see equation A.8 in Ap-273

pendix A) calculated using:274

fα =
exp(−As.W

α
σ )

∫ 2π

0

∫ π

0

exp(−As.W
α
σ ) sinϕ dϕ dθ

(13)
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with (see equation A.11 in Appendix A):

As =
3χ0(T )

µ0Ms(T )2
TRT

T
(14)

χ0 and Ms are the initial anhysteretic susceptibility (variation of anhys-275

teretic magnetization with magnetic field) and saturation magnetization. µ0276

is the vacuum permeability (=4π × 10−7 Henry/m). T indicates the actual277

temperature and TRT the room temperature.278

A tensile test of magnitude σ along the macroscopic unit vector ~e3 is now279

considered. The magneto-elastic energy expression is simplified into:280

W α
σ = −

1

2
λmaxσ

(

3 cos2ϕ− 1
)

(15)

The magnetostriction strain tensor is diagonal:281

ǫ
µ =

π λmax S2

2S1

exp(−
1

2
Asλmaxσ)





−1 0 0
0 −1 0
0 0 2



 (16)

with

S1 = 2π exp(−
1

2
Asλmaxσ)

∫ π

0

exp(
3

2
Asλmaxσcos

2ϕ) sinϕ dϕ (17)

and,282

S2 =

∫ π

0

(3 cos2ϕ− 1) exp(
3

2
Asλmaxσcos

2ϕ) sinϕ dϕ (18)

The apparent Young’s modulus is measured by the resonance method cor-283

responding to a low magnitude tensile loading. Considering the additivity of284

deformation (homogeneous stress) at a physical point, the apparent Young’s285

modulus verifies:286

1

Ea

=
1

E
+

1

Em

(19)

with E the ideal Young’s modulus and Em the magnetostriction modulus.287

The latter satisfies:288

1

Em

=
dǫµ33
dσ

∣

∣

∣

∣

σ=0

(20)
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Since an analytical expression of magnetostriction vs stress is available,289

the calculation is developed:290

ǫµ33 =
π λmax S2(σ)

S1(σ)
exp(−

1

2
Asλmaxσ) (21)

A derivation of ǫµ33 function with respect to stress at σ = 0, leads to, after
few calculations:

1

Em

=
dǫµ33
dσ

∣

∣

∣

∣

σ=0

=
λ2maxAs

5
=

3χ0(T )λ
2
max

5µ0Ms(T )2
TRT

T
(22)

Most of the terms are temperature dependent, including λmax, that may291

lead to a complex variation of the magnetostriction modulus with temper-292

ature. It is possible to extend the proposed approach to other hypotheses293

than homogeneous stiffness by reporting the localization operation in the294

definition of λmax. This point is addressed in the next section.295

3.3. Numerical applications for pure isotropic polycrystalline nickel and in-296

fluence of temperature297

The parameter λmax can be derived from magnetostrictive constants of298

single crystal λ100 and λ111 following different assumptions, depending of ei-299

ther or not the magnetization rotation is considered, and depending on the300

elastic behavior of the domain (single crystal stiffness constants) and the301

average medium. An analytical calculation of the average magnetostrictive302

tensor can be strictly made only at magnetic saturation, when the magne-303

tization is uniformly aligned along the external field direction. Grains g are304

composed of single domains α so that the magnetostriction strain in each305

grain is the magnetostriction strain of the domain in the crystallographic306

frame (CF) :307

ǫ
g
µ = ǫ

α
µ =

3

2





λ100(γ
2
1 −

1

3
) λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100(γ
2
2 −

1

3
) λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100(γ
2
3 −

1

3
)





CF

(23)

The average magnetostriction strain is the solution of a thermo-elasticity
problem [21]:

ǫ
sat
µ =< t

B
g : ǫgµ > (24)

15



where tBg indicates the transpose of the stress concentration tensor and308

< .. > denotes the averaging operation over the volume. The macroscopic309

behavior being isotropic, previously defined equation (6) gives the average310

saturation magnetostriction strain tensor with λmax = λsat the saturation311

magnetostriction. In case of high magneto crystalline anisotropy, domain312

wall displacement and magnetization rotation can be considered as succes-313

sive (they are usually considered as concomitant) so that it is possible to314

estimate another average magnetostriction tensor denoted average maximal315

magnetostriction strain tensor. A calculation of analytical values is possible316

using λ100 = 0 for < 111 > easy directions materials or λ111 = 0 for < 100 >317

easy directions materials:318

• in case of low magneto crystalline energy (free rotation) or at the mag-
netic saturation:

λmax = λsat =
2

5
λ100k

a +
3

5
λ111k

b

This value corresponds to the theoretical magnetostriction at the mag-319

netic saturation.320

• in case of high magneto crystalline energy (no rotation):

λmax = 2

5
λ100k

a for materials with
< 100 > easy directions

λmax = 3

5
λ111k

b for materials with
< 111 > easy directions

ka and kb are homogenization parameters depending on the elastic prop-321

erties. They are given by:322

{
ka =

µa

µeff

µeff + µ⋆

µa + µ⋆

kb =
µb

µeff

µeff + µ⋆

µb + µ⋆

(25)

µa and µb are the the single crystal shear moduli (equation 26 - with323

Cij the stiffness constants of the cubic symmetry single crystal). µeff is the324

shear modulus of the effective medium given by equation (27). µ⋆ (eq. 28)325

is the Hill’s shear modulus, whose definition depends on µo and κo the shear326
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and compression moduli of the reference medium supposed isotropic (NB:327

κo = κ).328

{
µa = 1

2
(C11 − C12)

µb = 1

2
(C44)

κ = 1

3
(C11 + 2C12)

(26)

µeff =
5(µa + µ⋆)(µb + µ⋆)

(3µa + 2µb + 5µ⋆)
− µ⋆ (27)

µ⋆ =
1

6
µo

9κo + 8µo

κo + 2µo

(28)

The value of these parameters (and finally of ka and kb) depends on the329

homogenization approximations made:330

• Homogeneous stress (Reuss hypothesis - ie: µo=0): ka = kb = 1331

• Homogeneous deformation (Voigt hypothesis - ie: µo = ∞): ka =332

5µa/(2µa + 3µb) and k
b = 5µb/(2µa + 3µb)333

• Hashin and Shtrikman upper estimation (ie: µo = µb - considering that334

µb > µa)335

• Hashin and Shtrikman lower estimation (ie: µo = µa - considering that336

µb > µa)337

• Self-consistent estimation (ie: µo = µeff so that µeff is the result of
the self-consistent equation:

8µ3
eff + (9κ+ 4µa)µ

2
eff − (12µaµb + 3κµb)µeff − 6κµaµb = 0 (29)

Analytical expressions of ka and kb are not reported for the three last338

estimations due to their complicated expressions.339
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3.3.1. Apparent Young’s modulus at the room temperature340

The physical constants for nickel used for the calculations are reported in341

table 2. They are given at RT. The value of the second magneto crystalline342

constant K2 strongly varies from one author to another (from one value343

to its opposite) [6, 7]. The effect of this term is usually negligible when its344

amplitude is close or inferior to the amplitude of the first magneto crystalline345

constant K1. Equation (30) gives the magneto crystalline energy expression346

function of constants K1 and K2 and direction cosines γi of magnetization in347

the crystal frame.348

W α
K = K1(γ

2
1γ

2
2 + γ22γ

2
3 + γ23γ

2
1) +K2(γ

2
1γ

2
2γ

2
3) (30)

The magneto elastic energy can be calculated for a uniaxial stress σu349

along the direction [100] of the single crystal and a magnetostriction strain350

at the domain scale (23). It gives:351

W α
σ = −

1

2
λ100σu

(

3 γ21 − 1
)

(31)

To estimate if rotation has to be or not taken into account at RT, a352

material with positive K1 (< 100 > easy magnetization direction) and a353

magnetization rotation of angle θ in the (~e1, ~e2) plane are considered. The354

magnetoelastic and magnetocrystalline energy of a domain α1 oriented along355

~e1 can be written following:356

{ W α1

K = K1(cosθ
2sinθ2)

W α1

σ = −1

2
λ100σu(3cosθ

2 − 1)
(32)

If no other magnetization mechanism or energy is considered, the varia-357

tion of total energy is null at equilibrium so that:358

dW α1

K

dθ
= −

dW α1

σ

dθ
(33)

An equalization of the two expressions for θ = 0 allows to estimate an359

uniaxial stress amplitude σu able to initiate a magnetization rotation. Its360

expression is reported in equation (34).361

σu ≈
2K1

3λ100
(34)

Using the numerical values reported in table 2, a stress σu higher than 100362

MPa is obtained. This value is much larger than the value expected during363
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the Young’s modulus measurements (less than 1 MPa). The no rotation364

assumption can be made at RT so that λmax is defined by:365

λmax =
3

5
λ111kb (35)

Table 2: Physical constants of pure nickel at RT [6, 7]; see figure 10 for χ0 value.

K1 K2 Ms λ100 λ111 χ0 C11 C12 C44

-5×103 ± 2×103 4.84×105 -50 -25 800 246 147 248
J.m−3 J.m−3 A/m ppm ppm - GPa GPa GPa

Assuming finally an effective Young’s modulus E of 223 GPa (in accor-366

dance with Cij values), different estimations of the apparent Young’s modulus367

can be made depending on the different estimations of kb. They are reported368

in the following table:369

Table 3: Different estimations of kb, λmax, Em, Ea and ∆E/E(%) = (Ea−E)/E× 100 at
RT - magnetostriction is given in ppm (×10−6) and moduli in GPa - V: Voigt estimation,
R: Reuss estimation, HS+: Hashin-Shtrikman upper estimation, HS-: Hashin-Shtrikman
lower estimation, SC: self-consistent estimation.

V HS+ SC HS- R
kb 1.316 1.209 1.187 1.151 1
λmax -19.7 -18.1 -17.8 -17.3 -15.0
Em 1573 1866 1934 2057 2726
Ea 195 199 200 201 206

∆E/E(%) -12.4 -10.7 -10.3 -9.8 -7.6

The sequence of estimations reported in the table is classical. Values370

are roughly consistent with the experimental results reported in figure 3371

and [5, 6]. The homogeneous stress hypothesis giving an apparent Young’s372

modulus of 206 GPa leads nevertheless to the best result. Since the EBSD373

measurement did not reveal any crystallographic texture, this result could374

be linked to an anisotropic distribution of domains.375
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3.3.2. Effect of increasing temperature on apparent Young’s modulus376

Temperature has a significant effect on the physical constants of nickel377

used in the analytical modeling.378

• Figure 6 shows the experimental results obtained by Kirkham [22] and379

Döring reported in [6] for the magnetostriction of a polycrystalline380

nickel (confirmed by the more recent measurements of Tatsumoto [23]).381

Magnetostriction is decreasing with increasing temperature. It reaches382

zero at TC . No data are available for single crystal parameters λ100383

and λ111. One admissible assumption is to suppose that they behave384

similarly than the saturation magnetostriction of the isotropic medium.385

λmax would evolve similarly.386

Figure 6: Effect of temperature on the magnetostriction of polycrystalline nickel [6, 22].

• Figure 7 shows the experimental results obtained by Honda [6] and387

Tatsumoto [24] for the magnetocrystalline constants of nickel. The am-388

plitude of constants decreases drastically with increasing temperature.389

K1, initially negative, reaches zero at approximatively 100◦C for Honda390
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or 200◦C for Tatsumoto, then becomes slightly positive before coming391

back to zero close to TC . K2 is positive and of lower amplitude than392

K1. It decreases regularly to zero when temperature is approaching393

TC .394

• Figure 8 shows the experimental results obtained by Kneller and re-395

ported by Ascher [25] for the saturation magnetization of nickel. The396

decrease of Ms with temperature is much less regular than magne-397

tostrictive and magneto crystalline constants. Ms remains high up to398

a high temperature level. It drastically decreases to zero when the399

temperature approaches TC .400

• Finally, figure 9 shows the experimental results obtained by Kirkham401

[22] for the initial susceptibility of nickel. A global strong increase402

of susceptibility before a sharp decrease at TC is observed. The ini-403

tial increasing is strongly modified by a non monotonous evolution at404

a temperature (local maximum at T ≈ 200◦C) that is interpreted by405

Kirkham as a direct effect of the change of K1 sign (modifying the easy406

magnetization axis from the < 111 > to the < 100 > direction). The407

evolution of this term can be seen as a result of a new magnetic equilib-408

rium associated to new physical constants, as for Young’s modulus. It409

must be noticed that the susceptibility used in the analytical modeling410

is the anhysteretic initial susceptibility, but the data reported are the411

initial susceptibility of the first magnetization curve. Figure 10 reports412

the typical cyclic and anhysteretic behaviors of pure polycrystalline413

nickel measured at RT. The initial susceptibility of the first magne-414

tization curve is drastically different from initial susceptibility of the415

anhysteretic curve. At RT, initial susceptibility of the first magnetiza-416

tion curve is close to 60 (in accordance with Kirkham measurements)417

while initial susceptibility of the anhysteretic curve is at minimum ten418

times higher (about 800). The variations with temperature of initial419

susceptibility of the first magnetization curve give only a survey of the420

anhysteretic susceptibility variations.421

Let reconsider now the analytical expression of Em equation 22, tempera-422

ture dependent parameters are: λmax, χ0 andMs. K1 quickly decreases while423

the temperature increases, meaning that the rotation becomes progressively424

dominant (for a temperature around 100◦C up to 200◦C). The maximum425
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(a)

(b)

Figure 7: Effect of temperature on the magnetocrystalline constants of nickel - (a) results
of Honda [6]; (b) results of Tatsumoto [24] - NB: K1 and K2 are given in erg/cm3 - 10
[erg/cm3] =1 [J/m3].

magnetostriction definition has to be reconsidered because it tends progres-426
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Figure 8: Effect of temperature on the saturation magnetization of nickel [25].

Figure 9: Effect of temperature on the initial susceptibility of nickel [22].

sively to the saturation magnetostriction:427

λmax =
2

5
λ100ka +

3

5
λ111kb (36)
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Figure 10: Typical cyclic and anhysteretic behaviors of pure polycrystalline nickel at RT.

Variations of λ100 and λ111 with temperature must be taken into account428

too. They are considered to follow the same variation with temperature than429

λs plotted in figure 6.430

Variation of the anhysteretic initial susceptibility χ0 with temperature is un-431

known since figure 9 refers to the hysteretic initial susceptibility. To simplify,432

a linear increasement of χ0 with temperature is considered:433

χ0(T ) = χRT
0

T

TRT
(37)

Such relation is in global accordance with the experimental variation434

of hysteretic initial susceptibility and allows a simplification of the mag-435

netostriction modulus expression:436

1

Em

=
3χRT

0

5µ0

(
λmax(T )

Ms(T )
)2 (38)

Therefore new assessments of the magnetostriction modulus can be ob-437

tained considering the different previous estimations at a temperature of438
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200◦C. Parameters values at this temperature come from experimental re-439

sults. They are reported in table 4.440

Table 4: Physical constants of pure nickel at 200◦C used for the estimation of the apparent
Young’s modulus (a linear variation of the ideal Young’s modulus with temperature has
been used to estimate the Cij values using equation (40) - Poisson’s ratio variations are
not considered); χ0 is supposed unchanged with temperature.

Ms λ100 λ111 χ0 C11 C12 C44

3.9×105 -33.3 -16.7 800 227 136 229
A/m ppm ppm - GPa GPa GPa

The effective Young’s modulus E is 206 GPa at 200◦C (in accordance with441

Cij values and experimental results). Different estimations of the apparent442

Young’s modulus can be made depending on the different estimations of ka443

and kb. They are reported in table 5.444

Table 5: Different estimations of ka, kb, λmax, Em, Ea and ∆E/E(%) = (Ea−E)/E×100
at 200◦C - magnetostriction is given in ppm (×10−6) and moduli in GPa - V: Voigt
estimation, R: Reuss estimation, HS+: Hashin-Shtrikman upper estimation, HS-: Hashin-
Shtrikman lower estimation, SC: self-consistent estimation.

V HS+ SC HS- R
ka 0.525 0.687 0.719 0.773 1
kb 1.316 1.209 1.187 1.151 1
λmax -20.2 -21.3 -21.5 -21.8 -23.3
Em 977 881 863 835 731
Ea 170 167 166 165 161

∆E/E(%) -17.4 -19.0 -19.3 -19.8 -22.0

Whatever the estimation, a decreasement of the apparent Youngs mod-445

ulus with temperature is clearly observed. This decreasement fluctuates be-446

tween 36 MPa and 45 MPa depending on the estimation. These values are447

in good agreement with values observed in figure 3 and those reported in [6]448

(figure 4a and 4a after annealing). It can be noticed that the homogeneous449

stress estimation leads now to the lowest apparent Young’s modulus (it was450

corresponding to the highest value for the calculations at RT). Homogeneous451
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stress estimation allows to get the highest variation of ∆E effect with temper-452

ature. On the other hand it is interesting to compare these values with those453

reported in table 6, where the no rotation condition has been maintained. A454

clear increase of the apparent Young’s modulus is observed, that does not fit455

to the experimental results. It confirms that the variation of the apparent456

Young’s modulus with temperature is due to a combined effect of variation457

of intrinsic physical constants and a relaxation of the magnetization rotation458

enhancing the magnetostriction strain variation with stress.459

460

The Young’s modulus remains to its effective value (196 MPa) when tem-461

perature reaches the Curie temperature (disappearance of ferromagnetic cou-462

pling), leading to the sharp increase of apparent Young’s modulus.463

Table 6: Different estimations of kb, λmax, Em, Ea and ∆E/E(%) = (Ea − E)/E × 100
at 200◦C using the no-rotation condition: λmax = 3

5
λ111kb - magnetostriction is

given in ppm (×10−6) and moduli in GPa - V: Voigt estimation, R: Reuss estimation,
HS+: Hashin-Shtrikman upper estimation, HS-: Hashin-Shtrikman lower estimation, SC:
self-consistent estimation.

V HS+ SC HS- R
kb 1.316 1.209 1.187 1.151 1
λmax -13.2 -12.1 -11.9 -11.5 -10.0
Em 2289 2715 2813 2993 3966
Ea 189 191 192 193 196

∆E/E(%) -8.3 -7.1 -6.8 -6.4 -4.9

4. Numerical implementation of E(T ) and comparisons between464

experiments and modeling465

4.1. Multiscale model and simulation of apparent Young’s modulus at the466

room temperature467

The variations of nickel physical constants with temperature are now468

considered to propose a modeling of Ea(T ) curve and compare it to the469

measurements. The previous calculations used the assumption of no effect of470

magnetization rotation on the magnetostrictive response. This assumption471

is acceptable for a high K1. When K1 reaches 0, this assumption is not valid472
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anymore. The analytical modeling can be made on the other hand when λmax473

is known. The definition of λmax is nevertheless not unique (known only for474

free rotation or no rotation situations). These different arguments motivate475

the choice of a numerical approach.476

Amultiscale (MS) model originally dedicated to build magneto-mechanical477

constitutive laws for anisotropic polycrystalline media is used [13]. The main478

characteristics of this model are recalled in Appendix A. MS model involves479

three scales: domain scale, grain scale and polycrystalline scale (representa-480

tive volume element - RV E). Initially proposed by [26] at the grain scale,481

it was extended to polycrystals by [13] and [27]. In the present study, an482

isotropic grain distribution has been used (546 grains [13]). This model al-483

lows, among others, to simulate the ∆E effect of nickel (ǫµ33(σ)) as reported in484

figure 11 where the effect of homogeneous stress or self consistent conditions485

are compared.486
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Figure 11: ∆E effect for isotropic polycrystalline nickel as estimated by MS model at RT
for homogeneous stress and self-consistent conditions.
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The difference of slope a zero applied stress between the two simulations487

is low: a slope of 1.212×10−12Pa−1 is obtained for the homogeneous stress488

condition and of 1.345×10−12Pa−1 for the self-consistent condition. These489

values correspond to E−1
m . The corresponding apparent Young’s modulus is490

evaluated to 176 GPa and 172 GPa respectively (for a ideal Young’s modu-491

lus of 223 GPa). These values are lower than the experimental values at RT492

reported in figure 3 and different from the value obtained after the analyti-493

cal approach (206 GPa for homogeneous stress estimation and 200 GPa for494

the self-consistent one) which considered that rotation was not occurring at495

RT. Another estimation by the analytical approach of the apparent Young’s496

modulus at RT has been made, now considering a free rotation mechanism497

(i.e. λmax = 2

5
λ100ka +

3

5
λ111kb). The different estimations of Ea (numerical498

and analytic approaches for homogeneous stress and self-consistent estima-499

tions) are reported in table 7. The analytical estimation considering a free500

magnetization rotation leads to results closer to the numerical solution than501

the no-rotation assumption, especially for the self-consistent estimation. The502

variation of magnetostriction with stress must be considered as the result of503

both wall displacement and magnetization rotation at RT.504

Table 7: Various estimations of apparent Young’s moduli Ea(GPa) T=20◦C. R: homoge-
neous stress: SC: self-consistent

R num. SC num. R no rot. SC no rot. R rot. SC rot.
176 172 206 200 154 162

4.2. Simulation of Ea(T ) for isotropic polycrystalline nickel505

The simulation of the apparent Young’s modulus with temperature re-506

quires to use relations between physical constants (ideal Young’s modu-507

lus, magnetostriction, magnetocrystalline constant, saturation magnetiza-508

tion) and temperature. Some of these relations have a theoretical back-509

ground, others have been built in former papers by different authors so that510

they fit properly the experimental data. The following functions are pro-511

posed:512

• Ideal Young’s modulus - All experiments (recent and former) show a
linear decreasement of ideal Young’s modulus E with temperature T .
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The following linear relation is implemented in the model:

E = E0 − k0T (39)

with E0=237.6 GPa: Young’s modulus at 0K; k0=0.06603 GPa/K.513

Figure 12 allows the comparison between the linear approximation and514

the experimental results. The same relation is used to consider the515

variation of Cij stiffness constants with temperature (in the range of516

temperature considered in this paper):517

Cij(T ) = Cij(T
RT )

E(T )

E(TRT )
(40)

• Saturation magnetization - the theoretical variation of the saturation
magnetizationMs with temperature is given by the self-consistent equa-
tion [32]:

Ms

Ms0

= tanh(
Ms/Ms0

T/TC
) (41)

with Ms0 the magnetization at 0K (Ms0=4.956×105 A/m). The tem-518

perature T is expressed in Kelvin.519

Figure 13 allows the comparison between the experimental and modeled520

evolution of the saturation magnetization with the temperature. The521

model gives high quality results.522

• Magnetocrystalline constants - The variation of magnetocrystalline con-523

stant K with temperature has been studied theoretically by Zener [28].524

It is expressed as function of magnetization ratio, K0 the magnetocrys-525

talline constant at 0K, and a constant n:526

K(T ) = K0(Ms/M
0
s )

n (42)

n=10 for a cubic symmetry. This value is justified considering that the527

amplitude of magneto crystalline K1 is higher than the amplitude of528

K2, and considering the cubic symmetry (4th order of direction cosines).529

This model is denoted model 1.530

It has been shown that this relation did not fit very well the experi-531

mental results obtained for nickel. The relation has been modified by532
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Figure 12: Variation of Young’s modulus with temperature for different specimens com-
plemented by a linear approximation of ideal Young’s modulus.

Carr [30] to take account of the change of sign of K1 and an earlier533

decreasement of magneto crystalline amplitude. This model is denoted534

model 2.535

K(T ) = K0(
Ms

M0
s

)n(1− α
T

TC
) (43)

with n=10 and α > 1536

Williams and Bozorth [6] proposed on the other hand to use the fol-
lowing empirical relation to define the evolution of magneto crystalline
constants with temperature:

K(T ) = K0exp(−kT 2) (44)
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Figure 13: Comparison between experiment (circles) and modeling (full line - see eq. 41)
of the evolution of saturation magnetization with temperature.

It has been decided to use this formulation multiplied by a linear func-537

tion of temperature in order to represent the change of sign of K1. This538

model denoted model 3 is given by:539

K1(T ) = K0
1exp(−k1T

2)(1− α
T

TC
) (45)

with: K0
1=-82×103 J/m3, k1=1.562×10−5K−2, α = 1.338.540

Figure 14 gathers experimental points from various authors [6, 24, 29]541

and the results of the three models. The figure 15 is a zoom of figure542

14. Model 3 gives clearly the best results.543

544

Following Williams and Bozorth [6], equation (46) has been used to
model the variations of K2 with temperature:

K2(T ) = K0
2exp(−k2T

2) (46)
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Figure 14: Comparison between experimental and modeled variation of K1 with temper-
ature.

with: K0
2=±28× 103 J/m3, k2=2.78×10−5K−2.545

546

K0
2 will be considered either positive or negative during the modeling547

since the sign of K2 is controversial. Figure 16 gathers experimental548

points from various authors [6, 24] (including a negative estimation549

from [31]) and results of the model. The sensitivity of magnetostriction550

modulus to the K2 sign has to be estimated to verify if this uncertainty551

is significant or not.552

• Magnetostriction constants - No theoretical relation between magne-553

tostriction and temperature is available in literature. A polynomial554

variation is chosen to model the saturation magnetization of isotropic555

polycristal:556

λs(T ) = λis(1− (T/TC)
m) (47)

with λis=-32×10−6 and m = 3.4. Extension of this function to λ100 and557

λ111 constants is considered, leading to:558
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ature - zoom of figure 14.

λ100(T ) = λi100(1− (T/TC)
m) (48)

λ111(T ) = λi111(1− (T/TC)
m) (49)

with λi100=-54×10−6 and λi111=-27×10−6 so that the values at RT cor-559

respond to classical values (-50×10−6 and -25×10−6 respectively). Re-560

sults are plotted in figure 17 showing a good ability of the function to561

model the experimental data.562

These various functions are introduced in the multiscale model (Ap-563

pendix A). In order to estimate the magnetostriction modulus, the multi-564

scale model is employed to model the effect of a small stress magnitude (i.e.565

∆σ33=0.1MPa) on the magnitude of macroscopic magnetostriction ∆ǫµ33. It566

leads to:567

1

Em

=
dǫµ33
dσ

∣

∣

∣

∣

σ=0

≈
∆ǫµ33
∆σ33

∣

∣

∣

∣

σ33=0

(50)
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ature.

The apparent Young’s modulus Ea satisfies the rule of mixture:

1

Ea

=
1

E
+

1

Em

(51)

The variation of apparent Young’s modulus for isotropic polycrystalline568

nickel with temperature is finally plotted in figure 18 using a homogeneous569

stress assumption and in figure 19 for the self-consistent condition. Plotted570

curves correspond to multiscale model (MS), analytical model without rota-571

tion, and analytical model with free rotation. The results obtained using the572

MS model are qualitatively in good agreement with the experimental results573

with a first decreasement with temperature followed by a strong increasement574

up to the Curie temperature. The temperature corresponding to the min-575

imum apparent Young’s modulus is in accordance with experimental data.576

The global level of apparent Young’s modulus is lower than expected from577

the room temperature up to 200◦C, and the self-consistent approach leads578

to a clear underestimation of the Young’s modulus variation. It can be ob-579

served by the way that the analytical model leads to a large (too large) frame580
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Figure 17: Comparison between experiment (circles) and modeling (full line) of the satura-
tion magnetostriction with temperature. Representation of λ100(T ) and λ111(T ) functions.

of the MS solution in both cases for temperatures below 200◦C. Above this581

temperature, analytical results do not frame the solution anymore (especially582

for the homogeneous stress estimation) indicating that the wall displacement583

mechanism hypothesis used to get the analytical modeling is not applicable584

any more. Since the homogeneous stress assumption gives results closer to585

experiments, it has been used for the next simulations.586

Because of uncertainties concerning the K2 anisotropy constant, it has been587

decided to simulate the situation where K2(T ) is the exact opposite of pre-588

vious function and the situation where K2(T ) = 0. Behaviors are plotted589

in figure 20 (using homogeneous stress condition). A very small change is590

observed meaning that K2 is a second order parameter. It has been kept591

positive for the next simulations.592

Reasons that explain the discrepancy between experiment and model-593

ing are numerous: representativity of RVE, various uncertainties on physical594

values,.... The main drawback is associated to the high uncertainty on the595

variation of initial anhysteretic susceptibility with temperature and a possi-596

ble anisotropic initial distribution of domains. It must finally be kept in mind597
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Figure 18: Change of nickel Young’s modulus with temperature - ideal and apparent
Young’s modulus - homogeneous stress estimation.

that the mechanical loading used to measure the apparent Young’s modu-598

lus cannot be considered as an anhysteretic loading, meaning that compar-599

isons between modeling and experiments should be considered at this step600

as mainly qualitative comparisons, waiting for a hysteretic version of the601

modeling (see [33, 34] for propositions of extension to hysteretic modeling).602

4.3. Simulation of NiO coating effects603

The experimental measurements reported in figure 3 show that the ”stiff-604

ening” effect magnitude below TC highly varies depending on the sample605

state (as-received, two sides oxidized, single side oxidized, peeled-off oxide)606

to another. To highlight and explain that effect, the following points have to607

be considered:608

• nickel has a larger dilatation coefficient than the oxide.609

• oxide is formed at high temperature (TOx=1100◦C).610

• for any temperature below TOx, the oxide layer is in compression on611

the nickel.612
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Figure 19: Change of nickel Young’s modulus with temperature - ideal and apparent
Young’s modulus - self-consistent estimation.

• the mechanical balance states that the nickel layer is submitted to an
equibitension residual stress of amplitude σ0.

σr =





0
σ0

σ0





Experimental XRD measurements reported in section 2.3 and provided613

at RT enable the estimation of σ0 magnitude for the 1-side oxidized and the614

2-sides oxidized situations. For NiO-Ni-NiO system, σ0 is homogeneous in615

the nickel layer and has been estimated to +9 MPa. For Ni-NiO, stress is616

heterogeneous across the thickness. Overall the average value in the nickel617

layer has been estimated to +3 MPa. For a more accurate modeling, it must618

be taken into account that σ0 depends on temperature since it decreases619

theoretically to zero at TOx. The following parametric formula can be used:620

σ0(T ) = σ0
0 − qT (52)
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Figure 20: Change of nickel Young’s modulus with temperature - effect of K2 magneto
crystalline constant - homogeneous stress estimation.

with σ0
0={11.42, 3.81}MPa and q={8.25, 2.75}×10−3MPa/K for the {2-sides621

oxidized , 1-side oxidized} situations respectively. σ0(T ) functions are plot-622

ted in figure 21 in the temperature range of experiments.623

624

The residual stress tensor is introduced in the multiscale model as a con-625

stant external loading (the relaxation of this stress with the magnetostriction626

strain of the sample is not considered). The procedure explained above is627

used to extract the magnetostriction modulus variations with temperature.628

Results are plotted in figure 22. The expected saturation effect is observed.629

The amplitude reduction is lower than observed experimentally. Uncertain-630

ties on the residual stress level and other approximations are probably at the631

origin of these discrepancies.632

In order to estimate the sensitivity to higher stress, the model has been633

tested for a superimposed constant uniaxial applied stress σ33 = σa. Results634

are illustrated in figure 23 where σa varies from 5MPa to 50MPa exhibiting635

the mechanical saturation phenomenon already discussed in literature [6] and636

reported in figures 3 (as received material) and 4b (cold rolled sample).637

38



0 100 200 300 400 500
1

2

3

4

5

6

7

8

9

10

T(oC)

σ re
s
(M

P
a

)

 

 

1−side oxidized

2−sides oxidized

Figure 21: Evolution of residual stress associated to oxide layers with temperature.
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The model gives also the opportunity to test the influence of a magnetic638

field on the apparent Young’s modulus of nickel. The effect of a superim-639

posed constant magnetic field H3 = Ha is illustrated in figure 24. Ha varies640

from 1000A/m to 10000A/m exhibiting the magnetic saturation phenomenon641

already discussed in literature [6] and reported in figure 4a.642
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Figure 24: Change of nickel Young’s modulus with temperature - effect of constant applied
magnetic field - homogeneous stress estimation.

5. Conclusion643

In this work a modeling of the variation of Young’s modulus with temper-644

ature of Ni and Ni-NiO layers has been proposed. The magnetic origin of this645

behavior has first been underlined, justifying the use of a magneto mechanical646

approach for the modeling. A first analytical modeling includes the change647

of the saturation magnetization, of the initial anhysteretic susceptibility and648

of the maximal magnetostriction with a relaxation of magneto-crystalline649

anisotropy concomitant to increasing temperature. The second modeling is650

a numerical modeling giving the average behavior of a representative volume651

element composed of 546 regularly distributed grains. This modeling requires652
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to define the temperature dependence of many magnetic and magnetostric-653

tive parameters. It allows a continuous description of the change of Young’s654

modulus with temperature.655

The discrepancies observed with experiments concern the lower level of Young’s656

modulus at room temperature up to 200◦C (as observed for peeled-off, 1-side657

oxidized or 2-sides oxidized sample). Discrepancies can be explained mainly658

by the fact that the modeling is reversible although the physical phenomenon659

is irreversible (hysteresis effect) and that the variation of initial anhysteretic660

susceptibility with temperature remains unknown. Other uncertainties and661

approximations (infinite medium) are additive reasons.662

It has also been shown that even if crystallographic texture remains roughly663

isotropic after oxidizing at 1100◦C, the grain size increases drastically for664

high duration heat treatments [4]. This size may reach the thickness of the665

layer leading to a surface effect whose magnetic and magnetostrictive conse-666

quences have been extensively discussed in [36]. This surface effect may have667

important consequences on the global response of apparent elastic behavior668

because the domain structure is strongly modified by free surface conditions.669

The analysis proposed in this paper remains nevertheless sufficient to under-670

stand now clearly how the Ni-NiO system behaves. An extension to another671

Ni / coating system or more generally another ferromagnetic substrate / coat-672

ing system is possible, opening to a wide range of applications. It could be673

for example applied to the measurement of thickness deposits and/or to the674

inverse identification of internal stress levels inside a substrate.675
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Appendix A. Multiscale modeling679

The multiscale model involves three scales: domain scale, grain scale and680

polycrystalline scale (representative volume element - RV E). It is especially681

dedicated to estimate the macroscopic magnetization and magnetostrictive682

responses to macroscopic magnetic field and/or stress loadings of polycrys-683

talline anisotropic media. Initially proposed by [26] at the grain scale, it was684

extended to polycrystals by [13] and [27]. In the present study, it is used to685

model the variation of magnetostriction with respect to stress (dǫµ/dσ - ∆E686

effect) considering:687

• free specimen (peeled-off sample)688

• 1-side oxidized sample (biaxial stress - σ0=3MPa)689

• 2-sides oxidized sample (biaxial stress - σ0=9MPa)690

• increasing uniaxial stress on a sample691

• increasing magnetic field on a sample692

An isotropic grain distribution has been used. Since this model always693

refers to equilibrium, modeling results must be compared to anhysteretic694

(reversible) experimental measurements.695

Appendix A.1. Micromagnetic model (grain scale)696

A polycrystalline ferromagnetic media can be considered as an aggregate697

of single crystals assemblied following the orientation data. The microscopic698

model proposed by [26] is written using the volumetric fraction fα of each699

domain family α (six < 100 > or height < 111 > families depending on700

easy directions), and magnetization rotation (two angles θα and φα per do-701

main family) as internal variables. The potential energy (A.1) is defined for702

each magnetic domain family α as the sum of the magneto-crystalline (A.2),703

magnetostatic (A.3) and elastic (A.4) energies, detailed hereafter.704

W α =W α
K +W α

H +W α
σ (A.1)

W α
K = K1(γ

2
1γ

2
2 + γ22γ

2
3 + γ23γ

2
1) +K2(γ

2
1γ

2
2γ

2
3) (A.2)
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W α
H = −µ0

~Hα. ~Mα (A.3)

W α
σ =

1

2
σ

α : Cα−1 : σα (A.4)

where ~Mα = Ms~γ
α is the magnetization vector of the domain family α705

(Ms: saturation magnetization), ~γα denotes the direction of magnetization706

(γαi : direction cosines) in the crystal frame. K1 and K2 are the magnetocrys-707

talline energy constants. ~Hα is the magnetic field at the domain scale. σ
α

708

is the stress tensor at the domain scale. Cα denotes the stiffness tensor of a709

domain family (or grain Cg = Cα). Homogeneous field and deformation as-710

sumptions lead to a definition of magneto static and elastic energies involving711

magnetic and mechanical loadings at the grain scale:712

W α
H = −µ0

~Hg. ~Mα (A.5)

W α
σ = −σ

g : ǫαµ (A.6)

where ǫ
α
µ denotes the magnetostriction strain tensor of a domain family713

α, where λ100 and λ111 are the magneto-elastic constants:714

ǫ
α
µ =

3

2





λ100(γ
2
1 −

1

3
) λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100(γ
2
2 −

1

3
) λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100(γ
2
3 −

1

3
)





CF

(A.7)

At the grain scale, the volume fraction fα of a family domain α is calcu-715

lated using a statistical approach (Boltzmann function - A.8) [37] assuming716

that a magnetic domain is much smaller than a representative volume element717

(considered as a small body immersed into a large closed thermodynamic sys-718

tem). θα and φα are the results of a minimization of the potential energy of719

a domain family (A.10).720

fα =
exp(−As.W

α)
∑

α

exp(−As.W
α)

(A.8)

with721
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As =
3χ0

µ0M2
s

(A.9)

{θα, φα} = min(W α) (A.10)

χ0, Ms and µ0 are the initial anhysteretic susceptibility (model expressed722

in reversible condition), the saturation magnetization and the vacuum per-723

meability respectively. This formulation uses the assumption that initial724

magnetization process is due to magnetic wall displacement and that rota-725

tion mechanism is neglected. This assumption is true for nickel at RT. An726

increasing temperature may compromise this hypothesis (especially when K1727

is reduced, that enhances the rotation mechanism).728

As, through its relation with χ0, is a parameter that accounts for ener-729

getic terms not considered in the final expression (exchange energy, magneto730

static phenomena). Its expression evolves with temperature since saturation731

magnetization and initial anhysteretic susceptibility are temperature depen-732

dent. Moreover, a global inverse proportionality dependence to temperature733

should be considered for As following the reference statistical approach [37],734

leading to the final expression:735

As =
3χ0(T )

µ0Ms(T )2
TRT

T
(A.11)

with TRT the room temperature.736

737

Assuming that the elastic behavior is homogeneous within a grain, the738

magnetostriction strain of a single crystal is written as the mean magne-739

tostriction over the domains (A.12). The magnetization in a grain is defined740

as well (A.13).741

ǫ
g
µ =< ǫ

α
µ >=

∑

α

fα ǫ
α
µ (A.12)

~Mg =< ~Mα >=
∑

α

fα ~Mα (A.13)

The discrete approach has been modernized by [27]. In this new version,742

the easy directions are not defined a priori. The possible directions ~γα are743

described through the mesh of a unit radius sphere (N unit vectors ~xn). A744
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34635 points mesh has been used in the present study. This new approach745

avoids the minimization operation A.10 and is less time consuming.746

Appendix A.2. Localization and homogenization747

Previous calculations are made for each grain of the polycrystalline ag-748

gregate. The polycrystalline aggregate considered in the study is a regularly749

distributed orientation data file made of 546 orientations [13]. The mag-750

netic behavior at the polycrystalline scale is defined as the average value of751

magnetization (A.14). A local demagnetizing field in each grain due to the752

magnetization of the surrounding grains can be introduced [13, 36]: the mag-753

netic field at the grain scale ~Hg is defined as a function of the external field,754

the mean secant equivalent susceptibility of the material χm, (χm = M/H)755

and the difference between the mean magnetization ~M and the magnetiza-756

tion at the grain scale ~Mg (A.15). The elastic behavior is obtained using757

a self-consistent homogenization scheme. The macroscopic magnetostriction758

strain (A.16) is estimated using the Eshelby’s solution and considering the759

local magnetostriction as a free strain; Bg denotes the fourth order stress760

concentration tensor.761

~M =< ~Mg > (A.14)

~Hg = ~H +
1

3 + 2χm

( ~M − ~Mg) (A.15)

ǫµ =<t
B
g : ǫgµ > (A.16)

The magnetostriction strain at the grain scale is elastically incompati-762

ble and creates a stress that changes the magneto-elastic energy term (self-763

stress). The stress at the grain scale σg is derived from the implicit equation764

(A.17).765

σ
g = B

g : σ + C
acc : (ǫµ − ǫ

g
µ) (A.17)

with the accommodation stiffness tensor:766

C
acc = ((Cg)−1 + (C⋆)−1)−1 (A.18)

and the stress concentration tensor:767
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B
g = C

g : (Cg + C
⋆)−1 : (C0 + C

⋆) : (C0)−1 (A.19)

C⋆ = C0 : ((SEsh)−1 − I) is the Hill’s constraint tensor. C0 is the stiffness768

tensor of the effective medium. If a self-consistent scheme is chosen, C0 refers769

to the self-consistent stiffness tensor. σ is the macroscopic stress. SEsh is the770

so-called Eshelby tensor, calculated following Mura [35].771
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